
GenomicSuperSignature: interpretation of RNA-seq
experiments through robust, efficient comparison to
public databases

Sehyun Oh1, Ludwig Geistlinger2, Marcel Ramos1, Daniel Blankenberg3,4, Marius van den Beek5,
Jaclyn N. Taroni6, Vincent Carey7, Casey Greene8, Levi Waldron1,*, Sean Davis8,*,+

1City University of New York, New York, NY, USA
2Center for Computational Biomedicine, Harvard Medical School, Boston, MA, USA
3Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
4Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
5The Pennsylvania State University, State College, PA, USA
6Childhood Cancer Data Lab, Alex’s Lemonade Stand Foundation, Philadelphia, PA, USA
7Harvard Medical School, Boston, MA, USA
8University of Colorado Anschutz School of Medicine, Denver, CO, USA

* equal contribution, +corresponding

Abstract
Millions of transcriptomic profiles have been deposited in public archives, yet remain underused
for the interpretation of new experiments. We present a novel method for interpreting new
transcriptomic datasets through near-instantaneous comparison to public archives without
high-performance computing requirements. We performed Principal Component Analysis on
536 studies comprising 44,890 RNA sequencing profiles. Sufficiently similar loading vectors
were aggregated to form Replicable Axes of Variation (RAV). RAVs were annotated with
metadata of originating studies and samples and by gene set enrichment analysis. Functionality
to associate new datasets with RAVs, extract interpretable annotations, and provide intuitive
visualization are implemented as the GenomicSuperSignature R/Bioconductor package. We
demonstrated the efficient and coherent database searching, robustness to batch effects and
heterogeneous training data, and transfer learning capacity of our method using TCGA and rare
diseases datasets. GenomicSuperSignature will aid analyzing new gene expression data in the
context of existing databases using minimal computing resources.
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Abstract
PURPOSE: Millions of transcriptomic profiles have been deposited in public archives, yet
remain underused for the interpretation of new experiments. Existing methods for leveraging
these public resources have focused on the reanalysis of existing data or analysis of new
datasets independently. We present a novel approach to interpreting new transcriptomic
datasets by near-instantaneous comparison to public archives without high-performance
computing requirements.

METHODS: To identify replicable and interpretable axes of variation in any given gene
expression dataset, we performed Principal Component Analysis (PCA) on 536 studies
comprising 44,890 RNA sequencing profiles. Sufficiently similar loading vectors, when
compared across studies, were aggregated to form Replicable Axes of Variation (RAV). RAVs
were annotated with metadata of originating studies and samples and by gene set enrichment
analysis. Functionality to associate new datasets with RAVs, extract interpretable annotations,
and provide intuitive visualization are implemented as the GenomicSuperSignature
R/Bioconductor package.

RESULTS: RAVs are robust to batch effects and the presence of low-quality or irrelevant
studies, and identify signals that can be lost by merging samples across the training datasets.
The GenomicSuperSignature package allows instantaneous matching of PCA axes in new
datasets to pre-computed RAVs, cutting down the analysis time from days to the order of
seconds on an ordinary laptop. We demonstrate that RAVs associated with a phenotype can
provide insight into weak or indirectly measured biological attributes in a new study by
leveraging accumulated data from published datasets. Benchmarking against complementary
previous works demonstrates that the RAV index 1) identifies colorectal carcinoma
transcriptome subtypes that are similar to but more correlated with clinicopathological
characteristics than previous disease-specific efforts and 2) can estimate neutrophil counts
through transfer learning on new data comparably to the previous efforts despite major
differences in training datasets and model building processes with the additional benefits of
flexibility and scalability of the model application.

CONCLUSION: GenomicSuperSignature establishes an information resource and software
tools to interrogate it. Prior knowledge databases are coherently linked, enabling researchers to
analyze new gene expression data in the context of existing databases using minimal
computing resources. The robustness of GenomicSuperSignature suggests that we can expand
this approach beyond human gene expression profiles, such as single-cell RNA-seq,
microbiome abundance, and different species’ transcriptomics datasets.
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Introduction
Vast quantities of transcriptomic data have been deposited in public archives, yet remain
underused for the interpretation of new experiments. Here, we present a novel toolkit and
approach for interpreting new transcriptomic datasets through near-instantaneous comparison
to public transcriptomic datasets using the compute resources available on a standard laptop.

Dimensionality reduction has been broadly adopted to transform transcriptomes onto a smaller
number of latent variables representing co-expressed transcripts. Gene co-expression can
result from shared function or regulation1, association with tissue composition or cell type2, and
technical batch effects3. In the confluence of these factors, dimensionality reduction can assist
interpretability and reduce the burden of multiple hypothesis testing, but can also lead to
incomplete or misleading interpretation. Valid interpretation would be improved by comparison of
latent variables in new datasets to those also present in public transcriptome databases.

Many dimensionality reduction approaches, differing in the optimization and constraint criteria,
are available4 and there have been multiple attempts to detect biological and technical signals
through these lower dimensional, latent variable representations. Classic methods such as
Principal Component Analysis (PCA) and non-negative matrix factorization (NMF) remain widely
used in their original form and as bases for newer methods. For example, scCoGAPS is an NMF
method optimized for large, sparse single cell RNA sequencing datasets5. scCoGAPS recovers
features in a source dataset, then projects a new dataset onto this learned latent space through
projectR5,6. This approach requires users to train their own model and mostly focuses on single
cell RNA sequencing datasets with similar biology. PLIER aims to improve on the interpretability
of PCA by identifying latent variables that map to a single gene set or a group of highly related
gene sets with positive correlations7. MultiPLIER applies the PLIER approach to transfer learned
patterns from a large public dataset to rare diseases8. Other tools focus on recovering
consistent signals from multiple datasets across distinct platforms9,10, increasing
interpretability11, simple database search12, or transfer learning between datasets of a specific
type13,14. However, none of these tools enable routine exploratory analysis of new studies
through comparison to large public transcriptome databases. Also, these tools do not provide a
reference catalog for transfer learning from large public databases, or in the case of MultiPLIER,
require substantial computing resources and bioinformatics expertise.

Here, we describe GenomicSuperSignature, a toolkit for interpreting new RNA-seq datasets by
dimensionality reduction in the context of a large-scale database of previously published and
annotated results. As an exploratory data analysis tool, GenomicSuperSignature matches PCA
axes in a new dataset to an annotated index of replicable axes of variation (RAV) that are
represented in previously published independent datasets. GenomicSuperSignature also can be
used as a tool for transfer learning15, utilizing RAVs as well-defined and replicable latent
variables defined by multiple previous studies in place of de novo latent variables. The
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interpretability of RAVs is enhanced through annotations by MEdical Subject Headings (MeSH)
and Gene Set Enrichment Analysis (GSEA). Through the use of pre-built, pre-annotated,
dimension-reduced RAVs, GenomicSuperSignature leverages knowledge from tens of
thousands of samples and from PubMed and MSigDB16, to the dataset at hand within seconds
on an ordinary laptop. We demonstrate these functionalities in colorectal carcinoma, breast
invasive carcinoma, systemic lupus erythematosus, and rare inflammatory disease.
GenomicSuperSignature is implemented as an R/Bioconductor package for straightforward
incorporation into popular RNA-seq analysis pipelines.

Results
The current RAVmodel is trained on 536 studies containing 44,890 human RNA sequencing
profiles. This RAVmodel is associated with 18,798 (4,430 unique) MeSH terms and 70,687
(1,784 unique) MSigDB curated (C2) gene sets. This integration of data resources (Fig.1B) is
accompanied by tools in the GenomicSuperSignature R/Bioconductor package for interpretation
of new datasets (Fig. 1A and Supplementary Fig. 1C). We demonstrate this novel application of
public data in three examples. First, using TCGA datasets, we showed that new data can be
rapidly associated with related studies, gene sets, and MeSH terms. Second, we showed that
the RAVmodel trained from diverse RNA-seq experiments identified colon cancer transcriptome
subtypes more closely associated to clinicopathological variables than the subtypes previously
identified by meta-analysis of a focused colorectal carcinoma (CRC) microarray compendium.
Lastly, we showed that neutrophil counts of two independent datasets can be interpreted and
inferred through a single RAV, providing a novel quantitative measure of neutrophil count from
transcriptome data. These examples, along with sensitivity analyses and simulations,
demonstrate that the RAVmodel and GenomicSuperSignature are a robust, general-purpose
method for the interpretation of transcriptome data.

