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Summary
Recent pan-cancer studies have delineated patterns of structural genomic variation across thousands of tumor whole genome
sequences. It is not known to what extent the shortcomings of short read (≤ 150 bp) whole genome sequencing (WGS) used
for structural variant analysis has limited our understanding of cancer genome structure. To formally address this, we introduce
the concept of "loose ends" - copy number alterations that cannot be mapped to a rearrangement by WGS but can be indirectly
detected through the analysis of junction-balanced genome graphs. Analyzing 2,319 pan-cancer WGS cases across 31 tumor
types, we found loose ends were enriched in reference repeats and fusions of the mappable genome to repetitive or foreign
sequences. Among these we found genomic footprints of neotelomeres, which were surprisingly enriched in cancers with low
telomerase expression and alternate lengthening of telomeres phenotype. Our results also provide a rigorous upper bound on
the role of non-allelic homologous recombination (NAHR) in large-scale cancer structural variation, while nominating INO80,
FANCA, and ARID1A as positive modulators of somatic NAHR. Taken together, we estimate that short read WGS maps >97%
of all large-scale (>10 kbp) cancer structural variation; the rest represent loose ends that require long molecule profiling to
unambiguously resolve. Our results have broad relevance for future research and clinical applications of short read WGS and
delineate precise directions where long molecule studies might provide transformative insight into cancer genome structure.
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Introduction
Cancer genomes frequently harbor hundreds of somatic DNA
rearrangement junctions, which are pairs of oriented genomic
locations that are distant in the reference but adjacent in the
tumor genome. Rearrangement junctions contribute to sim-
ple (1-2 junctions) or complex (>3 junctions) structural vari-
ants (SVs), the vast majority of which also give rise to copy
number (CN) alterations (CNAs). Junctions are detected in
paired end short read (< 150 bp) whole genome sequencing
(WGS) through discordant read mapping,1–15 split read align-
ment,16–30 and local assembly.31–37 Recent pan-cancer WGS
studies have applied novel analytic methods to thousands of
short read WGS cancer samples to characterize new classes
of complex SVs, including templated insertion events, rigma,
pyrgo, and tyfonas.38, 39 A broader biological question is how
cancer cells tolerate, evolve, and possibly benefit from larger
scale (>10 kbp) changes in chromosomal structure.40–49

A common perception of short read (< 150 bp) whole
genome sequencing (WGS) is that it has limited sensitivity
for SV detection, particularly for junctions that arise in repet-
itive reference sequence.1, 2, 50–54 More than two-thirds of the
human genome comprises repetitive sequences,55 including
transposable elements (TEs), satellites (e.g. centromeres),
microsatellites, and telomeres; hence, under a model of uni-
form breakage there is a high probability that a DNA break
will occur inside a repetitive element. In addition, specific

classes of TEs (e.g. LINEs) have been shown to be ac-
tive in a subset of cancer types and are associated with so-
matic insertions56 and occasionally rearrangements.57 Fi-
nally, though cancer DNA repair is thought to mainly in-
volve non-homologous end joining, non-allelic homologous
recombination (NAHR) and single-stranded annealing (SSA)
may also play a role.58–62 The paucity of NAHR and SSA
junctions in WGS may be due to technical factors since short
read WGS may be unable to map junctions between pairs of
similar or identical sequences. While the role of NAHR in
constitutional structural variation has been well established,
its role in cancer genomes has not been rigorously ruled out.

In the past few years, several studies employing long
molecule Pacific Biosciences single molecular real-time
(SMRT), Oxford Nanopore Technologies (ONT) nanopore
WGS, BioNano optical mapping (OM), and/or 10X
Chromium linked read (LR) whole genome profiling have
found many examples of SVs that are missed by short-read
WGS.52, 53, 63–73 However, most of the cancer-associated vari-
ants missed by WGS are short-range (< 10 kbp) SVs that
resemble large or complex insertions or deletions (indels)
rather than large scale structural alterations. These long
molecule WGS studies have also been limited to a handful
of cell lines, organoids, and/or tumor samples and thus have
lacked power to systematically assess global or recurrent pat-
terns of missed variants across many cancer types. As a re-
sult, it is still unclear how limits in the SV sensitivity of short
read WGS impact our current understanding of cancer chro-
mosomal structure.

A key prerequisite to reasoning about incomplete data
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is rigorously defining what is missing.74 Structural varia-
tion has a fundamental coherence which arises from the fact
that CNAs and rearrangements form two facets of a single
genome structure. This coherence is captured in a data struc-
ture called a junction-balanced genome graph39, 50, 71, 75–80

(genome graph for brevity) which synchronizes the dosage of
genomic intervals (i.e. vertices) and their reference or variant
adjacencies (i.e. edges) through the application of a junction
balance constraint. This constraint applies the notion that ev-
ery copy of every interstitial genomic segment has a left and a
right neighbor, effectively coupling the copy number assign-
ment across rearrangement-induced adjacencies.

We have recently shown that our genome graph inference
framework JaBbA39 outperforms all previous genome graph
and classical (i.e. non graph-based) CNA callers in its ability
to characterize genome-wide somatic CNAs. A key aspect of
JaBbA’s CNA accuracy is its incorporation of "loose ends",
which represent sites of CNAs that are unaccompanied by a
rearrangement junction. While our previous work exploited
the accuracy of these graphs to reveal complex SV events,
the distribution of loose ends across cancer has not yet been
explored. In this study, we analyze JaBbA loose ends to char-
acterize repeat-driven SV events and assess the completeness
of large-scale SV reconstructions from short read WGS.

Results
Identifying sites of copy number change unexplained
by rearrangements. JaBbA fits a probabilistic model to as-
sign integer copy numbers κ : V ∪E → N to the vertices V
and edges E of a genome graph G= (V,E), built from a set
of candidate segments and junctions that are provided as in-
put. The maximum a posteriori estimate of κ maximizes the
likelihood of binned-read depth while minimizing the num-
ber of loose end edges L ⊂ E that are given a nonzero copy
number subject to a junction-balance constraint (see39 for full
formulation). This constraint requires the dosage κ(v) of ev-
ery vertex v ∈ V to be equal to the sum of dosage κ(e) for
all incoming edges e ∈ E−(v) (or similarly, outgoing edges
e ∈E−(v)). Given this constraint, the model should fit loose
ends at all sites of copy number change that are not associated
with a rearrangement (Fig. 1a-b).

To test this assertion, we generated genome graphs for
2,319 WGS cases spanning 31 tumor types using 200 bp
binned tumor and matched normal read depth, CBS segmen-
tation,81 and SvABA junction calling31 (see Methods). The
resulting genome graphs yielded a total of 192,298 large (>10
kbp) junctions (median 50 per sample) and 524,072 candi-
date loose ends (median 72 per sample). Inspecting read
depth patterns across a random sample of these candidate
loose ends revealed that a subset occurred at sites of recurrent
read-depth "waviness", which has been previously attributed
to fluctuations in GC content82 and replication timing-based
WGS batch effects83 (Extended Data Fig. 1a-b). A smaller
fraction of candidate loose ends arose from constitutional
copy number changes that were also found in the matched
normal but were exposed through a somatic aneuploidy that
contained the constitutional variant (Extended Data Fig. 1c-

d).
Following manual review of tumor and matched normal

read depth profiles around candidate loose ends, we devel-
oped a classifier (see Methods) to exclude false positives. Ap-
plying this classifier, we found 25,271 loose ends harboring a
bona fide copy number change (Extended Data Fig. 1e). We
manually verified random samples through blinded visual in-
spection of read depth profiles by five co-authors to establish
false negative (19%, 95% credible interval [16.3%, 22.7%])
and false positive rates (2.6%, 95% credible interval [1.8%,
3.6%]) (Extended Data Fig. 1f).

Loose ends are enriched in repetitive and foreign se-
quences. We postulated that loose ends could arise from
unmappable and/or repetitive elements at one or both junc-
tion breakpoints. After annotating base level mapping qual-
ity scores (MAPQ) through BWA-MEM alignment of short
(150 bp) sequence queries generated by applying a sliding
window to the hg19 reference (see Methods), we defined the
mappable short read genome as any base giving rise to a
MAPQ=60 self-alignment. Applying this criterion, we found
that only a minority (7.5%) of RepeatMasker annotated fea-
tures were not mappable (harbored >5% MAPQ<60 bases)
(Extended Data Fig. 2a). Extending this approach to the
full genome, we found that an additional 2.6% and 6.7% of
the human reference were unmappable centromere or unan-
notated unmappable sequence, respectively (Extended Data
Fig. 2b). These fractions were comparable for 101 bp and
150 bp analyses (Extended Data Fig. 2b-c).

This analysis revealed that 20.5% of loose ends were
within 1 kbp of an unmappable repetitive element, a sig-
nificant enrichment (P < 2.2×10−16, OR = 1.82) rela-
tive to background genomic regions (Fig. 1c). This en-
richment was particularly strong for LINE elements (P <
2.2×10−16, OR = 2.52). We also found modest enrich-
ment (P = 3.96×10−12, OR = 1.64) of loose ends around all
other unmappable regions, including other repeat classes and
regions that were not linked to any annotated repetitive ele-
ments. These results indicate loose ends preferentially arise
in several classes of regions unmappable by short reads. No-
tably, our analyses did not demonstrate any reference repeat
enrichment among candidate loose ends that were removed
by our classifier (Extended Data Fig. 2d), suggesting that
our filtered loose ends encompass the majority of true loose
ends.

We next assessed the distribution of sequences mated to
reads aligning to loose ends. To do so, we defined a canon-
ical orientation around each loose end by defining a "for-
ward" strand that points in the direction of copy number de-
crease (e.g. left in Fig. 1b) and would be expected to har-
bor alignments with junction-supporting mates. We postu-
lated that high mapping quality (MAPQ=60) reads on the
forward strand of loose ends would be enriched in poor-
mapping quality (MAPQ=0) mates, which we called loose
reads. Indeed, we found a distinct tumor-specific enrich-
ment of loose reads in forward but not reverse orientation
around mappable loose ends (Fig. 1d). Subcategorizing
loose reads across those aligning to major classes of repeats,
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Fig. 1. Loose ends are enriched in reference and mated repeats (a) JaBbA junction balance schematic. The sum of copy numbers of edges + loose ends entering and
leaving a node must equal the copy number of the node. Junction shown in red, loose end in blue, reference edge in gray. (b) Example loose end in the graphical representation
of TCGA ovarian carcinoma sample 1491. Top, JaBbA graph with a 2-copy loose end. Bottom, normalized binned read depth. (c) Aggregate count of MAPQ=0 annotations
surrounding loose ends, normalized to background. Top, aggregate count of all MAPQ=0 coordinates. Middle, aggregate count of MAPQ=0 coordinates overlapping a LINE
annotation. Bottom, aggregate count of all non-LINE MAPQ=0 coordinates. Red, aggregate counts around loose ends. Pink, aggregate counts around background sampled
coordinates. (d) Aggregate count of loose read alignments surrounding loose ends, normalized to control. Y-axis above zero indicates alignment to loose end-supporting
strand; below zero indicates alignment to opposite strand. Top, total aggregate count of all loose reads. Gray box, 1 kbp window around loose end. This window is used
throughout analyses to extract aligned reads. Second from top, aggregate count of loose reads whose mates align to satellite annotations. Third from top, aggregate count
of loose reads whose mates align to viral sequences. Bottom, aggregate count of loose reads whose mates contain exact matches to 18mers of telomeric motifs. Red,
aggregate count from loose end-supporting ("forward") strand in tumor sample. Pink, aggregate count from forward strand in normal sample. Dark blue, aggregate count from
opposite ("reverse") strand in tumor sample. Light blue, aggregate count from reverse strand in normal sample.

we found profound (>29-fold) enrichment of satellite repeat-
associated loose reads within 1 kbp of the loose end relative
to background (average loose read count within 5 kbp in con-
trol samples), with lower magnitude enrichment (2.9-6.0) ob-

served among loose reads aligning to SINE, LINE, LTR, and
simple repeats. (Extended Data Fig. 2e).

