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Abstract 

Diagnosis criteria for Mild Cognitive Impairment (MCI) rely on cognitive symptoms and do not require 
specific biomarker evidence of pathology. Nevertheless, patients may still have subtle brain changes 
that are identifiable with neuroimaging. To classify MCI patients vs. healthy age-matched controls, 
two algorithms—Multilayer Perceptron (MLP) and Support Vector Machine (SVM)—were applied to 
structural MRI data from the OASIS-1 cohort (https://www.oasis-brains.org/). Despite their 
comparable performance in some measures, the MLP algorithm was preferable due to superior recall 
of MCI cases.      

1 Introduction 
Alzheimer’s disease (AD) is an age-related neurodegenerative disorder, affecting millions of people 
world-wide. It is characterised by progressive dementia, from mild memory impairment to global 
cognitive dysfunction and eventually death1. Although there is currently no cure for AD, early detection 
enables effective management of the disease, as well as the ability to prevent or delay dementia.  

Mild Cognitive Impairment (MCI) is a syndrome defined as cognitive decline greater than expected 
for an individual's age and education level but that does not interfere notably with activities of daily 
life2. Although the diagnosis criteria for MCI rely solely on cognitive symptoms, and do not require 
specific biomarker evidence of underlying AD pathology3, patients may still have subtle brain changes 
that are identifiable with neuroimaging. Importantly, MCI is commonly a prodromal state of AD, with a 
high probability of progression to dementia4. Therefore, identifying reliable biomarkers for detection 
of MCI, can be a step towards early detection and prevention of AD.  

1.1 The OASIS Dataset 
The Open Access Series of Imaging Studies (OASIS)5 is a series of publically available datasets of 
magnetic resonance imaging (MRI) of the human brain. For each individual in these datasets, T1-
weighted MRI scans were obtained. The release used for the current project includes cross-sectional 
data from 416 right-handed, male and female individuals across the adult life span age 18 to 96 years. 
The dataset (as posted on Kaggle: https://www.kaggle.com/jboysen/mri-and-alzheimers) includes 3 
neural measures:  

 Atlas Scaling Factor (ASF): Computed scaling factor that transforms native-space brain and skull 
to the atlas target (i.e., the determinant of the transform matrix). This is a continuous measure that 
ranged between 0.88 and 1.56 (M=1.22, SD=0.13) in the current sample.  

 Estimated total intracranial volume (eTIV): Automated estimate of total intracranial volume in 
native space derived from the ASF. This is a continuous measure that ranged between 1123 and 
1992 (M=1461.4, SD=162.1) in the current sample.  

 Normalised whole-brain volume (nWBV): Automated tissue segmentation based estimate of brain 
volume (gray-plus white-matter). Normalised to percentage based on the atlas target mask. This 
measure is continuous and ranges between 0 and 1. Range in the current sample ranged between 
.64 and .85 (M=.75, SD=.05). 

The dataset further includes each individual’s score in two measures of clinical assessment. The one 
used here is the Mini–Mental State Examination (MMSE): a 30-point questionnaire commonly used 
to measure cognitive impairment6. The scale is discrete (ranges between 0 and 30), with any score 
of 24 or more indicating normal cognition, scores between 20 and 23 indicating mild cognitive 
impairment (the diagnostic criteria for MCI), and scores below 20 indicating moderate or severe 
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cognitive impairment. The range in the current sample (after preprocessing, see below) was between 
20 and 30 (Med=29, IQR=27-30). MMSE scores were reported for a subset of 235 individuals; only 
this subset was included in the current study. Additional demographic details (gender, socio-economic 
status, and education level) were also available, but were not used here.  

1.2 Algorithms 

1.2.1 Multilayer Perceptron (MLP) 
The multilayer perceptron (MLP) is a supervised learning algorithm. It consists of a system of 
interconnected nodes, which can represent a nonlinear mapping between an input vector and an 
output vector. In this feed-forward system, inputs for each node are multiplied by the weights in a 
node, summed together, transformed via an activation function which defines the specific output or 
“activation” of the node, and fed forward to be an input to the nodes in the next layer of the network. 
The backpropagation algorithm is commonly used for training. In short, to train an MLP via 
backpropagation, the network weights are initialised and a training input vector is propagated through 
the network to obtain an output. The error signal is then calculated by comparing the obtained output 
with the target output, and is propagated back through the network, and the weights are repeatedly 
adjusted to minimise the error7,8. It has been shown9 that the multilayer perceptron can be trained to 
approximate any smooth, measurable function, including highly non-linear functions. Unlike other 
statistical techniques, MLP makes no prior assumptions concerning the data distribution, and can be 
trained to accurately generalise when presented with new, unseen data. One limitation of MLP (and 
neural networks in general), is that it is difficult to interpret. In addition, the performance of the 
backpropagation algorithm is greatly affected by data dimensionality. That is, as the dimensionality of 
the data increases, the amount of training data required by the MLP rapidly increases. Similarly, as 
the data become more complex the number of weights, and hence the size of the network, rapidly 
increase. Both these problems serve to slow the speed at which the algorithm will converge. 