Sensitivity Analysis and Simulation
Model training methods were optimized for robustness, simplicity, computational cost, and
validity (Supplementary Methods). Briefly, the RAVmodel was trained on the RNA-seq Sample
Compendia of refine.bio17. We analyzed TPM count data using Principal Components Analysis
(PCA) following log-transformation, then identified clusters of similar principal components from
independent datasets using hierarchical clustering on Spearman distance and ward.D
agglomeration. This approach was compared to alternatives based on 1) ability to group
synthetic true-positive principal components, 2) separation of synthetic true-negative principal
components added to training data, 3) magnitude of changes in the results compared to the
simplest method, and 4) maintenance of RAVs identified from a focused training dataset when
adding unrelated datasets. Alternative approaches considered but not selected for training the
final model included NMF, Independent Component Analysis (ICA), PLIER18 and MultiPLIER8,
Variance-Stabilizing Transformation (VST)19 in place of log transformation, combining training
datasets into a single dataset instead of analyzing them independently, increasing the number of
principal components included per dataset, and alternative clustering algorithms including
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graph-based clustering. These assessments are described in Supplementary Methods
“Sensitivity analysis for model building”.

Connecting new data with the existing databases
To demonstrate the ability to match datasets under new analysis to relevant published datasets,
we applied RAVmodel on five TCGA datasets (Fig. 2A). Based on the correlation to principal
components in these datasets, we identified RAVs specific to breast invasive carcinoma
(RAV221 and RAV868) and to colon and rectal adenocarcinoma (RAV832). When RAVmodel
was applied to the TCGA-BRCA dataset, RAV221 was assigned with the highest validation
score (Fig. 2B, Supplementary Table 1) and the associated MeSH terms were mostly
breast-related terms, such as ‘breast’ and ‘breast neoplasms’ (Fig. 2C, drawWordcloud

function). We extracted three breast cancer studies contributing to RAV221 (Fig. 2D,
findStudiesInCluster function). GSEA annotations on RAVs were queried and the top 10
enriched pathways were all breast-cancer associated (Fig. 2E, subsetEnrichedPathways

function). We also checked RAV832 on its association with TCGA-COAD and TCGA-READ
datasets. RAV832 was assigned with the second highest validation score for both COAD and
READ datasets (Supplementary Fig. 4A and 4B, respectively) and contained MeSH terms such
as ‘colorectal cancers’, ‘colon’, and ‘adenocarcinoma’ (Supplementary Fig. 4C). We also
recognized that three out of five training data in RAV832 directly represented colon-associated
illnesses (Supplementary Fig. 4D) and the top enriched gene set was an upregulated pathway
in colorectal adenoma (Supplementary Fig. 4E). In summary, we confirmed that RAVmodel
serves as a specific and robust index, coherently connecting expression profile, gene sets,
related study studies and their associated metadata (Fig. 1B), ultimately enhancing the
interpretation of new datasets in the context of existing databases.

RAVs to characterize colorectal cancer
To compare the utility of GenomicSuperSignature relative to the focused use of data from a
single disease, we compared RAVs to two previous studies that employed CRC gene
expression databases to identify CRC molecular subtypes. The CRC Subtyping Consortium
used 18 CRC datasets from multiple platforms comprising 4,151 patients to define four discrete
Consensus Molecular Subtypes (CMS) observed across numerous patient cohorts20,21. Ma et al.
subsequently proposed a continuous scoring system (PCSS) based on an analysis of 8 CRC
microarray datasets comprising 1,867 samples, and found it was more closely correlated to
microsatellite instability (MSI)22,23, grade, stage, and tumor location20,21. Importantly, these
previous efforts both employed curated databases of only CRC transcriptomes, whereas the
training set of the current RAVmodel consists of less than 2% CRC studies (Supplementary
Table 3). We identified the RAVs most highly associated with CMS subtypes (RAV834/833) and
PCSSs (RAV1575/834) (Supplementary Results), and confirmed that these RAV pairs showed
comparable or higher performance on colon cancer subtyping than CRC subtyping efforts
defined by bespoke methods in focused datasets (Fig. 3A, Supplementary Fig. 5A).
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Using training and validation data of the original CRC studies, we compared associations
between different subtype models and RAVs with the same clinicopathological variables.
Notably, these data were not part of RAV training and are microarray datasets whereas the
RAVs were trained exclusively from RNA-seq data. As described previously20, we used the
likelihood-ratio test (LRT) to compare the different subtype models for association with
clinicopathological variables. A p-value near 1 (-log10p-value near 0) means that no additional
information is provided by a full model composed of two subtype definitions compared to a
model with only one. CMS-associated RAVs performed better than discrete CMS on all four
phenotypes and also outperformed PCSSs except on tumor location (Fig. 3B-C). Interestingly,
PCSS-associated RAVs were still better than CMS but slightly worse than PCSSs, while
CMS-associated RAVs were better than both CMS and PCSSs, indicating that RAVs contain
more comprehensive information (Supplementary Fig. 5B-C). This performance improvement
became more significant using only the 10 original validation datasets, excluding 8 datasets
used to train the PCSS model (Supplementary Fig. 6). In conclusion, RAVs trained from
heterogeneous datasets, not specific to CRC, captured biologically-relevant signatures for CRC
as well or superior to focused efforts using CRC-specific databases, suggesting that RAVs are
for general-use and can be applied to describe other diseases as well.

Identify common biological attributes across different datasets
For practical and technical reasons, biological datasets often contain missing information or
signals buried in noise. GenomicSuperSignature can fill out those gaps by uncovering weak or
indirectly measured biological attributes of a new dataset by leveraging the existing databases.
To evaluate this ‘transfer learning’ aspect of the GenomicSuperSignature, we compared the
neutrophil count estimation by RAVs across two different datasets, systemic lupus
erythematosus whole blood (SLE-WB)24 and nasal brushing (NARES)25 datasets as described in
the previous study8. We searched for the SLE pathology-relevant RAV in three different ways
using the SLE dataset24. First, we identified RAV1551 based on the highest validation score with
the positive average silhouette width. Second, we searched for the keyword, neutrophil, in
GSEA-based annotation. Eleven RAVs, including RAV1551, had two keyword-containing,
enriched pathways. Lastly, we used the neutrophil count of the SLE-WB dataset to find the
metadata-associated RAV. For the continuous variables like neutrophil count, we compared the
R2 between the target variable and all RAVs, where RAV1551 showed the maximum R2, 0.395
(Fig. 4A). Neutrophil is a terminally differentiated cell type and potentially under-detected in the
active gene expression profile, so we used the neutrophil estimate from MCPcounter26 and
further evaluated the correlation between RAV1551 score and neutrophil estimate as the
previous study8. A stronger correlation between RAV1551 score and neutrophil estimate was
observed (Fig. 4B). We concluded that RAV1551 is the SLE pathology-relevant RAV, specifically
associated with neutrophil counts, and tested whether this information can be expanded beyond
the SLE dataset. For that, we applied RAV1551 on NARES dataset, which is a gene expression
profile of nasal brushings obtained from granulomatosis with polyangiitis (GPA) patients, a
condition that causes inflammation of blood vessels affecting ears, noses, throats, lungs and
kidneys25. RAV1551 was not a top validated signal, ranked 14th with the validation score 0.41
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with PC1, implying that neutrophil phenotype is not a major feature of NARES dataset.
However, R2 between the neutrophil estimate from MCPcounter and RAV1551 score was 0.84
(Fig. 4C). This suggests that RAV can serve as a new measure to compare different datasets
and provide interpretation of potentially subtle biological signals.

Discussion
A key innovation of GenomicSuperSignature is the creation of an index of replicable axes of
variation (RAVindex) consisting of principal components repeatedly observed in independent
analysis of multiple published datasets (Fig. 1A). Compared to approaches that merge training
data, this strategy is highly scalable, can identify latent variables specific to small training
datasets, and ignores technical artifacts that are not observed across multiple datasets.
RAVindex is annotated with publication citations, MEdical Subject Headings (MeSH) terms, and
gene sets, all of which is stored as the ‘RAVmodel’. Assembly of this information through
RAVmodel creates an information resource which can be rapidly applied to new datasets on a
standard laptop (Fig. 1B). GenomicSuperSignature augments standard RNA-seq exploratory
data analysis by providing modes of interpretation and hypothesis testing that were previously
impractical to apply.

