








Sup.Fig 4. Colon and rectal cancer associated RAV
Based on Fig. 2A, RAV832 seems to be associated with TCGA-COAD and TCGA-READ. Top
validation results of A) TCGA-COAD and B) TCGA-READ include RAV832 with the negative
average silhouette width. C) MeSH terms associated with RAV832. D) Studies contributing to
RAV832. E) MSigDB C2 gene sets enriched in RAV832.
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Sup.Fig 5. CRC characterization with different RAVs
In the results, we described two additional pairs of RAVs, RAV1575/834 and RAV188/832, that
are potentially useful for CRC characterization. We applied the same analysis procedure on 18
CRC datasets as in Fig. 3 using those two pairs of RAVs. For the panel A and D, we assigned
sample scores to 3,567 tumor samples from 18 CRC studies. The samples in each of 18
datasets, assigned to either (i) one of the 4 previously proposed CMS subtypes by CRC
Subtyping Consortium20,21 or (ii) not assigned to a CMS subtype (so 5 x 18 = 90 total groups),
are represented by the mean (point) and standard deviation (error bar) of sample scores. CMS
subtypes (colors) separate when plotted in RAV coordinates. (A-C) CRC characterization with
RAV1575/834. RAV1575 and RAV834 were identified based on their similarity to PCSS1 and
PCSS2, respectively. (D-F) CRC characterization with RAV188/832. RAV188 and RAV832 were
most frequently found among the top 10 validated RAVs.
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Sup.Fig 6. CRC characterization with 10 validation datasets
Analyses in Fig. 3 were repeated with only 10 CRC datasets, excluding 8 datasets used to train
PCSSs. A) Subtype- and study-specific mean of PCSS1 and PCSS2 scores are plotted as
points while the error bars represent standard deviation. B) The same plotting scheme as A was
applied on RAV834 and RAV833-assigned scores. C-E) LRTs compare the full model to a
simplified model containing only C) CMS subtypes or PCSS1/2, D) CMS subtypes or
RAV834/833, and E) PCSS1/2 or RAV834/833.
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Sup.Fig 7. Overview validation results via an interactive plot
In Fig 2B, we used a table format to display the validation results. To understand the overall
validation pattern for each PCs of new data, we provide an interactive plot as one of the
visualization options. Here, we plotted the validation plot of Human B-cell expression dataset
(GSE2350) generated from microarray. X-axis represents the average silhouette width and
y-axis represents the validation score. Each point represents RAV, where the color shows the
PC with the highest validation score for a given RAV. The point size reflects the cluster size, the
number of PCs contributing to a given RAV. In general, we interpret that the points toward the
upper right corner with the intermediate sizes are more relevant to new data than the others. An
interactive form of this graph is available with the argument interactive=TRUE, allowing the
user to hover each data point for more information, such as cluster number and exact cluster
size.
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Sup.Fig 8. PCA with GSEA annotation
PCA result of leukocyte gene expression data (E-MTAB-2452) is displayed in A) a table or B) a
scatter plot. PCA is done on a centered, but not scaled, input dataset by default. Different cutoff
parameters for GSEA annotation, such as minimum validation score or NES, can be set.

S
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Supplementary Figure 9. Distribution of RAV sizes
RAVs are constructed from different numbers of PCs, ranging from 1 to 24. Here, we plotted the
number RAVs (y-axis) against the cluster sizes (x-axis) to show the distribution of RAV sizes.

Supplementary Figure 10. Distribution of PCs in different sized RAVs
https://github.com/shbrief/GenomicSuperSignaturePaper/blob/master/Results/model/PCs_In_
Clusters.pdf
We summarize the distribution of PCs in different sizes of RAVs. There are 21 different sizes of
RAVs with the smallest containing a single PC while the largest containing 24 PCs. We collected
all the PCs contributing to the given size of the clusters and plotted 21 barplots. We observed
that one- and two- element clusters are predominantly from lower PCs. From three-element
clusters, however, the skewness changes from left to right.

Supplementary Figure 11. RAVs without enriched pathways
We summarized the gene set annotation status of RAVs based on the RAV sizes. We tested two
RAVmodels A) RAVmodel annotated with MSigDB C2 and B) RAVmodel annotated with three
gene sets provided through the PLIER package. RAVs without enriched pathways are labeled
with teal and RAVs with one or more enriched pathways are in red.
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Supplementary Tables

Sup.Table 1. Summary of new terms

Terms Description

GenomicSuperSignature
Name of the R/Bioconductor package that contains all the functions to apply
RAVmodel to new data, serving as a 'toolbox'. RAVmodels stored in Google
Bucket are downloadable using the getModel function of the package.

GenomicSignatures-object Data structure inherited from SummarizedExperiment

PCAGenomicSignatures-object Data structure inherited from GenomicSignatures

RAV
(Replicable Axes of Variation)

A vector containing the average of loadings in each cluster.

RAVindex A matrix containing all the RAVs. Rows are genes and columns are RAVs.

RAVmodel
PCAGenomicSignatures-object. It contains RAVindex, metadata on model
building, and annotation. Different versions of RAVmodels are available.

Validation Score

The highest Pearson Correlation between top 8 PCs of new data and RAVs.
Validation score provides a quantitative representation of the relevance
between a new dataset and RAV. Process of comparing top PCs and RAVs is
referred to as 'validation' and the RAV that gives the validation score is called
'validated RAV'.

Sample Score

The matrix multiplication result between the ‘samples x genes’ matrix of a new
dataset and RAVindex. Similar to validation score, sample score provides a
quantitative representation of the relevance between samples and the given
RAV.
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Sup.Table 2. Training datasets used in this study
https://github.com/shbrief/GenomicSuperSignature/blob/master/inst/extdata/studyMeta.tsv.gz
The study accession, the number of samples, and the title of 536 training datasets used to
construct the current version of RAVmodel (RAVmodel_536 column). The number of samples for
each study based on the metadata (metadata column) and the number of samples actually
used (downloaded column) are different due to the data availability at the time of download.

Sup.Table 3. Source types of training datasets
https://github.com/shbrief/GenomicSuperSignaturePaper/blob/master/inst/extdata/source_name
_annotated.tsv
We obtained the source name for 435 studies (~81.2% of all training datasets) from OmicIDX46

and did a manual curation based on the source name (source_name column) to understand the
types of training datasets. Curation covered four categories: 1) whether the dataset is cancer or
not (cancer column), 2) whether the dataset is blood or not (blood column), 3) whether the
dataset is cell line or not (cell_line column), 4) what is the origin of samples (origin column).

Sup.Table 4. Available RAVmodels
https://github.com/shbrief/GenomicSuperSignaturePaper/blob/master/inst/extdata/SupTable3_R
AVmodels.csv
This is the list of currently available RAVmodels that are different in 1) the size of training
datasets, 2) the number of top PCs collected from each study, 3) the number of clusters for
hierarchical clustering, and 4) gene sets used for GSEA annotation. Two RAVmodels used in
this work, RAVmodel_C2 and RAVmodel_PLIERpriors, are available for download using the
getModel function and the others are available upon request.

Sup.Table 5. Summary of top 10 validated RAVs for 18 colorectal cancer datasets
https://github.com/shbrief/GenomicSuperSignaturePaper/blob/master/Results/CRC/outputs/CR
C_top10_validated_ind.tsv

Sup.Table 6. Summary of boxplot statistics
https://github.com/shbrief/GenomicSuperSignaturePaper/blob/master/Results/CRC/outputs/box
plot_summary.csv
This is the summary statistics of all the boxplots present in this work. It contains 72 rows from 9
boxplots where each has 4 panels with 2 groups. It has 10 columns labeled as figure, panel,
group, minima, whisker_min, first_quartile, median, third_quartile, whister_max, and maxima.
Four panel numbers denote MSI status (1), grade (2), stage (3), and tumor location (4). For
groups, 1 and 2 represent left and right groups, respectively, in each panel.

Sup.Table 7. Comparison between GenomicSuperSignature and MultiPLIER

GenomicSuperSignature MultiPLIER
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Model name RAVmodel recount2_MultiPLIER

Model size ~470Mb
2.1Gb

(a part of 81Gb tar.gz file stored in
figshare)

Model access Download using function Download from flagshare

Model availability RAVmodel_C2,
RAVmodel_PLIERpriors

recount2_MultiPLIER

Number of signatures 4,764 RAVs 987 LVs

Pathway Coverage
for PLIER priors 0.64 0.42

Pathway Separation
for PLIER priors Yes Yes

Projection on new
data Functions from the package Run scripts in GitHub repository

Package GenomicSuperSignature R package n.a.

Training data 44,890 runs from 536 studies 37,027 runs from 1,466 studies

Annotation Literatures, MeSH terms, Gene sets Gene sets

Dimensional
Reduction PCA and Clustering PLIER

Model building time ~2 days ~2 weeks

Recovering training
data Yes No

Bioconductor
Implementation Yes No

Galaxy web-tool
Implementation Yes No

Sup.Table 8. Comparison between GenomicSuperSignature and WNN
GenomicSuperSignature Seurat

Model RAVmodels Human - PBMC reference atlas

Data compression PCA and Clustering Weighted nearest neighbor

Annotation literatures, MeSH terms, gene sets cell types

# of samples used 44,890 bulk RNAseq data
161,764 single cells (RNA and ADT

data)

# of datasets used 536 heterogeneous, independent
studies

8 volunteers for HIV vaccine at 3 time
points before and after vaccine

administration
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Source of datasets Public archives Experiments by the authors

Projection Pearson correlation between input's PCs
and RAVs

Anchors through mutual nearest
neighbor cells between reference and
input's PCs from sPCA (supervised

PCA)

Recommended
input

RNAseq or microarray data with any
underlying biology

scRNAseq data consisting of PBMC

Transfer learning Any biological features RAVs represent Immune cell types and states
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