We also assessed loose reads for the presence of foreign se-
quences, including viral and telomere repeats. (While telom-
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Fig. 2. A taxonomy of loose ends (a) Diagram of mappability contexts for Type 0, 1, and 2 junctions. (b) Flow chart for determining mappability of seed and mate sides of
given contig. Every contig side is categorized as mappable or unmappable and separately annotated with the type of foreign sequence, if any, is predominantly present. (c)
Flow chart for determining categorization of given loose end, given all assembled contigs. (d) Bar plot of true loose ends falling into each of three categories as a fraction of
total SVs in cohort. (e) Alluvial plot of unmappable repeats identified at loose ends.

ere repeats are not foreign to human genomes, they are not
included in reference genome builds). Indeed, we found
that (TTAGGG)n tracts (for n ≥ 3) were strikingly enriched
(>900-fold) among forward strand loose reads, but virtually
absent on the reverse strand or in control samples (Fig. 1d).
Analyzing 6251 known viral sequences from the RefSeq viral
sequence database, we also found a lower magnitude (4.7-
fold) enrichment of viral sequences among loose reads on
the forward strand (Fig. 1d). Taken together, these results
indicate that loose ends arise frequently from the fusion of
repetitive or foreign sequences.

A taxonomy of loose ends. To better understand the nature
of SVs missed by short read WGS, we developed a taxonomy
based on features of sequence alignments and reference loca-

tions associated with loose ends. Integrating the above data,
we defined three fundamental configurations that rearrange-
ments found in short-read WGS might take: a junction where
neither (Type 0), one (Type 1), or both (Type 2) breakpoints
are unmappable by short read WGS, (Fig. 2a).

Type 0 junctions may give rise to loose ends because of im-
perfect sensitivity of junction callers, which have been tuned
to balance genome-wide precision and recall.33, 84, 85 To max-
imize sensitivity for Type 0 junctions around loose ends, we
applied both discordant pair and local assembly analyses (see
Methods). Since SvABA already uses local assembly (via
String Graph Assembly86) we used a de Bruijn graph as-
sembler (Fermi87) as an alternative approach to build contigs
from junction-supporting reads and their mates (Extended
Data Fig. 3a). Specifically, we oriented each loose end-
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Fig. 3. Loose end resolution with linked reads and optical maps (a) Bar plot of loose ends from long molecule genome profiling cohort categorized by short read WGS
analysis. Pink, total loose ends in each category. Red, loose ends rescued by long molecule SV caller. (b) Heatmap of "rescued" categories based on LR sequencing. (c)
Example from breast cancer cell line HCC1954 of a pair of loose ends rescued by LR WGS. From top: heatmap showing barcode sharing between 200 bp bins. LR alignments
(every horizontal row represents reads sharing one barcode linked by gray lines, with individual read alignments in black). Tumor/normal relative aggregate count of loose
read alignments, showing peak at loose end on right. JaBbA graph representation of the sample showing two high copy loose ends corresponding to the apparent junction
breakpoints. Normalized binned read depth data, showing corresponding coverage depth change. RepeatMasker LINE annotations, showing 4 kbp LINE overlapping loose
end on left. Mappability from simulated 150 bp reads, showing loss of mappability at 4 kbp LINE annotation on left. Diagram of proposed underlying allele. (d-e) Examples
from ovarian cancer cell line OVCAR-3 of loose ends rescued by Bionano Genomics OM. From top, rescued junction(s) called from OM Rare Variant pipeline. Alignments of
individual OM molecules. Alignment of contig assembled from OM molecules. JaBbA graph with loose ends corresponding to breakpoints of rescued junctions. Normalized
binned read depth data, showing corresponding coverage depth change. (d) Two fold back junctions identified by OM within a BFBC pattern. (e) Pair of loose ends joined by
OM junction. Left loose end was categorized as Type 1 by short read sequencing. Right loose end was categorized as Mystery by short read sequencing. CN, copy number.
RD, read depth.

derived contig to the forward strand of the loose end and ex-
amined features of the seed sequence (the 5’ part of the contig
aligning to the loose end locus) and the mate (the distant or
novel sequence at the 3’ end of the contig) (Fig. 2b). We
used features of these chimeric (seed and mate) and distant
(mate only) contigs to label each loose end as Type 0, 1, or 2
(Fig. 2c, Extended Data Fig. 3b). Loose ends that did not
yield a tumor-specific contig with a distant mate alignment
were labeled "mysteries" (Extended Data Fig. 2c, Fig. 3b).

Applying this approach, we found that almost half (48%,
12,068 of 25,271) of loose ends arose from Type 0 junctions
that were missed during genome-wide analysis. These junc-

tions were supported by a contig with a MAPQ=60 chimeric
reference genome alignment and/or discordant read-pair
cluster supported exclusively by tumor-derived sequences
(Extended Data Fig. 3b). We propose that these Type
0 breakpoints, combined with those found in the original
genome-wide callset, delineate the limit of short read struc-
tural variant mappability in these WGS data. The remain-
ing unmappable loose ends, which comprise 2% of all break-
points in these samples, represent junctions that require long
molecule profiling to unambiguously map (Extended Data
Fig. 3c).

Of these 13,203 unmappable loose ends, 49%, 6%, and
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45% were Type 1, 2, and mystery loose ends, respectively
(Fig. 2d). To categorize unmappable loose ends further,
we labeled seed and mate regions of loose ends with fif-
teen classes of repeats and/or foreign (e.g. viral) sequences
(Fig. 2e, Extended Data Fig. 3d, Extended Data Fig. 4).
Type 1 loose ends were most frequently the result of LINE,
SINE, telomeric, and peri-centromeric sequences that were
connected to a mappable seed region. A subset (792, 12%)
of Type 1 loose ends yielded contigs with multiple mappable
(MAPQ=60) but complex multi-part alignments whose pre-
cise order and orientation could not be unambiguously re-
solved, indicating that these were the result of complex re-
arrangements that short read WGS could only partially re-
construct (Extended Data Fig. 3d). Type 2 loose ends
were most frequently the result of fusions of reference non-
adjacent LINE elements and pairs of unannotated low map-
ping quality regions. While mysteries most frequently com-
prised mappable seed regions, they were also frequently asso-
ciated with unmappable repetitive elements, including LINE,
SINE, peri-centromeric, and telomeric sequence, suggesting
that these loci may harbor additional Type 2 loose ends.

Long molecule loose end rescue. Long molecule genome
profiling technologies including LR WGS and OM employ
the alignment and/or assembly of long (>20 kbp) molecules
to map structural variants, including those arising in repeti-
tive genomic regions.88, 89 We reasoned that these approaches
would be particularly useful for resolving of Type 1 and 2
junctions around unmappable loose ends. To assess this,
we generated LR WGS (median molecule size ~50-80 kbp,
genome-wide physical coverage 170-215x) and Bionano OM
data (median molecule size ~310-375 kbp, genome-wide
physical coverage 400-430x) for 10 and 3 cancer cell lines,
respectively (see Methods).

We examined the density of SV calls from three standard
LR algorithms (GROC-SV,65 LinkedSV,90 and NAIBR91)
and the Bionano Solve Rare variant pipeline (see Methods)
in the vicinity of loose ends. We found that loose ends
were markedly enriched in both LR and OM-derived junction
breakpoints at a distinct peak within 1 kbp (LR) or 10 kbp
(OM) oriented to the loose end forward strand (Extended
Data Fig. 5a). Long molecule analysis resolved junctions
for 54%, 41%, and 56% of Type 1, 2, and mystery loose ends
(Fig. 3a). Of note, we found a somewhat lower rate of valida-
tion using LR (46%, 44%, and 49% of Type 1, 2, and mystery
loose ends, respectively) than OM (73%, 33%, and 70%).

We next probed the fate of resolved loose ends as a func-
tion of their short read WGS-derived classification. Specifi-
cally we classified junctions inferred through long molecule
profiling as Type 0, 1, 2 on the basis of the short read map-
pability of the fused reference region. Since OM profiles
provide approximate breakpoint coordinates (~20 kbp res-
olution), we limited this analysis to LR WGS (Fig. 3b).
While the majority (68.6%) of LR-resolved Type 1 loose
ends yielded Type 1 junctions, we found a subset (31.4%)
that were resolved into Type 0. Similarly, while a majority
(71.4%) of resolved Type 2 loose ends yielded Type 2 junc-
tions, a subset (28.6%) of these were resolved into Type 1

junctions. Finally, we found that mystery loose ends were re-
solved into all three junction classes, including a substantial
fraction to Type 2 (35.4%).

Integrating these results, we found that the majority
(77.3%) of loose ends that were resolved into Type 2 junc-
tions by LR WGS were classified as mystery loose ends in
the short read WGS analysis. Furthermore, the overall fre-
quency of Type 2 junctions in LR WGS (0.84%) was similar
to the combined rate of Type 2 or mystery loose ends (1.2%)
in our short read analyses. As a result, we conclude that the
rate of Type 2 and mystery loose ends in short read WGS
provides an upper bound on the rate of Type 2 junctions in
cancer genomes.

To better understand the re-classification of Type 1 and
2 loose ends by long molecules we examined a pair of dif-
ferently classified loose ends in the metastatic breast cancer
cell line HCC1954 (Fig. 3c) that were fused into a Type
1 junction following LR profiling. The Type 1 loose end
at chromosome 20 resides in a mappable locus harboring
a large peak of loose reads indicating fusion to an unmap-
pable LINE repeat. The loose end on chromosome 12 was
located in a poorly mappable LINE element and associated
with loose reads mapping to a distant and also unmappable
LINE. LR WGS confirmed support for a high copy junc-
tion joining one mappable and one unmappable breakpoint,
supporting a Type 1 junction classification. Re-alignment of
reads from junction-supporting vs. reference LR barcodes in-
dicated the presence of junction-specific sequences mapping
to loose end-associated contigs derived from short read WGS.
These results are consistent with the fusion of a mappable
chromosome 20 locus to an unmappable reference LINE on
chromosome 12 with the insertion of a second unmappable
LINE element at the breakpoint.

We next inspected the impact of LR and OM loose end
resolution on complex SV inference. We found two loose
ends associated with a breakage fusion bridge cycle (BFBC)
on chromosome 11 in ovarian cancer cell line OVCAR-3
profiled with OM and LR WGS. Both were categorized as
Type 1 loose ends with multiple ambiguous mate alignments.
The leftmost loose end additionally harbored inserted LINE
sequence between the two fused sides. According to our
recently published genome-graph complex SV taxonomy,39

this event was classified as a BFBC because the total junc-
tion copy number across the five fold-back inversion junc-
tions was nearly equal to the height of this relatively sim-
ple amplicon. Analyzing these genomes with OM, we found
fold-back inversion junctions at both loose ends. While these
findings did not change the complex SV classification, they
substantially strengthened the fold-back inversion signal sup-
porting the BFBC classification (Fig. 3d).

In the same cell line, we found two loose ends at a chromo-
some 2 locus also harboring a pair of Type 0 deletion junc-
tions on short read WGS (Fig. 3e). The Type 1 loose end
was associated with mappable seed mated to unmappable se-
quence after short read assembly. The loose end on the right
was characterized as a mystery, with unmappable SINE se-
quence found at a seed that yielded no chimeric contigs. OM
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analysis revealed a deletion-like Type 1 deletion junction, on
the same allele as one of the Type 0 deletions detected with
WGS. Following the addition of this junction and re-analysis
of the graph, this cluster of deletions was called a rigma, a
class of complex SVs revealed in our recent pan-cancer anal-
ysis of genome graphs.39

Pan-cancer estimates of non-allelic homologous re-
combination in cancer genomes. NAHR is a DNA repair
mechanism that joins distant but nearly identical sequences;
NAHR-driven structural variants will therefore yield Type
2 junctions and be underdetected in short read WGS. Hav-
ing established a taxonomy of loose ends, we reasoned that
the burden of Type 2 and mystery loose ends may pro-
vide a proxy for Type 2 junctions and hence NAHR in can-
cer genomes. While Type 2 junctions appear rare in can-
cer genomes (1% of all breakpoints), we observed an or-
der of magnitude variation in their burden (0.31%-2.64%)
across cancer, with five tumor types (bladder (BLCA),
breast (BRCA), stomach adenocarcinoma (STAD), colon
adenocarcinoma (COAD), and lung squamous cell (LUSC))
showing significant enrichment relative to their complement
(FDR<0.1) (Fig. 4a, Extended Data Fig. 5b). Tumor types
enriched for Type 2 and mystery loose ends were distinct
from those enriched in Type 1 loose ends, which included
head and neck squamous cell (HNSC), malignant lymphoma
(MALY), and sarcoma (SARC) (Extended Data Fig. 5c).
Notably, breast cancer was significantly enriched in Type 2
and mystery but depleted for Type 1 loose ends.