GenomicSuperSignature contains information learned from a large body of existing studies that
can be “transferred” to newly collected data. For example, the RAVindex contains cancer
type-specific RAVs (Fig. 2A), including RAVs that are more closely related to colorectal
carcinoma (CRC) clinicopathological variables than transcriptome subtypes previously identified
through intensive analysis of CRC-specific databases bespoke subtyping efforts (Fig. 3,
Supplementary Fig. 5). Such “transfer learning” is broadly applicable but particularly beneficial
to the study of rare diseases and to small datasets where weak and under-represented, but
biologically meaningful, signals can be identified8. To demonstrate this, we identified an RAV
that was highly correlated to neutrophil content using a systemic lupus erythematosus (SLE)
dataset not in model training data, and used this RAV to estimate neutrophil content in a nasal
brushing (NARES) dataset that lacks neutrophil count information (Fig. 4). In addition to data
inference, GenomicSuperSignature can be useful for analyzing disease progress, comparing
phenotypes across independent datasets, and identifying weak biological signals. The current
RAVindex contains 4,764 RAVs and 3,386 out of them are previously observed in two or more
independent datasets, which can be expected to have many other such applications through
transfer learning.

GenomicSuperSignature is expected to be robust to batch effects because it characterizes
clusters of highly similar latent variables from two or more independent studies through cluster
sizes, enabling to ignore any that are unique to a single study. We demonstrated the robustness
of GenomicSuperSignature through sensitivity analysis and benchmarking against prior
disease-specific analyses8,20. While trained exclusively on RNA-seq datasets, the performance
of GenomicSuperSignature was not diminished when applied to microarray datasets.
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Furthermore, we observed transfer learning functionality compatible with the results from
recount2-MultiPLIER8, even though that model used a different matrix decomposition method,
was trained at the sample level instead of dataset level, and used a training set with only ~10%
overlap of samples (Supplementary Methods). We conclude that GenomicSuperSignature is
robust to different technological platforms and to heterogeneity of training datasets, and enables
interpretation of divergent datasets without subject-specific models.

GenomicSuperSignature offers significantly improved usability over the existing tools by
adopting user-friendly application schemas. First, the pre-built models greatly reduce
computational requirements for users: whereas training the current model took several days on
24 cores with 128 Gb memory, its application can be performed in seconds on a conventional
laptop computer. Its implementation as an R/Bioconductor package allows ready incorporation
into widely-used RNA-seq analysis pipelines. GenomicSuperSignature R/Bioconductor package
also enables a large research community to reuse public data for more accurate analyses of
new data.

The approach taken for GenomicSuperSignature is flexible and can be extended to other large
publicly available databases. We plan to develop RAVmodels trained on microarray, single-cell
RNA sequencing, and spatial transcriptomic data, from model organisms such as mouse, and to
metagenomic data from microbiome studies. Cross-species RAVmodels can help extend the
discoveries from model organisms to humans27. These planned efforts will generate an
expanded information resource with broader applicability and enhanced utility. For example, the
GSEA annotation part of the model is independent from the RAVindex building process, so we
can easily build multiple versions of RAVmodel with different gene sets or even any combination
of gene sets. Also, we can connect RAVs with additional information on the training data
because RAVs keep information on their specific source data. While the collection of
RAVmodels grows as described, the GenomicSuperSignature package will be maintained as a
stand-alone toolbox equally applicable to these different RAVmodels. GenomicSuperSignature
and its associated data resources will provide biomedical researchers with a new set of data
exploration tools exploiting knowledge gained from hundreds and eventually thousands of
existing public datasets.
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Figures

Fig 1. Overview of GenomicSuperSignature
A) Schematic illustration of RAVmodel construction and GenomicSuperSignature

application. Building the RAVmodel (grey) was performed over several days on 24 cores
with 128 Gb memory. Users can apply RAVmodel on their data (red) using the
GenomicSuperSignature R/Bioconductor package (blue), which operates on a time scale
of seconds for exploratory data analysis (orange) on a typical laptop computer.

B) Information assembled by GenomicSuperSignature. GenomicSuperSignature connects
different public databases and prior information through RAVmodel (Supplementary Fig.
1B), creating the interconnected resources illustrated here. Through
GenomicSuperSignature and the accompanying RAVmodel, users can instantly access
and explore from multiple entry points such as gene expression profiles, publications,
study metadata, keywords in MeSH terms and gene sets.
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Fig 2. Connecting new datasets to existing databases
GenomicSuperSignature provides a rich resource for understanding new or user-supplied
datasets in the context of existing datasets summarized in the RAVmodel. A) Validation of
multiple TCGA RNA-seq datasets. Each dataset was subjected to PCA and Pearson correlation
coefficients between top PCs and all possible RAVs were calculated. RAVs with Pearson
coefficient above 0.7 in at least one dataset were displayed here. RAV221 and RAV868 indicate
association with breast cancer while RAV832 is associated with colon and rectal cancer.
(COAD: Colon Adenocarcinoma, BRCA: Breast Invasive Carcinoma, LUAD: Lung
Adenocarcinoma, READ: Rectum Adenocarcinoma, UCEC: Uterine Corpus Endometrial
Carcinoma) B) Validation of TCGA-BRCA. From panel A, we showed RAV221 is associated with
breast cancer and confirmed RAV221 is one of the top validated RAVs for TCGA-BRCA. Top 5
validated RAVs (score, bottom panel) and their average silhouette width (avg.sw, top panel) are
shown. C) A word cloud of MeSH terms associated with RAV221. We collected MeSH terms
assigned to the publications belonging to RAV221 and weighted them based on their prevalence
and the contribution to any given RAV (Supplementary Methods). This word cloud shows that
RAV221 is heavily composed of principal components from studies of breast neoplasms. D)
Three studies contributing to RAV221. E) Top 10 enriched pathways in RAV221.
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Fig 3. Sample scores for disease subtyping and metadata characterization
We assigned sample scores to 3,567 tumor samples from 18 CRC studies. A) The samples in
each of 18 datasets, assigned to either (i) one of the 4 previously proposed CMS subtypes by
CRC Subtyping Consortium20,21 or (ii) not assigned to a CMS subtype (so 5 x 18 = 90 total
groups), are represented by the mean (point) and standard deviation (error bar) of sample
scores. CMS subtypes (colors) separate when plotted in RAV coordinates. We further evaluated
the capacity of RAVs to demonstrate clinicopathological characteristics of colon cancer. B)
Clinical phenotypes were regressed on discrete CMS subtypes and RAV834/833-assigned
sample scores as covariates. LRTs were used to compare the full model to a simplified model
containing only CMS subtype (left) or RAV834/833-assigned sample scores (right) as predictor.
RAV834/833-only model shows -log10p-value near 0, implying that CMS is not providing
additional information. C) The same regression and LRTs as in panel B were done using
PCSS1/2 and RAV834/833-assigned sample scores as covariates. RAV834/833 outperforms
PCSS1/2 on explaining colon cancer phenotypes except tumor location.
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Fig 4. Estimate biological features of a new dataset using the signatures learned
from public databases
RAVs encompass biological signals applicable across different platforms and independent
datasets. We demonstrate this transfer learning capacity of RAVs by identifying the
neutrophil-associated RAV from systemic lupus erythematosus whole blood (SLE-WB)24 data
and using the same RAV to analyze nasal brushing (NARES)25 dataset. A) Neutrophil counts of
SLE-WB data were plotted against RAV1551-assigned sample scores. B) Neutrophil count
estimates by MCPcounter8,26 were plotted against sample scores assigned by RAV1551. C)
Neutrophil count of NARES samples were estimated by MCPcounter and plotted against
RAV1551-assigned sample scores. The shared area is the 95% confidence interval for
predictions from a linear model.
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Methods

Source data
We used human RNA sequencing datasets from RNA-seq Sample Compendia in refine.bio17,
which hosts uniformly processed gene expression data from EBI’s ArrayExpress, NCBI’s GEO
and SRA. Data were downloaded on April 10th, 2020, and we selected studies based on the
following criteria: 1) Exclude studies with more than 1,000 samples because they are more likely
to be single-cell RNA sequencing datasets. 2) Exclude studies assigned with a Medical Subject
Headings (MeSH) term, “Single-Cell Analysis”. 3) Exclude studies with fewer than 50
successfully downloaded and imported samples (Supplementary Table 2 and Supplementary
Fig. 2). Criteria 1 and 2 are not meant to entirely eliminate single-cell data but do serve to
reduce the chance of including large, sparse datasets for which we plan to develop more
specialized approaches. After filtering, the complete compendium includes 536 studies (defined
as a single SRA study) comprising 44,890 samples.