1.2.2 Support Vector Machine (SVM) 
A support vector machine (SVM) is a supervised machine learning model that finds the decision 
boundary for which the functional margin between two data classes is maximised. In order to apply 
SVM to problems that are not linearly separable, the data from the original space is transformed into 
a higher dimensional feature space. The “kernel trick” is applied to support the transformations that 
include many data features and many polynomial combinations of these features in a relatively low 
computational cost. SVM is considered an efficient and versatile algorithm, which is effective in high-
dimensional space. Its main drawback is that unlike MLP, it does not directly provide probability 
estimates (though those can be calculated via cross-validation). Moreover, additional steps should be 
taken when the number of features is much greater than the number of cases in order to avoid 
overfitting[7].    

1.3 Hypothesis Statement 
MLP usually outperforms SVM against the same dataset, when the number of features is much 
greater than the number of samples. Nevertheless, in the current study, the number of features was 
much lower than the number of samples. Moreover, the architecture of the MLP network was relatively 
shallow (with only one hidden layer), making it more comparable to SVM. Therefore, accuracy was 
expected to be similar across the two algorithms. In addition, MLP is generally more prone to 
overfitting and local minima trapping compared to SVM. Although several measures were applied to 
minimise these problems (e.g., defining momentum and restricting the number of epochs; see full 
details below), it is still possible that SVM will generalise to new data better than MLP. In terms of 
time complexity, because SVM models set their decision boundary on the basis of the sole support 
vectors, they are generally very fast to train, and so the training is expected to be quicker for SVM vs. 
MLP. However, given the limited number of data-points, the relatively simple architecture, and the low 
number of epochs, training time for MLP is also expected to be low.    

2 Methodology 

2.1 Data Preprocessing 
Cases without MMSE scores were excluded. Remaining cases were classified according to their 
MMSE score: 0-mild cognitive impairment (MCI group; 19 < MMSE score < 24); 1-no cognitive 
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impairment (Ctrl group; MMSE score >= 24); Additional cases, classified as severe cognitive 
impairment (MMSE score =< 19, N=12) were excluded, due to the current focus on early detection. 
Furthermore, in order to avoid confounding effects of age (which is also associated with structural 
changes of the brain), Ctrl group data were trimmed to include the same age-range as that included 
in the MCI group. Following these steps, the final dataset included 223 cases, 193 in the Ctrl group 
and 30 in the MCI group. All features were standardised by removing the mean and scaling to unit 
variance. Histograms of features distribution, boxplots of group data, and a correlation matrix of all 
variables included in the model, are shown in Figure 1.  

A.  

 

 C.  

 

B.  

 
Figure 1. Properties of the data used in the study. (A) Histograms and density plots depicting the distribution of the 

preprocessed data, separately for each feature. (B) Boxplots depicting group data for the MCI group (Class 0) and the Ctrl 
group (Class 1) for each feature. (C) Correlation matrix depicting Pearson correlations between all variables included in the 
study.    

2.2 Training and Evaluation 
10% of the original (shuffled) dataset was held-out in order to be used as a test set for selected 
models. Because the dataset used in the current study is imbalanced, Synthetic Minority 
Oversampling Technique (SMOTE)10 was applied on the remaining 90%, in order to improve 
classification performance on the minority group. The transformed dataset was used for training and 
validation in the process of model selection.   

An exhaustive grid search was employed to adjust the (hyper)parameters, separately for each 
algorithm. To select the best model for each algorithm (model selection), the models were evaluated 
using a stratified 10-fold cross-validation, in which the folds are selected so that the mean response 
value is approximately equal in all the folds. Model scoring was determined based on its accuracy. To 
compare the two algorithms (algorithm comparison), the selected (“best”) trained model for each 
algorithm was then evaluated against the entire train set and, more importantly, against the held-out 
test set.  

