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Behavior exhibited by humans and other organisms is gener-
ally inconsistent and biased, and thus is often labeled irrational.
However, the origins of this seemingly suboptimal behavior re-
main elusive. We developed a behavioral task and normative
framework to reveal how organisms should allocate their lim-
ited processing resources such that there is an advantage to
being imprecise and biased for a given metabolic investment
that guarantees maximal utility. We found that mice act as
rational-inattentive agents by adaptively allocating their sen-
sory resources in a way that maximizes reward consumption in
novel stimulus-reward association environments. Surprisingly,
perception to commonly occurring stimuli was relatively impre-
cise, however this apparent statistical fallacy implies “aware-
ness” and efficient adaptation to their neurocognitive limita-
tions. Interestingly, distributional reinforcement learning mech-
anisms efficiently regulate sensory precision via top-down nor-
malization. These findings establish a neurobehavioral founda-
tion for how organisms efficiently perceive and adapt to envi-
ronmental states of the world within the constraints imposed by
neurobiology.
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Seemingly irrational behavior is surprisingly common in hu-
mans and other animals. This has been widely documented
in research conducted by neurobiologists, psychologists, and
economists, for whom apparent anomalies in the behavior of
healthy organisms are difficult to reconcile with idealized sta-
tistical and neurobiological frameworks (1, 2). These ideal-
ized concepts and theories are increasingly used to guide di-
agnoses and treatments in the medical domain (3) and policy
making in applied economic settings (4, 5), so such anoma-
lies raise an important question: Why are common behavioral
strategies so often different from the idealized predictions,
and is it reasonable to dismiss such strategies as irrational or
suboptimal?
A potential answer to this question might be rooted in a
premise that holds across all living organisms: organisms
have a limited metabolic budget for interacting with their en-
vironments, and thus a restricted capacity to process environ-
mental and interoceptive signals (6). This entails that, for
instance, when an organism must decide between various al-
ternatives that promise some reward, the process of choosing
the best alternative must be based on imprecise and biased
perceptions (7–9). However, it remains poorly understood
how organisms can make the best out of such perceptual lim-
itations such that reward is maximized in environments that
are uncertain.
One attempt to address this question proposes that in the

course of evolution, the nervous system developed compu-
tational strategies that take into consideration the statistical
structure of the environment and the uncertainty of sensory
signals. For instance, theoretical (10), behavioral (11–13)
and recent neurophysiological (14, 15) studies support the
idea that the brain learns a statistical model of the world and
optimally combines this knowledge with imperfect sensory
information, and thus approaches optimal computations un-
der uncertainty. However, this approach does not take into
consideration the biological limitations of information pro-
cessing in the nervous system.
This problem has received considerable attention in recent
years, when the principles of efficient computation under un-
certainty and cognitive limitations can be studied in the ra-
tional inattention or resource-rationality framework (16, 17).
This approach has been instrumental in accounting for vari-
ous aspects of behavior that were not possible to explain with
rational models not only in decisions relying on basic sensory
perception (18, 19) and memory (20, 21), but also in higher-
level processes in humans such as the evolution of language
(22) and economic decision-making (23–30).
Rational inattention theory predicts that (i) limited time
(31, 32), (ii) noise in the system and environment (33, 34),
and (iii) metabolic constraints (35) all limit access to infor-
mation. Consequently, a decision maker may often benefit
from violating the axioms of rational modeling frameworks
(36–39) by being rationally myopic and ignoring informa-
tion that is not worth the effort of processing (26, 27, 30, 40).
These apparently suboptimal strategies may ultimately lead
organisms to maximize their chances of survival. (41, 42).
Nonetheless, formulations of rational inattention, which have
to date been applied predominantly in economic settings, of-
ten do not display close conformity with neurobiological im-
plementations. Moreover, in some cases these formulations
may not be directly translatable to applications of optimal al-
location of attentional resources in sensory perception (43).
Additionally, previous formulations leave unclear how organ-
isms efficiently adapt and exploit novel stimulus-reward as-
sociations when sensory information varies in its reliability.
In other words, what computations can allow organisms to
allocate their limited neural resources in an adaptive man-
ner based on experience of reward and punishment? Here,
we developed a general modeling framework to study how
organisms endogenously allocate their attention with limited
resources such that reward consumption of the organism is
maximized when it interacts with the environment under un-
certainty.
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Formal tests of rational inattention have been predominantly
tested in humans, and it remains unknown whether such in-
fluential concepts can be tested and also hold in lower-order
species such as mice. Should this be the case, the availability
of genetic tools (44) and large-scale cellular imaging in mice
would enable the concepts studied in this work to be used
to address various open questions about limited information-
processing capacity (45–47) in large-scale experimental set-
tings. This would accelerate the translation from neurobio-
logical mechanisms to formal concepts of rational inattentive
behavior in medical settings and applied economics.
To test the neurobehavioral underpinnings of rational inat-
tention, we studied whether mice could be trained to per-
form a choice task requiring them to make decisions based
on ordinal comparisons of orientation stimuli spanning the
whole sensory space. This task decouples decisions from
sensory information, rendering only measures of relative in-
formation relevant. This is essential to consider given that
in ecologically valid settings, organisms typically encounter
situations in which abstract choices are invariant to specific
visual stimuli; for instance, when choosing between stimu-
lus A=1 and B=2 drops of juice, the mouse must choose B,
but between B=2 and C=4, the mouse must choose C and
not B. Additionally, we introduced trial-to-trial variability in
the reliability of sensory stimuli, and controlled the prior dis-
tribution of the sensory inputs such that it matched innate
and possibly evolutionary preserved neural sensory codes in
mice. During its experimental lifetime, each animal expe-
rienced novel stimulus-rewards association rules in different
environments while the physical statistics of the environment
and task structure remained identical. Controlling and ma-
nipulating all these components in the decision task provides
a unique opportunity to study whether and how mice learn to
adapt their neural coding schemes to maximize reward out-
come in each environment without any cues other than trial-
by-trial experience.
We found that mice indeed behave as rational-inattentive
agents, by taking into consideration their information-
processing limitations to develop sensory encoding strategies
that lead them to maximize reward consumption. This sug-
gests that many aspects of variable and apparently irrational
behavior both in the perceptual and economic domain in fact
reflect the efficient use of a limited metabolic budget to oper-
ate and interact with the environment.

Results

Behavioral task and behavior. We trained mice (n=7) in
a two-alternative forced choice task (2AFC), in which they
were presented two gratings θl and θr (presented on the left
and right side of the screen, respectively) and had to choose
the one that was more vertically oriented by turning the wheel
under their forepaws and thereby moving the grating to the
center of the screen (48) (Figure 1B). The two alternatives
θl and θr are independently drawn from a prior distribution
π(θ) (Figure 1A,B, see below). In order to study the role
of sensory uncertainty, we randomly varied the contrast lev-

els for each of the two stimuli across different levels on a
trial-to-trial basis (Figure 1B, see methods for details). In the
following, we first describe how we derived the prior π(θ)
used in our study, then proceed to explain the experimental
paradigm of the decision-making task, and present the de-
scriptive behavioral results.

Prior distribution approximation of stimulus orientation in
mouse V1. In order to specify the prior distribution π(θ) used
in our task, we investigated whether it would be possible
to estimate the innate information coding of orientations in
the mouse primary visual cortex (V1). To this end, we re-
lied on a large-scale cellular imaging dataset based on si-
multaneous recordings from ∼20,000 neurons in mouse V1,
while static gratings at a random orientation were presented
on each trial (47). Here, we paid particular attention to two
pieces of information: (i) the distribution of preferred orien-
tations across V1 cells, and (ii) the neural decoding orien-
tation error of a linear decoder. Regarding the distribution
of orientations, the data shows that in mouse V1, a larger
proportion of neurons are dedicated to code horizontal rel-
ative to vertical orientations for static stimuli (Figure S1A).
Based on this result, theories of efficient neural coding pre-
dict: (i) decoding error should be larger for orientations with
less neural resources, thus higher decoding error for verti-
cal orientations in mice, and (ii) this decoding error shape
across the sensory space should be amplified for shorter ex-
posure to sensory stimulation (19, 49). In line with these
predictions, the data shows that decoding error was higher
for vertical than horizontal orientations, and this pattern was
further amplified in the condition with shorter stimulus pre-
sentation (Figure S1B). These results confirm that mice ap-
pear to dedicate more neural resources to encode horizontal
relative to vertical orientations. We speculate that this prior
distribution could have been induced in mice by evolution (or
perhaps life-experience) due to their anatomy and morphol-
ogy. However, this notion would need to be more formally
tested in future studies, for instance as previously studied in
cats, a species that appears to be more exposed to horizontal
than vertical orientations in their natural environment (Figure
S1C).
Based on these analyses, here we specified the distribu-
tion of orientations π(θ) such that horizontal angles were
more common than vertical angles (Figure 1A). This al-
lowed us to focus our analyses on studying how mice
adopt reward-maximizing coding strategies based on specific
reward-stimulus contingencies, while preserving prior neural
codes that appear to be innately present in mouse early visual
areas.

Mice can perform ordinal comparisons under uncertainty in
a continuous sensory space. In the 2AFC task, orientations
of the two gratings were drawn from distribution π(θ) (Fig-
ure 1A). For all conditions tested in this study, mice had to
choose the grating that was more vertically oriented, and re-
ceived a reward R (a given amount of milkshake) if and only
if a correct decision was made. Rewards were based on three
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Fig. 1. (A, B, and C) The illustration of the animal setup and procedure. (A) Two orientations were picked from a prior distribution and their contrast levels were modified
independently across 3 levels. (B)The animal must turn the wheel to move the grating that is more vertically oriented to the middle of the screen to obtain a milkshake reward.
(C) Trial timeline, and outcomes for correct and incorrect responses.For 0.5 seconds after stimulus onset the wheel is not coupled to the stimulus positions. (D) The median
wheel trace for correct (full line) and incorrect (dashed line) trials. Trials picking right side plotted in red, and left side in blue. (E) The three stimulus-reward mapping conditions
Ω considered in this study. (F) Comparison of AICs (Akaike Information Criterion) the three descriptive models (DMs) and the 3 reward mappings (Methdos). AICs from
each model were subtracted from the best fitting model (DM3). Individual mice are shown with transparent gray lines. Error bars represent bootstrapped 95%-CI of the mean
across mice. (*) represents models for which the bootstrapped 95%-CI AIC difference is below zero. (G) Psychometric curves for three reward mapping conditions. Mouse
data is in the colour of the condition. (H) Percentage correct across difficulties for low contrast trials (semitransparent, sum contrasts < 1) and high contrast trials (solid, sum
contrasts > 1). Only trials with equal contrast for left and right side stimuli are included. (I) Contrast noise assigned to each contrast level in DM3 (σ1, σ2 and σ3 for contrast
values 0.3, 0.6 and 1, respectively). Higher weight means greater noise in the orientation estimate according to DM3. Individual mouse weights plotted as semitransparent
lines. (J) Mean reaction times across difficulties for correct (solid line) vs incorrect trials (semitransparent line). In panels G-J error bars represent s.e.m. (K) Extracted licking
data aligned to stimulus onset (left) and reward onset (right). Correct trials are plotted in blue, and incorrect trials in red (shaded area represent s.e.m.).
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different stimulus-reward association environments Ω (Fig-
ure 1E, Table S1). After mice reached stable behavior in a
baseline decision task, mice performed between 20-50 ses-
sions in each environment Ω (methods).
In environment ΩR:h�v , mice received a fixed amount of
milkshake for correct decisions irrespective of orientation
(Figure 1E, left panel). This condition corresponds to the
reward contingencies classically implemented in perceptual
decision-making tasks. In environment ΩR:h↗v , more verti-
cal orientations yielded higher rewards for correct decisions
via a linear relationship (Figure 1E, right panel). Given that
vertical orientations occur less often than horizontal orienta-
tions, this context emulates ecologically-valid settings of eco-
nomic decisions, where stimuli with higher value occur less
often in the environment. Finally, in environment ΩR:h↘v

more horizontal orientations yielded a higher reward (Figure
1E, middle). Recall that in all cases the decision rule is to
choose the orientation that is more vertical. Thus counter-
intuitively, in any given trial in environment ΩR:h↘v