To explore the possible impact of NAHR on SV muta-
tional processes, we examine the overlap of Type 2 and mys-
tery loose ends with distinct classes of complex SVs identi-
fied through the analysis of genome graph topology38, 39, 92

(Fig. 4b, Extended Data Fig. 5d). We found the most
significant overlap of Type 2 and mystery loose ends with
chromothripsis (P = 2.24×10−18, RR = 2.97, Wald test)
and BFBCs (P = 1.26×10−10, RR = 2.93). In contrast,
Type 1 loose ends were significantly enriched at double min-
utes (P = 1.10×10−24, RR = 4.34) and templated insertion
chains (P = 3.01×10−3, RR = 4.75). These results indi-
cate differential mutational processes generating Type 1 and
2 junctions in cancer genomes.

We hypothesized that acquired defects in DNA repair may
modulate the rate of NAHR in mutant tumors. To investigate
this, we correlated the burden of Type 2 and mystery loose
ends with the presence of alterations at 191 frequently mu-
tated (>1% of cases) DNA damage response genes.93 After
correcting for tumor type, this analysis identified six genes
(FDR < 0.1) linked with enrichment or depletion of Type
2 and mystery loose ends (Fig. 4c, Extended Data Fig.
5e). The most significant association among these was with
INO80, a nucleosome remodeling enzyme that has been im-
plicated in double stranded break (DSB) motility and mitotic
homologous recombination.94–100 Tumors harboring somatic
truncating mutations in INO80 showed a significant depletion
in the burden of Type 2 and mystery loose ends relative to
wild type tumors (P = 7.18×10−7, RR = 0.082). We found
a similar depletion (P = 2.13×10−3, RR = 0.647) in tumors

with truncating mutations of ARID1A, a major component of
the SWI/SNF nucleosome remodeling complex.

Additional negative associations (P = 1.38×10−3, RR
= 0.324) included FANCA, a member of the Fanconi ane-
mia interstrand crosslink repair complex that has been im-
plicated in homology driven strand-annealing following dou-
ble stranded DNA breakage,101 and two less well character-
ized regulators of the G1-S cell cycle checkpoint (PPP6C,
RAD9B). The only positive association was with RAD50, a
component of the MRE11-RAD50-NBS1 (MRN) complex
that drives the initial processing of DSBs in both NHEJ and
homologous recombination (HR). Interestingly, this associa-
tion was strongest with tumors harboring missense mutations
in RAD50 (P = 2.47×10−3, RR = 2.14), consistent with
these mutations shifting the NHEJ / HR balance rather than
abrogating MRN complex function. Taken together, these re-
sults provide some of the first cancer genomic evidence to
nominate specific DNA repair factors as modulators of can-
cer NAHR.

G-rich telomere repeat positive loose ends in telom-
erase low tumors. While loose ends primarily represent the
technical frontier of short read SV mapping, some may rep-
resent true novel cancer chromosome "ends". In addition, the
high enrichment of telomere repeats among loose reads (Fig.
1d) and contigs associated with Type 1 loose ends in our tax-
onomy (2.1%, Fig. 2e) suggested that some loose ends may
represent examples of telomere deposition at novel chromo-
some ends. As illustrated in (Fig. 5a), we predict neotelom-
eres to yield hotspots of G-rich telomere repeat (GRTR) se-
quences in loose reads and loose end-derived contigs when
oriented to the forward loose end strand. In contrast, C-rich
telomere repeat (CRTR) loose end contigs are not consis-
tent with neotelomeric loose ends, but more consistent with
telomeric insertions or end-to-end fusion (Fig. 5a)

To test this intuition, we compared the distribution of
mates with GRTR+ and CRTR+ reads within and outside
of the context of loose ends (Fig. 5b). Telomere insertions
should not result in a copy change and should harbor recipro-
cal peaks connecting opposite strands of the inserted telom-
ere repeat to the flanking reference regions. Consistent with
this prediction, we found that hotspots of reads with GRTR+
mates outside of the context of loose ends were usually asso-
ciated with a reciprocal peak of opposite strand reads harbor-
ing CRTR+ mates an insert size (~600-700 bp) downstream.
In contrast, the same analysis performed on GRTR+ loose
ends did not reveal a reciprocal peak, suggesting that these
events were not the result of telomere insertions.

We next hypothesized that high levels of telomerase ac-
tivation, such as that associated with TERT amplification
might be associated with a high neotelomere burden, due to
telomerase-mediated double strand break healing.102 Com-
paring loose end burdens in various somatic genetic con-
texts of telomerase activation, we did not find a difference
in the GRTR+ burdens between high-level (CN > 2× ploidy)
TERT amplification or over-expression (z-score > 2) (5.6%,
P = 0.058 and 4.5%, P = 0.336 respectively) relative to sam-
ples with wild type and average TERT expression (Extended
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Fig. 4. Bounding the burden of NAHR in cancer genomes (a) Violin plots of tumor types significantly associated with Type 2 + mystery loose ends, which bound the burden
of non-allelic homologous recombination in cancer genomes. Blue, tumor type significantly depleted in Type 2 + mystery loose ends. Red, tumor type significantly enriched
in Type 2 + mystery loose ends. Y-axis, fraction of breakpoints per sample categorized as Type 2 or mystery. (b) Volcano plot of association between complex SV patterns
and Type 2 + mystery loose ends. (c) Violin plots of genotypes significantly associated with Type 2 + mystery loose ends. Each dot is one tumor. Blue, genotype significantly
depleted in Type 2 + mystery loose ends. Red, genotype significantly enriched in Type 2 + mystery loose ends. Y-axis, fraction of breakpoints per sample categorized as Type
2 or mystery. Significance levels: **** fdr < 1×10−4, *** 1×10−4 < fdr < 1×10−3, ** 1×10−3 < fdr < 0.01, * 0.01 < fdr < 0.1.

Data Fig. 5f).
Contrary to our hypothesis, we found a striking enrichment

of GRTR+ loose ends in samples with low or negligible TERT
expression (z-score < -2). There was no difference in the bur-
den of CRTR+ loose ends among any of these TERT tranches
(Fig. 5c)). Since tumors that fail to express telomerase may
employ the alternative lengthening of telomeres (ALT) path-
way, we asked whether neotelomere burden correlated with
loss of function mutations in the key ALT suppressors ATRX
or DAXX.103 Indeed we found a higher burden of GRTR+
loose ends in ATRX / DAXX null tumor samples (Fig. 5c).
Furthermore, we found that several ALT-associated cancers,
including sarcomas (18%, OR = 6.47, P = 1.95×10−5) and
low grade gliomas (12.3%, OR = 3.92, P = 4.1×10−3), had
the highest rate of GRTR+ loose ends relative to other tumor
types Fig. 5d).

To yield stable derivative chromosomes, complex SVs like
chromothripsis and BFBCs must acquire a telomere or circu-
larize. Telomere acquisition can occur through fusion to an
existing chromosome end or through de novo telomere syn-
thesis. Investigating the latter possibility, we found instances
of GRTR+ loose ends falling within or near the footprints of
complex SVs. This included a BFBC in breast cancer cell line
CAL-120 harboring a GRTR+ loose end (Fig. 5e). GRTR+
loose reads were found on the loose end-supporting strand
only, all aligning within 200 bp of the loose end. The assem-
bled contig contained 123 bp of the loose end locus fused
to 98 bp of GRTR sequence. This pattern was consistent
with a breakage fusion bridge process terminating through
neotelomere synthesis. We found another neotelomere in the
TCGA breast cancer sample A1P8 amid a cluster of rear-
rangements between chromosomes 1 and 9 (Fig. 5f). This
loose end was classified as Type 1, with a mappable recon-

struction of the loose end locus again fused directly to 98 bp
of GRTR+ sequence. The pattern is consistent with a tem-
plated insertion chain38, 39 joining chromosome 1 and 9 be-
fore terminating in a downstream neotelomere.

Viral loose ends resolve high-copy amplicons. A subset
of cervical (CESC), oropharyngeal squamous (HNSC), and
liver hepatocellular carcinoma (LIHC) arise in the context
of chronic infection with double stranded DNA viruses (Hu-
man Papilloma Virus, HPV; Epstein Barr Virus, EBV).104–107

While somatic viral integrations into the host genome are
routinely detected by many SV pipelines (e.g. SvABA,
GRIDSS2, Aperture),31, 33, 108 these algorithms do not readily
distinguish between small insertional and large-scale struc-
tural variants. Since our genome graphs are defined across
the human reference genome, large-scale unbalanced viral
SVs would be predicted to result in loose ends (Fig. 6a).

Investigating viral contributions to loose ends across our
taxonomy (Fig. 1d, Fig. 2e), we identified 29 Type 1 loose
ends that harbored a viral mate, 13 and 9 of which were
linked to HPV and HBV, respectively. Though these events
were rare (occurring in 0.95% of cases) across cancer, they
were significantly more frequent in CESC (P = 5.15×10−7,
OR = 29.5), HNSC (P = 1.22×10−4, OR = 7.62), and LIHC
(P = 1.55×10−8, OR = 13.4) as well as cases previously
annotated as being virus positive (Fig. 6b). These results in-
dicate that viral driven SVs are a frequent feature in cancers
that arise in the context of viral infection.

Each loose end, like each junction and interval, is asso-
ciated with a dosage or copy number. Analysis of dosage
at 29 viral loose ends showed that these had a significantly
elevated copy number relative to non viral loose ends (P =
1.7×10−4, OR = 8.66), Fig. 6c). Investigating these high
copy viral loose ends, we found a chromosome 14 double
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minute in an HNSC tumor (TCGA-4077) where two high
copy Type 1 loose ends mapped to opposite ends of the HPV-
16 genome (Fig. 6d, Extended Data Fig. 5g). These loose
ends flanked an intronic region of the RAD51B gene that was
amplified to 40 copies. The most likely reconstruction of this
locus was an amplified circular structure with HPV-16 link-
ing the two amplicon ends as an insertion in a duplication-like
junction, consistent with a double minute.

We found a similar pattern in a more complex amplicon
in CESC case (TCGA-A0TN) (Fig. 6e). This subgraph har-
bored two junctions connecting two distinct foci of increased
copy number (CN 10-12) in an intergenic region on chromo-
some 2. As with the HNSC case, two Type 1 loose ends were
linked to opposite sides of the HPV-18 genome, consistent
with a high copy junction linking chromosomes 2 and 3 with
a viral sequence inserted at the junction (Extended Data Fig.
5h). Re-analysis of this genome graph after addition of this
inferred high-copy translocation junction enabled reclassifi-
cation of the associated subgraph as a double minute.

Analysis of additional viral loose ends also revealed exam-
ples of simpler and low copy intra- and inter-chromosomal
rearrangements. For example, a pair of loose ends on chro-
mosome 8 were linked to opposite ends of the HPV-18
genome in a CESC case (TCGA A2RM) in a tandem du-
plication orientation (Extended Data Fig. 6a). Two ad-
ditional examples of low copy EBV-linked loose ends were
found in a LIHC cell line (SNU-475) and primary tumor sam-
ple (TCGA-A5NP) (Extended Data Fig. 6b-c). Each pair
of loose ends which mapped to opposite ends of the EBV
genome could thus be resolved into an inter-chromosomal
junction likely representing a simple translocation event.

Missing structural variants at cancer drivers. A key
goal of cancer genome sequencing is to characterize bio-
logically important or actionable driver alterations at known
cancer genes. However, it is largely unknown to what de-
gree alterations involving repetitive or foreign sequence con-
tribute to SVs at clinically important cancer drivers. Missing
junctions can prevent the detection of a protein-coding DNA
fusion or the incorrect grouping of copy number alterations
into complex SV events using short read WGS. Across 2,319
cases, we found loose ends contributed to only 5 of a total of
321 breakpoints in the gene bodies of ABL, ALK, RET, ROS,
MET, BRAF, FGFR1/2/3, and NTRK1/2/3, indicating that
protein coding fusions at these clinically important loci are
rarely missed by short read WGS.