Processing training datasets
Training data included each sample’s quant.sf file from Salmon outputs28, not aggregated or
normalized. We imported quant.sf files using tximport, scaling transcripts-per-million (TPM)
using the average transcript length across samples and the library size (“lengthScaledTPM”)29,
followed by the log2 transformation. Ensembl transcript names were converted into gene
symbols using the AnnotationDbi package30. Row normalization was done on all samples
together, not at the individual study level, because correcting variability at the study level could
remove the signals we want to capture31. For model building, we used 13,934 common genes
among 536 studies’ top 90% varying genes, where the variation cutoff was based on their
study-level standard deviation (Supplementary Fig. 1A and Supplementary Methods).

Build RAVmodels
We performed PCA on pre-processed gene expression matrices independently for each study
using the stats::prcomp R function for each gene centered but not scaled. Loading vectors of
top 20 PCs from 536 studies (total 10,720 PCs) were clustered via hierarchical clustering. For
hierarchical clustering, we calculated the distances between loadings using Spearman’s
correlation coefficient and clustered them with ward.D agglomeration method. The number of
clusters was set to the minimum number that can separate up to 50 negative controls
(Supplementary Methods and Supplementary Fig. 3). PCs in each cluster were averaged and
the resulting ‘genes x averaged loadings’ matrix, RAVindex, was combined with associated
metadata, GSEA and MeSH annotations into a unified data structure that we term a RAVmodel.
We performed a detailed evaluation of model building criteria including varying gene sets used
for annotation, the size of training datasets, the number of clusters, and so on (Supplementary
Table 4, Supplementary Methods).
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Annotation
Gene Set Enrichment Analysis (GSEA) is a common approach used to supply biological
interpretation to lists or sets of genes32–34 that has also been used to interpret biological signals
in principal components35. We subjected each RAV to GSEA to aid in interpreting the biological
signals associated with it. Genes were ordered by loading value from each RAV and supplied as
a geneList input for clusterProfiler::GSEA36. We collected enriched pathways with
Benjamini-Hochberg (BH) adjusted p-value < 0.05 and among them, the pathways with the
minimum q-values. The subset of GSEA results - NES, Description, pvalue, and qvalues -
were included in the RAVmodel. The version of RAVmodel used in this study is annotated with
Molecular Signatures Database (MSigDB) curated gene sets (C2, version 7.1)32,37, excluding
any MSigDB C2 gene set with fewer than 10 genes or more than 500 genes.

MeSH terms38 were assigned to each study using the NCBI Medical Text Indexer (MTI) tool39.
The relevance of MeSH terms in each RAV was assessed through the bag-of-words model: all
the MeSH terms associated with the training datasets were considered as the ‘universe’ and
each term in the cluster was reverse-weighted by the frequency of the given term in the
universe. MeSH terms were also weighted by the variance explained by the principal
component that they came from (Supplementary Methods).

Validation datasets
Five TCGA RNA sequencing datasets (COAD, BRCA, LUAD, READ, and UCEC) were acquired
from GSEABenchmarkeR34. Any genes with count-per-million (CPM) less than 2 were excluded
and the count matrix was log2-transformed and centered but not scaled before PCA. Eighteen
colon cancer microarray datasets from curatedCRCData were also used for validation40. Missing
and infinite values were removed from these microarray data and the remaining expression
values were centered at each gene level. To evaluate the ability to perform transfer learning to
metadata, we used preprocessed versions of nasal brushing (NARES)25 and the systemic lupus
erythematosus (SLE) datasets24.

Data Availability
The datasets analyzed during the current study can be found at
https://doi.org/10.6084/m9.figshare.19087691.v1. Training datasets used for the current
RAVmodel are available at refine.bio RNA-seq sample compendia
(https://www.refine.bio/compendia?c=rna-seq-sample).

Code Availability
The workflow to build the RAVmodel is available from https://github.com/shbrief/model_building.
All analyses presented here are reproducible using code accessible from
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https://github.com/shbrief/GenomicSuperSignaturePaper/. GenomicSuperSignature package is
available at https://doi.org/doi:10.18129/B9.bioc.GenomicSuperSignature.
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Supplementary Materials

Supplementary Methods

Sensitivity analysis for model building

Datasets for methods searching
During the optimization process for RAVmodel building, we used the well-characterized and
smaller datasets: 8 colon cancer datasets from curatedCRCData, 10 ovarian cancer datasets
from curatedOvarianData, and recount2 datasets used for recount2-multiPLIER model. Training
datasets for recount2-multiPLIER model and the current version of RAVmodel are partially
overlapping: recount2-multiPLIER model used 37,027 runs from 30,301 unique samples from
1,466 studies and GenomicSuperSignature was constructed from 44,890 runs from 34,616
unique samples from 536 studies. Among them, only 6,839 runs from 5,260 unique samples
from 87 studies were used by both models. In addition to the different combinations of these
datasets, we created synthetic datasets that can serve as positive and negative controls.

Dimensionality reduction methods
We assessed multiple dimensionality reduction methods for RAVindex building. Nonnegative
matrix factorization (NMF) was excluded because there is no clear criterion to select
representative components, such as variance explained by each principal component in PCA.
Non-orthogonal relationship between components captured by NMF is potentially a more
relevant representation of biological data, but by combining replicative principal components, we
overcome the orthogonality constraint imposed by PCA. We also ruled out independent
component analysis (ICA) because it separates independent signals to reduce the effect of
noise or artifacts41, which is different from our goal to extract biological signals, and does not
rank its components like NMF. We narrowed down to two dimensionality reduction methods,
PCA and PLIER7, and investigated the types of signatures when they were applied at the
dataset-level or sample-level. This comparison was done within four different conditions:
perPCA (PCA on each dataset and cluster top PCs), megaPCA (PCA on all samples), perPLIER
(PLIER on each dataset and cluster latent variables (LVs, equivalent to principal components
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from PCA)), and megaPLIER (PLIER on all samples, identical to multiPLIER). One of the
downsides in megaPLIER approach was that the direct link between LVs and the training data
was not available. Also, the annotation database was inseparable from the model building,
making it harder to scale. perPLIER approach blended LVs in each cluster and lost distinct
signatures. Like megaPLIER, megaPCA did not maintain the links between signature and it’s
source data. Additionally, megaPCA picked up only a handful of strong signatures in top PCs,
which we can still capture through the perPCA approach. Overall, we decided to use the
perPCA approach for our model building because it is more scalable, keeps the link between
signature and source data, and captures both pan-data and per-data signatures.

Data transformation
We did log2-transformation and row-normalization across all samples, not at the dataset level,
to keep the differences in the datasets. VST transformation was excluded because it requires
significantly more computing resources - over 200 times longer user CPU times, without any
meaningful improvement on capturing biological signatures over log2-transformation because
we removed low variable genes from our training datasets42.

Subset genes
We searched for the minimum set of genes that keeps the biological information, because more
genes require more computing resources to process and some genes were measured only in
certain training datasets. Also, low- or non-expressing genes can be similar to the background
noise, so including them would make interpretation harder. First, instead of using a fixed cutoff
for ‘low-expressing’ genes, we selected genes based on their expression variance within the
dataset because we suspect that genes with the stable expression level within a dataset convey
less information to capture. We also tried the common genes between training datasets and
annotation databases before PCA. However, it didn’t improve the accuracy of GSEA compared
to the common genes among training datasets and made the model less scalable because
RAVindex needs to be rebuilt for RAVmodels with different annotation databases even for the
same training datasets. So for the model building, we used the common genes among the top
90% varying genes from each training dataset.