, mice
should choose the orientation that is mapped to the smallest
reward, because the other option is less vertical and therefore
leads to no reward at all.
First, we investigated based on simple descriptive models
whether mice were able to follow the basic decision rule in
each environment Ω (all models incorporated lapse rates and
trial history effects, methods). Using a simple descriptive
model (DM1) incorporating the angle difference ∆θ between
the input stimuli in a given trial, we found that for all en-
vironments Ω, mice learned to choose the more vertical ori-
entation (slope of psychometric curve, logistic mixed effects
P < 0.001 for all Ω, Figure 1G). This indicates that, dur-
ing their decisions, the abstract choice rule was decoupled
from specific sensory information, and relative information
was the relevant variable. These results are in principle in
accordance with a recent study also showing that mice can
apply this sort of abstract decision rules (50).
In a second model (DM2), we investigated whether stim-
ulus contrast impacted mice decisions. As expected, we
found that the lower the contrast, the noisier the decisions
(mixed effects model, effect of contrast on decision noise
P < 0.001 for all Ω, Figure 1I). In a third model, we inves-
tigated whether in addition to the influence of stimulus con-
trast on decision noise, the difference in stimulus contrast be-
tween the two orientations impacted mice decisions (DM3).
In addition to the impact of angle difference and contrast
on decision-making, we found that mice had a preference to
choose the orientation with higher contrast stimulus (mixed
effects model, P < 0.001 for all Ω). This model explained
the data better than the simpler models for all mice and all
environments (bootstrap 95% confidence intervals (95%-CI)
of AICDM1−AICDM3 < 0 and AICDM2−AICDM3 < 0 for
all Ω, Figure 1F). While contrast should not play a relevant
role in mice decisions, below we will show that an optimal
observer model can account for this apparent risk-averse be-
havior. Finally, we found that lapse rates were relatively low
(λ= 0.091, 95%-CI[0.044,0.14]), suggesting that mice were
engaged and followed the decision rules of our task.

For completeness we investigated whether reaction times
(RTs) show the behavioral patterns often observed in both
perceptual and value-based decision tasks as function of ab-
solute evidence and trial correctness. We found that mice
RTs were faster for correct responses (Figure 1J). Also the
higher the absolute evidence (∆θ), the faster the response for
correct decisions (Mixed Linear Model, P < 0.001 for all
Ω). These results are in line with chronometric behaviour
reported across species both in perceptual and value-based
decisions (51–53).
Taken together, the behavior exhibited by the mice in our
study indicates that they can learn to perform decision tasks
that decouple decisions from sensory information, where
measures of an abstract decision rule based on relative in-
formation are relevant. Moreover, their psychometric and
chronometric behavior strongly suggests that mice employed
similar neural mechanisms for guiding their decisions. Next,
our goal is to investigate what neuro-computational mecha-
nisms might guide behavior under cognitive limitations.

Efficient perception and rational inattention. We devel-
oped a framework, based on principles of optimal statisti-
cal inference, that allowed us to study how sensory systems
should allocate coding resources under the assumption that
there is a limit in information processing at two stages of the
decision process: (i) limited precision during sensory encod-
ing, and (ii) limited precision in down-stream decision cir-
cuits. Crucially, given that the physical prior π(θ) remains
constant, these predictions may be specific to the stimulus-
reward associations of a given context or environment Ω.
Here it is assumed at all times that the goal of the organism
is to maximize reward consumption (Figure 2A, see methods
for a detailed specification of the model).
Given that noisy communication channels always lose infor-
mation during transmission, we argue that it is more efficient
for the brain to adapt to the reward-maximizing rules of a
particular environment at the earliest stages of sensory pro-
cessing. This notion is supported by evidence suggesting that
early sensory systems represent not only information about
physical sensory inputs, but also non-sensory information ac-
cording to requirements of a specific task and the behavioral
relevance of the stimuli (54–56). Thus, a key assumption
of our framework is that, despite the fact that the physical
prior distribution was held constant for all environments Ω,
sensory codes adapt to environmental demands, possibly via
feedback schemes (57, 58).
In brief, we assume that in every trial a mouse obtains a noisy
measurement m independently for each input orientation θ.
We model the noisy measurements using the von Mises dis-
tribution

p(m;θ,c,g)∝ ek(c)g(θ)cos(θ−m), (1)

where the precision of the measurement is determined by
two multiplicative factors: (i) k(c), which is function of the
contrast level for a given orientation, and (ii) a normalized
limited-resource function g(θ), determining how many re-
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sources the system allocates to a particular segment of the
orientation space (methods).
On each trial, the agent computes a posterior distribution
p(θ|m) by combining the physical environmental prior distri-
bution π(θ) with the likelihood of the measurement p(m|θ)
via Bayes rule. Then the agent applies a decoding rule in or-
der to obtain a posterior estimate θ̂, which we assume to be
the expected value of the posterior distribution E[p(θ|m)],
also known as Bayesian least squares (BLS) estimator. We
assume that on each trial, the mouse independently estimates
θ̂l and θ̂r for the input orientations θl and θr, respectively,
and then makes a decision based on the abstract decision rule
in our task: choose the more vertical angle.
If we constrain g(θ) > 0 for all θ and assume a cost K gen-
erated by the use of metabolic resources to encode visual
information (35), one can formulate a well-constrained op-
timization problem in order to find the optimal allocation
of resources in the orientation space for: (i) a given physi-
cal environmental prior π(θ), (ii) a given contrast response
function k(c), (iii) reward outcomes associated to decision-
outcome rules in a given context or environment Ω, and (iv)
downstream noise σlate that is not related to sensory encod-
ing. Formally, the goal is to find a resource allocation g∗, and
the maximum allowed precision/neural-activity kmax (with
an underlying contrast response function k(c), see methods)
such that

max
g,kmax

E[reward | Ω,k(c),σlate,π]−K(k̄,η), (2)

where c is the set of contrasts that the animal experiences.
We model the metabolic cost K as a function of the average
precision k̄ that the agent invests on solving the inference
problem, where η > 0 indicates how much the metabolic cost
scales with average precision k̄ (methods). We argue that
this choice of cost function is reasonable when applied to the
visual system, given that in our model sensory encoding pre-
cision (Eq. 1) can be directly related to the amount of neural
activity and its associated variability (13) (methods, Figures
S2 and S3). Moreover, it has been recently shown that the
relationship between neural activity and energy expenditure
in the brain is nearly linear (59).
Here it is important to highlight that an important feature of
the rational inattention framework is that allocation of sen-
sory precision (g(θ) and kmax) does not need to be assumed
or manually fitted—as it is often the case in plain Bayesian
frameworks were likelihood functions are assumed or manu-
ally fitted—but emerge endogenously by assuming an aver-
age precision cost η and downstream precision σlate, along-
side the associated (reward) loss that the organism experi-
ences (Methods).

Optimal resource allocation depends on both sensory
encoding precision and down-stream noise. We studied
whether the optimal limited-resource allocation function g
depended on the amount sensory precision cost η. Addi-
tionally, we also studied the dependence of g on sources of
down-stream noise σlate, as recent evidence suggests that lim-

its of sensory perception in mice might be also related to
downstream neurocomputational imprecision (47), possibly
related to computational limitations of downstream decoders
and other forms of irreducible noise in the system (33). Here,
we would like to emphasize that a key feature of our study is
that for all three different stimulus-reward environments Ω,
the physical prior π(θ) was always the same, and therefore,
potential differences in resource allocation g(θ) must be re-
lated to internally improving sensory representations of the
learned associations that maximize reward expectation. In
order to derive the optimal g functions for a particular combi-
nation of η and σlate, we used the exact distribution of stimuli
inputs used in the mice experiments.
We found that in general for low levels of downstream noise
σlate and relatively low costs in encoding precision η, more
resources should be allocated to segments of the orientation
space with higher prior π(θ) density (Figure 2B, left panel).
This result is in line with previous studies suggesting that in
the limit of low sensory noise (i.e., η→ 0), encoding preci-
sion should be higher for segments of the orientation space
with more density (19, 60). For instance, it can be shown that
for the case of perceptual tasks with constant reward delivery
per correct trial (i.e., ΩR:h�v environment in our study), dis-
crimination thresholds are inversely proportional to the prior
distribution, but crucially in the low-noise regime (19, 49).
However and surprisingly, as σlate increases the predictions
of these analytical solutions breakdown, and agents should
start to be myopic to segments of the sensory space where the
prior’s density is high (Figure 2B, middle and right panels).
Similarly, assuming no downstream noise (i.e., σlate = 0), but
instead varying the levels of sensory noise reveals a similar
but qualitatively different pattern of optimal resource alloca-
tion strategies as a function of sensory precision costs (Fig-
ure 2C, Figure S2,3,4). Thus, these predictions reveal two
important features of the rational inattentive agent. First, op-
timal resource allocation does not only depend on the level
of encoding precision of sensory signals, but also on stimu-
lus independent downstream noise. Second, long-held con-
ceptions that neural resources should always be allocated to
spaces with higher prior density do not necessarily hold be-
yond the low-noise regime.
Why are more resources allocated away from high prior den-
sity spaces when precision cost and downstream noise are
relatively high? On the one hand for the case of high preci-
sion cost, low levels of encoding noise generate higher lev-
els of Bayesian attractive biases. Thus, optimal solutions of
the rational inattention model reveal that if the system has
the opportunity to flexibly modulate its sensory gain, then it
pays off to put more weight at places of the sensory space that
avoid poor discriminability due to overall attractive biases. In
order to provide a better intuition behind this result, we car-
ried out geometric analyses of psychophysical performance
based on multidimensional scaling (MDS) (Figure 2E and
Figure S5). MDS reveals that the effect of attractive biases
for high precision costs are compensated by expanding the
discriminability of orientations located at intermediate levels
of verticality. On the other hand, for the case of high down-
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stream noise, augmenting precision at the edges of this space
does not increase the discriminability of neighbouring orien-
tations beyond the most vertical and most horizontal orien-
tation. That is why for relatively high levels of noise there
is preference to allocate more attentional resources to rather
intermediate levels of cardinality (Figure 2E and Figure S5).
While this pattern is similar for all environments Ω consid-
ered here for a given combination of η and σlate (Figures
2B,C and Figure S2), there are important differences in the
resource allocation functions g between environments. We
found that resource allocation has a tendency to be relatively
higher for more vertical angles in environment ΩR:h↗v (Fig-
ure 1E, middle panel), however this requires sacrificing preci-
sion at more horizontal orientations. This pattern reverses for
environment ΩR:h↗v . This result intuitively makes sense,
given that in environment ΩR:h↗v , more vertical angles de-
liver more reward, and therefore mice are better off at giv-
ing up encoding precision for horizontal orientations even if
they occur more often. Another key prediction of the ratio-
nal inattention framework is that for environment ΩR:h↗v

the system should allocate more resources to solve decision
task relative to ΩR:h↗v (this is evident in the MDS analyses
where nodes of the manifold are more separated in ΩR:h↗v

relative to ΩR:h↗v ). This prediction emerges in the ratio-
nal inattention framework because the relative allocation of
resources under our inference framework leads to slightly
higher reward expectation in environment ΩR:h↗v relative to
ΩR:h↗v . We also considered rational inattentive model that
does not allow a variable and adaptive gain function g across
the sensory space, but instead we assume it to be constant.
While this model captures the effect where in environment
ΩR:h↗v the system allocates more resources to solve deci-
sion task relative to ΩR:h↗v , this model does not account for
tradeoffs in discriminability between horizontal and vertical
spaces across environments (Figure S6). Moreover, the MDS
manifold is more spread for the g-variable model in relation
to the g-constant model, thus suggesting higher efficiency in
the g-variable (compare manifold spread in Figures S5 and
S6).
Finally, we investigated what is the actual benefit of apply-
ing the most efficient resource allocation in a given environ-
ment. Using average parameters of model fits to the mice
data (see below), we found that agents could lose around 10-
20% of reward, if resources are not optimally allocated (Fig-
ure 2D). This confirms that efficient resource allocation under
uncertainty and cognitive limitations is critical to maximize
reward.