To assess the contribution of loose ends to recurrent copy
number alterations at cancer driver genes, we focused on 99
COSMIC Cancer Gene Census genes that have been previ-
ously implicated in recurrent peaks of copy number gain or
loss in cancer (including 4 genes associated with both) us-
ing the GISTIC algorithm.109 We then used analyses of local
genome graph topology to associate regions of gain (copy
number > twice ploidy) or loss (copy number ≤ 1) with spe-
cific loose ends (see Methods). Among the 46 recurrently
amplified oncogenes, CCND1 and MYC were the most fre-
quently amplified by a loose end (12 and 9 instances respec-
tively), while BCR and MYCL had the highest fraction of am-

plifications associated with a loose end (11.5% and 11.4% of
total amplifications respectively) (Fig. 7a).

Among recurrently deleted cancer drivers, FHIT and
CDKN2A had the highest burden of associated loose ends
(50 and 44 instances respectively). SMAD4 and RB1 had the
highest fraction of losses attributable to loose ends (10.2%
and 8.7% of the total losses respectively) (Fig. 7b). This
included examples of pairs of loose ends at FHIT loci that
already harbored one or more deletion junctions classified as
a simple deletion. Since FHIT has been previously shown to
be a hotspot of rigma (a pattern of stepwise losses and clus-
tered deletions at late-replicating fragile sites39), it is likely
that the resolution of these additional loose ends would result
in re-classification of these loci as rigma.

We next asked whether specific mutational mechanisms
may generate loose ends at cancer genes. Cancer genes were
significantly depleted in Type 2 and mystery loose ends rela-
tive to non-cancer genes, even after correcting for total gene
breakpoint burden (P = 1.43×10−7, OR = 0.57), suggest-
ing that they are less prone to NAHR. Type 1 loose ends
within cancer genes showed a broad spectrum of mated re-
peat categories that largely reflected their genome-wide dis-
tribution. The most significant association was with cen-
tromeric or peri-centromeric sequence on the mate side (P =
0.027, OR = 1.48) relative to non-cancer gene-associated
Type 1 loose ends (Fig. 7c-d). For example, an unclas-
sified ten copy ERBB2 amplification in an esophageal ade-
nocarcinoma tumor sample (ICGC-D0234446) harbored a
pair of Type 1 loose ends at opposite sides of the ~300 kbp
amplified region, each linked to peri-centromeric sequence
(Fig. 7e). These results are consistent with the presence of
a double minute harboring junctional centromeric sequence.
We found additional examples of Type 1 loose ends with
centromeric or peri-centromeric mated sequences associated
with RB1 and CDKN2A loss in a glioblastoma (TCGA-0221)
and lung adenocarcinoma (TCGA-5899) respectively (Fig.
7f-g). These results implicate that genetic instability around
specific classes of repeats may contribute to the evolution of
driver gains and losses.

Discussion
As cancer WGS efforts scale into the tens or hundreds of
thousands of samples and long molecule genome profil-
ing technologies mature, it is important to rigorously ap-
proach the limitations of short reads in assessing somatic
structural variation. The current expectation in the field is
that short read WGS is very incomplete in its detection of
SVs,1, 50–52 a view that has been advanced by long molecule
profiling studies of limited sample sets (<5) of cancer cell
lines.63, 65–67, 69, 70 The added sensitivity attributed to long
molecules in these studies has been largely limited to the
detection of complex somatic insertion and deletion vari-
ants smaller than 10 kbp.52, 53, 71, 72 While these studies have
also identified large-scale SVs missed by short reads,91 such
examples have been mostly limited to constitutional struc-
tural variation. Our approach to map and classify loose ends
in cancer genomes thus represents one of the first analytic
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Fig. 5. G-rich telomere repeats nominate new cancer chromosome ends (a) Diagram of proposed telomere-involved rearrangements. At a chromosome terminus, the
loose end strand will be mated to telomeric (TTAGGG)n repeats. At a rearrangement within a telomere oriented away from the chromosome terminus, the loose end strand
will be mated to (CCCTAA)n repeats. (b) Aggregate alignments of telomeric mates with respect to the strand and position of a G-rich telomeric mate peak, normalized to
total count of peaks contributing to each track. Top, telomeric mate peaks ≤ 1 kbp away from a loose end. Bottom, telomeric mate peaks > 1 kbp away from a CNA.
Red, reads mated to G-rich telomeric repeats. Blue, reads mated to C-rich telomeric repeats. Positive y-axis, reads aligned to same strand as G-rich telomeric mate peak.
Negative y-axis, reads aligned to opposite strand as G-rich telomeric mate peak. (c) Bar plot of fraction of samples with a given genotype containing at least one telomeric
loose end. Error bars show 95% confidence interval. Red, significant enrichment of telomeric loose ends within genotype. Gray, not significant. "TRUE", samples with
the genotype. "FALSE", samples without the genotype. Significantly enriched genotypes (compared to samples without the genotype) are marked by asterisks (Fisher’s
exact test). Significance levels: **** (P < 1×10−4), *** (P < 1×10−3), ** (P < 0.01), * (P < 0.05). (d) Scatter plot of fraction of samples containing at least one
C-rich telomeric loose end vs fraction of samples containing at least one G-rich telomeric loose end separated by tumor type. Red, tumor type significantly enriched for
G-rich telomeric loose ends. Gray, not significant. (e) Example of a neo-telomere from breast cancer carcinoma cell line CAL-120 which falls within a BFBC annotation.
Top, 4 Mbp window around neo-telomeric loose end, showing nearby junctions and coverage changes. Middle, 10 kbp window around neo-telomeric loose end, showing
individual alignments of reads mated to telomeric reads, location of the seed region used as input to assembly pipeline, and aggregate count of strand-specific telomeric read
alignments. No telomeric reads are found in this window on the reverse strand or in the paired normal sample. Bottom, representative contig output from assembly pipeline.
The seed is unmappable with corresponding SINE alignments, and the mated sequence is exact matches to (TTAGGG)n. Representative contig sequence shown below.
Black, sequence aligning to seed region. Blue, mated sequence. (f) Example of a neo-telomere from TCGA breast cancer carcinoma sample A1P8. Panels same as (e). Top,
neo-telomeric loose end falls within templated insertion chain pattern. Bottom, seed is mappable. CN, copy number. RD, read depth.

frameworks to rigorously assess the burden of missing struc-
tural data in somatic short read WGS.

Contrary to prevailing views, we find that a very small
fraction (~2.3%) of large-scale cancer SVs are missed by
short reads. Furthermore, the sum of Type 2 and mystery
loose ends in our analysis provides an upper bound (1.2%) for
the contribution of NAHR to cancer genomic structural vari-
ation. This validates the previously untested hypothesis that
homologous recombination, which requires >97% sequence
identity across long (>100 bp) sequences, plays a minor role
in somatic structural genomic evolution. Our results sug-
gest that certain cancer types (BLCA, BRCA, STAD, COAD,
LUSC) have a higher burden (1.2% - 2.6%) of Type 2 and
mystery loose ends and may require long molecule profil-
ing to comprehensively characterize SVs and determine the
contribution of NAHR. Our findings implicating nucleosome
remodeling genes (INO80 and ARID1A) in cancer associated
NAHR merit functional validation.

Several factors may cause our loose end burden to under-
estimate the fraction of SVs missed by short read WGS. Our

approach assumes that repeat-driven SVs will generate a read
depth change in the bins surrounding an unmappable junc-
tion. Fully balanced rearrangements (e.g. reciprocal translo-
cations, inversions) that are missed will yield a flat read depth
profile without loose ends. However, balanced rearrange-
ments are rare in the mappable cancer genome, represent-
ing approximately 0.68% of total rearrangements; even recip-
rocal rearrangements become unbalanced due to subsequent
copy number changes including aneuploidies that alter the
dose of one but not the other derivative allele. Though it
is certainly possible that smaller inversions and late recip-
rocal events may be more likely to be balanced, a high rate
of such events in the unmappable genome (but not the map-
pable genome) would imply a very specific mutational pro-
cess that we believe is a priori unlikely. As a result, we con-
clude that undetected balanced rearrangements will obscure
a very small fraction of repeat-driven SVs.

Second, certain breakpoints that arise in larger genomic
"blind spots" where low mappability also distorts the regional
read depth signal (e.g. centromeres) and may obscure true
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Fig. 6. Viral loose ends are amplified in virus-driven cancers (a) Diagram of expected read sequences given proposed virus-involved rearrangements. A viral insertion
will not result in a CNA. A rearrangement mediated by inserted viral sequence will result in a pair of loose ends both mated to viral sequences. (b) Bar plot of fraction of
samples containing at least one viral breakpoint (loose end or viral SV call from SvABA) separated by tumor type. Error bars show 95% confidence interval. Red, tumor
type significantly enriched for viral breakpoints (Fisher’s exact test). Gray, not significant. (c) Bar plot of fraction of loose ends with a high (> 7) loose copy number. Viral
loose ends are significantly enriched in high loose copy number compared to all other loose ends (P = 1.88×10−5, OR = 18.6). Error bars show 95% confidence interval.
(d-e) Examples of apparent viral-mediated rearrangements. From top, "walk" representation of proposed circular allele. Alignments of read pairs with discordant alignments
between human and viral genome. JaBbA graph representation of the sample showing two loose ends corresponding to the discordant read alignments. Normalized binned
read depth data, showing corresponding coverage depth changes. CN, copy number. RD, read depth. (d) Example from TCGA head and neck squamous cell carcinoma
sample 4077. Top left, zoomed out view of amplicon showing overlap with intron of RAD51B. (e) Example from TCGA cervical carcinoma sample A0TN.

loose ends. However many large-scale SVs will still cause a
read depth change in mappable bases that flank the genomic
blind spot, which will shift but not obscure the loose end.
Indeed, many of our mystery loose ends that are placed in
mappable genomic regions and fail to generate tumor-specific
chimeric contigs (Fig. 2e) may be the result of such a shift.
As an example, many arm level copy changes occur through

centromeric junctions and are detected in our analyses as cen-
tromeric or peri-centromeric loose ends (Extended Data Fig.
6d-f). However, we will not detect duplications or deletions
that are fully contained inside the centromere. More gen-
erally, junctions whose breakpoints are local to that unmap-
pable region and thus fail to cause a copy change in the sur-
rounding bins will not generate a loose end. Excluding the
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Fig. 7. Loose ends affect a minority of cancer drivers (a) Bar plot showing burden of amplifications via loose end by gene. Above, count of samples with at least
2×ploidy copies of some part of the gene body and a loose end responsible for the gain, colored by type of repeat content identified at the loose end. Below, fraction of all
gains of the gene caused by a loose end. (b) Bar plot showing burden of deletions via loose end by gene. Above, count of samples with fewer than 2 complete copies of the
gene and a loose end responsible for the loss, colored by type of repeat content identified at the loose end. Below, fraction of all losses of the gene caused by a loose end. (c)
Alluvial plot showing types of unmappable repeats identified at the seed and mate side of loose end rearrangements leading to the amplification of an oncogene. (d) Alluvial
plot showing types of unmappable repeats identified at the seed and mate side of loose end rearrangements leading to the loss of a tumor suppressor. (e-g) Examples of
loose ends impacting driver genes. Top, JaBbA graph representation of the sample showing loose end(s) responsible for gain or loss. Bottom, normalized binned read depth
data, showing corresponding coverage depth changes. CN, copy number. RD, read depth. (e) Example gain of ERBB2 in esophageal carcinoma sample DO234446, with
two loose ends mated to centromeric / pericentromeric sequence. (f) Example heterozygous loss of RB1 in TCGA glioblastoma multiforme sample 0221, with one loose end
mated to centromeric / pericentromeric sequence. (g) Example homozygous loss of CDKN2A in TCGA lung adenocarcinoma sample 5899, with two loose ends mated to
centromeric / pericentromeric sequence.

centromeres themselves, we find that only 2.2% of the re-
maining genome harbors a long (≥ 10 kbp width) stretch of
unmappable sequence. These results suggest that such local
repeat-driven SVs likely contribute to a minority of the total
SV burden.

The presence of Type 1 loose ends indicates that many so-
matic SVs arise through the fusion of unmappable repetitive
sequence to mappable high-complexity genome. These in-
clude a high fraction of Type 1 loose ends associated with un-
mappable LINE or SINE elements. The fractional prevalence
of these events (0.3% of all long-range SVs) even when com-
bined with mappable SVs (~26%) is approximately consis-
tent with their fractional contribution to the human genome.
The contribution of these events to all SVs appears consistent
across tumor types. These results indicate that the majority
of LINE and SINE-associated somatic SVs are the result of
random DNA breakage rather than specific SV driven muta-
tional processes.