The number of PCs to collect
We decided on the number of PCs to collect based on the following four reasons. First, a
threshold of 20 PCs is adequate for stability of the RAV model, particularly for larger clusters of
3+ PCs. Most of the lower PCs (PC11-20) are in single-element (22%) or two-element (53%)
clusters. We expect further relaxing the cutoff would contribute even less to clusters of 2+ size,
which we validate using two RAVmodels consisting of 1) top 10 PCs (RAVmodel_10) or 2) top
20 PCs (RAVmodel_20) from each dataset. We chose the most similar pairs of RAVs between
2,382 RAVs (RAVmodel_10) and 4,764 RAVs (RAVmodel_20) using the Pearson coefficient.
79% of RAVs in RAVmodel_10 have a similar or identical RAVs in RAVmodel_20 with the
Pearson coefficient > 0.7 and the average Pearson coefficient for the RAVs with more than 2
elements is 0.86, suggesting that the model is robust to cutoffs of >= 10 PCs, and that the
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added computational cost of a cutoff larger than 20 would provide little or no benefit. Second,
we chose the top 20 PCs because they represent a majority of the gene expression variance in
each study (median percentage of total variability represented 63%). Third, we applied the
elbow method to find the number of ‘significant’ PCs to collect, using the num.pc function
implemented in the PLIER package with the following modifications18. The PLIER::num.pc

function applies z-score normalization, but because our method does normalization with all
samples combined, we removed this internal normalization from PLIER::num.pc and provided
the pre-normalized input data instead. The number for significant PCs from this modified
PLIER::num.pc function ranged from 5 to 45, while the “elbow” of the scree plots was not
always clear on manual inspection. We chose the median value, 20, as a pre-set cutoff for the
different training datasets. Using a varying number of PCs would add a complexity to the
process that seemed unjustified given that the variance explained by each PC does not vary
much by study size, ranging from 50 to 100 for our 536 training datasets. For example, after the
8th PC, less than 5% of the variance was explained by a single PC for all 536 training datasets -
the maximum variance explained by PC7 and PC8 are 5.1% and 4.6%, respectively. Finally, one
of the main works we benchmarked against was Ma et al., where the authors selected top 20
PCs for their model building to extract colon cancer specific signatures.

Clustering methods
To group the replicative PCs, we tried centroid-based clustering such as k-means, graph-based
clustering, and connectivity-based clustering like hierarchical clustering. We tried them on top 20
PCs from 8 colon cancer datasets and for evaluation, the cluster membership was compared
with previously identified signatures (PCSSs) using Jaccard index. We also tested them on top 5
PCs from 10 positive and 10 negative controls, which were synthetic datasets created through
bootstrap and random sample selection, respectively. We evaluated each clustering method
based on how well top PCs from positive controls were clustered together and top PCs from
negative controls were assigned into different clusters.

For the centroid-based clustering methods (k-means and k-medoids), we searched the optimum
number of clusters using multiple measures including elbow method, mean silhouette width, and
within sum of squares. However, the number of clusters required to separate unrelated PCs was
too high to keep the related PCs together, which couldn’t be improved with different distance
metrics. We suspect that PCs from biological data do not possess spherical or ellipsoidal
symmetry required for centroid-based clustering to work.

We evaluated graph-based clustering and hierarchical clustering with the different combinations
of distance metrics and agglomeration methods (for hierarchical clustering) on the same
datasets used for the centroid-based clustering tests. From this evaluation, the clustering
schema was narrowed down into two versions: for graph-based clustering, edge-betweenness
clustering using edge weight by Spearman correlation and for hierarchical clustering, using
Spearman distance and ward.D agglomeration. When we applied these clustering approaches
on larger datasets, however, there were scalability issues with graph-based clustering: it formed
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a very large cluster, containing more than 5% of PCs, that cannot connect related datasets due
to the extreme distribution of the cluster sizes. So we decided to use hierarchical clustering
based on Spearman distance with ward.D agglomeration.

Choose the optimum number of clusters for hierarchical clustering
We used the negative-control dataset to explore the optimum number of clusters for hierarchical
clustering. First, we constructed 50 synthetic datasets by randomly selecting 50 samples from
44,890 samples. We scrambled genes in each of 50 synthetic datasets and added random
value between -0.1 and 0.1. The mean and standard deviation of 44,890 samples were used for
row normalization of the synthetic datasets. We confirmed that these synthetics datasets can
serve as a negative control based on the distance matrix: the minimum and maximum distance
of PC1s from the synthetic datasets ranged approximately between 1st and 3rd quarters of the
distance distribution of PCs from the actual training datasets, which we want to separate during
the clustering process (Supplementary Fig. 3A). We collected top 20 PCs from 536 training
datasets and PC1s from varying numbers of synthetic datasets (10, 20, 30, 40, and 50) and
performed hierarchical clustering with the different numbers of clusters. Nine different cluster
numbers were applied to each datasets: those nine cluster numbers were round({#ofPCs}/d),
where d is 7, 6, 5, 4, 3, 2.75, 2.5, 2.25, and 2. All negative controls were separated when d =

2.25, regardless of the number of negative controls (Supplementary Fig. 3B and 3C). So for the
current versions of RAVmodel, we selected 4,764 clusters (= round((20x536)/2.25)).

Model validity
To test whether heterogeneous datasets can maintain the signatures from the focused dataset,
we first built RAVindex from the focused training datasets and gradually diversed the training
datasets with the unrelated datasets. A rate of overlapping enriched pathways over correlated
pathways was monitored, from which we confirmed that our RAVindex building process reliably
maintains the dataset-specific signatures from the heterogeneous training datasets.

Weighting MeSH terms in each cluster
The significance of MeSH terms associated with each cluster was evaluated based on their
exclusivity. However, the simple sum of associated MeSH terms can be inappropriate in some
cases. For example, potential noises can be a predominant signal in small clusters and common
MeSH terms, such as ‘human’ or ‘RNA sequencing’ for the current version of RAVmodel, can be
overrepresented and cover all the other terms. To handle these extreme situations, we applied
several filtering and normalization terms. If the cluster contains less than 8 PCs, we considered
any MeSH terms appearing half down of ‘cluster size x 0.5’ as noise and removed them. If the
cluster has more or equal to 8 PCs in it, any MeSH terms appearing less than or equal to 4
times were eliminated. These cutoff values for ‘noise’ can be modified by users to fit their needs.
Remaining MeSH terms were assigned with the new score based on the variance explained by
PCs and the sum of scores for a given MeSH term was divided by the frequency of that term in
the universe, where the ‘universe’ is defined as the complete pool of MeSH terms associated
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with all the training datasets. This final score can be displayed as a table or a word cloud, using
meshTable or drawWordcloud functions, respectively.

Prepare input dataset
The GenomicSuperSignature takes gene expression profiles generated from both microarray
and RNA sequencing with the minimum pre-processing. The major requirement is that gene
expression profile should follow the normal distribution.

Supplementary Results

Software implementation
The PCAGenomicSignatures class inherits SummarizedExperiment data structure and stores
RAVindex, metadata, and annotation, which we collectively refer to as the RAVmodel
(Supplementary Fig. 1B). Functions and S4 methods for the PCAGenomicSignatures class to
access components of the RAVmodel, visualize analyses, and interpret new datasets are
implemented in the GenomicSuperSignature R/Bioconductor package (Supplementary Table 1).
We provide different versions of RAVmodels based on gene sets used for GSEA annotation and
they are readily available (as .rds format files) to download from the internet through the
getModel function or wget (Supplementary Table 4).

Two key functions, validate and calculateScore, allow interpretation of new datasets at the
study level and at the individual sample level, respectively. The validate function calculates
Pearson correlation coefficients between the top 8 PCs of a dataset and all RAVs
(Supplementary Methods), from which the highest value is assigned as a ‘validation score’ of
the corresponding RAV. Validation score provides a quantitative representation of the relevance
between a new dataset and RAV. In general, the higher validation score implies that the RAV
explains a more significant feature of a dataset. Validation outputs can be visualized as a
heatmap table (Fig. 2A and 2B) and an interactive plot (Supplementary Fig. 7), through
heatmapTable and plotValidate functions, respectively. Average silhouette width of each cluster
is available as a reference for quality control and as an additional filtering option to find
significant RAVs. The calculateScore function calculates a RAV-assigned ‘sample score’ to each
sample, which is the matrix multiplication result (Bt, red) between the ‘samples x genes’ matrix
(Yt, grey) and RAVindex (Z, blue) (Supplementary Fig. 1C). Similar to validation score, sample
score provides a quantitative representation of the relevance between samples and the given
RAV.