Adaptive rational inattention in mice. First, we investigated
whether the rational inattention model that endogenizes g(θ)
(g-endog model) provides a better account of the mice data
than the best descriptive model (DM3, Figure 1F). We found
that the g-endog model provides better fits to the data for all
environments (bootstrap 95%-CI of AICRI−AICDM3 < 0
for all Ω, Figure 3A). Notably the rational inattention model
has the same number of parameters as the best descriptive
model. Therefore, the quantitative differences in goodness of

fit between the two models is not related to model complex-
ity. Inspection of the g functions across mice for each en-
vironment follow the counter-intuitive qualitative predictions
of the theory for non-negligible sensory and late noise in our
task: More resources are allocated to angles close vertical
relative to horizontal orientations (Figure 3C). Additionally,
more resources are allocated to vertical orientations in en-
vironment ΩR:h↗v (higher reward for more vertical angles,
Figure 1E) relative to the other environments, while the op-
posite is the case for ΩR:h↘v

environment (cluster-corrected
P<0.05; Figure 3C). These results strongly suggest that the
manner in which mice allocate attention in light of their lim-
ited coding resources—in the presence of encoding and pre-
cision noise—follows the signatures of the resource-limited
observer model. Additionally, we found that the levels of
apparent risk aversion behavior observed in the descriptive
model (DM3, see above) can be largely explained by the ra-
tional inattention model (Figure 3B).
In order to make sure that the shapes and differences in re-
source allocation g are not a product of the endogenous solu-
tions of the optimal models, we fitted a version of our infer-
ence model that does not endogenously restrict the shape of
g, but is fit in a model-free fashion (methods). This model
reveals two striking results: First, the qualitative shape of
resource allocation g across environments is similar to the
optimal solutions (more resources are allocated away from
segments of the sensory space with high prior π(θ) density).
Second, mice allocated their limited coding resources in a
way that resembled the signatures of reward-maximization
in each environment Ω. More specifically, we found that (i)
in environment ΩR:h↗v (more reward for more vertical an-
gles) resource allocation was relatively higher for vertical an-
gles, (ii) this pattern reversed for ΩR:h↘v

, and (iii) resource
allocation in environment ΩR:h�v was located in between
the other environments (see pairwise comparisons in Figure
3D, P<0.05 cluster-corrected). Crucially, model comparison
between the g-endogenous model and the g-free model re-
veals that the complexity of freely capturing the shape of
resource allocation g is not necessary (bootstrap 95%-CI of
AICg-endog−AICg-free < 0 for all Ω, Figure 3A). In addition
to these quantitative results, our model also accounted for
various qualitative features of mice behavior (Figure 3E, and
Figure S7) as it is also evident based on MDS analyses, which
reveal that the g-endog model closely resembles the geometry
of psychophysical performance of the real data (Figure 3F).
Here, two key predictions of the rational inattention model
are observed in the behavioral data: (i) geometric distance of
the nodes in the MDS manifold at horizontal orientations is
shorter for environment ΩR:h↗v relative to ΩR:h↘v

, and (ii)
geometric distance is larger for environment ΩR:h↗v relative
to ΩR:h↘v

(see Figure 2E). These results suggest that mice
indeed adopt efficient rational-inattentive perception accord-
ing to the reward contingencies of a given environment.
Finally, We compared the results of the endogenized model
(g-endog), with an ideal observer model in which resource al-
location was uniform across the whole sensory space (g-const
model). We found that the g-endog model accounted better
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Fig. 3. (A) Model comparison between based on the AIC reveals that the rational inattention model provides the best account of the behavioral data for all enviroments Ω.
The figure shows the difference in AIC relative to the g-endogenized rational inattention model (g-end). Error bars represent the bootstrap 95%-CI across mice, and individual
mice are shown with transparent lines. (*) Denotes bootstrap 95%-CI significant difference vs the g-endogenous model. There is no difference between the model that
endogenizes g and the non-endoginized g model, suggesting that model complexity that arises by freely fitting g is not necessary. (B) Probit wights capturing the influence
of contrast difference between the two stimuli on choice. Large part of the apparent risk aversion observed in the best descriptive model DM3 (i.e,̇ preference to choose the
stimulus with higher contrast) is captured by the rational inattention model. Error bars represent s.e.m., and individual mice marked by transparent lines. Asterisk denotes
significant differences (mixed effects model, P<0.001). (C,D) Pairwise comparisons of resource allocation functions g(θ) for each reward environment. Black lines on top
(marked with an asterisk) signal significant differences as determined by bootstrap 95%-CIs of within mouse differences. Panel C shows results for g-endogenised model and
panel D for the non-endogenized model. See Figure S8 for individual mice data. (E) Heatplots for each reward environment showing probability of choosing the left stimulus
at each possible orientation appearing in the study vs. the angle difference (trial difficulty). Model predictions and real mouse data are shown. Data and model predictions
show overall good agreement. See Figure S7 for data split based on different contrast levels. (F) MDS analyses of real data and model fits reveal that the rational inattention
model allowing adaptive g across the sensory space has a psychophysical geometry that closely resembles the real data. On the other hand, the rational inattention model
that assumes a constant gain g cannot account for various discriminability features observed in the data.

for the data than the g-const model for all mice and all envi-
ronments Ω (bootstrap 95%-CI AICg-endog−AICg-const < 0
for all Ω, Figure 3A,F). These results strongly suggest that as-
sumptions in ideal observer models where uniform likelihood
functions are adopted (11, 61, 62)—mainly for mathematical
convenience—might not always be warranted.

Adaptive rational inattention via reinforcement learning. The
rational inattention model implemented above assumes that
mice have already adapted to a permanently relevant envi-

ronment Ω. Hence, the optimal allocation of resources g
remains fixed across trials in a given environment. There-
fore, this model does not explain how mice may re-allocate
their limited coding resources via trial-to-trial experience. In
order to incorporate this fundamental aspect of behavior in
our model, we implemented a class of reinforcement learn-
ing (RL) mechanism allowing dynamical updating of the re-
source allocation function g using operations that appear to
be supported by biological neural systems (Figure 4A, see
methods for details). In brief, we assume that the animal
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Fig. 4. (A) Sketch of the reinforcement learning (RL) model. In brief, after a the observer chooses angle θ̃, the gain g function is updated following a divisive normalization
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α for correct and incorrect trials. Individual mice shown with different symbols, and color-coded for condition (see Figure 1D). Right: Distribution of bootstraped differences
of α for correct and α for incorrect trials, dashed lines show the mean and bootstrapped 95%-CIs. This result suggests that learning rates are higher for correct choices
vs incorrect choices (recall that our model, the learning rates α are divisive, and therefore, lower values indicate higher learning rates). (C) AIC difference between the
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g from the RL model averaged for the last 500 trial in each environment Ω for each mouse and then averaged across mice. Error bars represent s.e.m., and black lines on
top show significant differences evaluated by studying whether the bootstrapped 95%-CIs of within subject differences do not cross zero.

updates—based on experience—a distribution of rewards as-
sociated to sensory information, for instance in the VTA (63),
or any other downstream circuit performing similar opera-
tions. After a mouse makes a decision, the animal updates
the reward distribution using a form of distributional updat-
ing (see methods). Crucially, the strength of update (i.e.,
learning rate) is dynamically adjusted according to the con-
fidence level of the decision just made (64). Additionally,
based on compelling evidence suggesting that humans learn
differently from positive and negative outcomes (65, 66), we
investigated whether our mice would show a similar behav-
ior in our task by allowing separate learning rates for correct
and incorrect decisions. In the final step, we assume that the
brain readjusts the resource-limited sensory gain g (possibly
in early sensory areas) via a top-down divisive normalization
operation (67, 68).
If it is the case that the RL model described above con-
verges to the static rational inattention model, we expect a
similar allocation of attentional resources g across environ-
ments Ω for both models. We found that the average re-
source allocation functions g over time showed nearly identi-
cal patterns of those found in the static ideal observer model
(Figure 3D). Moreover, we found that the set of RL pa-
rameters that were fit to each condition improved model
fits specifically for the corresponding environment Ω (Fig-
ure 3C). This suggests that parameters controlling the dy-
namics of reward-sensory learning are specific to the reward-
maximizing rules of a given context. Additionally, the dif-

ference between the static rational inattention and RL mod-
els was not distinguishable across mice for all environments
Ω (∆AIC(ΩR:h�v) = 2.8[−3.4,12.4]; ∆AIC(ΩR:h↘v

) =
−2.8[−12.5,10.2]; ∆AIC(ΩR:h↗v ) = −4.8[−23.4,13.6],
Figure 3C). Given that the rational inattention model fits the
data better than all other models tests here so far, these results
suggest that the RL model approximates closely to the solu-
tion of the optimal model (bootstrap 95%-CI of ∆AIC < 0
between RL and all other models except the rational inatten-
tion model).
A recent intriguing modeling study found that when updat-
ing the value of a chosen options, estimates must be revised
more strongly following positive than negative reward pre-
diction errors, as this guarantees that reward expectation is
maximized (69). Crucially this effect is amplified when de-
cisions are corrupted by late noise. Given our finding that
downstream noise has an important influence in the alloca-
tion of limited resources and consequently on decision be-
havior, we hypothesized that similar to humans (65), learn-
ing rates in mice are also higher for correct relative to in-
correct decisions in our adaptive resource allocation model.
In line with these predictions, we found that learning rates
were generally higher for correct relative to incorrect de-
cisions (∆α = −249.0, bootstrap 95%-CI[−465.6,−41.7],
Figure 3B), thus suggesting that apparent irrational learning
policies might indeed lead to reward-maximizing strategies.