GRTR+ loose ends nominate locations where cancer chro-

mosomes may have acquired new physical "ends". The en-
richment of GRTR+ (but not CRTR+) loose ends in TERT
low and/or ATRX / DAXX mutant tumors suggest that cancer
neotelomeres are not the result of telomerase-mediated heal-
ing110, 111 but arise in the context of ALT. These candidate
neotelomeres are distinct from the interstitial telomere inser-
tions that have been previously shown to be enriched in ATRX
/ DAXX mutant ALT cancers.112–114

How might the ALT phenotype drive neotelomere forma-
tion at interstitial double-stranded breaks? ALT cells have
high concentrations of extrachromosomal telomeric DNA.115

These include short linear double-stranded telomeric DNA
that provide abundant substrates for NHEJ to cap DSBs with
short telomeric sequences. While such a process is equally
likely to yield G- or C-rich 3’ ends, G-rich ends may be
preferentially extended through rolling circle amplification
after annealing to C-circles, which are ALT-specific extra-
chromosomal circular telomeric DNA with fully intact C-rich
and partially intact G-rich strands. Sufficiently long GRTR+
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(but not CRTR+) ends will be stabilized into neotelomeres
through shelterin complex formation, which requires G-rich
3’ overhangs to create t-loops and suppress further NHEJ.116

We note that the majority of tumors with GRTR+ loose ends
were ATRX / DAXX wild type and showed negligible TERT
expression. An intriguing possibility is that the presence of
GRTR+ loose ends may mark tumors that rely on ALT for
telomere maintenance despite lacking canonical ALT path-
way mutations.

Long molecule profiling can help resolve loose ends into
junctions; however, loose ends represent a minority of all
large-scale SVs in cancer samples. The low frequency of
loose ends at clinically important gene fusion partners sug-
gests that long molecule profiling will only incrementally
improve SV detection over state-of-the-art short read WGS
pipelines. Given these findings, what sort of transforma-
tive insight can long molecule profiling provide into can-
cer genome structure? As we and others have previously
shown,38, 39, 43, 71, 117–120 the allelic deconvolution of complex
rearrangements can help define novel SV patterns and un-
cover mutational mechanisms. We propose that this sort of
multi-junction phasing and scaffolding, rather than the res-
olution of individual loose ends, may be the most profound
contribution that long molecules can provide into our under-
standing of cancer genome structure.

Data availability
10X Genomics linked-read sequencing data for cell lines
A549, HCC1143, Hs-294T, NCI-H1963, NCI-H209, NCI-
H661, NCI-H526, U2OS, and HCC1143BL and Bionano Ge-
nomics optical mapping data for cell lines NCI-H838 and
OVCAR-3 will be deposited in a public repository by the
time of publication.

Code availability
Software used in this paper can be found in the following
GitHub repositories:

• https://github.com/mskilab/loosends

• https://github.com/mskilab/JaBbA

• https://github.com/mskilab/gGnome
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Methods 1

Obtained Data Sources. Cancer genome short read WGS data for 2319 tumors and cell lines used throughout this study were 2

obtained for a previous study published in.39 10X Genomics linked-read WGS for three cell lines (HCC1954, HCC1954BL, 3

and NCI-H526), used to compare short read sequencing with long molecule technologies, were also previously obtained for the 4

same study. 5

Additionally, for cell lines for which optical mapping and linked read libraries were generated, corresponding whole 6

genome sequencing data were obtained. WGS data for cancer cell lines A549, Hs-294T, NCI-H1963, NCI-H209, NCI- 7

H526, NCI-H661, NCI-H838, and Ovcar-3 were obtained from the Cancer Cell Line Encyclopedia (CCLE) (https: 8

//portals.broadinstitute.org/ccle),121, 122 with permissions granted by the proprietors of this dataset. 9

Reference Sequence and Annotation Sources. Cytoband and repeat tracks were obtained from the UCSC Genome 10

Browser database. The repeat sequence and poly-A databases from TraFiC (,56 github download, https://gitlab. 11

com/mobilegenomesgroup/TraFiC/~/tree/multispecies/databases/hg19) were supplemented with ri- 12

bosomal reference sequences and satellite reference sequences from RefSeq (alpha-satellite consensus sequence X07685.1, 13

gamma X satellite sequence X87951.1, ribosomal complete sequence U13369.1, beta-satellite sequence M25749.1) to com- 14

prise the repeat reference against which contigs were aligned. 6251 viral sequences were also obtained from RefSeq v1.1 15

(ftp://ftp.ncbi.nlm.nih.gov/refseq/release/viral/). 16

10X linked-read whole genome sequencing. Twelve cell lines (cancer cell lines A549, Hs-294T, NCI-H1963, NCI-H209, 17

NCI-H526, NCI-H661, NCI-H838, U2OS, HCC1954, HCC1143, and blood cell lines HCC1954BL and HCC1143BL) were 18

subjected to 10X Chromium linked-read whole genome sequencing. 10X linked-read sequencing BAMs aligned to assembly 19

GRCh37. HCC1954, HCC1954BL HCC1143, and HCC1143BL cell lines were obtained from 10X Genomics. 20

High molecular weight (HMW) genomic DNA (gDNA) was extracted using a Qiagen MagAttract HMW DNA Kit (Qiagen, 21

Germany) according to the suggested protocol. Approximately 2 million fresh cells were lysed, HMW gDNA was captured by 22

magnetic particles (Qiagen MagAttract Suspension G), and then the magnetic particles with HMW gDNA was washed in wash 23

buffer and eluted in EB Buffer (10 mM Tris-HCl, pH 8.5). The HMW gDNA had a mode length of 50 kbp and max length 200 24

kbp, as estimated on a separate 75V pulse-field gel electrophoresis (BluePippin 5-430kbp protocol). 25

10X sequencing library preparation was performed using a Chromium Genome Library Kit v2 (Lot 152527, 10X Genomics) 26

following the Chromium Genome Reagent Kits v2 User Guide. 1 ng of extracted HMW gDNA was used to prepare a 150 bp 27

paired-end library, with an average fragment length of 625 bp (ranging from 300 to 2000 bp, measured with the Bioanalyzer 28

High Sensitivity DNA Kit, Agilent). The prepared library was sequenced on an Illumina NovaSeq 6000 Sequencing System 29

with S4 flow cells, to an average read depth of about 33X, resulting in approximately 173X physical coverage for NCI-H838. 30

All the 10X linked reads were aligned with Long Ranger (v2.1.3, 10X Genomics). 31

DNA isolation for optical mapping. Ultra high molecular weight DNA extraction was performed on cell lines NCI-H526, 32

NCI-H838, and Ovcar-3 using a Bionano SP Blood & Cell DNA Isolation Kit catalog #80030, Bionano Genomics, San Diego), 33

according to the Bionano Prep SP Frozen Cell Pellet DNA Isolation Protocol (document #30268, revision B). 1.5 million 34

frozen cells in cryopreservation medium were thawed in a 37°C water bath, centrifuged for 2 minutes at 2000xg, washed, and 35

re-suspended in DNA Stabilizing Buffer, made with 2% v/v DNA Stabilizer (PN 20397, Bionano Genomics) in Cell Buffer 36

(PN 20374, Bionano Genomics). Cells were treated with proteinase K (#158920, Qiagen, Germany) and RNase A (#158924, 37

Qiagen) in the presence of detergents and salts. DNA was bound to a silica disk, washed, eluted, and homogenized via 1 hour 38

of end-over-end rotation at 15 rpm. The ultra-high molecular weight DNA was allowed to rest overnight at room temperature 39

before fluorescent labeling. 40

Bionano fluorescent DNA labeling and imaging. Ultra-high molecular weight DNA was fluorescently labeled at the motif 41

CTTAAG with the enzyme DLE-1 and counter-stained using a Bionano Prep™ DNA Labeling Kit – DLS (catalog #8005, 42

Bionano Genomics, San Diego) according to the Bionano Prep Direct Label and Stain (DLS) Protocol (document #30206, 43

revision F). DNA imaging and generation of single-molecule reads was performed on a second Generation Saphyr System with 44

Saphyr chips (#60325 and #20366, Bionano Genomics) running Instrument Control Software version 4.7.18339.1. At least 45

400X coverage was generated. 46

JaBbA loose end mathematical formulation. As defined in,39 the JaBbA algorithm infers junction-balanced genome graphs 47

(JBGGs) from junctions and breakends obtained through the analysis of cancer whole genome sequences (WGS) by fitting 48

integer vertex and edge weights to high-density WGS read depth data through the solution of a mixed integer quadratic program 49

(MIQP). A genome graph is a directed graph G = (V,E,ψ,φ) whose vertices v ∈ V represent strands of DNA sequences, 50

and whose edges e = (v1,v2) ∈ E(G) represent genomic adjacencies (i.e. 3-5’ phosphodiester bonds) joining two DNA 51

sequences, where v1,v2 ∈ V (G). Loose ends are incorporated at sites of disagreement between fitted vertex weights and their 52

corresponding edge weights, as described below. 53
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Junction-balanced genome graph. We define a mapping κ : {VI ∪E} → N of non-negative integer copy number (CN) to54

vertices and edges of G, where κ(v),v ∈ VI and κ(e),e ∈ E represent the CN of vertex v and edge e, respectively. The55

principle of junction balance constrains the CN of every vertex to be equal to the sum of its incoming edges and the sum of its56

outgoing edges. Formally, the junction balance constraint is stated as follows:57

κ(v) =
∑

e∈E−(v)

κ(e) =
∑

e∈E+(v)

κ(e) (S1)

In addition we require the CN κ to obey skew-symmetry, which means that every vertex must have the same copy number as its58

reverse complement.59

κ(v) = κ(v̄), ∀v∈V κ(e) = κ(ē), ∀e∈E (S2)

We call the combination (G,κ) for which κ satisfies Eqs. S1-S2 a junction-balanced genome graph (JBGG).60

Inferring Junction Balanced Genome Graphs. We infer JBGGs from a genome graph G and binned, normalized, and purity /61

ploidy-transformed read depth data x∈Rn across n genomic bins (see below for read depth transformation details) through the62

solution of a mixed integer quadratic program (MIQP), which assigns an integer CN κ : VI ∪E→ N to the vertices and edges63

of G. The genome graph G is generated, as above, from a set of breakends Bseg obtained from a preliminary segmentation of64

genome-wide read depth (i.e. via segmentation software such as CBS) and a set of junctionsA (i.e. from a junction caller such65

as SvABA or DELLY).66

Each vertex v ∈ VI(G) is associated with a partition of bins J(v) ⊆ {1, . . . ,n} (based on genomic coordinate overlap) and67

a mean bin value ρ(v) = 1
|J(v)|

∑
j∈J(v)xj . We model each bin subset xJ(v) as an i.i.d. sample from a Gaussian distribution68

with standard deviation σ(v) and mean κ(v). The log likelihood is69

logP (xJ(v)|κ(v),σ(v)) =
∑

j∈J(v)
log N (xj |κ(v),σ(v)2) =−V(v,κ,x,J) +Const(κ) (S3)

whereN (µ,σ2) is the Gaussian probability density function with mean µ and variance σ2 and V(v,κ,x,J) = |J(v)|
2σ(v)2 (ρ(v)−70

κ(v))2 is the read depth residual of vertex v. The variance σ2(v) is a κ-independent parameter that models read depth noise71

and is computed directly from the data. The simplest noise model is a constant, where this parameter is set to the genome-wide72

sample variance of the read depth around each vertex mean: σ2(v) = σ̂2 = 1
n−1

∑
v∈VI

∑
j∈J(v)(xj − ρ(v))2. In practice,73

we apply a vertex-specific variance estimate σ2(v) to account for heteroscedasticity in the read depth data (see "JaBbA model74

fitting" section below).75

Given this model, the joint log-likelihood of the read depth data x across the graph given copy number assignment κ is76

logP (x|κ) =−
∑
v∈VI

V(v,κ,x,J) +Const(κ) (S4)

We also refer to V (G,κ,x,J) =
∑
v∈VI

V (v,κ(v),x,J) as the read depth residual of the JBGG (G,κ) relative to data x.77