In addition to the study-level validation scores and the sample scores acquired through gene
expression profile, we can access the knowledge comprising GenomicSuperSignature through
various entry points, such as metadata, MeSH term, and keywords, because RAVmodel
maintains the link between RAV and it’s source data. (Fig. 5).
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Comparison to existing tools
We compared GenomicSuperSignature with the two existing methods using large databases for
transfer learning, MultiPLIER8 and weighted nearest neighbor (WNN)14 (Supplementary Table 7
and Supplementary Table 8). MultiPLIER is a transfer learning framework for rare disease study
and its signal is named as latent variables (LVs) which are similar in concept to RAVs. We
included a biological example inspired by MultiPLIER (Figure 4). Our approach, while arriving at
a similar result for this example, differs fundamentally from the approach applied in the
MultiPLIER and offers distinct advantages. Whereas MultiPLIER identified the
neutrophil-associated signal with the help of a relevant pre-established, single-dataset PLIER
model, our method recovers this neutrophil signal in three unsupervised steps: validation of
dataset signals through matching to RAVs, keyword searching against enriched gene sets for
RAVs, and neutrophil-associated metadata.

With respect to implementation, GenomicSuperSignature software and RAVmodels differ from
MultiPLIER in their construction process. In addition, RAVmodel provides versatile functionalities
including software tooling for directly indexing new data against the RAVs and annotation of
principal components of new data. Below we list some of the novel aspects and differences
between the RAVmodel and the MultiPLIER method and its implementation.

1) MultiPLIER uses a dimensional reduction method called PLIER. RAVmodel uses
principal component analysis followed by clustering of similar PCs from large training
datasets.

2) For MultiPLIER, the PLIER dimensional reduction process is constrained by gene sets,
so different gene sets require independent models even though the training datasets are
identical. However, because gene set annotation of RAVmodel is not a part of RAVindex
building, a single RAVindex can be annotated with different gene sets. This modularity
and flexibility is one of the strengths RAVmodel has over the existing tools.

3) Unlike LVs, RAVs maintain the information on which primary studies contribute to the
signal: the publication, the PC, and the variance explained by the PC. This metadata
enables the direct connection of new data to individual existing studies. As a result, any
new knowledge and metadata associated with the training datasets can be immediately
incorporated into the RAVmodel and used for new data analysis.

4) Software: RAVmodel is a component of our GenomicSuperSignature Bioconductor
package and Galaxy web tool for easy application of the model on new data. However,
MultiPLIER is solely a transfer learning model and no specific software is provided for its
application.

5) Model availability: To obtain the recount2 MultiPLIER model, users need to download a
81Gb zipped file from figshare, which includes 2.1Gb of model. On the other hand,
different versions of RAVmodels are stored in Google Cloud bucket and users can
download < 500Mb RAVmodels using wget or the getModel function provided in the
GenomicSuperSignature package. The RAVmodels themselves are formalized as a
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subclass of the ubiquitous SummarizedExperiment Bioconductor class and, as such, will
feel familiar to Bioconductor users.

6) Database search: RAVmodel enables unsupervised and coherent database search of
sample metadata, study data, and PCs from user data, whereas MultiPLIER does not
have any database search capability.

7) Enhanced interpretability of PCA: RAVmodel links PCs of the input data with the most
relevant RAVs, which subsequently links PCs to the existing database of studies, sample
metadata, and pathway enrichment. This process of ‘labeling PC’ is implemented as the
annotatePC and plotAnnotatedPC functions in the GenomicSuperSignature
package. There is no comparable functionality in MultiPLIER.

WNN is developed for transfer learning of single-cell multimodal data and implemented in
Seurat14. For information transfer purposes, a reference atlas from 161,764 cells was built from
8 volunteers for HIV vaccine before and after the vaccine administration, which is not public
data. These cells were thoroughly analyzed at the RNA and protein levels by the authors. Query
data is linked to this reference via clustering (weighted-nearest neighbor) and the mutual
nearest neighbor cells serve as ‘anchors’ to transfer information from the reference to query
data. These algorithmic features and “training” data make Seurat’s WNN applicable largely to
input datasets consisting of or containing PBMC for identification of immune cell type and
states. The training data for RAVmodel is instead 44,890 bulk RNAseq data from 536
independent studies available through public archives. Instead of providing a reference map like
Seurat’s WNN, our data compression procedure creates a data index, the RAVmodel, that
connects literature, gene set annotation, sample metadata, and compressed gene expression
signals. User-supplied, new query data can be linked to the RAVmodel through correlation
between RAVs and query data’s PCs. RAV transfers information across different databases and
independent studies in an unsupervised manner.

RAVmodel
RAVmodel is composed of RAVindex, model’s metadata, and annotation modules linked through
RAVs (Supplementary Fig. 1B). RAVindex has 4,764 RAVs and 1,378 out of them are
‘single-element’ clusters. By definition a single-element cluster is not a ‘repetitive’ signal, leaving
only 3,386 actual RAVs. This means we compressed the information from 44,890 samples into
3,386 RAVs, which is less than 1/10 of the initial number of samples. Also, 417 out of 536
training datasets have 40,746 genes and the other 119 training datasets have 41,255 genes,
while the RAVindex uses only 13,934 common genes among the top 90% varying genes of all
samples. Thus, our method achieves an efficient data compression, maintaining significant
information in ~3% of the initial volume of the training data.

Cluster sizes, which is the number of PCs in RAVs, are strongly skewed to the right
(Supplementary Fig. 9). When we exclude single-element clusters, about 65% of RAVs (2,212
out of 3,386) have two PCs and the mean cluster size is 2.759 PCs per RAV with the largest
cluster containing 24 PCs. Interestingly, the distribution of PCs in RAVs changes with the cluster
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sizes: the majority of PCs in one- and two- element clusters are lower PCs, but once clusters
have more than two elements, PC distribution starts to skew to the right (Supplementary Figure
10). This suggests that RAVs from small clusters tend to represent weak and less common
signals. Though, we still keep the ‘single-element’ RAVs for two reasons: 1) If any new data is
validated by those ‘single-element’ RAVs, they become ‘repetitive’ signals and thus, could lead
to new hypotheses and 2) by keeping all RAVs, we include all potential PCs in the RAVmodel
and support different use cases. Since metadata associated with all RAVs are readily
accessible, end users can filter downstream results based on cluster sizes or other properties.

We assess the number of enriched gene sets for each RAV. About 40% of RAVs in
RAVmodel_C2 and 50% of RAVs in RAVmodel_PLIERpriors do not have any enriched pathway
and the majority of them are one- or two- element clusters (Supplementary Fig. 11), suggesting
that the smaller clusters are less likely to represent biological features. Because there are RAVs
annotated with only one input annotation, MSigDB C2 or PLIERpriors, we include all the RAVs
to make our model cover diverse annotation databases. We further evaluate the scope of
biological features represented by RAVmodel through two model validation measures, pathway
coverage and pathway separation, adopted from the previous study7,8. Pathway coverage is
defined as the proportion of pathways annotating RAVs out of all the gene set terms provided.
Pathway coverage of RAVmodel_C2 is 0.32. The recount2_MultiPLIER has the pathway
coverage of 0.42 while the RAVmodel_PLIErpriors which uses the same gene set as
recount2_MultiPLIER has 0.64 pathway coverage. Pathway separation is defined as the ability
of the signature model to keep non-overlapping signatures that can differentiate biologically
similar pathways. Three biological subjects were tested on RAVmodel_PLIERpriors - type I
versus type II interferon, neutrophil versus monocyte, and G1 versus G2 cell cycle phases.
RAVmodel can successfully separate them either with top one or top five enriched pathways.

  Redundancy within the cluster is defined as the cluster containing more than one PCs from the
same study. The majority of RAVs (78%, 2,628 out of 3,386 non-single-element RAVs) consist of
PCs from unique studies. 622 non-single-element RAVs are composed of only one study and
80% of them have no or only one MSigDB C2 pathway enriched.

To guide the interpretation, GenomicSuperSignature gives a message when the output included
any of the following RAVs: 1) single-element RAVs, 2) RAVs with no or too many enriched
pathways, where ‘too-many’ is defined as 5% of input gene sets (276 and 31 for MSigDB C2
and PLIERpriors, respectively), 3) non-single-element RAVs constructed from a single study.
These criteria together include 2,557 RAVs.