Rationally-inattentive neural population codes. We investi-
gated allocation of neural resources of our sensory task in

Grujic et al. | Preprint 9

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 27, 2021. ; https://doi.org/10.1101/2021.05.26.445807doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.26.445807
http://creativecommons.org/licenses/by-nc-nd/4.0/


0

25

50

75

0 10 20 30 40 50 60 70 80 90
θ

To
ta

l f
ir

in
g 

ra
te

 (
S

pi
ke

s/
se

c)

0.0

0.1

0.2

0.3

0.4

0 10 20 30 40 50 60 70 80 90
θ

g(
θ
)

0

25

50

75

100

125

0 10 20 30 40 50 60 70 80 90
θ

To
ta

l f
ir

in
g 

ra
te

 (
S

pi
ke

s/
se

c)

0

25

50

75

100

125

0 10 20 30 40 50 60 70 80 90
θ

To
ta

l f
ir

in
g 

ra
te

 (
S

pi
ke

s/
se

c)

0.0

0.2

0.4

0.6

0 10 20 30 40 50 60 70 80 90
θ

g(
θ
)

0.0

0.2

0.4

0.6

0 10 20 30 40 50 60 70 80 90
θ

g(
θ
)

● ● ●

●

●

●

0

2

4

6

0 45 90 135 180

0 45 90 135 180
●

0 45 90 135 180
●

●●

●

●

●
●

0

2

4

6

8

0 45 90 135 180F
ir

in
g 

ra
te

 (
S

pi
ke

s/
se

c)

●
●●
●

●●

0

2

4

6

8

0 45 90 135 180

● ●

●

●

●

●

0

2

4

6

0 45 90 135 180

#S
pi

ke
s

θ θ

0 45 90 135 180

A B

C

D

Fig. 5. (A)Schematic of the neural network inference process. Top row: the preferred stimuli θn of N = 30 neurons are spread through orientation space proportional to the
prior distribution (for visualization purposes only 6 neurons are depicted). The neurons follow a bell-shaped activation pattern which is modulated by the maximum firing rate
rmax and the resource gain function g(θ). Neural activities are in turn modulated by a contrast response function k(c). The two input angles θL and θR activate independent
and retinotopically specific neural networks. Note that in this example the low activation of the neurons for θR is a result of low contrast level. 2nd row: the activation of
Poisson neurons leads to a number of spikes for each neuron. 3rd row: the BLS estimates of the input angles θ̂L and θ̂R are computed by summing over the preferred
orientation of the neurons multiplied by the likelihood. Bottom row: a noisy decision is made based on the BLS estimates of the input angles. The decision leads to a reward
conform the choice rule and the reward environment. Both the reward and the metabolic cost originating from the spikes feed into the optimization process which determines
the shape of g(θ) and the value of rmax. (B,C & D) Optimal solutions of the limited resource function g(θ) for different values of the metabolic cost of a spike and different
levels of late noise σlate for the different environments Ω (left) and the resulting total activation (as a function of input angle θ) (right). (B) Low external noise and low metabolic
cost. (C) Medium external noise and low metabolic cost. (D) Low external noise and medium metabolic cost. Note that the scale of the y-axis has changed in D) compared
to B) and C).

a model that is more closely related to a possible biological
implementation. To this end, we implemented a neural net-
work of V1 neurons with Poisson spiking statistics. Thus, an
advantage of studying such an implementational architecture
is that we can directly study the trade-off between reward in-
take and the metabolic costs associated to the generation of
action potentials in the network (70). Here we provide a brief
description of the model alongside the main results (Figure
5A, see methods for more details).
Similar to the algorithmic model, the firing rate of the neu-
rons is determined by two multiplicative factors: (i) maxi-
mum activity rmax, determining the maximum firing rate of
the neurons (which is also modulated by contrast input), and
(ii) g(θ) which determines the firing-rate gain of the neurons.
Based on this architecture, it is possible to show that the BLS
estimate of the input θ can be computed by a sum over the
likelihood functions based on the neural activity generated
across the network p(~r|θn) weighted by the preferred stimuli
of the tuning curves θn. Given that the physical prior distribu-

tion remained constant across the different environments Ω,
we assume that the neural network incorporates this knowl-
edge in its architecture, such that biologically-plausible com-
putations can be implemented during encoding and decoding
operations of the network. One way to achieve this is by as-
suming that the locations of peak sensitivity of the neurons
are spread through orientation space proportional to the prior
(60, 71). Conveniently, this strategy can be incorporated by
the BLS estimator via the spread of the preferred stimuli loca-
tions of the neurons. We assume that these computations oc-
cur in parallel by retinotopic specific networks that indepen-
dently compute the BLS estimates of the two input angles θ̂L
and θ̂R. As in the algorithmic model, we allow the possibility
to corrupt the estimators with down-stream noise (σlate). The
decision is associated to a reward outcome conform the deci-
sion rule and the reward contingencies of the environment Ω.
Crucially, we can directly relate the metabolic cost expected
amount of spikes generated by the network, which we can
assume to be proportional to some metabolic cost per spike
η (72). As in the algorithmic model, the goal is to find a re-
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source allocation g∗ and a maximum allowed activity rmax∗
such that the trade-off between reward and costs is optimized
(see methods and Figure 5A).
Mirroring the results of the algorithmic model, we find that
the allocation of resources in the network (measured as firing
rates elicited for each input stimulus in the sensory space)
depends on encoding noise, late noise, and the environmen-
tal context Ω (Figure 5B,C,D). For low levels of downstream
noise σlate more resources are allocated to segments of orien-
tation space that correspond to high prior π(θ) density (Fig-
ure 5B,D). This intuitive result is not found when σlate is in-
creased, instead most resources are located at those regions of
orientation space that correspond to low prior density (Figure
5C). Moreover, the neural network will spend less resources
in the case that the cost of spiking η is high (i.e., average
firing rate decreases, Figure 5D). Thus, this model makes
testable predictions for the spiking behavior of neurons in the
face of prior densities, stimulus-reward association contexts,
and varying levels of encoding and late noise, that can be
studied in future imaging studies.

Arousal-linked efficient regulation of behavioral vari-
ability. Past research has identified that systems regulating
arousal levels—such as the locus coeruleus–norepinephrine
(LC–NE) system—have a considerable impact on behavioral
variability (73, 74). For instance, it has been shown that large
pupil baseline (i.e., pupil dilation before trial onset) is asso-
ciated to slower and less accurate perceptual decisions (75).
Moreover, in behavioral paradigms involving uncertain en-
vironments, large pupil baselines predict exploratory behav-
ior (76, 77). These findings support the idea that tonic LC-
NE modes produce an enduring and largely nonspecific in-
crease in behavioral sensitivity, which promotes flexible and
exploratory control states (77).
Based on this evidence, we hypothesized that as for the case
of humans, baseline pupil dilation in our task is predictive
of task disengagement, that is, more incorrect and slower
responses. Based on camera tracking, we analyzed the dy-
namics of pupil dilation relative to trial onset and its relation
to reaction times (RTs) and correct responses (Figure 6C,E,
methods). In line with our hypothesis, we found that higher
levels of pupil baseline were associated with more incorrect
and slower responses in the upcoming trial for all environ-
ments Ω (Bootstrap 95%-CI<0 for all Ω from -0.75 to 1.5 s
relative to stimulus onset, Figure 6B). Given that RTs are usu-
ally related to the degree of trial correctness (Figure 1J), we
investigated whether the effect of pupil baseline on RT was
also present when splitting the data in correct and incorrect
trials. We found that the effect of RT was robustly present for
both correct and incorrect trials (Bootstrap 95%-CI<0 for all
Ω from -0.75 to 1.5 s relative to stimulus onset, Figure 6E).
These results confirm that during high levels of tonic arousal,
as in humans, mice show signatures of task disengagement.
But, what mechanisms support this arousal related behavioral
variability?
Recent theories of the LC–NE system suggest that windows
of high arousal might be related to adjustments in learning

representations (e.g., in situations of high volatility where
learning rates must be up-regulated (78, 79)). But, where
does this trade-off occur during decision-making? An ad-
vantage of our rational inattention model is that it allows
us to separate sensory encoding precision from stimulus-
unspecific downstream noise. Therefore, we adapted our
model to obtain a joint readout of change in sensory and
late noise as a function of pupil baseline (crucially, we
can show that the contribution of the two noise sources
is identifiable). Strikingly, we found that for all envi-
ronments Ω and all mice, higher levels of pupil baseline
resulted in a consistent reduction of downstream choice
precision klate (∆klate(ΩR:h�v) = −0.33% 95%-CI:[-0.48,-
0.18], ∆klate(ΩR:h↘v

) = −0.55% 95%-CI:[-0.63,-0.46],
∆klate(ΩR:h↗v ) =−0.52% 95%-CI:[-0.78,-0.33]; individu-
ally estimated MLE 95%-CI<0 for each mouse in each envi-
ronment Ω), but not related to changes in sensory precision
(Figure 5F,5G).
Given our finding that positive prediction errors are associ-
ated with higher learning rates (Figure 4B), and previous re-
ports on the positive relationship between learning rates and
tonic arousal (78), we hypothesized that following positive
prediction errors, pupil baseline should be elevated. In line
with this prediction (and after controlling for confounding
factors), we found that positive prediction errors were re-
lated to elevated pupil baseline of the following trial (Fig-
ure 6E). Conversely, higher levels of phasic pupil response
were related to faster reaction times in the current trial (Fig-
ure 6E). Thus, these findings suggest that arousal systems in
the brain balance the costs associated to larger learning up-
dates with lower precision in downstream circuits while pre-
serving sensory fidelity. This supports previous suggestions
of nonspecific increase in behavioral sensitivity during high
tonic arousal, which in turn promotes flexible and exploratory
control states (76, 77).

Signatures of reward distribution encoding in arousal sys-
tems. Previous work provided evidence that the arousal sys-
tem has important and computationally complex roles in
rationally regulating the influence of incoming information
on beliefs about dynamic and uncertain environments (78).
However, it remains unclear whether the arousal system sig-
nals the expectation of rewards tied to specific sensory in-
formation (which is often distributed across the whole sen-
sory space), irrespective of the expectation of physical sen-
sory signals. Our experimental design allows the possibil-
ity to study these arousal-linked computational mechanisms
given that the distribution of sensory signals remains identi-
cal across the different environments Ω, where the only dif-
ference across environments is the learnt stimulus-reward as-
sociation spanning the sensory space.
In order to study this possibility, we investigated phasic pupil
responses as a function of sensory-specific reward expecta-
tion. First, we obtained the expected reward of each correct-
side stimulus by multiplying the frequency of occurrences of
these stimuli with their reward value within each reward envi-
ronment Ω (Figure 6H). If it is true that pupil responses signal
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Fig. 6. (A) Pupil dilation was extracted from videos acquired during behavioral performance using DeepLabCut. Other relevant variables can be detected such as trial onset
(top window), pupil size (middle), and licks (bottom) (B) Average pupil size for each reward environment Ω. Blue line shows pupil size for correct and red line for incorrect trials.
Shaded area shows 95% bootstrap CIs. (C-E) Coefficient estimates eastimated for each time point based on multiple linear regressions with pupil size as the dependent
variable and multiple trial parameters as predictive variables (see Methods). Panels show the coefficient estimates over time for trial correctness, correctness on a choice
before, and reaction time (where multiple regressions were ran separately on correct and incorrect trials). In panel E it can be appreciated that baseline pupil size predicted
slower decisions in the upcoming trial irrespective of trial correctness. (F) Baseline pupil dilation directly impacts downtream noise precision but not sensors precision.
Regression weights of sensory precision (k-encoding) vs. downstream choice precision (k-late) as a function of pupil dilation before trial onset. Individual mice shown with
different symbols, and color-coded for condition (see Figure 1D). Bootstrapped distributions projected parallel to relevant axis with mean and 95% CI shown in dashed lines.
(G) Bootstraped means and 95% CIs for sensory and downstream noise parameters in each reward environment Ω. (H) Sketch showing how values for Expected reward
were extracted for each correct side angle. The prior distribution of correct side angles is multiplied by the reward mapping of the respective reward environment Ω. (I)
Sketch of the predicted effect of reward expectancy on pupil size when comparing between environments (i.e., the interaction effect). Arrows pointing to the furthest right bar
illustrate the comparison between Ω

R:h↘v
and ΩR:h↗v reward environments, as otherwise shown in H and J. (J) Pairwise reward environment difference in weights of

expected reward to phasic pupil response over time from trial onset. All time bins marked with asterisks are significantly different from 0 (as determined by 95% bootstrap
CIs). Interaction patterns closely follow the interaction predictions, suggesting that arousal systems (linked to pupil dilation) potentially encode expected reward distributions
in a sensory-specific manner. pupil responses in each environment and individual mice data are shown in Figure S9.
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the distribution of reward expectation in an adaptive manner,
then we expect an interaction of the pupil responses linked
to sensory specific reward expectation across environments
(Figure 6H).
We used these values in a per-time-bin linear regression anal-
ysis on phasic pupil responses. Critically, we controlled for
confounders such as trial difficulty (absolute angle differ-
ence), reaction time, correctness on a trial, the probability
of appearance of an angle, and licking by including them as
regressors. In a within mouse, pairwise comparison, we find
a significant difference between the regression weights as-
signed to expected rewards in different reward environments
Ω as predicted by our postulated computations (Figure 6I,J).
A positive interaction between ΩR:h↘v

and ΩR:h↗v is ex-
pected, due to the inverted angle-reward mappings between
them (Figure 6H,I). The phasic pupil activity reveals such
interaction patterns (Figure 6J left panel, P<0.05 cluster cor-
rected). The opposite pattern is predicted by the comparison
between ΩR:h↘v

and ΩR:h�v (Figure 6I), which is also con-
firmed by the phasic pupil responses (Figure 6J right panel,
P<0.05 cluster corrected). On the other hand, the predicted
difference between ΩR:h↗v and ΩR:h↘v

is relatively small
with a slight tendency in the positive direction (Figure 6I).
This prediction was also evident in our data (Figure 6J mid-
dle panel).
This set of results indicate that pupil size increases with rar-
ity and size of the reward indicated for a give set of sensory
stimuli in a given trial. This suggests an indirect link between
arousal systems, such as the noradrenergic system of the LC,
and reward expectancy, which might guide learning and re-
distribution of sensory resources via dopaminergic systems.
Interestingly, a recent investigation showed that dopaminer-
gic responses are amplified by rarity and size of reward re-
ceived in a trial (80). In addition, they show that pupil di-
lation is also sensitive to such rewards after feedback, thus,
pointing to a fundamental interaction between noradrener-
gic and dopaminergic systems to guide efficient learning and
decision-making behavior.