2.3 Architecture and Parameters 
Models were kept relatively simple due to the limited number of data points available in the current 
study. MLP models included three neurons in their input layer (3 features), two neuron in their output 
layer (for binary output), and one linear hidden layer comprised of a varying number of neurons (either 
3 or 5). To allow non-linearity, non-linear activation was applied to the hidden layer after the linear 
transformation, using either ReLU or Leaky ReLU. Values obtained from the output layer were passed 
through the Softmax function in order to represent the model’s predicted probabilities for each class. 
Hyperparameters were selected to augment and control the optimization process. The batch size 
(either 16, 32, or 64) and learning rate (either 0.01, 0.1 or 0.5) were tuned to increase model stability 
and learning speed. The maximum number of epochs was set to 10, and early stopping was allowed, 
as preliminary investigation (see Implementation Details) suggested that the models start overfitting 
early on. A Stochastic Gradient Descent (SGD) optimization algorithm (with momentum set to 0.7, to 
avoid local minima) was used to backpropagate the prediction loss and adjust the parameters by the 
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gradients. Thus overall, the MLP grid search included 36 parameter combinations: 2 [number of 
neurons in the hidden layer] X 2 [non-linear activation functions] X 3 [batch sizes] X 3 [learning rates].   

For SVM models, C-Support Vector Classification (SVC) was used. This algorithm maximises the 
margin while incurring a penalty when a sample is misclassified, or occurs within the margin boundary. 
The term C (which was set to either 0.01, 1, or 100), controls the strength of this penalty, thus acting 
as an inverse regularization parameter. Several kernel functions (linear, polynomial, radial basis 
function [RBF], and sigmoid) were tested, in order to allow non-linearity by mapping the training 
vectors into a higher dimensional space. Finally, gamma was set to either 0.0001, 0.01, or 0.1, to 
define how much influence a single training example has, with larger gamma indicating that other 
samples need to be closer in order to be affected. Overall, the SVM grid search included 36 parameter 
combinations: 3 [C] X 4 [kernels] X 3 [gamma] (though note that the actual space was in fact smaller, 
because gamma cannot be applied for a linear kernel; more details in the “implementation details” 
section below).      

3 Analyses and Critical Evaluation 

3.1 Model Selection 
Figure 2 depicts the cross-validation accuracy (ordered from highest to lowest) for the MLP and the 
SVM models, following a grid search with various combinations of (hyper)parameters (see above). 
The standard deviation of the validation accuracy across the various models was greater for SVM 
than for MLP (STDSVm_M = 0.13 vs. STDMLP_M = 0.06). In contrast, within each model, the mean 
standard deviation across folds (n=10) was slightly greater for MLP than for SVM (STDSVM_F = 0.07 
vs. STDMLP_F = 0.08). Taken together, this suggests that SVM is more influenced by specific parameter 
combinations and should therefore be tuned with cautious, whereas MLP is more sensitive to the 
particular selection of training samples, which might affect the model’s ability to generalise.  

 

 

Figure 2. Results of the model selection process. Cross-validation accuracy (ordered from highest to lowest) following a 

grid search with various combinations of (hyper)parameters is shown for MLP (top) and the SVM (bottom) models. For MLP, 
legends on the x-axis indicate [ activation function | batch size | hidden units | learning rate ]. For SVM, legends on the x-
axis indicate [ kernel | C | gamma ].    
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The figure further suggests that for both MLP and SVM, models can be grouped into those with 
classification accuracy > 75%, for which accuracy is highly similar, and those with lower classification 
accuracy, for which accuracy is more diverse. For SVM, the latter group included models with 
polynomial kernel and low gamma, suggesting that these transformations do not aid the separation 
of the data. For MLP, the latter group mainly included models with low learning rate, possibly 
suggesting that the restricted number of epochs used here (to avoid overfitting) was not sufficient for 
adequate training at this slow pace. 

3.2 Algorithm Comparison 
For validation of the models against the training set, the best model for each algorithm was fit on the 
entire training set (which included 90% of the data). For validation against the test set, the best model 
was fit on the remaining held-out 10%. Confusion matrices for the validation against the training and 
testing sets, as well as the respective ROC curves, are shown in Figure 3, panels A and B. ROC 
curves were comparable across algorithms, with similar AUC scores for MLP and SVM for the train 
set (83% and 84%, respectively), and slightly higher scores MLP than SVM for the test set (62% vs. 
59%, respectively). In terms of overall accuracy, SVM outperformed MLP for both the train set (80% 
vs. 79%) and the test set (61% vs. 57%).  

Importantly, however, as indicated by the confusion matrices, unlike the training set for which 
accuracy rates were similar for both classes, for the test set accuracy rates decreased significantly 
for the MCI group. This is likely the result of the imbalanced number of observations, with MCIs being 
a minority group. As SMOTE was applied to the train set, the distribution of cases was balanced for 
this set, resulting in similar classification accuracy for both groups. Nevertheless, the test set remained 
imbalanced, and therefore classification accuracy of cases belonging to the minority group was 
hinder. Importantly, even though classification accuracy for the minority group was low, it is still much 
better than what it was before SMOTE was applied (in which case, all cases were classified as 
controls, and none were classified as MCI; see Implementation Details). This suggests that applying 
some method for dealing with imbalanced data is necessary with the current dataset, and other 
methods (aside from SMOTE) should be explored in future studies.  

A.  

 

B.  

 
 

 

C.  
 
 

MLP 
Train 

MLP 
Test 

SVM 
Train 

SVM 
Test 

Accuracy .79 .57 .80 .61 
Rec Ctrl .63 .53 .71 .63 
Prec Ctrl .94 .91 .87 .86 
F1 Ctrl .75 .67 .78 .73 
Rec MCI .96 .75 .89 .50 
Prec MCI .72 .25 .75 .22 
F1 MCI .82 .38 .82 .31 

 

Figure 3. Results of the algorithm comparison process. Classes are 0-MCI, and 1-Ctrl. (A) Normalised confusion matrices 

for MLP (top) and SVM (bottom). On the left is the validation against the entire train set, and on the right is the validation 
against the (unseen) test set. (B) ROC curves for MLP (green) and SVM (purple), with the classification algorithm applied 
to the training set (solid lines) and test set (dashed lines). AUC scores are shown on the bottom-right. (C) Metrics used for 
the evaluation of the algorithms, including overall accuracy, as well as precision and recall reported separately for each 
group.   
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Overall accuracy rates, as well as ROC curves and their associated AUC scores, can be misleading 
when applied in imbalanced classification scenarios11. Therefore, additional metrics—recall, 
precision, and F1 scores for the control and MCI group—were calculated and are shown in Figure 3, 
Panel C. For the train set, recall, precision, and F1 scores ranged between 63-96%. For Ctrl cases, 
recall and F1 scores were higher with SVM during both training and testing, whereas precision scores 
were higher for MLP. For MCI cases, recall scores were higher for MLP during both training and 
testing, precision scores were higher for SVM during training but for MLP during testing, and F1 scores 
were comparable during training but higher for MLP during testing.  

Notably, the difference in recall scores for the MCI group is critical for the evaluation of the models. 
Namely, the main purpose of this study is to identify those who exhibit cognitive impairments, to aid 
early interventions and further evaluation. Therefore, the importance of correctly classifying Ctrl cases 
is inferior to the ability to accurately classify MCI cases. Recall of MCI cases, calculated as the fraction 
of MCI cases classified as MCI among all relevant elements, therefore represents the most important 
metric for model evaluation, and produces significantly better results for MLP than SVM (96% vs. 89% 
during training, and 75% vs. 50% during testing). 

4 Conclusions 
The aim of the study was to explore whether structural brain measures can be used to identify 
individuals exhibiting mild cognitive impairment, as indicated by their performance the mini mental-
state examination (MMSE). Despite their comparable performance in some measures (e.g., in terms 
of accuracy), the MLP algorithm is concluded to be preferable. This is due to its superior recall of MCI 
cases—the main requirement from an algorithm aiming to aid early detection.  

Nevertheless, in all measures, a sharp decrease in performance was observed when the models were 
applied to the held-out test set, suggesting low ability to generalise to new cases. While further tuning 
of the parameters might improve the performance of the models and should be explored, the models 
would probably benefit more from the inclusion of additional cases (especially in the MCI group) and 
additional features representing other structural properties of the brain. In particular, measures of 
specific brain regions, known to be affected by AD (e.g., the Hippocampus) should be included on top 
of the coarse, whole-brain measures that were used in the current study.       

Before concluding, it is important to address the translational value of the study to real-life problems. 
An important question is whether or not the current approach is not only possible, but also viable. Or 
in other words – why bothering with the acquisition of costly brain images and the application of time-
consuming ML algorithms, just to get the same results that a simple 10-item questionnaire can 
produce? The answer to that relies on the divergent between MMSE vs. ML based classifications: if, 
for example, cases classified as MCIs by both MMSE and ML would end up developing AD later on, 
while cases classified as MCIs by MMSE but not by ML would not, than the ML models provide 
valuable information, essential to the prognosis and care plan. While additional longitudinal data is 
required to allow such conclusions, the current study represents an important first step in this 
direction.   

 

The code used for this project is available on: https://osf.io/msx4r/   
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6 Glossary 
 

Alzheimer Disease (AD) – Age-related neurodegenerative disorder, characterised by progressive 
dementia, at a level that interferes with daily tasks. 

Backpropagation – Widely used algorithm for training feedforward neural networks by computing 
the gradient of the loss function with respect to the weights of the network. 

Grid Search – Tuning technique that attempts to compute the optimum values of hyperparameters 
by performing an exhaustive search on the specific parameter values of a model. 

Kernel Trick – Algorithm that allows the transformation of data from the original space into a higher 
dimensional feature space by operating on an implicit space, without computing the actual coordinates 
of the data. 

Mild Cognitive Impairment (MCI) – Syndrome defined as cognitive decline greater than expected 
for an individual's age and education level, but that does not interfere notably with activities of daily 
life. In many cases, MCI is a prodromal state of AD. 

Mini-Mental State Examination (MMSE) – 24-item questionnaire commonly used to indicate the 
presence of cognitive impairment. 

Multilayer Perceptron (MLP) – Class of feedforward artificial neural networks used for supervised 
learning, consists of at least three layers of nodes: an input layer, a hidden layer and an output layer. 

Open Access Series of Imaging Studies (OASIS) – Series of publically available datasets 
containing MRI images of the human brain. 

Overfitting – Modelling error that occurs when a function is too closely fit to a limited set of data 
points, thereby reducing the model’s ability to generalise.  

Recall and Precision – Classification matrices used to assess the proportion of actual positives that 
were identified correctly (recall) and the proportion of positive identifications that were actually correct 
(precision). 

Receiver Operating Characteristic (ROC) Curve – Graph showing the performance of a 
classification model at all classification thresholds. The Area Under the Curve (AUC) measures the 
two-dimensional area underneath the entire ROC curve. 

Rectified Linear Unit (ReLU) – Type of activation function, defined mathematically as y = max(0, x). 
Leaky ReLU is similar, but has a small slope for negative values. 

Softmax – Function that converts a vector of numbers into a vector of probabilities ranging between 
0 and 1.  

Support Vector Machine (SVM) – Supervised machine learning model that finds the decision 
boundary for which the functional margin between two data classes is maximised. 

Synthetic Minority Oversampling Technique (SMOTE) – Method for over-sampling the minority 
class, which involves creating synthetic minority class examples. 

T1-weighted MRI – Commonly use MRI sequence, used for the acquisition of structural brain images. 
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7 Implementation Details 

7.1 Unbalanced Data 

The figure below shows a reproduction of Figure 3, Panel A (confusion matrices) when SMOTE is not 

applied. As shown in the figure, for both SVM and MLP, without SMOTE the models predicted the 

majority class for all cases, thus render these models unusable.  

  
 

7.2 Number of Epochs 

The number of epochs was initially set to 50 (without early stopping), and a figure displaying the loss 

for train and validation was computed for the best estimator (see below). On the left are the results of 

the preliminary implementation, with 50 epochs and no early stopping. On the right are the results of 

the final implementation with 10 epochs and early stopping. The figure suggested that the model 

converge and start overfitting early on, and so the maximal number of epoch was set to 10, and early 

stopping was applied.  

  
 

7.3 Additional Parameters 

Aside from the parameters included in the grid search, which were tested systematically, some 

additional (hyper)parameters were tested manually during a preliminary investigation. These included 

(1) various dropout rates – all resulted in decreased performance relative to the fully connected model, 

and so dropout was not implemented in the final version; (2) replacing SGD with an Adam optimiser 

– resulted in reduced generalisation to the test set and was therefore excluded; and (3) additional 

variations (in addition to the ones reported in the paper) to the number of units in the hidden layer 

(ranging between 4 and 32) and inclusion of a second hidden layer (with varying number of units) – 

these also resulted in reduced generalisation to the test set. See comment in the notebook regarding 

these implementations.   
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