Example of RAV interpretation
We identified a neutrophil-associated RAV, RAV1551, using biological information including
enriched gene sets and validation of dataset by matching to RAVs. Here, we provide additional
examples of RAV interpretation selected by the structure of RAVindex itself. As a first example,
RAV3133 is the only single-element cluster consisting of a PC1, which is derived from SRA
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study SRP100652 containing 100 samples. This study investigated the gene expression effect
of disease associated polymorphisms in the endoplasmic reticulum aminopeptidase genes
ERAP1 and ERAP243. PC1 of this dataset explains 16.2% of the variance and has only one
enriched pathway with a very low NES. Interestingly, this dataset is zero-inflated (99.9% of
counts are 0) and all the RAVs consisting of PCs from SRP100652 are tagged with the message
implemented in GenomicSuperSignature as an interpretation guide. The other example is
RAV2285 with a high proportion of PC1, where 15 out of 17 PCs in this RAV are PC1s while it
also contains PC2 and PC5. Except one PC1, all the PCs in this RAV are from single cell RNA
sequencing analysis (scRNAseq). The exception is PC1 from SRP116952, where RNA
sequencing was performed on both total mRNA and polysome-associated mRNA44.

RAVs for colorectal cancer characterization
To evaluate the performance of RAVs compared to PCSSs, we searched for colon cancer
associated RAVs in three different ways. First, we ran Kruskal-Wallis rank sum test between
CMS subtypes and RAV-assigned scores. Two RAVs with the highest chi-square, RAV834 and
RAV833, were selected for further testing. Second, we identified two RAVs, RAV1575 and
RAV834, with the highest absolute Pearson correlation coefficients with PCSS1 and PCSS2,
respectively (0.59 and 0.56). Last, we calculated validation scores for 18 colon cancer datasets
from curatedCRCData40 and collected top 10 validated RAVs from each dataset. We
summarized the frequency of different RAVs validating each dataset without any additional
filtering criteria and selected the top 2 most frequently validated RAVs, RAV188 and RAV832,
which were captured 14 and 10 times, respectively (Supplementary Table 5). In spite of the
major difference in training datasets, RAV834/833 showed a comparable performance on colon
cancer subtyping to PCSS1/2 (Fig. 3A). Notably, RAVs identified by CMS metadata
(RAV834/833) performed better at CRC subtyping than the validated RAVs (RAV188/832),
suggesting that the most prominent feature shared by 18 CRC datasets is not their disease
subtypes (Fig.3A and Supplementary Fig. 5D).

PCA plot annotated with pre-calculated GSEA
One of the widely used exploratory data analysis methods is PCA and a PCA plot can provide a
quick overview of sample composition and distribution. However, the interpretation of different
PCs is not readily available in the conventional PCA. We couple PCs from new data with GSEA
annotation of RAVmodel, and enable the instant interpretation of PCA results. We showed this
example using a microarray dataset from isolated immune cells (E-MTAB-2452)45 and
RAVmodel annotated with three priors from the PLIER package (RAVmodel_PLIERpriors,
Supplementary Table 4). GenomicSuperSignature performs PCA on a centered, but not scaled,
dataset and identifies the most relevant RAV for each PC. GSEA annotation of these matched
RAVs can be summarized in a table (Supplementary Fig. 8A, annotatePC function). If you want
to draw a PCA plot - currently any pair of top 8 PCs is supported, GSEA annotation will be
displayed as a linked table (Supplementary Fig. 8B, plotAnnotatedPCA function).
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Supplementary Figures

Sup.Fig 1. Overview of RAVmodel building
A) We downloaded human quant.sf files from refinebio RNA-seq Sample Compendia. We

subset studies with more than 50 and less than 1,000 samples from 6,460 studies
available at the time of the snapshot. Some RAVmodels retain additional filtering criteria
on their training datasets. For example, the current version of RAVmodel predominantly
used in this study further excludes datasets potentially from single cell analysis. Selected
datasets were imported through tximport, followed by log2 transformation to bring them
close to normal distribution. We used the common genes among the top 90% varying
genes of each study, which was 13,934 genes for the current RAVmodel, and did row
normalization using mean and standard deviation calculated from all 44,890 samples.
PCA was done on a row-normalized expression matrix at the study level and top 20 PCs
from each study were collected, ending up with 10,720 PCs. Distance matrix between
these PCs was calculated using Spearman correlation and hierarchical clustering was
applied with the pre-defined optimum number of clusters. Weighted MeSH terms and
GSEA on each RAV, along with RAVindex and other metadata, were assembled into
PCAGenomicSuperSignatures object, named as RAVmodel. In the below workflow
diagram, boxes represent the intermediate files we created during the model building
process.
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B) Schematic of PCAGenomicSuperSignatures object. RAVindex is a ‘genes x RAVs’
matrix. The colData provides information on RAVs, such as studies contributing to each
RAV and GSEA results from each RAV. The metadata stores details on the RAVmodel
itself, such as cluster memberships of PCs and the size of each cluster. The trainingData
provides information on studies used for the model training, which includes MeSH terms
assigned to each study and PCA summary of each study.
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C) User’s perspective. The GenomicSuperSignature package allows users to access a
RAVmodel (Z matrix, blue) and annotation information on each RAV. From a gene
expression matrix (Y matrix, grey), users can calculate dataset-level validation score or
sample score matrix (B matrix, red). Through the RAV of your interest, additional
information such as related studies, GSEA, and MeSH terms can be easily extracted.
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Sup.Fig 2. Data availability from refine.bio
The refinebio database is actively updated and our current RAVmodel is based on the snapshot
on April 10th, 2020. Metadata bar (light blue) shows the number of studies with the given ranges
of study sizes based on the metadata. Downloaded bar (pink) represents the number of studies
with the given ranges of study sizes that were successfully downloaded and imported through
tximport. Based on metadata, there were studies with more than 100 samples, but at the time
of snapshot, only up to 100 samples were available. Thus, the plot displays only up to 100
samples/study cases. Due to the unavailability of certain samples, more studies belong to 0-5
samples/study bracket than metadata suggests.
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Sup.Fig 3. The optimum number of clusters
We used PC1s from synthetic datasets, designed as negative controls, to decide the number of
clusters for hierarchical clustering. Training datasets, top 20 PCs from 536 studies
(RAVmodel_536 column in Supplementary Table 2), were combined with PC1s from the different
numbers of synthetic datasets (10, 20, 30, 40, and 50) (Supplementary Methods). A) Heatmap
of the distance matrix between 50 negative controls. Distance was calculated based on
Spearman’s correlation. B) Proportion of the negative controls that were separated with the
given cluster number. numOfControls is the number of negative controls added to the training
datasets. numOfCluster is the round of the total PCs (from training datasets and negative
controls) divided by 7, 6, 5, 4, 3, 2.75, 2.5, 2.25, and 2. Different numbers of negative controls
were completely separated when we used the cluster number k = round((the number of

PCs)/2.25). C) Number of negative controls that were not separated.
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Sup.Fig 4. Colon and rectal cancer associated RAV
Based on Fig. 2A, RAV832 seems to be associated with TCGA-COAD and TCGA-READ. Top
validation results of A) TCGA-COAD and B) TCGA-READ include RAV832 with the negative
average silhouette width. C) MeSH terms associated with RAV832. D) Studies contributing to
RAV832. E) MSigDB C2 gene sets enriched in RAV832.
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Sup.Fig 5. CRC characterization with different RAVs
In the results, we described two additional pairs of RAVs, RAV1575/834 and RAV188/832, that
are potentially useful for CRC characterization. We applied the same analysis procedure on 18
CRC datasets as in Fig. 3 using those two pairs of RAVs. For the panel A and D, we assigned
sample scores to 3,567 tumor samples from 18 CRC studies. The samples in each of 18
datasets, assigned to either (i) one of the 4 previously proposed CMS subtypes by CRC
Subtyping Consortium20,21 or (ii) not assigned to a CMS subtype (so 5 x 18 = 90 total groups),
are represented by the mean (point) and standard deviation (error bar) of sample scores. CMS
subtypes (colors) separate when plotted in RAV coordinates. (A-C) CRC characterization with
RAV1575/834. RAV1575 and RAV834 were identified based on their similarity to PCSS1 and
PCSS2, respectively. (D-F) CRC characterization with RAV188/832. RAV188 and RAV832 were
most frequently found among the top 10 validated RAVs.
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Sup.Fig 6. CRC characterization with 10 validation datasets
Analyses in Fig. 3 were repeated with only 10 CRC datasets, excluding 8 datasets used to train
PCSSs. A) Subtype- and study-specific mean of PCSS1 and PCSS2 scores are plotted as
points while the error bars represent standard deviation. B) The same plotting scheme as A was
applied on RAV834 and RAV833-assigned scores. C-E) LRTs compare the full model to a
simplified model containing only C) CMS subtypes or PCSS1/2, D) CMS subtypes or
RAV834/833, and E) PCSS1/2 or RAV834/833.
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Sup.Fig 7. Overview validation results via an interactive plot
In Fig 2B, we used a table format to display the validation results. To understand the overall
validation pattern for each PCs of new data, we provide an interactive plot as one of the
visualization options. Here, we plotted the validation plot of Human B-cell expression dataset
(GSE2350) generated from microarray. X-axis represents the average silhouette width and
y-axis represents the validation score. Each point represents RAV, where the color shows the
PC with the highest validation score for a given RAV. The point size reflects the cluster size, the
number of PCs contributing to a given RAV. In general, we interpret that the points toward the
upper right corner with the intermediate sizes are more relevant to new data than the others. An
interactive form of this graph is available with the argument interactive=TRUE, allowing the
user to hover each data point for more information, such as cluster number and exact cluster
size.
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Sup.Fig 8. PCA with GSEA annotation
PCA result of leukocyte gene expression data (E-MTAB-2452) is displayed in A) a table or B) a
scatter plot. PCA is done on a centered, but not scaled, input dataset by default. Different cutoff
parameters for GSEA annotation, such as minimum validation score or NES, can be set.