Discussion

When organisms face a decision, choices must be made
based on imprecise perceptions arising from the information-
processing limitations of the nervous system. We devel-
oped a framework to study how organisms allocate atten-
tion during sensory encoding, such that there is an advan-
tage to being stochastic, and in some cases myopic to in-
coming sensory information, because the encoding strategy
guarantees that metabolic investment in more precise aware-
ness leads to maximal reward consumption. We formulated
the framework as generally as possible while conforming
closely with neurobiological mechanisms so that the nature
of the neural-coding constraints need not be fine-tuned inde-
pendently for each particular context. Additionally, we show
that the information-processing strategies of a rationally inat-
tentive agent are dependent on two main factors: First, the
system has limited capacity to process information, not only

at the early stages of sensory encoding, but also at late stages
of the decision-making process. Second, strategies depend
on context; in our work, context was defined by the stimulus-
reward associations in a given environment, but the stimulus
prior remained constant at all times. We found that mice be-
have as rationally inattentive agents: they take into consider-
ation their information-processing limitations to develop effi-
cient sensory encoding strategies that lead them to maximize
reward consumption.
Within the specific structure of our decision task, these ratio-
nal information-processing strategies lead to results that seem
surprising and also appealingly intuitive. When information-
processing resources are low for both sensory encoding and
downstream decision computations, the rationally inattentive
agent is relatively myopic to portions of the stimulus space
where the density of the prior is highest. This result goes
against concepts of efficient coding, which suggest that the
system should dedicate more neural resources to stimuli that
occur more often (25, 49, 60, 81, 82). However, these sug-
gestions usually assume that the system has large capacity to
process information and that there is no uncertainty in down-
stream circuits. This prediction also emerges in our task and
model under the high resource-capacity assumption, but we
argue that these efficient-coding assumptions hold only for
cases in which organisms such as humans can process sen-
sory information with high precision and have a perfect un-
derstanding of the task with no uncertainty about choice rules
or related sources of noise in circuits dedicated to compari-
son, action, and learning. However, mice cannot follow hu-
man instructions and must learn task rules by trial and er-
ror, so it is reasonable to believe that behavioral variability
in mice is largely impacted by downstream noise (46). Cru-
cially, this counter-intuitive myopic behavior was evident in
all the animals tested in this study, in line with the ratio-
nal inattention framework. Although support for our theory
from mice’s behavior is encouraging, we believe that these
results might have important implications in human decision-
making domains where the complexity and understanding of
the task structure may be key to interpreting decision-making
models. For instance, recent work has shown that a good deal
of the variability in behavior of human participants in model-
free and model-based learning processes might be rooted in
task instructions (83). Thus, it is tempting to speculate that
when task understanding is poor, agents may develop appar-
ently deviant coding strategies that might be indeed efficient.
A key prediction of the rational inattention framework de-
veloped here is that information-processing strategies change
endogenously as a function of stimulus-reward associations
in a given environment, despite the fact that the physical en-
vironment is held constant across all contexts. Studies of ef-
ficient adaptation typically focus on scenarios in which he
statistics of the physical environment change while keeping
the reward contingencies constant. However, we argue that
studying scenarios in which the statistics of the physical en-
vironment remain constant is also ethologically relevant, be-
cause physical environments are generally stable over long
periods of time, whereas stimulus-reward associations may
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change more often. We found that mice’s characteristic lev-
els of information-processing capacity in sensory and down-
stream circuits, enabled them to adaptively allocate their lim-
ited resources, which appeared to be related to improving
learned associations that maximized utility. This led to my-
opic sensory encoding in various ways depending on the con-
textual reward-stimulus contingencies, as predicted by the
theory.
Recent developments in the neurobiology of efficient infor-
mation representation suggest that neural codes should not
only be tuned by stimulus frequency statistics but also by
the stimuli’s impact on downstream circuits and ultimately
on behavior (29, 41, 42, 82, 84). In line with this intu-
ition, there is evidence showing that early sensory systems
represent not only information about physical sensory inputs
but also non-sensory information depending on the require-
ments of a specific task and the behavioral relevance of the
stimuli (55, 56, 85). Although we did not record the activ-
ity of sensory neurons, our work provides a formal justifi-
cation for these intriguing observations, where information-
processing resources endogenously adapt and reflect the or-
ganism’s needs. Given that noisy communication channels
such as the brain always lose information during transmis-
sion, we argue that it is more efficient for the brain to adapt
to the utility-maximizing rules of a particular environment at
the earliest stages of sensory processing, an intuition that ap-
pears to be supported by recent imaging studies (56, 85).
In this work, we studied the possibility that a RL algorithm
supported by operations that appear neurologically plausible
could provide insights into how information-processing re-
sources could be adaptively and optimally allocated through
trial-by-trial experience. We leveraged recent discoveries
suggesting that the brain can represent and update informa-
tion about rewards in a distributional manner (63) and that
functional remapping of task-relevant early sensory areas can
be achieved with top-down feedback from decision-relevant
circuits that encode prediction error signals and task rules
(85). Interestingly, recent work revealed that dopamine neu-
ron ensembles generate activity patterns that signal sensory-
specific prediction errors (86), thus providing further support
for our algorithmic architecture. Finally, adjustment of sen-
sory gain is achieved via divisive normalization (87), an op-
eration that has been related to the implementation of opti-
mal attentional reallocation (67). We found that an algorith-
mic architecture of this kind allocates sensory resources in a
context-dependent manner, similar to the patterns predicted
by our rational inattention theory. Although in this model
sensory resources are allocated dynamically and thus endoge-
nously through trial-to-trial experience, in our current RL
specification the parameters determining the learning rates
are not endogenously estimated, but fitted to the data. A sim-
ilar problem emerges with the original specification of distri-
butional reinforcement learning (63): the agent needs to find
a probability distribution consistent with the set of optimal
updating operations, which requires a precise coordination
in every time step of all neurons involved in RL computa-
tions. Although recent computational formulations provide

hints how this problem could be tackled (88–90), it remains
unclear how to connect these distributional RL computations
to a biologically plausible algorithm that applies to arbitrary
stimulus-reward association contexts such that reward expec-
tation is maximized. This topic deserves attention and should
be studied further.
Our computational model allowed us to investigate the role of
adaptive regulation of the arousal system on sensory and non-
sensory downstream imprecision. This approach revealed
that nonspecific increase in behavioral sensitivity is associ-
ated with high levels of tonic arousal, but not directly related
to sensory sensitivity. These results indicate that arousal sys-
tems may balance the costs associated with larger learning
updates, which lead to high tonic arousal states and lower
precision in downstream circuits while preserving sensory fi-
delity. This mechanism may have the benefit of leaving intact
learning updates in sensory systems as a function of recently
experienced sensory stimuli. Together, These results pro-
vide further support for the mechanisms of arousal-mediated
adaptive gain control theory (91), indicating that some as-
pects of inattentive behavior might be indeed rational because
the brain must operate under limited capacity constraints.
Additionally, we found that arousal systems carry reward ex-
pectancy information about specific visual cues that span the
whole sensory space. An important implication of such neu-
rocomputational signatures could be that agents track the util-
ity distribution and volatility of the environment so that they
can more accurately modulate prediction error signals. In-
terestingly, Recent work has shown that dopaminergic re-
sponses are amplified not only by the rarity of a reward re-
ceived in a trial but also by its size (80). Thus, bottom-
up noradrenergic reward expectation signals might be com-
bined with top-down dopaminergic learning signals to effi-
ciently guide reallocation of attentional resources in sensory
systems. Thus, our computational modelling approach and
behavioral paradigm implemented in rodents open the way
to detailed investigations of the mechanisms underlying tight
and essential interactions between arousal and dopaminergic
systems.
Rodents have become an important model system in the study
of decision behavior (44, 92–95). Here, we show that these
organisms might be key to gaining a deeper understand-
ing of the neurobiology underlying decision-making theo-
ries, which currently have a large impact in other disciplines
such as medicine and economics. For instance, processes de-
rived from rational inattention theories appear to be essen-
tial in guiding policy-making in both microeconomics and
macroeconomic settings (96). In other fields, recent investi-
gations have developed theories that attempt to provide nor-
mative accounts of complex neuropsychiatric conditions such
as autism and schizophrenia, which have been characterized
by deficits in performing optimal inference (97). However,
these theories generally ignore the normative foundation that
organisms must optimize behavioral processes in light of bio-
logical restrictions on information processing (98). Thus, the
growing battery of molecular and imaging tools that is be-
coming available for use in rodents will enable a deeper un-
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derstanding of the neurobiological underpinnings of limited
cognition and apparently irrational decision behavior (45–
47, 99). Thus, the corroboration of our theory using mice as a
model organism opens the door to new directions that might
be instrumental in the refinement and translation of these the-
ories to applied settings in medicine, economics, and related
social sciences.

Methods

Animal subjects. All animal experiments were performed
in accordance with the Animal Welfare Ordinance (TSchV
455.1) of the Swiss Federal Food Safety and Veterinary Of-
fice, and approved by the Zurich Cantonal Veterinary Office.
Subjects were adult (at least 8 weeks old) C57BL/6 mice (6
males, 1 female). Mice were kept on a reversed 12h/12h
light-dark cycle, and all experiments were performed dur-
ing the dark phase. For implantation of head plates, mice
were anesthetized with isoflurane and placed into a stereo-
taxic frame (Kopf instruments). A custom printed headplate
(Protolabs Inc) was fitted to ensure that the head was held at a
natural angle in the behavioral apparatus. Before the experi-
ments, the mice were allowed to recover from the surgery for
at least 10 days.