The satisfaction of junction balance and skew-symmetry constraints in Eq. S1-S2 may place nonzero copy number at one or78

more loose end edges. Each loose end in the input graph represents a slack variable that allows the junction balance constraint79

to be relaxed at specific internal vertices, allowing the data to be fit even when junctions are missing from the input (e.g. due to80

low mappability, sequencing depth, or purity). Only loose ends that are given nonzero CN, are considered to be "used" in the81

final graph. To penalize solutions that require the use of many loose ends, we add an exponential prior with decay parameter λ82

on the loose end CN in (G,κ), which makes models with many missing junctions unlikely. This prior has log likelihood83

logP (κ|G,λ) =−|VI |logλ−λR(G,κ) (S5)

where84

R(G,κ) =
∑
v∈VI

R(v,κ) =
∑
v∈VI

κ(E−L (v)) +κ(E+
L (v)) (S6)

is a complexity penalty. Adding the log likelihood in Eq. S4 to the prior in Eq. S5 yields a penalized log likelihood for85

the data with regularization parameter λ. Under this model, the maximum a posteriori probability (MAP) estimate of κ will86

minimize the function87

f(G,κ,x,J,λ) = V(G,κ,x,J) +λR(G,κ) (S7)

which combines the quadratic read depth residual V and `1-norm complexity penalty R into a single quadratic objective. In88

practice, we apply models that penalize the number of loose ends with nonzero copy number, i.e. applying an `0-norm penalty89
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R(κ) =
∑
v∈VI

[κ(E−L (v))> 0] + [(κ(E+
L (v))> 0]). We use f to define a MIQP, which we solve to infer a MAP estimate for 90

κ given data x and genome graph G: 91

minimize
κ:VI∪E→N

f(G,κ,x,J,λ)

subject to κ(v) = κ(v̄), ∀v∈VI

κ(e) = κ(ē), ∀e∈E
κ(v) =

∑
e∈E−(v)

κ(e) =
∑

e∈E+(v)

κ(e),∀v∈VI

(S8)

The resulting MAP estimate κ̂ defines the JBGG (G,κ̂) which is outputted and returned to the user. 92

Representing mappability of hg19 coordinates. At every position in the GRCh37/hg19 reference genome, the 150mer 93

of reference sequence originating from that position was extracted and written to fastq, with a string representing the source 94

coordinate as qname. This fastq was aligned to the GRCh37/hg19 reference using Burrows-Wheeler aligner software123 (bwa 95

mem, v.0.7.10-r789). The alignments were then parsed to extract the qname (representing the base of origin of the 150mer 96

sequence) and the alignment MAPQ. The MAPQ was assigned to the base of origin of the sequence, regardless of the alignment 97

position. Every base in the reference genome is therefore annotated with a MAPQ score for a 150bp read originating from that 98

base. Reference coordinates assigned MAPQ=60 (the maximum for bwa mem v.0.7.10-r789) are considered mappable, and 99

all others unmappable. The same process was repeated for 101mer sequences. 100

Mappability of RepeatMasker annotations. Each base in the reference genome was individually annotated as: (1) mappable 101

or unmappable for a given read length and (2) whether that base overlapped any RepeatMasker annotation. Centromeric 102

coordinates were defined as all bases within the last p-arm and first q-arm cytobands, excluding bases that already had a 103

RepeatMasker annotation. 104

Loose end quality filters. Prior to running JaBbA, normalized read depth data has been preprocessed as described in.39
105

Genome-wide 200 bp bins are annotated with GC and mappability corrected read depth profiles for the tumor and paired 106

normal, as well as the tumor / normal ratio. For each genome graph, every non-terminal fitted loose end was evaluated. A 107

sample-specific value β, which represents the magnitude of coverage change corresponding to one copy state change throughout 108

the sample, is calculated based on Equation 11 from.39 In essence, the definition of β is as follows: 109

β = ȳα

ατ + 2(1−α) (S9)

where ȳ represents the average normalized read depth genome-wide, α is the sample purity, and τ is the sample ploidy. 110

Loose ends within an unconverged subgraph of the JaBbA model were filtered out of our dataset. 111

The coordinates for the fused and unfused sides of each loose end were defined by the coordinates of nodes flanking the loose 112

ends, up to a maximum of 100 kbp from the loose breakpoint. Read depth data for bins falling within the fused and unfused 113

sides of every loose end is further analyzed. Bins with ratio values in the bottom or top 5th percentile for every side of every 114

loose end are excluded. 115

Autocorrelation of ratio values along reference coordinates were quantified to identify false positive CNA calls driven by 116

misleading coverage noise. For every fused or unfused side of every loose end, the autocorrelation (acf function from the stats 117

package within R with argument "type = correlation") of the ratio value is calculated at every lag value between 5 kbp and 100 118

kbp (or the length of that side, if shorter than 100 kbp), and the sum of every autocorrelation estimate squared is assigned to the 119

corresponding loose end side. The loose end is assigned the maximum value of the corresponding fused and unfused sides. An 120

empirically chosen maximum threshold of 2 was used to define an acceptable level of autocorrelation. Loose ends assigned an 121

autocorrelation value ≥ 2 were filtered out of the dataset. 122

A generalized linear model is then fitted to the tumor and normal coverage values (glm function from the stats package 123

within R with argument "family = gaussian" to score coverage values as a function of their start position, sample, and side 124

(fused or unfused)). The residual between the value predicted by the model fit and actual coverage value is calculated for each 125

input coverage value, and a Kolmogorov–Smirnov (KS) test (ks.test function from the stats package within R) was performed 126

to compare the distributions of residual values for tumor sample coverage on the fused versus unfused sides of the loose end, 127

and the loose end is annotated with the resulting P-value. Loose ends with P ≥ 0.01 were filtered out of the dataset. 128

Additional KS tests are performed to compare tumor coverage values on the fused versus unfused sides, and normal coverage 129

values on the fused versus unfused sides. The loose end is annotated with both resulting P-values. 130

The magnitude of coverage ratio change between the fused and unfused sides was calculated by taking the difference of the 131

ratios of median tumor coverage value / median normal coverage value on the fused versus unfused sides of the loose end. 132
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The magnitude of change from the fused to unfused sides of the loose end is also calculated within the tumor coverage values133

(median tumor coverage value on the fused side - median tumor coverage value on the unfused side) and within the normal134

coverage values. Loose ends with a gain of magnitude in either the tumor coverage or tumor / normal ratio below a threshold of135

0.6×β were filtered out of the dataset. Loose ends with a gain of magnitude in the normal coverage above the same threshold136

were also filtered out of the dataset. Loose ends with a gain of magnitude in the tumor / normal ratio less than the standard137

deviation of coverage ratio values within the fused or unfused side of the loose end were also filtered out of the dataset.138

The entire dataset of loose ends were loaded in aggregate, and the P-values from the three KS tests were adjusted with139

Bonferroni correction to nominate statistically significant associations (p.adjust within R). Loose ends included in the final140

dataset of 26751 were those with a Bonferroni < 0.05 for the KS test of fitted residuals, Bonferroni > 0.05 for the KS test of141

normal coverage values, and Bonferroni < 0.01 for the KS test of tumor coverage values.142

Identification, realignment, and annotation of loose reads. At every loose end, reads aligned within 5 kbp from the143

breakpoint in the corresponding bam file are loaded into R using scanBam from Rsamtools. The metadata fields RNEXT and144

PNEXT and tag SA (which provides information about split alignments of a single read) are parsed to identify coordinates for145

all mates and split alignments of the reads within the 5 kbp window. The bam is then parsed again using scanBam at these new146

coordinates, to load all mate sequences into R. Reads loaded in the second round that do not share a qname with reads loaded in147

the first round are discarded. The sequences of reads that were aligned to the negative strand of the reference genome are reverse148

complemented, such that all read sequences are in their original reading frames. The read sequences are realigned single-end149

to the GRCh37/hg19 reference genome within R using a BWA object from package RSeqLib. Single end alignment allows150

each individual read to have its own MAPQ, as paired end alignment will assign a single MAPQ to the entire pair. Following151

realignment, loose read pairs are identified by annotating qnames for which one read has been assigned a MAPQ = 60 and the152

other has a MAPQ = 0. The reads in these pairs with MAPQ = 60 are loose reads, while the reads with MAPQ = 0 are loose153

mates. The alignment positions of loose reads only, not loose mates, are assessed for proximity to loose breakpoints.154

Overlaps were found between the alignments of loose mates and RepeatMasker annotations. Loose read pairs were than155

annotated by the type of repeat (if any) overlapping the loose mate alignment.156

Assembling local read pairs. Strand-specific tumor and normal contigs are assembled from a seed region within 1 kbp from157

the loose breakend. The seed region is divided into 200 bp bins. For a given bin, the assembly process is performed four times:158

once each for the positive and negative strand in the tumor and normal samples. All read sequences begin in their original159

reading frame by converting the sequences of reads aligned to the negative reference strand to their reverse complements.160

Reads from the appropriate sample and strand are incorporated if their alignment overlaps any bases belonging to the bin.161

Their sequence is kept in the original reading frame orientation. The mate pairs of these reads are also incorporated, with their162

sequences reverse complemented from the original reading frame orientation. If both mates belonging to a read pair align to163

the bin on the same strand, one is arbitrarily chosen to reverse complement. If there are at least six total reads, all of the read164

sequences are then used to construct a Fermi object (from package RSeqLib, argument "assemble = TRUE") to assemble. If165

any contig sequences are identified, they are used to construct a BWA object. Because the input sequences to Fermi represented166

a single strand, all input sequences are expected to align to the same strand of resulting contigs. Any contig sequence resulting167

in more alignments to its negative strand than positive is replaced by its reverse complement. Every contig is annotated by the168

number of reads aligned to it with MAPQ=60 when aligned to GRCh37/hg19.169

Aligning loose read contigs. Assembled contigs are aligned to reference genomes in two stages. First, the contig sequences170

are aligned to the GRCh37/hg19 human reference. They are also aligned to a repetitive element database containing consensus171

sequences for LINE-1, Alu, SVA, ERVK, polyA, ribosomal, and satellite elements. The cigar strings for all alignments are then172

parsed to identify any substrings of contig sequences with no reference alignments. Contig sequences with unaligned substrings173

are subsequenctly aligned to a combined reference genome which includes the GRCh37/hg19 reference and 6251 viral genome174

sequences. Any resulting alignments to viral genomes are only appended to the initial stage alignments if they include an175

alignment for previously unmapped substring sequence, again identified by parsing the alignment cigar string. Alignments176

to GRCh37/hg19 are checked for overlaps with a custom track of unmappable repeats. This track starts with RepeatMasker177

annotations that contain ≥ 50% unmappable bases, calculated as previously described. All rare repeat classes (any annotation178

not included in LINE, SINE, LTR, Simple repeat, Satellite, and Low complexity) are classified as "Other". Centromeric regions179

are identified by first generating 3 Mbp sliding windows genome-wide every 100 kbp. Each sliding window is annotated by180

the fraction of bases within that window that are unmappable. Windows that are at least 50% unmappable are collapsed via181

the reduce function from R package GenomicRanges. Reduced windows that overlap at least one base of a centromeric182

cytoband are joined with cytobands staining for either acen or gvar, and the total union of these three groups are classified183

as centromeric / pericentromeric coordinates. The first and last cytoband of each chromosome are classified as telomeric /184

subtelomeric coordinates. The unmappable repeat track is a union of the unmappable RepeatMasker annotations, centromeric185

coordinates, and telomeric coordinates. Any overlaps between these annotations and contig alignments to GRCh37/hg19 are186

appended to the contig alignments with an annotation indicating the type of repeat found at the overlap.187
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Categorization schema for loose end taxonomy. All tumor-originating contigs assembled around a given loose end are 188

input to the categorization schema. Contigs assembled from a seed bin not within 1 kbp of the loose end on the loose end 189

supporting strand are filtered out. The seed locus for each contig is assessed for overlaps with alignments of that contig, with 190

a pad of 750 bp representing possible read insert lengths that could separate concordant alignments. Any contig alignment 191

overlapping its own seed within 750 bp on the same strand represents the "seed" portion of the contig. If any contigs contain 192

seed sequence, and all contig seed alignments align to GRCh37/hg19 with MAPQ=60, the loose end has a mappable seed. 193

Alignments to GRCh37/hg19 with a MAPQ < 60 are annotated as repeats with repeat type "unmappable-NOS" (NOS = not 194

otherwise specified). 195

The contig alignments are then converted into contig coordinates by parsing the cigar strings of the alignments. Alignments 196

are supplemented at this stage by parsing the sequences for matches to a telomeric 18mer, using a PDict object from package 197

Biostrings as described in more detail below. Any matches to the 18mer sequence are converted into contig coordinate 198

ranges representing the matching bases and annotated as "G telomeric" or "C telomeric" depending on which orientation of 199

the telomere motifs had a match. If viral alignments share at least 90% of their bases with telomeric sequence matches, they 200

are removed from the contig alignments. If ribosomal alignments share at least 90% of their bases with polyA alignments, 201

they are removed from the contig alignments. If coordinate-based telomeric alignments (i.e. alignments to GRCh37/hg19 that 202

overlapped telomeric / subtelomeric regions as defined by the unmappable repeats track) overlap telomeric sequence matches, 203

they are removed from the contig alignments to prioritize the more specific sequence match annotation. 204

All contig alignments in contig coordinates overlapping an alignment that was annotated as "seed" are treated as features of 205

the seed region. All contig alignments downstream of the seed region in contig coordinates are treated as features of the mate. 206

If any repeats are present on the seed side, they are annotated as "seed repeats". If any repeats are present on the mate side, they 207

are annotated as "mate repeats". If no contig has at least 10 MAPQ=60 reads supporting it, an "unmappable-NOS" annotation 208

is added to the seed repeats. Contigs with alignments to the seed region within the last (3’) 20 bases of the contig sequence are 209

filtered out, after collecting annotations for any seed repeats that may be present. 210

If the seed sequence has an alignment to GRCh37/hg19 with MAPQ=60, the seed is mappable. If the mate sequence has an 211

alignment to GRCh37/hg19 with MAPQ=60, the mate is mappable. If the seed and mate are both mappable, and the seed and 212

mate alignments for all contigs represent a single pair of loci joined in the same orientation, the loose end will be classified as 213

Type 0. If the seed and mate both have MAPQ=60 alignments, but do not represent a single consensus junction, the mate is 214

reclassified as unmappable. If no mate repeats are present, a "complex" annotation is added to the mate. 215

If no contigs were assembled or remain after filtering, the loose end coordinate is compared to the unmappable repeat track 216

described above. An overlap between the unmappable repeats and the loose end will be categorized as an unmappable seed; the 217

loose end is otherwise a mystery. For loose ends in the mystery category, the asssembly, alignment, and categorization process 218

is repeated beginning from three 1 kbp sliding windows every 500 bp within the 1 kbp window surrounding the loose end to 219

use as seed bins. 220

Associating contigs with repeat types. All seed and mate repeats from all contigs for a given loose end that remain after 221

filtering are analyzed to choose one predominant repeat type for each side of a loose end rearrangement. The options for a 222

seed or mate repeat annotation are centromeric / pericentromeric, satellite, LINE, low complexity, LTR, poly-A, ribosomal, 223

simple repeat, SINE, telomeric / subtelomeric, G telomere, C telomere, unplaced hg19 contigs, unaligned sequence, viral, 224

other repeats, and unmappable-NOS. "Unplaced hg19 contigs" refer to the contigs in the GRCh37/hg19 reference assembly 225

which have not been incorporated into one of the 24 chromosome assemblies. "Unaligned sequence" indicates that a significant 226

portion (at least 20 bp) of the rearrangement contig did not align to any reference or repetitive sequence database. After filtering 227

certain overlapping repeats described above, the longest repeat alignment is chosen as the predominant repeat type, with the 228

exception of unmappable-NOS, which will only be chosen as the predominant repeat type if no other repeat types are present. 229

In downstream processing, the centromeric / pericentromeric and satellite categories have been merged, as have the telomeric 230

/ subtelomeric, G telomere, and C telomere categories. The original annotation is retained, and only G telomere matches are 231

used to identify neo-telomeres. 232

Type 0 rescue by discordant read pairs. Discordant read pair alignments surrounding the loose ends were additionally 233

analyzed to identify Type 0 junctions and Type 1 loose ends with complex rearrangements. Beginning again from 200 bp bins 234

within 1 kbp from the loose end, reads from the tumor sample aligned to the loose end-supporting strand and overlapping the bin 235

are pooled along with their mates. Same-stranded overlaps of the alignments of at least 10 reads with MAPQ=60 are identified, 236

and identified as either "seed" (overlapping the strand-specific 200 bp bin) or "mate" (sharing no strand-specific overlap with 237

the bin). If all bins harboring at least ten discordant read pairs identify the same pair of seed and mate loci, that loose end will 238

be annotated as a missed junction. If multiple mate loci are identified, the loose end will be annotated as Type 1. 239

Quantifying sequence entropy of assembled and unassembled reads. To assess whether low complexity read se- 240

quences were contributing to mystery loose end designations, the entropy of all tumor reads used as inputs to the Fermi 241

assembler on the loose end supporting strand were quantified. The strand-specific contigs were used to instantiate a BWA ob- 242
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ject, and the seed-aligned reads and their mates were aligned to it. Individual reads (not pairs) that align to the contig with at243

least 90% of their sequence included in the alignment are "assembled". All other reads are "unassembled". All unassembled244

reads and a random sample of an equivalent number of assembled reads are divided into sequence 3mers. The count of in-245

stances of every possible sequence 3mer present in each single read is input to the entropy.empirical function from the246

R package entropy. Each read is assigned a single entropy score.247

Recategorizing loose ends based on long molecule SV calls. Loose ends "rescued" by long molecule sequencing could248

be recategorized into Type 0, Type 1, or Type 2 based on the original classification of the seed locus and characteristics of the249

reference sequence at the mated side of the long molecule SV. Because the resolution of OM is much lower than LR, only LR-250

rescued loose ends were recategorized. Each side of the rescuing SV was separately determined to be mappable or unmappable,251

and then the SV (and rescued loose end) were categorized as Type 0, Type 1, or Type 2 based on whether both sides, one side,252

or neither side were mappable, respectively. Each loose end is recategorized separately, even if the LR SV indicates a junction253

between two short read loose ends. For each loose end, the mappability defined by short reads is assigned to the seed side of254

the LR junction. If the mate side of the LR junction does not fall within 3 kbp of a short read CNA, the mate is automatically255

considered unmappable. Next, a 100 bp window extending from the mated junction breakpoint into the fused sequence was256

considered. If any bases within this 100 bp window had MAPQ < 60, the site is considered unmappable. Additionally, the257

fraction of bases with MAPQ < 60 were counted within a 3 kbp pad around the 100 bp window. If the fraction was ≥ 0.2, the258

site is considered unmappable.259

Associations between loose ends and complex SV patterns. Complex SV patterns were identified on JaBbA graphs260

using the events function of R package gGnome. Every pattern has a corresponding genomic footprint. Only samples with261

at least 10 total breakpoints (associated with junctions or loose ends) were considered. For every instance of an event, sample-262

specific loose ends falling within a 100 kbp pad around the footprint were counted for 41 tumors: the tumor the event came263

from, and a random sample of 40 other tumors in the cohort that also contain at least one instance of the event type. For each264

event type, associations between the event type and loose ends were quantified by a generalized linear model (glm function265

from the stats package within R with argument family = binomial(link = ’logit’)). The GLM was fitted to266

a logical indicator of whether any sample-specific loose ends were found within the footprint coordinates as a response to a267

logical variable indicating whether the sample in question contained the event at that footprint, the total count of junction break268

points in that sample on that chromosome, and the width of the event footprint.269

Associations between G-rich telomeric loose ends and complex SV patterns were calculated with a similar formulation, with270

two modifications. All G-rich telomeric loose ends sharing a chromosome with the event footprint were counted (regardless of271

alignment within a 100 kbp pad around the footprint). An additional logical covariate was used describing whether the sample272

contained any instances of G-rich or C-rich telomeric loose ends.273

SV calling from optical mapping data. The rare variant pipeline (Bionano Solve version 3.X) was used on the optical274

mapping dataset fluorescent labeled molecule images to optically map and detect junctions. The junction-calling pipeline con-275

sists of three major steps: initial molecule alignment and clustering of junctions, consensus generation by molecule extension276

refinement, and final junction calling.277

Using RefAligner (version 9248,,124,125126), molecules in an input BNX file are aligned directly to the reference hg19278

(-T 1E-7, -A 5, -L 40, -S 0.1 -sv 3 -MultiMatches 5). Significant internal alignment gaps (-outlier279

1E-2) and end alignment gaps (-endoutlier 1.1E-2) may indicate the presence of junctions in the sample. To identify280

low allelic frequency junctions, the pipeline requires only a default minimum of three molecules calling the same junction.281

Molecules are determined to confirm the same insertion (> 5 kbp in size), deletion (> 5 kbp), duplication (> 25 kbp) or282

inversion (> 50 kbp) if the inferred variant positions overlap and their inferred variant sizes are similar (default of 20% size283

similarity). To confirm the same translocation, the inferred translocations must be in the same orientation and their breakends284

in close proximity (within a distance of 35 kbp).285

A consensus is built using clusters of molecules that identified the same junction. The purpose of the consensus step is to286

verify that those junction-supporting molecules truly agree and can form a consensus that represents the variant allele. In this287

step, the loci on the reference assembly 150 kbp flanking the inferred junction are extracted, and the molecules that supported288

the junctions are aligned to each of the two junction-flanking reference fragments. The pipeline attempts to reconstruct the289

junction allele by using the molecules to extend into the junction region (-T 1E-7 -A 5 -L 40.0 -S 0.1 -extend290

2 -maxExtend 250.0). If the molecules come from the same variant, they would have similar label patterns and form a291

consensus map that represents the variant allele. Note that for each junction, the same extension procedure is performed twice:292

one extension from the fragment left of the junction and one extension from the right.293

Finally, the new local consensus maps are realigned to the reference to check if the same initial junction calls are made (-T294

1E-7 -A 5 -L 40 -S 0.1 -sv 3 -MultiMatches 5 -svAlignConfByInterval 0.7). The pipeline will295

only report junctions that are confirmed in the final junction calling step. Note that potentially two consensus maps could form296

for each junction, but only one is kept in the end.297
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breakpoints of junction calls identified by the Bionano Solve rare variant pipeline "rescue" a loose end from the same 298

sample if they fall within 10 kbp of the loose end coordinate on the same strand. 299

SV calling from linked read data. Bam files generated by the longranger lariat alignment pipeline contain barcode 300

information as a tag assigned to each read entry. These bams were used as input to three linked read SV calling algorithms: 301

GROC-SVs, NAIBR, and LinkedSV. 302

breakpoints of junction calls identified by the union of all three linked read SV callers "rescue" a loose end from the same 303

sample if they fall within 3 kbp of the loose end coordinate on the same strand. 304

Identifying telomeric 18mer matches in hg19 reference sequence. Telomeric motifs included in this analysis are 305

TTAGGG, TCAGGG, TGAGGG, and TTGGGG, and their reverse complements. Every possible 18mer substring of a strand- 306

specific combination of any of these motifs was loaded into two strand-specific PDict objects from package Biostrings, 307

resulting in a total of 832 unique 18mers (416 for each strand orientation). The 150mer reference bam file was used to find sites 308

of telomeric 18mer matches in the reference genome. Reads were loaded into R using the base pipe function to stream the 309

output of samtools view from the command line. The read sequences were instantiated as a DNAStringSet object from 310

package Biostrings. Using the function vwhichPDict from the same package, a logical value is assigned to every read 311

indicating whether it contained an exact match for any of the 18mers, for both strand orientations. For all reads with positive 312

matches to 18mers (from either strand), the original source coordinate of the read was extracted from the qname. The entire 313

150 bp region for each read is considered a positive match for telomeric 18mer content, and used to quantify the fraction of 314

the genome with positive matches. The first and last cytobands of every chromosome were used to represent telomeric and 315

subtelomeric regions, and overlaps with these cytobands were used to quantify the fraction of 18mer reference matches falling 316

within or outside of telomeric regions. 317

Identifying telomeric reads genome-wide. To generate aggregate tracks of telomeric read peaks in real samples, a similar 318

approach was used as the previous, with an additional intermediate step. After all read sequences were parsed for matches to the 319

telomeric 18mers, the entire bam file was streamed using pipe for samtools view again, to extract all reads with the same 320

qname as a read with a telomeric 18mer match. These reads and their mates were realigned single end to GRCh37/hg19 using 321

a BWA object in R from package RSeqLib. Individual reads were aggregated if their sequence did not contain an 18mer match 322

but the sequence of their mate did. The coverage function from GenomicRanges was used to identify peaks of at least 323

5 G-rich mated reads aligned to the same coordinates in a single sample. All peaks were compared against the breakpoints of 324

nodes from the corresponding JaBbA graphs to determine whether they fell within 1 kbp of a loose end ("At loose end" in Fig. 325