S
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Supplementary Figure 9. Distribution of RAV sizes
RAVs are constructed from different numbers of PCs, ranging from 1 to 24. Here, we plotted the
number RAVs (y-axis) against the cluster sizes (x-axis) to show the distribution of RAV sizes.

Supplementary Figure 10. Distribution of PCs in different sized RAVs
https://github.com/shbrief/GenomicSuperSignaturePaper/blob/master/Results/model/PCs_In_
Clusters.pdf
We summarize the distribution of PCs in different sizes of RAVs. There are 21 different sizes of
RAVs with the smallest containing a single PC while the largest containing 24 PCs. We collected
all the PCs contributing to the given size of the clusters and plotted 21 barplots. We observed
that one- and two- element clusters are predominantly from lower PCs. From three-element
clusters, however, the skewness changes from left to right.

Supplementary Figure 11. RAVs without enriched pathways
We summarized the gene set annotation status of RAVs based on the RAV sizes. We tested two
RAVmodels A) RAVmodel annotated with MSigDB C2 and B) RAVmodel annotated with three
gene sets provided through the PLIER package. RAVs without enriched pathways are labeled
with teal and RAVs with one or more enriched pathways are in red.
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Supplementary Tables

Sup.Table 1. Summary of new terms

Terms Description

GenomicSuperSignature
Name of the R/Bioconductor package that contains all the functions to apply
RAVmodel to new data, serving as a 'toolbox'. RAVmodels stored in Google
Bucket are downloadable using the getModel function of the package.

GenomicSignatures-object Data structure inherited from SummarizedExperiment

PCAGenomicSignatures-object Data structure inherited from GenomicSignatures

RAV
(Replicable Axes of Variation)

A vector containing the average of loadings in each cluster.

RAVindex A matrix containing all the RAVs. Rows are genes and columns are RAVs.

RAVmodel
PCAGenomicSignatures-object. It contains RAVindex, metadata on model
building, and annotation. Different versions of RAVmodels are available.

Validation Score

The highest Pearson Correlation between top 8 PCs of new data and RAVs.
Validation score provides a quantitative representation of the relevance
between a new dataset and RAV. Process of comparing top PCs and RAVs is
referred to as 'validation' and the RAV that gives the validation score is called
'validated RAV'.

Sample Score

The matrix multiplication result between the ‘samples x genes’ matrix of a new
dataset and RAVindex. Similar to validation score, sample score provides a
quantitative representation of the relevance between samples and the given
RAV.
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Sup.Table 2. Training datasets used in this study
https://github.com/shbrief/GenomicSuperSignature/blob/master/inst/extdata/studyMeta.tsv.gz
The study accession, the number of samples, and the title of 536 training datasets used to
construct the current version of RAVmodel (RAVmodel_536 column). The number of samples for
each study based on the metadata (metadata column) and the number of samples actually
used (downloaded column) are different due to the data availability at the time of download.

Sup.Table 3. Source types of training datasets
https://github.com/shbrief/GenomicSuperSignaturePaper/blob/master/inst/extdata/source_name
_annotated.tsv
We obtained the source name for 435 studies (~81.2% of all training datasets) from OmicIDX46

and did a manual curation based on the source name (source_name column) to understand the
types of training datasets. Curation covered four categories: 1) whether the dataset is cancer or
not (cancer column), 2) whether the dataset is blood or not (blood column), 3) whether the
dataset is cell line or not (cell_line column), 4) what is the origin of samples (origin column).

Sup.Table 4. Available RAVmodels
https://github.com/shbrief/GenomicSuperSignaturePaper/blob/master/inst/extdata/SupTable3_R
AVmodels.csv
This is the list of currently available RAVmodels that are different in 1) the size of training
datasets, 2) the number of top PCs collected from each study, 3) the number of clusters for
hierarchical clustering, and 4) gene sets used for GSEA annotation. Two RAVmodels used in
this work, RAVmodel_C2 and RAVmodel_PLIERpriors, are available for download using the
getModel function and the others are available upon request.

Sup.Table 5. Summary of top 10 validated RAVs for 18 colorectal cancer datasets
https://github.com/shbrief/GenomicSuperSignaturePaper/blob/master/Results/CRC/outputs/CR
C_top10_validated_ind.tsv

Sup.Table 6. Summary of boxplot statistics
https://github.com/shbrief/GenomicSuperSignaturePaper/blob/master/Results/CRC/outputs/box
plot_summary.csv
This is the summary statistics of all the boxplots present in this work. It contains 72 rows from 9
boxplots where each has 4 panels with 2 groups. It has 10 columns labeled as figure, panel,
group, minima, whisker_min, first_quartile, median, third_quartile, whister_max, and maxima.
Four panel numbers denote MSI status (1), grade (2), stage (3), and tumor location (4). For
groups, 1 and 2 represent left and right groups, respectively, in each panel.

Sup.Table 7. Comparison between GenomicSuperSignature and MultiPLIER

GenomicSuperSignature MultiPLIER
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Model name RAVmodel recount2_MultiPLIER

Model size ~470Mb
2.1Gb

(a part of 81Gb tar.gz file stored in
figshare)

Model access Download using function Download from flagshare

Model availability RAVmodel_C2,
RAVmodel_PLIERpriors

recount2_MultiPLIER

Number of signatures 4,764 RAVs 987 LVs

Pathway Coverage
for PLIER priors 0.64 0.42

Pathway Separation
for PLIER priors Yes Yes

Projection on new
data Functions from the package Run scripts in GitHub repository

Package GenomicSuperSignature R package n.a.

Training data 44,890 runs from 536 studies 37,027 runs from 1,466 studies

Annotation Literatures, MeSH terms, Gene sets Gene sets

Dimensional
Reduction PCA and Clustering PLIER

Model building time ~2 days ~2 weeks

Recovering training
data Yes No

Bioconductor
Implementation Yes No

Galaxy web-tool
Implementation Yes No

Sup.Table 8. Comparison between GenomicSuperSignature and WNN
GenomicSuperSignature Seurat

Model RAVmodels Human - PBMC reference atlas

Data compression PCA and Clustering Weighted nearest neighbor

Annotation literatures, MeSH terms, gene sets cell types

# of samples used 44,890 bulk RNAseq data
161,764 single cells (RNA and ADT

data)

# of datasets used 536 heterogeneous, independent
studies

8 volunteers for HIV vaccine at 3 time
points before and after vaccine

administration

38

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 14, 2022. ; https://doi.org/10.1101/2021.05.26.445900doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.26.445900
http://creativecommons.org/licenses/by/4.0/


Source of datasets Public archives Experiments by the authors

Projection Pearson correlation between input's PCs
and RAVs

Anchors through mutual nearest
neighbor cells between reference and
input's PCs from sPCA (supervised

PCA)

Recommended
input

RNAseq or microarray data with any
underlying biology

scRNAseq data consisting of PBMC

Transfer learning Any biological features RAVs represent Immune cell types and states
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