Behavioral setup and tasks. The specifics of the be-
havioural setup, as well as most of the parts used to con-
struct it, are very similar to those developed in previous work
(48), and widely adopted by the International Brain Labora-
tory (100).
The headfixed mice were trained to look at two gratings pre-
sented on the screen and pick the one that is more vertically
oriented by turning the wheel with their fore-paws, which
was coupled to the position of the two stimuli (Figure 2B).
Following recovery from surgery, the animals were put on a
food restriction schedule (not dropping below 85% of initial
weight). At the end of each training session the animals were
weighted and additional amount of food was provided, de-
pendent on the percentage of initial weight. For three days the
animals were habituated to being headfixed and handled by
the experimenter, with milkshake being delivered in random
intervals during increasing periods of head-fixation. Then,
mice were trained on the initial task, in which only a single
stimulus appeared on either left or right side of the screen,
which they had to move to the center of the screen (response
location), in order to obtain a milkshake reward. After they
mastered the simple slection task, the second grating was
introduced (more horizontal/distractor), initially at low con-
trast, but progressively increasing contrast across sessions as
the animal learned. After the second grating was completely
introduced (contrast = 1) and session performance was above
60%, we started varying the contrasts of the two gratings in-
dependently across 3 levels (0.3, 0.6 and 1). Importantly,
during the entire training procedure, we kept the orientation
stimuli θ were drawn from the prior distribution π(θ) (see
main text and Figure 1A). Once the animals reached good
performance on the task (>60% across difficulties), we in-
troduced different mappings of reward to orientation (Ω). In
each of these mappings the reward size obtained for correctly
picking the more vertical orientation was dependent on that
orientation. We then ran each animal in each of the reward
environments for at least 20 sessions. Here we studied adap-
tation to particular environment Ω after 7 sessions of experi-
ence. Considering longer adaptation periods does not affect
the main conclusions of our work.
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To keep the volumes of milkshake constant the opening times
of click valves (NResearch 161K011) were calibrated, before
each day of training, to deliver a constant volume of milk-
shake. This was achieved by opening the valves repeatedly
for different durations and subsequently fitting a curve, de-
scribing the relation between opening time and ml of deliv-
ered milkshake. Milshake amounts in µL were mapped to the
correct-side angle, dependent on the reward mapping envi-
ronment Ω. In the ΩR:h↗v environment, the reward mapping
was a linear increase from horizontal (0 deg, 1 µL) to vertical
(90 deg, 8 µL). The reward mapping for the ΩR:h↘v

envi-
ronments was exactly the opposite, with horizontal grating
yielding 8 µL and vertical 1 µL. In the ΩR:h�v environment
all angles yielded 5 µL. The illustration of the reward map-
pings for each environment Ω is shown in Figure 1E, and the
exact amounts are shown in Supplementary Table 1.
The stimuli were Gabor patches each spanning 15 visual de-
grees and with the phase of the grating randomised between
trials. Decision was considered made when one of the grat-
ings was brought to the middle of the screen. Correct choice
yielded a drop of strawberry milkshake, and incorrect led to
white noise being played for 0.5s and a 2s timeout before
next trial (in addition to the ITI of 1.5 – 2.5 sec). To counter-
act bias, where animal might be content with just turning the
wheel one way and getting 50% of rewards, incorrect trials
were repeated (correct side was kept the same, but orienta-
tions resampled), but data from these trials were not used in
the final analysis. To check that this did not influence the re-
sults, two animals were successfully trained also without re-
peating incorrect trials. For all experimental conditions, the
orientations of the two gratings were picked from a manu-
ally set prior distribution of orientations (Figure 1A), with
the difference between the two ranging from 20 to 90 de-
grees, in increments of 10. In a small percentage of trials,
the two orientations were the same, in which case a random
side choice delivered reward. For half a second after stimulus
presentation the stimulus position was not coupled to wheel
rotation, but the animal was not punished for turning it at this
time (Figure 1C). Signal tone (12kHz), played for 0.2s cued
the end of wheel-uncoupled phase and the animal could make
the response.

Pupil size analysis. In order to track the pupil and licking,
we filmed the animal from the side, illuminated by infrared
light, using the FLIR Blackfly® camera. Pupil edges and
licking responses were extracted using DeepLabCut (101)
and eye diameter was calculated from the obtained videos.
Trials were synced to video using a small white square in
the corner of the screen that appeared at stimulus onset. The
area of the pupil was calculated from the points tracked by
DeepLabCut, and the trace for each daily session was low-
pass filtered with a cutoff frequency of 20Hz to remove noise.
Pupil size was then z-scored within session. Pupil size was
binned into 0.2 second bins, with the binning window moving
by 0.1 second, further smoothing the data. All multiple linear
regressions studied here were ran on binned time-points with
pupil size as dependent variable. Factors in the regression

included: absolute angle difference, contrast sum, reaction
time, correct side orientation, correctness on a trial, correct-
ness on the previous trial and binned licking. Furthermore,
we split the data into correct and incorrect trials, and ran the
same regression, but excluding the trial correctness parame-
ter. We also measured phasic pupil responses by subtracting
the baseline 0.5 seconds before stimulus onset from each trial
pupil size. To investigate the arousal responses based on re-
ward expectancy, we ran a bin-time regression to predict the
phasic pupil response, same as for the non-baseline corrected
data.

Descriptive behavioral models. Here we studied three de-
scriptive models, each with different levels of complexity,
which allowed us to evaluate basic behavioral signatures in
all three different reward mapping conditions. This family
of models do not explicitly use information about the statis-
tics of the environment and condition-dependent behavioral
goals.
On each trial, mice face two alternatives l and r with corre-
sponding orientations θl and θr, which are shown on the left
and right side of the screen, respectively (Figure 1B). The
goal of the mice in all three stimulus-reward environments Ω
is to select the alternative that is closer to 90°. In the descrip-
tion of all models (unless otherwise specified), we assume
that the orientations are mapped to an abstract "verticality"
space from 0° to 90° (e.g., θ = 170° is mapped to θ = 10°).
In descriptive model 1 (DM1), the probability of choosing
alternative l in trial n is given by

Pn(choose l|θl,θr) =

Φ
(
θl−θr
σ
√

2
+β0 +β1Dn−1

)
(1−λ) + λ

2 , (3)

where Φ() is the normal cumulative density function, σ rep-
resents the degree of sensory noise in the representation of θ
(which in DM1 model is fixed for all orientations), β0 cap-
tures potential side biases, β1 captures biases caused by the
decision D in the last trial (n− 1), and λ captures potential
lapse rates (in order to simplify notation, in the remainder of
the model descriptions we will drop the trial indexes n).
In descriptive model 2 (DM2), we studied the possibility that
different levels of contrast are associated to different levels of
sensory noise. Therefore, DM2 is given by

P (choose l|θl,θr) =

Φ
(

θl−θr√
σ(cl)2 +σ(cr)2

+β0 +β1D

)
(1−λ) + λ

2 , (4)

where in this case the noise level of each alternative is a func-
tion of contrast c. In this model we fit three different noise
levels for the different levels of contrast used in this study.
Finally, in descriptive model 3 (DM3), we investigated the
possibility of "risk seeking/aversion" depending on the level
of sensory uncertainty of each alternative induced by the dif-
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ferent levels of contrast.

P (choose l|θl,θr) =

Φ
(

θl−θr√
σ(cl)2 +σ(cr)2

+β0 +β1D+β2(cl− cr)
)

(1−λ)+

λ

2 , (5)

where in this case β2 determines the strength of "risk seek-
ing/aversion" (with negative values corresponding to appar-
ent "risk aversion").

Rational inattention model. We studied the possibility that
mice behave according to the rules of optimal statistical in-
ference in estimating the orientation of each choice alter-
native. Crucially, here we take into consideration the fact
that organisms have limited capacity to process information,
and therefore, neural systems must allocate these limited re-
sources according to each reward-mapping context in order
to maximize the amount of reward consumed over the course
of many trials and days.
We assumed that for a given input θ0 the mouse makes an
internal measurement m(θ0) which is corrupted by sensory
noise. Crucially, the level of sensory noise will depend on
how many resources the system dedicates to the measured
orientation (described in detail below). Each time orientation
θ0 is presented to the observer, it results in different measure-
ments mi described with a conditional probability function
p(mi|θ). On each trial i, the observer computes a posterior
distribution p(θ|mi) by combining the physical environmen-
tal prior distribution π(θ) with the likelihood of the measure-
ment p(mi|θ). Then the mouse applies a decoding rule in or-
der to obtain a posterior estimate θ̂(m(θ)). Here we assume
that mice compute the expected value of the posterior distri-
bution: E[p(θ|m)]. We assume that on each trial, the mouse
independently estimates θ̂l and θ̂r for the input orientations
θl and θr, respectively.
The measurement m follows a von Mises distribution

p(m|θ)∝ ek(c)g(θ)cos(θ−m), (6)

where the precision of the measurement is determined by two
multiplicative factors: (1) k(c) which is function of the con-
trast level for a given orientation in a particular trial (see Eq. 7
below), and (2) g(θ), a limited-resource gain function. Here
g acts as a gain control mechanism that regulates how many
resources the system allocates to a particular segment of the
orientation space.
Activity of visual neurons as a function of contrast has been
well described by the following function

k(c) = kmaxc
q

cq + cq50
, (7)

where kmax is the maximum activity of the neurons, and q
and c50 specify the slope and semi-saturation point of the
contrast response function (102). Given that the variability

of cortical neurons approximates a Poisson distribution, one
can assume that the relative variability in the measurement
σ(c) decreases in inverse proportion to the square-root of the
cortical activity. Because the precision in the von Mises dis-
tribution can be defined as k = 1/σ2, neural precision as a
function of contrast can be described by equation 7.
If we constrain g(θ)> 0 for all θ and to be a normalized func-
tion (we formally explain how g is estimated below), and as-
sume a cost function K that provides information about the
metabolic resources employed to encode visual information,
one can formulate an optimization problem in order to find
the optimal allocation of resources in the orientation space
for: (i) a given physical environmental prior π(θ), (ii) a given
contrast response function k(c), (iii) reward outcomes asso-
ciated to decision-outcome rules in a given context or envi-
ronment Ω, and (iv) downstream noise σlate that is not related
to sensory encoding. Formally, the goal is to find a resource
allocation g∗, and the maximum allowed activity kmax (with
an underlying contrast response function, Eq. 7) such that

max
g,kmax

E[reward | Ω,k(c),σlate]−K(k̄,η),

where c is the set of contrasts that the animal experiences.
We model the metabolic cost K as a linear function of the
average precision k̄ that the agent invests on solving the in-
ference problem, thus K(k̄,η)≡ η ∗ k̄, where η > 0 indicates
how much the metabolic cost scales with average precision k̄
defined as

k̄ =
∫

c

∫
θ
π(θ)g(θ)k(c) dθ dc. (8)

We could have also considered more complex non-linear rela-
tionships between metabolic costs and neural activity. How-
ever, the main conclusions of our work are not affected by
the exact specification of the cost function, and it has been
demonstrated that the linear relationship is a reasonable as-
sumption (59). We also note that we have not included costs
associated to downstream precision 1/σlate. However, if we
assume that σlate influences choices (and therefore reward ex-
pectation in 2), including such cost in K as an additive fac-
tor does affect the estimation of the optimal allocation of re-
sources g.
Here we do not employ information transmission as opti-
mization criteria as classically assumed in the rational inat-
tention literature, which is defined as follows:

K = ηI(θ;m), (9)

where I(θ;m) denotes the mutual information, which mea-
sures the expected reduction in uncertainty after observing a
signal m

I(θ;m) =H(θ)−E[H(θ |m)], (10)

whereH(θ) denotes the entropy of the prior distribution π(θ)
and the second term measures the expected reduction in un-
certainty after observing the signal. While this cost function
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has several benefits (such as mathematical tractability for rel-
atively simple problems), it also has been pointed out that
specifying attention costs to be linear in entropy reduction
might be problematic in particular when applied in problems
of sensory perception (43). In any event, for the case of sen-
sory perception, and in our experimental paradigm, we argue
that it is more appropriate to assign costs to the amount of en-
ergy invested in generating neural activity as defined above.
Nevertheless, we show that the two costs functions gener-
ate similar qualitative predictions in the resource allocation
function g (Figure S3), and also study the relationship be-
tween expected precision and expected uncertainty reduction
(Figure S4).
The next step is to specify the optimization problem. For
instance, in the "constant reward for correct decisions" con-
dition (i.e., environment ΩR:h�v), the agent aims at mini-
mizing the expected probability of errors plus its associated
metabolic costs