5), within 1 kbp of the end of a node that is not loose (filtered out of analysis) or not near a node breakpoint (called "Flat CN"). 326

The peak coordinates and strands were then used as reference positions around which the alignments of all telomere-mated 327

reads were aggregated. 328

Identifying loose ends responsible for oncogene gains. Oncogenes included in this analysis were COSMIC Cancer 329

Gene Census (CGC,127) version 86 genes that intersect with the pan-cancer GISTIC amplification peaks in Zack et al, 2013.109
330

Loose-end driven oncogene gains were counted in this analysis if any part of the gene body of the oncogene is amplified to at 331

least 2× ploidy copies and a loose end is responsible for at least ploidy copies. All overlaps between oncogene bodies and 332

nodes present at≥ 2×ploidy copies were first identified. Subgraphs around these amplifications were then expanded one node 333

at a time until a loose end was reached. As described in,39 potential haplotypes H are enumerated by identifying all traversals 334

through the local subgraph G from source to sink vertices. A modified version of Equation 13 from that paper, defined as 335

follows, is used to assign a copy number to each allelic haplotype subject to the constraints of the local vertex and edge copy 336

numbers. 337

minimize
κ:H→N

∑
h∈H

Jκ(h)> 0K

subject to κ(v) =
∑
h∈H

κ(h)δ(v,h), ∀v∈VI

κ(e) =
∑
h∈H

κ(h)δ(e,h), ∀e∈E

(S10)

This mixed integer problem (MIP) is solved using Rcplex with argument "n = 200" to generate up to 200 possible allelic 338

solutions to the subgraph. Each allele ‘h‘ is annotated for whether it contains both the node containing the amplified oncogene 339

body and the loose end. All of the generated solutions are parsed to extract how many total copies of alleles h ∈H containing 340

both the oncogene and loose end are present. The minimum value of these total copies from a single solution is taken as the 341

minimum number of copies of the oncogene directly attributable to the loose end. If this value is at least ploidy, this is counted 342

as an instance of a loose end causing an oncogene gain. 343
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Identifying loose ends responsible for tumor suppressor losses. Tumor suppressor genes included in this analysis were344

COSMIC Cancer Gene Census genes that intersect with the pan-cancer GISTIC deletion peaks in Zack et al, 2013.109 Loose-345

end driven tumor suppressor losses were counted in this analysis if the any part of the gene body of the tumor suppressor is346

present at < 2 copies and falls on the unfused side of a loose end. All overlaps between tumor suppressor gene bodies and nodes347

present at < 2 copies were first identified. Subgraphs around these depletions were then expanded one node at a time until nodes348

at ≥ 2 copies were reached in both directions. If a loose end is present on a terminal node of the subgraph on the strand facing349

towards the tumor suppressor body, this loose end is considered responsible for the tumor suppressor loss.350

Enrichment of centromeric or peri-centromeric sequences in Type 1 loose ends impacting driver genes. Type351

1 loose ends were used to quantify cancer gene associations. Every Type 1 loose end (6,530 total) was annotated with a352

TRUE/FALSE indicator for whether that gene was responsible for the loss or gain of a cancer gene, and another TRUE/FALSE353

indicator for whether centromeric or peri-centromeric sequences (including alpha-satellite matches) were found in the mated354

sequence. Significance was determined using Fisher’s exact test.355
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Extended data figures 356
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Extended Data Fig. 1. Loose end cohort (a-d) Representative examples of filtered loose ends. Each from bottom: mappable regions of the genome

(based on 150 bp reads) in gray, unmappable in red. Normalized binned read depth in paired normal sample. Normalized binned read depth in tumor

sample. Transformed ratio of tumor/normal coverage depth. JaBbA graph representation of sample. CN, copy number. RD, read depth. (a) A single

loose end in Cancer Alliance bladder urothelial carcinoma sample CA-0187. This loose end falls within the centromere of chromosome 4, and will

be filtered out of our final cohort because of the noisy coverage in both tumor and normal throughout the region. (b) Multiple loose ends in TCGA

glioblastoma multiforme sample 5415. These loose ends will all be filtered out of our final cohort because of the noise, or "waviness", in the coverage

profile. (c) Two loose ends in genome graph for TCGA glioblastoma multiforme sample 0125. These loose ends will be filtered out of our final cohort

because the coverage in the paired normal is not flat. (d) A pair of loose ends in TCGA lung squamous cell cancer sample 2756. The coverage ratio

shows an apparent gain, due to loss of heterozygosity of a germline copy number loss. These loose ends will be filtered out of our final cohort because

of the flat tumor coverage and normal coverage change. (e) Filtering pipeline to evaluate fitted loose ends. δ, magnitude change in median coverage

value from fused side to unfused side. β, sample-specific value related to purity and ploidy indicating magnitude of coverage change corresponding to

a single copy state change, as calculated in Eq. S9. std, standard deviation (here, the sum of standard deviations of coverage ratio values on the fused

and unfused sides of the loose end). w, autocorrelation value. Threshold empirically chosen. ε, convergence of copy number fit of local subgraph. High

values of ε indicate an optimal solution of copy number assignments (and thereby loose end incorporation) may not have been reached. fdr, false

discovery rate using Bonferroni correction. (f) Scatter plot showing estimates of filtering pipeline performance based on blinded visual inspection by five

co-authors. TPR, true positive rate. FPR, false positive rate.
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Extended Data Fig. 2. Loose ends are mated to repetitive sequence (a) Histogram of bases covered by RepeatMasker annotations categorized by

the fraction of bases within the annotation with MAPQ < 60 based on simulation with 150bp reads. Above, count of bases falling in any annotated region.

Below, breakdown of types of annotation represented in each bin. (b) Composition of hg19 reference genome, based on mappability by 150 bp reads.

(c) Composition of hg19 reference genome, based on mappability by 101 bp reads. (d) Aggregate count of all unmappable coordinates surrounding false

positive loose ends, normalized to background. Red, aggregate counts around false positive loose ends. Pink, aggregate counts around background

sampled coordinates. (e) Normalized aggregate count of loose reads aligning relative to loose breakpoint. Y-axis above zero indicates alignment to loose

end-supporting strand; below zero indicates alignment to opposite strand. Top, aggregate count of loose reads whose mates align to LINE annotations.

Second from top, aggregate count of loose reads whose mates align to SINE annotations. Third from top, aggregate count of loose reads whose mates

align to LTR annotations. Bottom, aggregate count of loose reads whose mates align to simple repeat annotations. Red, aggregate count from loose

end-supporting ("forward") strand in tumor sample. Pink, aggregate count from forward strand in normal sample. Dark blue, aggregate count from

opposite ("reverse") strand in tumor sample. Light blue, aggregate count from reverse strand in normal sample.
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Extended Data Fig. 3. Pipeline to classify loose ends (a) Schematic of the categorization pipeline. Strand-specific reads aligned to a seed near the

loose end and their mates are identified. The read sequences of the seed reads in their original reading frame and the mates reverse complemented

from their original reading frame are assembled using Fermi. Assembled contigs are aligned to the human reference, viral references, and databases

of repeat sequences. The alignments are parsed to categorize the loose end. (b) Diagram of four categories of underlying loose end explanations. Left:

top, diagram of initial loose end. Read pairs align partially as loose reads. Assembling loose read pairs gives a contig constituting the seed (sequence

local to the loose end) and the mate (sequence representing the other side of the underlying fusion) Middle, diagram of a Type 0 loose end. The seed

and mate sequence align discordantly with MAPQ=60. Bottom, diagram of a Type 1 loose end. The mate sequence may align to a single locus with

MAPQ=60, but the seed sequence aligns to multiple loci. Right: middle, diagram of a Type 2 loose end. Both the seed sequence and the mate sequence

align to multiple loci. Bottom, diagram of a mystery loose end. No contig is assembled, or the entire contig represents the seed sequence only. (c)

Bar plot representing burden of loose ends with respect to all breakpoints (defined as the sum of breakpoints involved in junctions and true loose ends)

throughout the cohort, as well as the relative burden of Type 0 loose ends compared to all other types (Type 1, Type 2, Mystery). Error bars show 95%

confidence interval. (d) Example Type 1 loose end with complex rearrangement subcategorization from ICGC sample DO234149. A short (< 100 bp)

segment of mated sequence is inverted. Some discordant reads do not include alignment to the inverted segment, and some split reads only align to

the inverted segment and do not extend through the foldback junction. This complex structure could have caused ambiguity that an SV caller may not

be able to resolve. CN, copy number. RD, read depth.
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Extended Data Fig. 4. Gallery of mated repeats For each example, all informative contigs (contigs containing mate sequence) are shown (x-axis is

contig coordinates). Each instance of a partial alignment of the contig sequence to a human or repeat reference is indicated with a bar corresponding to

the substring of contig sequence aligned. Characteristics of the partial alignments of each contig are indicated by color. The "seed sequence" of every

contig is identified as the substring corresponding to an alignment to the seed locus and strand, indicated here with a red outline. Mate sequences with

multiple types of repeat alignments follow a heuristic hierarchy to assign the most representative repeat type. All examples shown have mappable seeds

and unmappable mates, and therefore belong to the "Type 1 loose end" category.
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Extended Data Fig. 5. Additional enrichments (a) Fraction of breakpoints with long range junction call breakpoints in the vicinity. Left, linked read junc-

tion calls. Right, optical mapping junction calls. Red, long range junction breakpoints on the same strand as a short read loose end. Dark blue, long range

junction breakpoints on the opposite strand as a short read loose end. Pink, long range junction breakpoints on the same strand as a short read junction

breakpoint. Light blue, long range junction breakpoints on the opposite strand as a short read junction breakpoint. (b) Volcano plot of associations of Type

2 loose ends with tumor types, based on a generalized linear model. Tumor types with high magnitude of change (|log2(foldchange)| > log2(1.5))

and high significance (fdr < 0.1) are highlighted in red. (c) Volcano plot of associations of Type 1 loose ends with tumor types, based on a generalized

linear model. Tumor types with high magnitude of change (|log2(foldchange)| > log2(1.5)) and high significance (fdr < 0.1) are highlighted in red.

(d) Volcano plot of associations of Type 1 loose ends with complex SV patters, based on a generalized linear model. Patterns with high magnitude of

change (|log2(foldchange)| > 1) and high significance (fdr < 0.1) are highlighted in red. (e) Volcano plot of associations of Type 2 loose ends with

genotypes, based on a generalized linear model. Genotypes with high magnitude of change (|log2(foldchange)| > log2(1.5)) and high significance

(fdr < 0.1) are highlighted in red. (f) Bar plot of fraction of samples with a given genotype containing at least one telomeric loose end. Error bars show

95% confidence interval. (g-h) Contig alignments of viral loose ends in Fig. 6d-e.
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Extended Data Fig. 6. Viral and centromeric loose ends (a-c) Examples of apparent viral-mediated rearrangements. Left: From top, alignments of

read pairs with discordant alignments between human and viral genome. JaBbA graph representation of the sample showing two loose ends correspond-

ing to the discordant read alignments. Normalized binned read depth data, showing corresponding coverage depth changes. Right: Corresponding

contig alignments (x-axis is coordinate within contig sequence). (a) Example from TCGA cervical carcinoma sample A2RM. (b) Example from liver

hepatocellular carcinoma cell line SNU-475. (c) Example from TCGA liver hepatocellular carcinoma sample A5NP. (d-f) Examples of arm-level loss with

an explanatory loose end. Top: JaBbA graph with loose end at centromere. Middle: normalized binned read depth. Bins with outlier coverage values

(bottom or top 5 percentile) have been removed. Bottom: cytobands. (d) Loose end within centromere of chromosome 20 in TCGA stomach adenocar-

cinoma sample 6519, resulting in loss of 20p. This loose end is characterized as a mystery with unmappable centromeric seed sequence. (e) Loose

end in peri-centromeric region of chromosome 19 in TCGA liver cancer sample A25T, resulting in loss of 19p. This loose end is characterized as a Type

2 with unmappable peri-centromeric seed sequence mated to unmappable-NOS sequence. (f) Loose end in peri-centromeric region of chromosome 19

in small cell lung cancer cell line NCI-H1184, resulting in loss of 19p. This loose end is characterized as a mystery with unmappable peri-centromeric

seed sequence. CN, copy number. RD, read depth.
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