1
IJ

I∑
i=cl

J∑
j=cr

∫∫
θ
P (error|θl,i,θr,j)π(θl)π(θr) dθldθr

+K(k̄,η), (11)

where indexes i and j reflect the the different levels of con-
trast (three in our experiments) applied to the left and right
orientation inputs, respectively. Here, we still need to define
the probability of making an erroneous response P (error). In
our observer model, a source of decision errors is caused by
variability in the estimates θ̂(m) due to measurement errors
m, thus resulting in a resulting in a conditional probability
of estimated orientation given the true stimulus orientation
p(θ̂(m)|θ0) (in order to simplify notation, we leave occasion-
ally the dependence on m). Here, we assume that the distri-
bution of estimators p(θ̂(m)|θ0) is Gaussian and therefore it
will be convenient to compute its expected value E[θ̂(m)|θ0]
and variance Var[θ̂(m)|θ0], which are given by

E[θ̂(m)|θ0] = atan2(a,b) (12)

and
Var[θ̂(m)|θ0] =−2log

(√
a2 + b2

)
(13)

respectively, with

a≡
∫

sin
(
θ̂(m)

)
p(m|θ0)dm (14)

and
b≡

∫
cos
(
θ̂(m)

)
p(m|θ0)dm. (15)

As in the descriptive models, here we assume that the ori-
entation estimations are mapped to a "verticality" space, and
therefore the probability that the mouse selects θl is given by

P (choose l|θl,θr) =

Φ

 E[θ̂l|θl]−E[θ̂r|θr]√
Var[θ̂l|θl] + Var[θ̂r|θr]

 . (16)

In addition to sensory precision in the coding of orientation
k(c)g(θ) (see Eq. 1), we also account for late noise in the de-
cision stage (that is, post-decoding noise), which may capture
any unspecific forms of downstream noise occurring during
the response process that are unrelated to the estimation of
orientation per se. We assume this late noise to be unbiased
and Gaussian distributed N(0,σ2

late); therefore, it can be eas-
ily added to our model as follows

P (choose l|θl,θr) =

Φ

 E[θ̂l|θl]−E[θ̂r|θr]√
Var[θ̂l|θl] + Var[θ̂r|θr] +σ2

late

 . (17)

Hence, the probability of an erroneous decision P (error) in
Eq. 11 can be defined as follows:

P (error|θl,θr) =

Φ

 −|E[θ̂l|θl]−E[θ̂r|θr]|√
Var[θ̂l|θl] + Var[θ̂r|θr] +σ2

late

 . (18)

With these definitions, we can formulate the optimization
problem for the remaining reward mapping conditions. For
the environment Ω in which the amount of received reward
R for correct responses is linearly mapped to the degree of
"verticality" where horizontal (h) orientations are mapped to
the smallest reward and vertical (v) orientations are mapped
to the highest reward (environment denoted ΩR:h↗v ), and
receive no reward for incorrect responses, the goal is to find
the allocation of resources that minimizes the following ex-
pression

1
IJ

I∑
i=cl

J∑
j=cr

∫∫
θ

max(R(θl),R(θr))×

P (error|θl,i,θr,j)π(θl)π(θr) dθldθr +K(k̄,η). (19)

For the environment Ω in which the amount of received re-
wardR for correct responses is linearly mapped to the degree
of "verticality" where horizontal (h) orientations are mapped
to the highest reward and vertical (v) orientations are mapped
to the smallest reward (environment denoted ΩR:h↘v

), and
receive no reward for incorrect responses, the goal is to find
the resource the resource allocation function g(θ) that mini-
mizes the following expression

1
IJ

I∑
i=cl

J∑
j=cr

∫∫
θ

min(R(θl),R(θr))×

P (error|θl,i,θr,j)π(θl)π(θr) dθldθr +K(k̄,η). (20)

Recall that in all cases the decision rule is to choose the ori-
entation that is more vertical. Therefore, in the ΩR:h↘v

envi-
ronment we are actually asking the mice to choose the orien-
tation that is mapped to the smallest reward, however, in this
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environment choosing the smallest orientation on any given
trial is actually the decision that guarantees reward receipt.
The next step is to describe a methodology that allowed us
to find potential solutions in our resource allocation problem.
Our approach is to estimate the minimum achievable reward
loss (plus costs) in a given environment Ω, by finding the
minimum achievable value over a flexible parametric family
of possible functions g(θ), with the following properties∫

g(θ) dθ = 1, dG

dθ
> 0. (21)

Here we assume a finite-order polynomial functionG(θ) con-
sistent with the property that g(θ) = G(θ)′. This requires
G(0) = 0 and G(1) = 1, and therefore G(θ) can be written in
the form:

G(θ) = θ [1 + (θ−1)(g0 +g1θ+ . . .+gpθ
p)] , (22)

with the properties described in Eq. 21, where gp =
{g0, . . . ,gp} is a set of parameters over which we optimize.
Note that for a large enough value of p, any smooth function
can be well approximated by a member of this family. Also
note that for the case g = 0, . . . ,gp = 0, the resource alloca-
tion problem is given by a rule that assigns equal ammount
of resources to all orientations θ.
In this study we use a parameter vector gp of order p= 2 (we
found that using higher order did not significantly improved
the optimal solutions). Given the symmetry of the prior dis-
tribution relative to θ = π, we estimate an initial g̃(θ) for the
space θ ∈ [0,π] and then defined g(θ) = g̃(θ)⊕ flip(g̃(θ)),
where the operator ⊕ denotes concatenation and the operator
flip() denotes vector reversal.

Rational inattention model predictions. We used the empiri-
cal distribution and input stimuli as well as the distribution
of rewards (i.e., drops of milkshake) used in our experiments
in order to derive predictions of the resource allocation func-
tion g(θ), the maximum activity allowed activity kmax, that
minimized reward loss (plus its associated sensory precision
cost K). Given that we were interested in studying how re-
source allocation is potentially influenced by different levels
of down-stream noise σlate, we found the optimal parameter
vector gp and kmax for different combinations of η and σlate
(Figure 2 and Figures S2,3).

Applying the rational inattention model to empirical data. In
order to fit the inference model to the empirical data in a way
that was comparable to the full descriptive model (DM3, see
above) we used

P (choose l|θl,θr) = Φ(z), (23)

with

z = E[θ̂l|θl]−E[θ̂r|θr]√
Var[θ̂l|θl] + Var[θ̂r|θr] +σ2

late

+

β0 +β1D+β2(cl− cr). (24)

For all models, we are interested in finding the set of param-
eters β, cq , cq50 and σlate. For the endogenous model, we
were in addition interested in finding η. For the exogenous
model, we also found g and kmax. Notably, the endogenous
model has the same number of parameters as the most com-
plex descriptive model (DM3). Additionally, note that we
dropped the lapse rate parameter λ from the rational inatten-
tion model. We reasoned that the rational inattention model
rationalizes the apparent lapse rates that emerge in the de-
scriptive models. In fact, including λ as a parameter in our
model led to an estimated valued λ ≈ 0 for all mice, thus
confirming our intuition.
In order study whether the reallocation of limited resources
is necessary to explain the data, we also considered a model
where g = {0,0,0}, which corresponds to a model where
mice allocate their resources equally across the whole sen-
sory space.

Learning model. We investigated whether a reinforcement
learning (RL) model that incorporates the same coding con-
straints of the ideal observer model would generate similar
performance. That is, in the learning model we do not di-
rectly find the parameters g of the gain coding function g(θ),
but this function is continuously updated based on trial-to-
trial experience via RL (Figure 3A).
Assume that in any given trial at time t a mouse chooses alter-
native θ̃. After this decision, the mouse receives reward Rt
that depends on the chosen option θ̃ according to decision-
outcome rules of environment Ω (Figure 1C). In addition,
here we assume that mice evaluate their degree of confidence
Ct based on the decision in trial t. Here, we define confi-
dence based on the statistical definition of confidence (103),
that is, the probability that the chosen option is correct given
the chosen option: Ct = p(correct|θ̃). Information about Rt
and Ct is then used to update a reward distribution vector
R̂(θ) (mapping orientation stimuli to reward) using the rein-
forcement learning rule

R̂t = R̂t−1 +αt · δt, (25)

where, α is defined as the learning rate, which can take one
of two values that depend on positive and negative prediction
errors

αt =
{
Ct/(Ct+ α̃−) if δt ≤ 0
Ct/(Ct+ α̃+) if δt > 0, (26)

with α̃≥ 0. This implies that if α̃→ 0, then the learning rate
α→ 1 and confidence Ct have little influence. On the other
hand if α̃ > 0 then confidence starts to have more influence in
the learning rate, with higher values of confidence having a
stronger influence in the update rule. We define the prediction
error vector

δt =Rt− R̂t(θ̃) ·ek̃·cos((θ̃−θ)−1). (27)

This definition implies that the reward distribution vector R̂
is updated according to the location of the chosen stimulus
θ̃ smoothed by parameter k̃, and modulated by learning rate
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αt. Finally, the reward distribution R̂ is transformed to the
gain function g via a normalization operation

gt+1←
R̂i,t∑
i R̂t

. (28)

Hence, this RL model has only three free parameters that are
fitted to the observed data: α̃+, α̃−, and k̃. Vector R̂t was
discretized in steps of 2° from 0° to 178° in the orientation
space.

Model fits. For a given model M , we denote its set of pa-
rameters by a vector Ψ. The goals is to find the combination
Ψ that maximized the probability of all of a single subject’s
responses given the presented stimuli and the parameters. In
this case, the log of the parameter likelihood function is

LL(Ψ;M) = logp( data |Ψ, model ) (29)

= log
Ntrial∏
i=1

p
(
Di | θn,l,θn,r, cn,l, cn,r,Ψ

)
(30)

=
Ntrials∑
n

logp
(
Di | θn,l,θn,r, cn,l, cn,r,Ψ

)
,

(31)

where θ and c are the orientation and contrast inputs for the
left (l) and right (r) alternative, respectively, and Di is the
mouse’s response on trial i. The implementation of the like-
lihood function was implemented using the mle2 function in
the bbmle library (104) implemented in the software package
R (105). We typically performed an initial stage with 2,000
randomly chosen initial parameter combinations. For each
model M , we repeated this procedure three times, leading to
log likelihood values that were typically within one point. We
are therefore reasonably confident that we found the global
maxima for each model. As model comparison method, we
use the Akaike information criterion (AIC) (106).

Poisson neural model. We investigated if a more biolog-
ically relevant model of V1 function would also be able to
capture characteristics of the rational inattention codes ob-
served in the algorithmic model. An advantage of this im-
plementational approach is that we can relate the metabolic
cost directly to the expected number of spikes that the system
generates to solve the decision problem.
The neural population consisted of Poisson neurons, each
generating spikes r independently for a given input stimulus
θ with probability

p(r|θ) = e−f(θ)f(θ)r

r! , (32)

The tuning functions f of the neurons follow a bell-shaped
activation pattern of the form

fn(θ) = g(θi)k(c)exp(κ̂(cos(θi−θ)−1)) + ∆, (33)

where g() is a multiplicative gain partially determining
the distribution of coding resources through the orientation

space, k(c) is the multiplicative gain that the determines fir-
ing rate as a function of contrast, θi is the preferred orienta-
tion of neuron i, and ∆ the base firing rate of a neuron at rest.
κ̂ controls the width of the tuning curve. The tuning curve
width κ̂ was estimated from the same study that we used to
derive the prior distribution π(θ) (47) (see Results section in
main text and Figure S1).
Based on this specification, the log-likelihood function of
population vector activity ~r can written as

log[p(~r|θ)] =
N∑
n

log e
−fn(θ)fn(θ)rn

rn! . (34)

To derive a posterior estimate θ̂, we assumed the Bayesian
least squares estimate (BLS). The BLS estimator can be ap-
proximated with discrete sums,

θ̂BLS(~r)≈
∑
n θnp(~r|θn)p(θn)δn∑
n p(~r|θn)p(θn)δn

, (35)

in which θn is a discrete set of stimulus values and δn is the
spacing between adjacent values. When θn (the preferred
stimuli of the neurons), are distributed in the stimulus space
proportional to the prior distribution θi, then δn ∝ 1

p(θn) (60,
71), thus, the BLS estimator can be written as

θ̂BLS(~r)

≈
∑

n
θnp(~r|θn)∑
n
p(~r|θn)

≈
∑N

n
θn exp

(∑M

m
rm logfm(θn)−

∑M

m
fm(θn)−

∑M

m
log(rm!)

)∑N

n
exp
(∑M

m
rm logfm(θn)−

∑M

m
fm(θn)−

∑M

m
log(rm!)

)
=
∑N

n
θn exp

(∑M

m
rm logfm(θn)−

∑M

m
fm(θn)

)∑N

n
exp
(∑M

m
rm logfm(θn)−

∑M

m
fm(θn)

) ,

where in the last step, the last sum inside the exponential does
not depend on the stimulus and can be dropped from the nu-
merator and denominator.
Applying this model to our decision task, we assume that for
two inputs θl and θr in any given trial, the model generates
population activity ~rl and ~rr independently for each input,
which leads to the computation of estimates θ̂l and θ̂r. Then
a choice is made based on the decision rule of our task.
The goal of the neural network to find a balance between
model performance (i.e., reward intake) and the metabolic
costs associated to neural activity in in the network. More
formally we need to find the optimal resource allocation g
and a maximum activity rmax such that

max
g,kmax

E[reward | Ω,k(c),σlate,π(θ)]−ηE[spikes], (36)

where in this case η corresponds to unit cost per spike gener-
ated by the network.
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Supplementary Figure 1

Mouse V1 has more coding resources at the horizontal angles. Carsen et al. recorded multi-plane two-photon calcium
images from the primary visual cortex of awake mice (47). Stimuli were static gratings rotated at random orientations. A)
Each neuron has a tuning curve with a strongest response to a preferred orientation. The distribution of preferred orientations
across cells shows more neurons prefer horizontal angles. B) Carsen et al. used a linear decoder to estimate the stimulus
orientation from neuronal activity. They found that coding error is higher for the vertical angles. When the stimulus duration
was shortened (100 ms (red) vs. 750 ms (green)) the decoding error of the linear decoder goes up. The results presented in A)
and B) are indicative that mice are more exposed to horizontal than to vertical orientations in the natural world. To simulate
the natural exposure over orientations the prior distribution π(θ) used in our behavioral task is also higher for horizontal than
vertical orientations. This allows us to study the effects of changing reward-stimulus contingencies on the coding strategies,
in an environment that keeps the natural prior neural codes untouched. C) Betsch et al. mounted a camera on top of the head
of 4 cats to record natural stimulus videos of freely behaving cats (107). The mean wavelet amplitude of the recorded videos
is shown for 6 orientations on the x-axis. The y-axis represents the height in the recorded image. Most of the visual field is
dominated by horizontal orientations. Although this study was performed using cats instead of mice, it is interesting to observe
that horizontal orientations dominate the natural environment of this species.

Grujic et al. | Preprint 23

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 27, 2021. ; https://doi.org/10.1101/2021.05.26.445807doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.26.445807
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Figure 2
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Optimal g(θ) depends on precision costs and noise. The way in which the system should invest in sensory encoding for a
particular portion of the stimulus space depends on both precision costs η (increasing from top to bottom) and late noise σlate
(increasing from left to right). An interesting property of the rational inattention model is that as both η and σlate increase, the
less resources the system invests on regions of the stimulus space with higher density. This demonstrates important differences
between solutions of efficient coding that that assume low levels of noise in the encoder (e.g., top left panel) and solutions
where the low-noise regime is dropped.
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Supplementary Figure 3
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Optimal g(θ) using entropy as cost function. This figure shows similar information to Supplementary Figure 2, with the
difference that now the cost function is the expected reduction in entropy E[H(θ |m)]. While there are slight differences in
the solutions for g(θ), these are in general qualitatively similar to the solutions for using precision as cost function. The reason
is that both cost functions increase with the use of more resources. However, the relationship between expected precision and
entropy reduction is not linear (see Supplementary Figure 4).
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Supplementary Figure 4

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
0.0

0.5

1.0

1.5

2.0

E
[e

nt
ro

py
 re

du
ct

io
n] σlate

0.00
0.25
0.50
0.75
1.00

0.5 1.0 0.5 1.0 0.5 1.0

0.5

1.0

1.5

1/

E
[re

w
ar

d 
lo

ss
]

σlate
0.00
0.25
0.50
0.75
1.00

0.5 1.0 0.5 1.0 0.5 1.0
0.0

0.1

0.2

0.3

0.4

0.5

co
st
η

σlate
0.00
0.25
0.50
0.75
1.00

Ω ΩΩ

Ω ΩΩ

Ω ΩΩ

A

B

C
√k

  k

1/√k

Relationship between average precision, entropy reduction, reward loss, and cost. A) Relationship between average
precision k̄ and entropy reduction E[H(θ |m)] for the rational inattention model optimized for a linear precision cost for each
environment Ω (left, middle, and right panels), and for different levels of late noise σlate (different levels of line transparency).
The results of this analysis show that the relationship between these two metrics is non-linear, showing signatures of concavity.
This suggests that optimizing based information transmission investment is more liberal than optimizing based on precision
investment. B) Relationship between the inverted squared root of average precision 1/

√
k̄ and expected reward loss for the

rational inattention model optimized for linear precision cost for each environment Ω (left, middle, and right panels), and for
different levels of late noise σlate (different levels of line transparency). As expected, the higher 1/

√
k̄ and σlate, the higher the

expected reward loss. C) Relationship between 1/
√
k̄ and linear precision cost for linear precision cost η for each environment

Ω (left, middle, and right panels), and for different levels of late noise σlate (different levels of line transparency). As expected,
the higher 1/

√
k̄ (i.e., smaller invested precision) the higher cost. Also note that for a fixed cost level, the smaller the level of

late noise σlate, the lower the precision that the organism/system should invest.
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Supplementary Figure 5
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Geometric analyses of psychophysical performance of the rational inattention model allowing sensory resources g to
be adaptive across the sensory space. In order to have a better overview of predicted discriminability performance across
all pairwise combinations of input stimuli as a function of precision cost η and downstream noise σlate, we implemented a
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multidimensional scaling (MDS) analysis. For clarity in the presentation of these analyses, we considered only environments
ΩR:h↘v

and ΩR:h↗v , which are diametrically orthogonal in terms of stimulus-reward mappings. The introduction of MDS
analyses is appealing because it provides an intuitive interpretation of behavioral performance. Here, each dot represents an
input stimulus (where each angle in is represented with a different transparency level). The distance between a pair of nodes int
the manifold then represents degree of discriminability between the two angles. In our task the MDS various important features
of psychophysical performance: (i) The higher the sensory precision cost η and downstream noise σlate the shorter the distance
between dots, thus indicating lower levels of overall discriminability. (ii) In enviroment ΩR:h↗v discriminability at horizontal
angles is smaller relative to environment ΩR:h↘v

, and vice-versa for vertical angles. (iii) For a given level of sensory precision
cost η and downstream noise σlate psychophysical performance is better in environment ΩR:h↗v relative to ΩR:h↘v

. This
prediction emerges in the rational inattention framework because of the resource constraints and inference process considered
here. For a given level of sensory and decision precision, reward expectation in environment ΩR:h↗v is higher. Thus our
rational inattention model generates a set of testable predictions that can be verified with the empirical data.
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Supplementary Figure 6
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Geometric analyses of psychophysical performance of the rational inattention model assuming uniform resource alloca-
tion g across the sensory space. Here con conducted MDS analyses in the same way as conducted in Supplementary Figure
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5, but this time assuming uniform resource allocation g across the sensory space. While for a given level of sensory precision
cost η and downstream noise σlate psychophysical performance is better in environment ΩR:h↗v relative to ΩR:h↘v

, and thus
similar to the prediction presented in Supplementary Figure 5 (a general prediction of the rational inattention framework), the
degree discriminabilty is relatively constant across the sensory space. Additionally, for the same levels of sensory precision
cost η and downstream noise σlate, the degree of discriminability is larger for the variable gain g rational inattention model
(Supplementary Figure 5) relative to the uniform gain g model (this figure). This is qualitatively evident by comparing the
overall distance between the nodes of the manifold across Figures S5 and S6. Thus the two types of rational inattention models
provide distinct qualitative features that can be qualitatively compared against empirical data.
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Supplementary Figure 7

θL-θR

−0.7

−0.4

0

0.4

0.7

−90 −70 −50 −30 0 30 50 70 90

c(
le

ft)
 - 

c(
rig

ht
)

−0.7

−0.4

0

0.4

0.7

−0.7

−0.4

0

0.4

0.7

−0.7

−0.4

0

0.4

0.7

c(
le

ft)
 - 

c(
rig

ht
)

−0.7

−0.4

0

0.4

0.7

−0.7

−0.4

0

0.4

0.7

−90 −70 −50 −30 0 30 50 70 90 −90 −70 −50 −30 0 30 50 70 90

−90 −70 −50 −30 0 30 50 70 90−90 −70 −50 −30 0 30 50 70 90 −90 −70 −50 −30 0 30 50 70 90

Predictions

Mouse data Ω Ω Ω

Ω Ω Ω
θL-θR θL-θR

θL-θR θL-θR θL-θR

Mouse data and rational inattentive model predictions for difference in contrast levels. Heatplots for each reward envi-
ronment (denoted on top of heatplot and color coded) show probability of choosing the left stimulus at each contrast difference
in the study vs. the angle difference (trial difficulty). Top three plots show real mouse data and bottom three show predictions
of the static model. The contrast differences between two stimuli that were 0.4 and 0.3 were grouped together for the purpose
of this plot, and are marked 0.4 on the y axis. Preference for higher contrast side stimuli as a function of difficulty, which could
be interpreted as risk aversiveness, is observed in these plots, as well as the ability of our model to predict it.
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Supplementary Figure 8
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Individual animals show adaptation to different reward environments Resource allocation functions g(θ) for each reward
environment Ω and each individual mouse. Bottom right plot shows the means of all mice that had all reward environments
(top two rows). Shaded areas show standard 95% bootstrap CIs. Individual animals show the trend of increasing the resources
allocated areas of stimulus space with higher reward sizes. Gain shifts to more horizontal orientations in ΩR:h↘v

, as more
reward is dedicated to that portion of stimulus space in this reward condition. The effect is the opposite for ΩR:h↗v , and in
between those two is the ΩR:h�v , as would be intuitive looking at reward mappings in Figure 1E.

32 Grujic et al. | Preprint

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 27, 2021. ; https://doi.org/10.1101/2021.05.26.445807doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.26.445807
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Figure 9
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Reward expectancy effect on pupil. (A) Weights of expected reward effect on phasic pupil response over time for each reward
environment Ω. Aligned to stimulus onset. Shaded areas show 95% bootstrap CIs. (B) Predicted reward environment pairwise
differences in effect of reward expectancy on phasic pupil response. (C) Observed pairwise reward environment differences in
weights of expected reward effect on phasic pupil response. Averaged from stimulus onset to 3 seconds post onset. Error bars
show 95% CIs and lines show differences in individual mice.
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Supplementary Table 1

Correct side angle (degrees)
Reward Mappings 0 10 20 30 40 50 60 70 80 90

ΩR:h↗v , µL 1 1.8 2.6 3.3 4.1 4.9 5.7 6.4 7.2 8
ΩR:h↘v

, µL 8 7.2 6.4 5.7 4.9 4.1 3.3 2.6 1.8 1
ΩR:h�v , µL 5 5 5 5 5 5 5 5 5 5

Stimulus-reward mapping. The amounts of milkshake dispensed at a given correct side angle in a given reward environment
Ω. In ΩR:h↗v , reward size increases from horizontal to vertical. The opposite is true for the ΩR:h↘v

mapping, whereas same
size of reward is assigned to all angles in the ΩR:h�v reward mapping condition.

34 Grujic et al. | Preprint

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 27, 2021. ; https://doi.org/10.1101/2021.05.26.445807doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.26.445807
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction

