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ABSTRACT 
 

Hispanic/Latinos have been underrepresented in genome-wide association studies 

(GWAS) for anthropometric traits despite notable anthropometric variability with ancestry 

proportions, and a high burden of growth stunting and overweight/obesity in Hispanic/Latino 

populations. This address this knowledge gap, we analyzed densely-imputed genetic data in a 

sample of Hispanic/Latino adults, to identify and fine-map common genetic variants associated 

with body mass index (BMI), height, and BMI-adjusted waist-to-hip ratio (WHRadjBMI). We 

conducted a GWAS of 18 studies/consortia as part of the Hispanic/Latino Anthropometry 

(HISLA) Consortium (Stage 1, n=59,769) and validated our findings in 9 additional studies 

(HISLA Stage 2, n=9,336).  We conducted a trans-ethnic GWAS with summary statistics from 

HISLA Stage 1 and existing consortia of European and African ancestries. In our HISLA Stage 

1+2 analyses, we discovered one novel BMI locus, as well two novel BMI signals and another 

novel height signal, each within established anthropometric loci. In our trans-ethnic meta-

analysis, we identified three additional novel BMI loci, one novel height locus, and one novel 

WHRadjBMI locus.  We also identified three secondary signals for BMI, 28 for height, and two 

for WHRadjBMI. We replicated >60 established anthropometric loci in Hispanic/Latino 

populations at genome-wide significance—representing up to 30% of previously-reported index 

SNP anthropometric associations. Trans-ethnic meta-analysis of the three ancestries showed a 

small-to-moderate impact of uncorrected population stratification on the resulting effect size 

estimates. Our novel findings demonstrate that future studies may also benefit from leveraging 

differences in linkage disequilibrium patterns to discover novel loci and additional signals with 

less residual population stratification.   
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INTRODUCTION 

A complex interplay between political, social, and economic factors has led to an 

increasing obesogenic global environment. In this modern context, many low- to middle- income 

nations have experienced a rapid transition from under-nutrition and growth stunting to over-

nutrition and obesity.1 Moreover, population-based surveys from 1975-2002 show that there is 

an inverse ecologic relationship between the prevalence of growth stunting and the prevalence 

of overweight seen among preschool children (0-5 years of age) in Latin America.2 Growth 

stunting of preschool children ranges from relatively rare (7%) in the Caribbean to notably 

common (20%) in Central America.  Moreover, it is a risk factor for overweight/obesity 

independent of a child’s socioeconomic status.  

In Latin America, by 2016 35% of the total population was overweight [body mass index 

(BMI) 25 to <30 kg/m2] and another 23% was living with obesity.3 In Mexico, more than 71% of 

adults are currently overweight;4 it is projected that by 2050 only 12% of men and 9% of women 

will have a healthy weight (BMI <25 kg/m2). In a recent study in Argentina, Chile, and Uruguay, 

the prevalence of obesity was 36%, but when using waist circumference as a measure of 

central obesity, it was far higher (53%).5 Within each of these populations, there are also 

disparities in obesity by sex and education.  

Race, ethnicity, and ancestry may play a role in anthropometric-related health disparities 

in Latin American. Previous studies have described the historical contexts leading to admixture 

in Latin American populations6; 7 as characterized by highly diverse (variable) ancestral 

proportions8-10 from any of the following regions: the Americas, Europe, Africa and East Asia.11-

16 In fact, proportion of Native American ancestry is associated with numerous biomedical traits, 

like obesity-related traits, and is most strongly associated with height.17; 18 Height is inversely 

associated with proportion of Native American ancestry, even after taking into account the fact 

that globally over time populations have become taller due to mainly non-genetic nutritional 

factors.16 The ultimate drivers of this association remain to be elucidated; it is possible that 

genetic factors and/or socio-economic factors strongly associated with Native American 

ancestry could be responsible for these findings. Recent studies are starting to provide relevant 

insights on this topic. As an example, a recent genome-wide association study (GWAS) in 

Peru19 identified a missense variant in the FBN1 gene (rs200342067) that has the largest effect 

size so far described for common height-associated variants in human populations (each copy 

of the minor allele reduces height by 2.2 cm). In the 1000 Genomes Project samples, 

rs200342067 is only present in two American samples (MXL: 0.78% and PEL: 4.12%), and yet 
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the authors reported that this missense variant shows subtle evidence of positive selection in 

the Peruvian population.19  

Obesity in Latin America has quickly surpassed the levels previously seen only among 

adults of high-income nations, like Canada and the United States (US). In Canada the number 

of people reporting Latin American origins grew by 83% from the 2001 census20 relative to the 

2016 census,21 representing 1.3% of the total Canadian population. In the US, both the 

population size and diversity in national origins (backgrounds) of US Hispanic/Latinos have 

been increasing over the past several decades.22  If past demographic trends continue, 24% of 

the US adult population will identify as Hispanic/Latino by 2065.22 Obesity-related financial costs 

in the US are projected to double every decade to ~$900 billion by 2030.23; 24 US 

Hispanic/Latino adults and their children/adolescents face a greater burden of obesity than their 

non-Hispanic white counterparts.25-28 There is a need to study Hispanic/Latino populations in 

order to address these disparities.28; 29   

 Given the unique historical and recent demographic shifts occurring across the 

Americas, there is a clear need to also understand the role that Native American or other under-

studied components of admixture have on the genetic architecture of anthropometric traits in 

Hispanic/Latinos, and its relationship with risk of downstream poor health outcomes. Yet, to date 

no large-scale GWAS of anthropometric traits have been conducted among Hispanic/Latino 

populations. Here, we perform the largest genomic study to date of anthropometric traits, 

including BMI, height, and waist-to-hip ratio adjusted for BMI (WHRadjBMI) in Hispanic/Latino 

populations to describe what might be novel loci or signals in established loci in this population 

by sex and life stage.  

 

MATERIALS AND METHODS 

Hispanic/Latino Study Samples  

The Hispanic/Latino Anthropometry (HISLA) Consortium is comprised of 27 studies/ 

consortia of adult participants. First, HISLA Stage 1 includes 17 studies and one consortium 

(Consortium for the Analysis of the Diversity and Evolution of Latin America, CANDELA18) 

collectively representing up to 59,771 adults, depending on the trait, from Brazil, Chile, 

Colombia, Mexico, Peru, or the US with self-reported heritage from across Spanish-speaking  

Latin America, or Native American heritage, primarily Pima and Zuni30 (Table S1). HISLA Stage 

2 includes nine studies with up to 10,538 adults from across Spanish-speaking Latin America or 

with related heritage and living in the US (Table S1).  
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This study was approved by the Institutional Review Boards of the University of North 

Carolina at Chapel Hill, and all contributing studies had received prior Institutional Review 

Boards approval for each study’s activities. 

 

Anthropometric Traits  

BMI is a commonly derived index of obesity risk and is calculated as the ratio of body 

weight to height squared (kg/m2). Adult height was measured/self-reported using either metric 

units, or US units and then converted to meters. Waist-to-hip ratio (WHR) is used to capture 

central fat deposition, and it is derived from the circumference of the waist at the umbilicus 

compared to the circumference of the hip at the maximum protrusion of the gluteal muscles.  

Residuals were calculated by sex and/or case status, adjusting for age, age2, and study-

specific covariates [e.g., center, principal components of ancestry (PCA)]. For WHR, BMI was 

also adjusted for when creating the residuals to isolate the central deposition of fat from overall 

body mass. Residuals were then used to create inverse normalizations of BMI and WHRadjBMI, 

and z-scores of height (=residual/standard deviation for all residuals). In family-based studies 

the residuals were calculated in women and men together, adjusting for age and sex and other 

study covariates including PCs. Descriptive statistics on the covariates and anthropometric 

measures of are provided for each study’s analytic sample in Table S2. Only one family-based 

study in Stage 1 and two non-family based studies in Stage 2 (GOLDR 0.3% <18 years, and 

HTN-IRS 3.9%) included a small subset of adolescents aged 15-17 years, each less than 5% of 

the total sample. All other study samples included individuals 18-98 years of age.  

 

Childhood/Adolescence Study Samples, Anthropometric Traits, and Obesity 

We assembled an independent sample of children/adolescents with anthropometrics,   

from three studies from the US, Mexico and Chile (Table S3). The distribution of covariates and 

anthropometrics of the samples of children/adolescents in each analysis are described in Table 

S4. First, childhood/adolescent obesity was defined as having a ≥95th BMI-for-age percentile 

versus ≤50th BMI-for-age percentiles, based on the Centers for Disease Control and Prevention 

growth curves,31 as done in previous analyses of childhood obesity.32 We used these two 

analyses to look up novel BMI and height findings from our adult HISLA meta-analysis and our 

trans-ethnic analyses.  This resulted in 1,814 children/adolescents aged 2-18 years for this 

case-control analysis (Tables S3-4). Second, BMI and height-for-age z-scores were calculated 

in children/adolescents aged 5-18 years from the US and Chile (Table S4) based on the more 

international reference growth curves from the World Health Organization.33 In Viva la Familia, a 
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family-based study,34 these residuals were calculated adjusting for sex in the combined sample. 

The resulting BMI and height-for-age z-scores were available for 1,914 and 1,945 

children/adolescents, respectively.  

 

SNP Imputation and Statistical Analyses 

We generated autosomal genome-wide imputed data based on 1000 Genomes Phase 1 

and 3 references, with the exception of two studies that contributed Exomechip and MetaboChip 

(Illumina, Inc.; San Diego, CA) genotypes and one study that blended genotypes from multiple 

platforms (Tables S5-6). PCA analyses were conducted in each study to capture the main 

components of genetic ancestry from the Americas, Europe, Africa, and Asia. Studies with 

samples from related individuals accommodated this non-independence by projecting their 

principal component analysis from the reference to the study sample, and by accounting for 

relatedness using either generalized estimating equations35 or mixed linear models.10; 36 

Assuming an additive genetic model, we tested the association of over 20 million autosomal 

variants on our traits, accounting for all trait or study-specific covariates (e.g., center, PCA). 

 

Meta-Analyses of HISLA Stage 1+2  

The studies of the HISLA Consortium were meta-analyzed in two stages, including 

discovery (Stage 1) and validation (Stage 2). Stage 1 included a total sample of 59,771 

individuals with data on BMI, 56,161 with height, and 42,455 with WHRadjBMI. All Stage 1 

studies/consortia provided full genome-wide analysis results. All SNPs that met our significance 

criteria were brought forward for validation in Stage 2, which included 10,538 individuals with 

data on BMI, 8,110 with height, and 4,393 with WHRadjBMI. All reported association results 

passed our quality control criteria; i.e., variants with low quality (info score <0.4 or Rsq<0.3), 

minor allele count (MAC) <5, or sample size <100 were removed. We meta-analyzed effects 

across all studies using a fixed-effect inverse variance weighted meta-analysis with genomic 

control in METAL.37 Given the unique patterns of admixture and ancestry represented by the 

Brazilian or Native American samples, we conducted sensitivity analyses in Stage 1 studies 

(i.e., comparing the inclusion and exclusion of the Baependi Heart Study, 1982 Pelotas Birth 

Cohort Study, and Family Investigation of Nephropathy and Diabetes substudy of individuals of 

Pima and Zuni heritage) to assess the influence of the three studies on the meta-analysis 

results. CANDELA was retained in all analyses as <10% of the consortium’s samples came 

from Brazil, primarily originating from the South of Brazil with wide-spread European heritage 

with a lesser extent Native American or African admixture.18  
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Regional plots of all GWAS-significant HISLA Stage 1 findings were plotted using 

LocusZoom (https://locuszoom.org).  From Stage 1, we selected lead variants that met genome-

wide significance (P<5x10-8) that were independent of each other for replication. In cases where 

Stage 2 studies did not have the lead variant, we selected two proxies per lead variant with an 

r2≥0.9 using 1000 Genomes AMR linkage disequilibrium (LD). Stage 2 studies provided a list of 

the requested lead variants and/or their proxies from Stage 1 for validation. Stage 2 studies 

were meta-analyzed and subsequently combined with Stage 1 using METAL25. Effect 

heterogeneity was assessed through I2 across all 27 HISLA adult studies/consortia by entering 

each study separately into the meta-analysis, irrespective of stage. The characteristics of the 

final SNP array data used in the HISLA adult studies and the children/adolescent 

Hispanic/Latino studies are summarized separately in Tables S5-6.   

 

Meta-Analyses of HISLA Stage 1 with Other Ancestral Consortia 

In addition to a Hispanic/Latino only meta-analysis, we combined the HISLA Stage 1 

meta-analysis with data from previous large-scale GWAS meta-analyses from European (the 

Genetic Investigation of Anthropometric Traits, GIANT, Consortium38-40, N ~ 300,000) and/or 

African (the African Ancestry Anthropometry Genetics Consortium, AAAGC41, N ~ 50,000) 

descent populations. We used fixed-effect inverse variance weighted meta-analytic techniques 

in METAL to generate our trans-ethnic meta-analysis.37 We validated our potentially novel BMI, 

height42 and WHRadjBMI43 findings from this trans-ethnic meta-analysis in either our 

independent sample of Hispanic/Latino children/adolescents or the British subsample GWAS of 

the United Kingdom Biobank (UKBB). Regional plots of these analyses of all potentially novel 

trans-ethnic findings are shown in the supplement (Figures S7-52).  

 

Thresholds for Conditional Signals, Discovery, Validation and Transferability 

We conducted approximate conditional analyses using the Genome-wide Complex Trait 

Analysis (GCTA, version 1.93.1) software. For the HISLA analyses, we used our Stage 1 

discovery results with the Hispanic Community Health Study/Study of Latinos (HCHS/SOL) as 

the LD reference dataset. For the approximate conditional trans-ethnic analyses, we used our 

trans-ethnic results from HISLA Stage 1, AAAGC, or GIANT and a trans-ethnic LD reference 

dataset of Europeans and Africans from the Atherosclerosis Risk in Communities (ARIC) cohort, 

and Hispanic/Latinos from HCHS/SOL, which was representative of the ancestry distribution of 

our meta-analysis. In both conditional analyses (HISLA only and trans-ethnic results), we first 

identified all independent SNPs using the --cojo-slct command. Then, we conditioned each of 
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these independent SNPs on all known SNPs up through December 2019 (BMI38; 41; 42; 44-59, 

Height39; 42; 51; 54; 59; 60, WHRadjBMI40; 41; 43; 48; 50; 58; 59; 61-65) within 10Mb of the index SNP. The 

trans-ethnic meta-analysis results with a P-value<5x10-8 after conditioning on known SNPs were 

taken forward for validation in the British subsample of the UKBB.  

SNP associations were then defined as either newly discovered or established, 

depending on their location. An established locus was defined as a SNP association within ±500 

kb of at least one previously identified index SNP, otherwise the association was considered a 

newly-discovered locus.  

We designated our Hispanic/Latino SNP-associations within either newly-discovered or 

established loci as novel if they met the following criteria: 1) were associated at P-value<5x10-8 

in HISLA Stage 1 and directionally consistent in Stage 2, and 2) the addition of Stage 2 samples 

improved the estimated Stage 1+2 meta-analysis. For the trans-ethnic analyses these criteria 

were as follows: 1) were associated at P-value<5x10-8 in the combined HISLA, AAAGC and 

GIANT meta-analysis, and 2) were both directionally consistent and associated at P-

value<5x10-2 in the subsample of Hispanic/Latino children/adolescents or in the British 

subsample GWAS from the UKBB.  

Novel Hispanic/Latino SNP effects were considered to transfer to Hispanic/Latino 

children/adolescents, or to African or European ancestry adults, if they were 1) directionally 

consistent, 2) associated at P-value<5x10-2, and 3) had a heterogeneity of I2<75% in either the 

Hispanic/Latino children/adolescent lookups, or either 1) the AAAGC or 2) the GIANT adult 

GWAS results. Conversely, SNP effects of variants previously associated with anthropometric 

traits in non-Hispanic/Latino populations (i.e., index published SNPs) were considered to be 

transferable (generalizable) to Hispanic/Latinos if they were 1) directionally consistent, 2) 

displayed a P-value<5x10-2, and 3) had little to moderate effect heterogeneity (I2<75%) in Stage 

1.  

 

Fine-Mapping Methods 

We used FINEMAP66 for fine-mapping analyses of the newly-discovered loci identified as 

part of the HISLA Stage 1 meta-analysis or trans-ethnic meta-analysis, and in established loci. 

For the established loci, we included index SNP-associations published as of April 2018 (BMI38; 

41; 44; 46-48; 50; 52; 55-58, Height39; 54; 60, WHRadjBMI40; 41; 48; 50; 67) prior to the publications with the UKBB 

results.42; 43 We used a 1Mb region subset of the summary statistics from the Stage 1 meta-

analyses and HCHS/SOL10 unrelated sample set (N ~ 7,670) to calculate the LD for each locus.   
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For trans-ethnic fine-mapping of the novel loci and signals identified in the trans-ethnic 

meta-analysis of HISLA, AAAGC, and GIANT, we used a 1Mb region defining each locus using 

the summary statistics of the given meta-analysis. We calculated the LD for Hispanic/Latino 

samples using the HCHS/SOL10 unrelated sample (N ~ 7,670). For African and European 

ancestry samples, we calculated the LD using the ARIC unrelated sample that included self-

reported African ancestry (N ~ 2,800) and European ancestry (N ~ 9,700). We weighted the LD 

matrices by the GWAS sample sizes for each trait (HISLA range: ~42,400-56,100; AAAGC: 

20,300-42,700; GIANT: 210,000-330,000).  

All regions allowed up to a maximum of 10 causal variants. The cumulative 95th% credible 

set was calculated from the estimated posterior probabilities. Convergence failed for three regions 

(lead SNPs: rs2902635, rs6900530, and rs4425978, all in known height loci) using the stochastic 

approach. For these three regions, we used the conditional approach to determine number of 

causal variants. 

 

Gene Expression & Other Bioinformatic Analyses  
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To assess for potential validation of our potentially novel or validated HISLA hits, we 

performed association analyses of measured whole blood gene expression in 606 individuals 

from Cameron County Hispanic Cohort.68 RNA sequencing was conducted using 150bp paired-

end reads on the Illumina NovaSeq 6000 by Vanderbilt Technologies for Advanced Genomics. 

Initial sequencing quality was checked by FastQC.69 STAR-2.7.8a was applied to align 

sequencing reads alignment to the human genome reference (UCSC, hg38),70 and the aligned 

reads were assigned to genes using featureCounts.71 We excluded either samples with less 

than 15M total aligned reads, a rate of successful alignment of less than 20%, or less than 15M 

total assigned reads. The sequencing library size was normalized using DESeq272 and read 

counts were transformed using variance stabilizing transformations (vst in DESeq2 package). 

We performed expression quantitative trait loci (eQTL) analysis with our top HISLA SNP 

findings, by modeling SNP dosages (exposure) in a linear regression of gene expression levels 

(outcomes), for each gene within the 1 MB interval around each lead SNP.  We inverse 

normalized the gene expression levels and adjusted for age, sex, and three principal 

components to capture population substructure. Bonferroni correction for each region varied 

according to the number of SNPs tested.  

To gain further insight into the possible functional role of the identified variants and to 

assess their relevance to other phenotypes, we conducted bioinformatics queries of our 

potentially novel loci and novel signals within known loci in multiple publicly available databases, 

including PhenoScanner,73 RegulomeDB,74 Haploreg,75 UCSC GenomeBrowser,76 and GTEx.77 

 

Trans-Ethnic Findings to Account for Population Structure in Previous GWAS 

To quantify the impact of population stratification, we computed the correlation between 

PC loadings and beta effects estimated from GWAS. We first conducted PCA analysis on the 

four European populations (CEU, GBR, IBS, and TSI) from 1000 Genomes. We excluded the 

FIN (Finnish in Finland) population because of its known unique demographic history.38  We 

only used biallelic SNPs with minor allele frequency (MAF) > 5% in the four European 

populations, and then pruned them by both distance and LD using PLINK 1.9.78 Specifically, we 

pruned the dataset such that no two SNPs were closer than 2 kb, and then pruned using a 50 

SNP LD window (moving in steps of 5 SNPs), such that no SNPs had r2>0.2. We further 

removed SNPs in regions of long-range LD.79 PCA was performed on the remaining SNPs using 

Eigensoft version 7.2.1(https://github.com/DReichLab/EIG/archive/v7.2.1.tar.gz).  
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We performed linear regressions of individual PC values on the allelic genotype count 

for each polymorphic variant in the four European populations from 1000 Genomes and used 

the resulting regression coefficients as the estimate of the variant’s PC loading. For each PC, 

we then computed Pearson correlation coefficients of PC loadings and effect sizes (of variants 

with MAF>1%) from each GWAS summary statistics. We estimated P-values based on 

Jackknife standard errors, by splitting the genome into 1,000 blocks with an equal number of 

variants. If there was significant correlation in either the GIANT dataset or the HISLA Stage 1, 

AAAGC and GIANT trans-ethnic meta-analysis, we then further evaluated the improvement of 

bias due to stratification in trans-ethnic meta-analysis by comparing the correlation coefficients 

in the trans-ethnic meta-analysis with those in GIANT. Restricting to variants shared between 

GIANT and the trans-ethnic meta-analysis, we computed their difference in correlation 

coefficients of PC loadings and effect sizes, and estimated P-values again based on Jackknife 

standard errors from 1,000 equal sized blocks.   
 

RESULTS 

 

One Novel BMI Locus Discovered and Validated in Hispanic/Latino Adults  

 The first goal of this study was to conduct a genome-wide meta-analysis of 

anthropometric traits in Hispanic/Latino adults to identify novel loci in an under-studied 

population (Figure 1). All regional plots of all GWAS-significant HISLA Stage 1 findings are 

shown in the supplement (Figures S1-6). No novel loci were identified in all samples combined. 

Yet, when excluding the Brazilian or Native American samples from Stage 1, we discovered one 

locus for adult BMI at PAX3 on chromosome 2 in the HISLA Stage 1 sample (Table S7), and we 

validated this locus in HISLA Stage 2 (Table 1). The lead SNP, rs994108, is in moderate LD 

(rs7559271, r2=0.46, D’=1.0 in 1000 Genomes phase 3 AMR) (Figure 2) and lies on the same 

haplotype as a SNP reported to influence facial morphology, including position of the nasion 

(the deepest point on the nasal bridge where the nose meets the forehead) in Europeans80 and 

Hispanic/Latino81 descent individuals. Other PAX3 variants in lower LD with the lead SNP have 

also been associated with nasion position,82 monobrow, and male-pattern baldness.83; 84 PAX3 

is a well-known transcription factor in normal embryonic neural crest development and 

differentiation.85  Neural crest cells can give rise to mesenchymal stem cells,86 which can in turn 

give rise to adipocytes;86-88 thus, the possible role of PAX3 in adipogenesis may at least partially 

explain the association signal with BMI near this gene. Another BMI SNP (rs1505851) near 
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ARRDC3 on chromosome 5 found at GWAS significance in HISLA Stage 1 (Table S7, Figure 

S1) did not validate in Stage 2 (Table 1).  

  We identified two WHRadjBMI loci at DOCK2 and TAOK3 at GWAS significance in 

HISLA Stage 1 after excluding the Brazilian and Native American samples (Table S7, Figures 

S2-S3), and neither met the p-value threshold for replication and  in HISLA Stage 2. The 

DOCK2 association for WHRadjBMI was observed among women in Stage 1was, however, 

directionally consistent among women in Stage 2. The TAOK3 association was led by a low 

frequency variant (rs115981023) that was not directionally consistent across Stages. 

rs115981023 exhibited moderate heterogeneity across Stage 1 samples after excluding 

Brazilian and Native American samples (I2=45%), and this heterogeneity remained (I2=52%) in 

the combined meta-analysis of HISLA Stage 1 and 2 samples (Table 1).  

No potentially novel loci were identified for height in HISLA Stage 1, and the exclusion of 

the Brazilian and Native American samples did not reveal additional novel height or WHRadjBMI 

loci.   

 

Three Novel Signals in Established Loci for BMI and Height Discovered and Validated in 

Hispanic/Latino Adults 

At two established loci for BMI, we identified new signals at ADCY5 and near C6orf106, 

which has recently been renamed ILRUN (Table S7). These signals were both independent of 

any previously published anthropometric findings (Table S8, Figures S4-5). We validated these 

signals in Stage 2 with directional consistency and the combined Stage 1+2 meta-analysis at 

GWAS significance (Table 1).  We also identified one new signal for height in an established 

height locus, B4GALNT3, which was independent of the previously reported SNPs for height 

(Tables S7-8, Figure S6).  We validated this signal in Stage 2 with directional consistency and 

a Stage 1+2 meta-analysis that was GWAS significant (Table 1). In additional gene expression 

and bioinformatics analyses (Table S18-20), we found that each of the three novel signals in an 

established anthropometric loci is supported by either an eQTL in whole blood in 

Hispanic/Latino populations (Table S18), and/or an in eQTL other tissues from publicly available 

(non-Hispanic/Latino) datasets, e.g., thyroid, esophagus, artery (Table S19-20). 

 

Fine-Mapping of Novel Adult Hispanic/Latino Anthropometric Findings 

We fine-mapped using 1MB regions, the novel PAX3 locus for BMI and three new 

signals in known loci discovered and replicated in Stages 1+2 (BMI: ADCY5 and C6orf106; 

height: B4GALNT3; Table S9). For the three BMI loci, FINEMAP revealed one potential causal 
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set for each locus at PAX3, ADCY5, and C6orf106 locus. For the PAX3 locus, only one causal 

set was proposed and the 95th% credible contained only nine plausibly causal SNPs, with lead 

SNP rs994108 having a very high posterior probability of being causal (0.89, Table S21). 

However, functional annotation of this SNP was unremarkable (Tables S22-23). In contrast, for 

ADCY5 and C6orf106, FINEMAP revealed one causal configuration for each locus but with 

much greater uncertainty with respect to the likely functional variant given the size of the 

credible sets, 14 and 22 SNPs in the credible region for ADCY5 and C6orf106, respectively.  

The posterior probability of the best lead SNP at these loci had relatively low posterior 

probabilities of being the causal SNP, with the best posterior probabilities of 0.23 for 

rs17361324 (ADCY5), and 0.11 for rs73420913 (C6orf106), respectively. Interestingly, however, 

the best candidate for causality at PAX3 and ADCY5 loci were the lead SNPs from the HISLA 

meta-analysis  and for C6orf106, the FINEMAP and HISLA SNPs were in tight LD (rs73420913 

had an r2=0.96 with the lead HISLA SNP rs148899910), providing greater support for the 

prioritization of these SNPs for functional interrogation. For the B4GALNT3 locus for height, 

FINEMAP revealed six causal configurations.  Four of the variants (rs11063185, rs215230, 

rs7303572, and rs11063184 with each configuration each had a posterior probability >0.99 and 

contained only itself in the 95% credible set.  One variant (rs215223) had a posterior probability 

of 0.93 and thus included two variants in the 95% credible set.  The sixth 95% credible set had a 

lead variant with a posterior probability of 45%, but contained a total of 1621 additional variants 

all of which had very small posterior probabilities (i.e., ≤0.05). 

 

Transferability of Adult Novel Loci/Signals from Hispanic/Latinos to Consortia of Other 

Ancestral Backgrounds  

 To assess how well the effect estimates are transferable (generalizable) to other 

populations, we looked up the novel BMI and height findings from Hispanic/Latinos in the AAAGC 

and GIANT meta-analysis results (Table 1). Keeping limitations with respect to sample size, LD, 

allele frequency, and effect size heterogeneity in mind, we did observe directionally consistent 

BMI effects at the PAX3 locus in the other consortia, although without observing nominal 

significance. The new BMI signals at the ADCY5 locus (rs17361324) transferred to both AAAGC 

and GIANT with directional consistency (betas=0.13-0.23) and nominal significance (P-

values<5x10-2). The BMI lead SNP (rs148899910) representing a novel signal near C6orf106 was 

available in AAAGC, the signal only appeared to be transferable to GIANT at a proxy SNP 

(rs1573905, r2=0.96-1 in 1000 Genomes AMR and EUR; Table 1).   
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The new signal for height in B4GALNT3 (rs215226) was directionally consistent and 

nominally significant in AAAGC. In all cases the effect sizes observed in GIANT and AAAGC were 

attenuated compared to the effect sizes from HISLA Stage 1. 

 

Relevance of Novel Hispanic/Latino Anthropometric Loci/Signals from Adults to 

Childhood/Adolescence  

We looked up our novel HISLA findings in Hispanic/Latino children/adolescents using 

BMI-for-age and height-for-age z-scores, as well as a case-control study of childhood obesity. 

Two of the three novel BMI signals were directionally consistent with the anticipated effect on 

the odds of obesity during childhood/adolescence, one of which was nominally significant 

(rs17361324 at ADCY5; P-value=2.2x10-2). None of the novel HISLA findings generalized at 

nominal significance with the BMI/height-for-age z-score, but were directionally consistent with 

the corresponding effect in adulthood (Table S10). This may have been due to the small 

available sample size of Hispanic/Latino children/adolescents. 

 

Transferability of Established Anthropometric Loci to Hispanic/Latino Adults 

 Using HISLA Stage 1 results, we assessed how many established anthropometric loci, 

discovered in predominantly non-Hispanic/Latino samples could be transferred to 

Hispanic/Latino adults, given the current sample size.  As shown in Table S11, the index SNPs 

at 332 of 1280 (25.9%) previously reported BMI loci were transferable to Hispanic/Latinos. Of 

these BMI loci, 13 SNPs in the HISLA Stage 1 displayed genome-wide significant associations 

with the SNP reported in the literature (Table S7). Table S12 shows that a slightly higher 

percentage of known height loci (1177 of 3925, or 30.0%) were transferable to Hispanic/Latinos. 

Forty-nine height loci displayed a genome wide significant association with height in the 

surrounding 1 MB interval in HISLA Stage 1 (Table S7), with 44 of 49 SNPs being the exact 

index SNP from the literature (Table S11). Lastly, Tables S13-15 show that 143 of 754 (19.0%) 

known WHRadjBMI in both sexes combined, 103 of 504 (20.4%) in women only, and 28 of 186 

(15.1%) in men only loci were transferable to Hispanic/Latinos. However, none of the index 

SNPs from the previous literature for WHRadjBMI reached genome-wide significance. We did 

observe genome-wide significant evidence for association of a SNP with WHRadjBMI in the 1 

MB interval of one known region (HOXC13), although not replicating the exact previously 

reported index SNP (Table S7). 
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Five Novel Loci and Thirty-three New Signals in Established Loci for Adult 

Anthropometric Traits Discovered and Replicated in a Trans-Ethnic Meta-Analytic 

Context  

As shown in Figure 1, we pursued a secondary goal of assembling a trans-ethnic meta-

analysis of HISLA Stage 1 with the AAAGC and GIANT consortia results to attempt to further 

leverage differences in allele frequencies across populations to identify additional novel loci and 

fine-map established loci. As anticipated, this trans-ethnic meta-analysis revealed eight new loci 

and 35 new signals in established loci that were associated at GWAS significance in the 

combined HISLA, AAAGC and GIANT meta-analysis (Table S16, Figures S7-S52), and 

independent of established SNPs within a 10Mb region (Table 2). Of this set, five new loci (3 

BMI, 1 height, and 1 WHRadjBMI) and 33 new signals in established loci (3 BMI, 28 Height, and 

2 WHRadjBMI) were validated using the adult British subsample of the UKBB. In some cases, 

the significance in the trans-ethnic results had additional signal driven more by the AAAGC 

and/or HISLA consortia, which could explain the lack of association in the UKBB British 

subsample (Table S16, Figure S53).  We looked up the potentially novel findings from our 

trans-ethnic meta-analyses in the sample of Hispanic/Latino children/adolescents (Table S17). 

Four trans-ethnic SNPs were associated at nominal significance in the child/adolescent sample, 

each having been already replicated in UKBB (Table S16). Three of these four loci were 

directionally consistent in the childhood/adolescence results with the trans-ethnic adult findings 

(Table S17). In summary, we found that two of the seven novel BMI/height trans-ethnic loci and 

17 of the 33 new trans-ethnic BMI/height signals in established loci were directionally consistent 

between their adult directions of association and the BMI/height-for-age z-scores in 

children/adolescents. However, this directional consistency was not more than what would have 

been expected by chance alone (P-valuesbinomial>0.10).  

 

Fine-Mapping of Trans-Ethnic Anthropometric Findings 

We also fine-mapped the novel trans-ethnic findings (Table S21) using FINEMAP66 to 

pinpoint individual variants and genes within each locus region that have a direct effect on the 

trait.  FINEMAP uses a shotgun stochastic search algorithm89 that iterates through causal 

configurations of SNPs by concentrating efforts on the configurations with non-negligible 

probability.  Within a 1MB region which was a novel locus for the given trait, or included a new 

signal within a known locus, we report the causal configuration of SNPs with highest posterior 

probability and the posterior probability that each of these SNPs is causal.  
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For four of the five novel loci (three for BMI and one for WHRadjBMI) there was one 

SNP within the configuration with the highest posterior probability.  For the novel height locus 

near ANKRD36BP1, there were two SNPs in the configuration with the highest posterior 

probability.  In all five novel loci, the SNP with the highest posterior probability from each of 

these credible sets was either the exact SNP with the strongest GWAS evidence or in high LD 

(r2 between 0.70 and 0.99 in each ancestry) with the lead GWAS SNP.  Two of these five 

regions had strong prioritization given high posterior probabilities (≥0.8) and small 95th% 

credible sets: 1) for BMI, the CTD-2007H13.3 region had a posterior probability of 0.88 for 

rs150992 with three SNPs in the credible set, and 2) for height, the ANKRS36BP1 region had a 

posterior probability of 0.93 for rs10737541 with five SNPs in the credible set. From the 

functional annotations (Table S22 and S23), we find that all three of the BMI loci, the height and 

WHRadjBMI loci have enhancer marks and eQTLs, most of which are in relevant tissues, e.g., 

adipose, muscle, thyroid, or brain.   

For the other novel trans-ethnic loci, the posterior probabilities were lower, between 0.09 

and 0.42; yet, four loci (rs9860730, rs17375290, rs4324883, and rs9463108) still had relatively 

few SNPs (<10) in the 95th% credible sets suggesting a narrow window (combination of 

variants) around the causal variant.  For example, functional annotations of rs17375290 lead 

GWAS SNP in the NFIA locus associated with height, show it to have promoter markers in 

muscle, CADD score of 13.29 (CADD > 10 ranks variants among the top 10% potentially 

deleterious), and an eQTL with FGGY in Osteoclast tissue (Table S22 and S23). Three of the 

other SNPs in the credible set (rs599989, rs1762881, and rs17121184) have nominally 

significant (p-value 0.01 to 0.005) eQTLs with FGGY in osteoclast tissue but are not in high LD 

with rs17375290 (r2 range from 0.03 to 0.1).  Diseases associated with FGGY include Lateral 

Sclerosis and Spastic Paraplegia 7, Autosomal Recessive, which is known to affect height.  

Within the 33 novel trans-ethnic signals in known loci, 31 had configurations with more 

than one putative causal SNP (e.g. more than one credible set).  This made sense given these 

are loci with multiple independent signals, as described by our earlier conditional analyses.  

Among the putative causal SNPs within each locus, there were a number of SNPs that 

represented previously-known signals (either the exact SNP or something in high LD among all 

ancestries).  We found that for many of these the credible sets contained <10 SNPs.  Among 

the 33 novel signals in known loci, 26 included a putative causal SNP that is the lead GWAS 

SNP reported here or a SNP in high LD (r2 > 0.75) with the lead GWAS SNP, suggesting 

causality for this signal in general, though perhaps maybe not initially discovered at the most-

putatively-causal SNP(s).  For these 24 putatively-causal SNPs, the posterior probabilities 
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ranged from 0.09 to 1.  Twenty-two of these SNPs had 95th% credible sets that contained <10 

SNPs and 15 also had posterior probability ≥0.8.  

Many have functional annotations that help support the fine-mapping results (Table S22-

S23).  For example, we find eQTLs for the three BMI signals (and enhancer marks for 

rs4807179) in relevant tissues including adipose, brain, muscle, and/or thyroid.  The lead SNPs 

of these credible sets had posterior probabilities >0.75 and the credible sets included <10 

SNPs.  Of the 28 newly identified height signals, we find 13 putatively-causal SNPs that are the 

lead GWAS SNP or are in high LD (r2 > 0.75) with it, have <10 SNPs in the credible set and 

have eQTLs in relevant tissues including muscle, thyroid, adipose, lung and osteoclasts.  Some 

also have promoter or enhancer marks in some of the same tissues.  For the two WHRadjBMI 

signals, both have three SNPs in the most probably causal configurations.  One of these causal 

SNPs for each region is either the lead GWAS SNP (rs7975017) or a SNP in high LD 

(rs17099388 and rs6895040 LD: AFR R2=1.0; AMR R2=1.0; EUR R2=1.0), has a posterior 

probability ≥0.95, and is the only SNP in the credible set.  Furthermore, for rs7975017 we find 

eQTLs in thyroid for multiple genes (BHLHE41, SSPN, and AC022509.3) and enhancer marks 

in multiple tissues including those related to the WHRadjBMI trait, e.g., thyroid, muscle, fat, 

bone, and adrenal gland. Overall, across many of the novel loci and secondary signals, 

FINEMAP revealed SNPs with somewhat strong prioritization (posterior probability ≥0.8) and at 

some loci putatively-causal SNPs have small 95th% credible sets thus demonstrating the utility 

of trans-ethnic approaches to fine mapping GWAS loci.  

 

Trans-Ethnic Findings to Account for Population Structure in Previous GWAS 

The first two PCs in the PCA (Figure S54) reflect geographical or population structure in 

Europe, corresponding to the North-South and Southeast-Southwest axes of variation, 

respectively. We found that the bias in effect size estimates due to stratification is most obvious 

for height as the phenotype is known to be differentiated across Europe.90-92  Effect sizes on 

height estimated from the GIANT and our trans-ethnic meta-analysis were both highly correlated 

with the loadings of the first PCA (rho = 0.125, P-value= 3.2x10-94 in GIANT; rho = 0.105, P-

value= 3.4x10-70 in meta-analysis). The correlation was much lower in AAAGC and HISLA (rho 

= 0.012, P-value= 2.17x10-4 in AAAGC; rho = 0.007, P-value= 9.2x10-2 in HISLA; Figure 4A). 

Importantly, the magnitude of correlation was lessened in meta-analysis compared with GIANT 

(P-value= 6.6x10-9). Other traits were not a priori known to be as differentiated across Europe 

as height, and thus the degree of correlation between effect sizes and PC loadings are much 

lower in GIANT (e.g. rho = -0.025 for BMI; Figure 4B-E). 
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DISCUSSION 

Hispanic/Latinos are a unique population with continental admixture from the Americas, 

Africa and Europe11-15 and population of great interest for anthropometric studies. Here, we 

present results from a large-scale meta-analysis of anthropometric traits in Hispanics/Latinos. 

As the first of its kind, we have assembled a large sample of Hispanics/Latinos to map a total of 

six novel loci and 36 novel signals using both Hispanic/Latino population-specific and trans-

ethnic discovery efforts (Figure 1). More than 1,600 anthropometric-SNP associations were 

transferable at nominal significance to Hispanics/Latinos—representing between 19-30% of all 

index sex-combined SNP-anthropometric associations (Tables S11-13). Sixty-seven previously 

reported loci reached GWAS significance at the same index or another lead SNP in our 

Hispanic/Latino adult sample (Table S7). Moreover, we established that four of seven of our 

novel HISLA findings were transferable to other ancestral populations at nominal significance. 

We note that even though these findings provide additional evidence for transferability of 

common loci for anthropometrics,93 still a number of previously-reported anthropometric loci 

may not be transferable to this population in part due to variability in allele frequencies or effect 

sizes across ancestral populations.59  

Our conditional and fine-mapping analyses revealed 36 novel signals in established 

anthropometric loci, which independently replicated in HISLA Stage 2 or the UKBB British 

subsample. In addition, our lead SNPs for the novel BMI signals discovered at ADCY5 (from the 

HISLA meta-analysis) and ADAMTS9-AS2 (from the trans-ethnic meta-analysis) are both 

nominally associated with obesity status between 2-18 years of age. Three of our new trans-

ethnic signals in established height loci also displayed association with height-for-age z-scores 

in children/adolescents between 5-18 years of age. These observations support our premise 

that diverse and trans-ethnic studies represent a valuable tool for identifying multiple signals 

and fine-mapping in established association regions. This was done with the overarching goal of 

identifying putative variants that will account for some of the missing heritability of complex 

diseases and reveal candidate genes and SNPs for functional follow-up.  

In light of the notable ancestral, geographical or environmental diversity of the studies 

analyzed in our meta-analyses, we observed evidence of allele frequency differences for many 

of our novel discoveries (Figure 3 and Figure S53). Similar to reports from other diverse 

genome-wide analyses,59 in some cases this allele frequency heterogeneity may drive the 

apparent heterogeneity effect across consortia in our HISLA, AAAGC, and GIANT meta-

analysis (e.g., IGF2BP2 I2=78.7; MY06 with I2=84.4, Tables 2 and S16). These observations 
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reinforce how studies of one predominant ancestry group, such as Europeans, may fail to 

identify novel loci or, more likely, new signals in known loci (given how many known loci there 

are currently) with allele frequency differences across ancestral populations.   

Residual uncorrected stratification in GWAS could result in biased estimates of effect 

sizes.39 For example, effect sizes on height from GIANT were reported to be significantly 

correlated with North-South axis of variation in Europe suggesting residual uncorrected 

stratification,92; 94; 95 which we also observe here. Note that the residual stratification effect is 

subtle, and while the effect sizes may be biased, this does not imply the identified associations 

are spurious. For example, compared with effect sizes on height from UKBB, which is based on 

a single homogeneous population and results in better control of population stratification, the 

genetic correlation between GIANT and UKBB was 0.94.92  

Of the three traits studied here, height is the most stratified in Europe. The correlation 

coefficient between effect sizes on height and PC loadings reached 0.125 in the GIANT only for 

PC1, while it was much smaller for other traits (e.g., the maximum |rho| = 0.042 in GIANT on WHR 

using only males on PC1). The decrease in bias in trans-ethnic meta-analysis was also obvious 

in height. The correlation with PC1 was non-significant in HISLA (rho = 0.007) and statistically 

significant but weak in AAAGC (rho = 0.012), consistent with a decreased impact of European 

population stratification on the estimate of effect size in AAAGC and HISLA. This decreased 

correlation could be due to large non-European ancestries known in these populations (Africans 

and Native Americans, respectively) that are less affected by population stratification in Europe; 

it could also be that by using European ancestry based loadings we are less likely to detect non-

European based population stratification patterns or that smaller sample sizes in these cohorts 

resulting in greater noise in effect size estimates. Regardless of the reason, compared to GIANT 

alone, trans-ethnic meta-analysis of the three cohorts showed less impact of uncorrected 

stratification in effect size estimates, even though the sample size in AAAGC and HISLA are 

comparably small. For other traits, the conclusions are qualitatively similar: that trans-ethnic meta-

analysis lessened the bias due to stratification, even though the bias in GIANT was not as strong 

in the first place.  

As described above, in this study we were able to 1) discover six novel loci with a 

notably smaller analytic size than other anthropometric consortia like GIANT, 2) describe 36 

new signals in established loci in HISLA or our trans-ethnic meta-analysis, and 3) generate 

trans-ethnic effect estimates with better control for population structure. Taken together, these 

findings indicate the added value of building large, more diverse GWAS in the near future.  
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Gene expression and bioinformatic analyses of our population-specific (Table S18-S20) 

and trans-ethnic findings in newly discovered loci gave us important insights into the underlying 

biology of obesity, bone development and growth (Tables S22-S23). For example, the 

previously reported BMI locus C6orf106 has also been associated with adult height96; 97 and 

height change during puberty.98 The first BMI signal described at C6orf106 was at index SNP, 

rs205262, an eQTL for another gene within the region, SNRPC, in European ancestry 

samples.38  A second signal (rs75398113) has also been reported at SNRPC for extremes of 

the body mass index distribution.99 Yet, our novel signal led by rs148899910 is more than 300kb 

away and in low LD with these two index SNPs (r2=0.01-0.05 in AMR). More recently, 

rs148899910 has been associated with height in Korean women.100 Using whole blood gene 

expression data from 606 participants of the Cameron County Hispanic Cohort, we find 

evidence that our novel BMI signal at rs148899910 is an eQTL for increased gene expression of 

C6orf1 (p-value=3x10-7) and not any other genes in the region (Table S18).  

In general, the lead SNPs from our HISLA only meta-analyses appear relatively benign 

(not pathogenic) based on CADD and FATHMM-XF scores (Table S20). All SNPs potentially 

change motifs. Both rs17361324 (ADCY5) and rs215226 (B4GALNT3) have enhancer and 

promoter histone marks and eQTLs in the respective genes in relevant tissues.  For BMI, there 

is an eQTL for rs17361324-ADCY5 in thyroid, and ADCY5 has been previously associated with 

type 2 diabetes,101 BMI,102 central obesity traits,43 height,51 birth outcomes,103-105 and a number 

of other phenotypes. Additionally, rs17361324 is proximate to an ADCY5 intronic variant 

(rs1093467, r²=0.3 in 1000 Genomes AMR) that is highly conserved across species (Haploreg 

v4.1). For height, there is an eQTL for rs215226-B4GALNT3 in aortic, and coronary arteries, 

and tibial nerve. The lead SNP for the height signal in B4GALNT3, rs215226, has enhancer 

histone marks in bone and muscle, and promoter marks in muscle tissue.  In addition, the 

variant rs215226 (B4GALNT3) has a posterior probability of 1 for causality in FINEMAP 

analyses (see Table S9).  Other interesting information about these regions is provided in Table 

S19. 

The lead SNPs at our newly discovered trans-ethnic loci were mainly located in intronic 

and intergenic regions (Table S22) and were benign. One exception was the novel locus 

C11orf63 associated with height led by rs11605693, which showed pathogenic scores for CADD 

and FATHMM-XF (CADD score=17.1 and FATHMM-XF score=0.87). This lead SNP has an 

eQTL in C11orf63 for adipose, tibial nerve, and testis. C11orf63, junctional cadherin complex 

regulator, is responsible for ependymal cells that line the brain and spinal cord.  
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Among the trans-ethnic findings, a new signal at a known locus for BMI, rs10540 at 

RNH1, has a posterior probability of 0.82 as one of two causal variants in the locus, and is an 

eQTL for a wide range of tissues and genes (see Tables S21 and S23), potentially making it 

relevant to body mass. A new signal in a known locus for height, led by rs12918773 that has a 

posterior probability of 0.98 and is one of four casual variants suggested from fine-mapping in 

the locus (Table S21), has an eQTL (in lung, thyroid, tibial nerve and artery, breast, testis) with 

CDK10, a gene also associated with growth retardation.106 In addition, rs1342330, another new 

signal in a known height locus, has a low regulomeDB score at 2b and several enhancer and 

promoter histone marks in relevant tissues (Tables S22). As an intronic variant, it is an eQTL in 

the pancreas with PHACTR2 (Table S23), a gene associated with body dysmorphic disorder.107 

While many of the novel loci/signals appeared to be benign based on CADD and FATHMM-XF 

scores, they still show enhancer and promoter histone marks in trait relevant tissues such as 

adipose, bone, and muscle, thymus, brain, and adrenal gland.   

Large-scale analyses of diverse populations hold great potential for advancing the field 

of genetic epidemiology.59 This study illustrates how studying admixed populations, like 

Hispanic/Latinos, and leveraging them in trans-ethnic epidemiologic investigations, can yield 

additional insights into the genetic architecture of anthropometric traits. Future discovery efforts 

in Hispanic/Latino populations and with other diverse populations will address the research gap 

between who is studied and who is affected by conditions like obesity, to the benefit of both 

public health and precision medicine.  
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Supplemental Data  

Supplemental Data include 23 tables and 54 figures. 
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Figure Titles and Legends 
 
Figure 1. Flowchart of the design and discovery of 6 novel loci and 36 novel signals in 

known loci in the Hispanic/Latino Anthropometry Consortium (HISLA) Meta-Analysis and 

the Trans-Ethnic Meta-Analysis of HISLA and Consortia of Other Ancestral Heritages 

*Stage 1 maximum sample sizes varied between and 59,771 for BMI, 56,161 for height, and 
42,455 for WHRadjBMI (sex combined). **Stage 2 sample sizes varied between 10,538 for BMI, 
8,110 for height, and 4,393 for WHRadjBMI (sex combined). Actual sample sizes may vary by 
SNP.  ***The BMI and height-for-age z-score models were conducted using up to 1,914 and 
1,945 of children/adolescents, respectively. In contrast, the obesity case-control study 
compared up to 1,814 children/adolescents who were either ≥95th versus ≤50th BMI-for-age 
percentiles 
 
Figure 2. Regional plot, unconditioned (A) and conditioned (B), of the novel PAX3 locus 
associated with body mass index (BMI) in the Hispanic/Latino Anthropometry 
Consortium (HISLA), excluding Brazilian and Native American samples.  Linkage 
disequilibrium patterns are based on rs994108 (shown by the purple triangle) from the 
Hispanic Communities in Health Study/Study of Latinos. 
 
Figure 3. Variability in HISLA Stage 1+2, GIANT, and AAAGC P-values, Effect Sizes and 
Risk Allele Frequencies. 
 
Hispanic/Latino Anthropometry Consortium (HISLA); African American Anthropometry Genetics 
Consortium (AAAGC); Genetic Investigation of ANthropometric Traits (GIANT); WHRadjBMI - 
waist to hip ratio adjusted for BMI.  *Asterisks indicating a SNPs that were significant either as a 
novel locus or new signals in a known locus. 
 
Figure 4. Correlations (rho) between effect estimates and the loadings of the principal 
components 1-5 in each consortia (HISLA, AAAGC, GIANT) and the meta-analysis of all 3 
consortia (Meta) by trait. (A) height, (B) BMI, (C) Waist-to-hip ratio adjusted for BMI 
(WHRadjBMI) for men and women combined, (D) WHRadjBMI for women only, (E) 
WHRadjBMI for men only. 
 
Hispanic/Latino Anthropometry Consortium (HISLA); African American Anthropometry Genetics 
Consortium (AAAGC); Genetic Investigation of ANthropometric Traits (GIANT); WHRadjBMI - 
waist to hip ratio adjusted for BMI 
 
 
Table Titles and Legends  
 
Table 1. Potential novel loci and new signals in known loci from the Stage 1: Adult HISLA 
Discovery combined with results from the Stage 2: Adult HISLA Validation.1  In addition, 
lookup of results of each locus from the AAAGC and GIANT. 
Abbreviations: Chr - chromosome; EAF - effect allele frequency; HetIsq - heterogeneity I-
square; N - sample size; WHRadjBMI - waist to hip ratio adjusted for BMI; AAAGC- African 
American Anthropometry Genetics Consotrium; GIANT- Genetic Investigation of 
ANthropometric Traits 1 All studies were meta-analyzed using METAL (PMID 20616382), with 
each study entered individuals into Stage 1+2 analyses.2 These BMI and WHRadjBMI analyses 
did not include Brazilian and/or Native American samples. 3 New loci or signals are those that 
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were validated by HISLA stage 2 results that are directionally consistent with Stage 1 and 
remaining genome-wide significant after meta-analysis with Stage 1. 
4 Proxy GIANT, rs1573905 (r2= 0.96 AMR) 
 
Table 2. Novel loci and new signals in established loci by trait from a meta-analyses of 
HISLA, AAAGC, and GIANT. 
Abbreviations: Chr - chromosome; EAF - effect allele frequency; HetIsq - heterogeneity I-
square; N - sample size; WHRadjBMI - waist to hip ratio adjusted for BMI; AAAGC- African 
American Anthropometry Genetics Consotrium; GIANT- Genetic Investigation of 
ANthropometric Traits 1 Each novel locus was defined by the absence of known (previously 
published) SNPs within 1Mb (+/-500 Kb) of the lead SNP. 
2 Each known locus was defined by a 1Mb region around previously identified SNP(s) for the 
indicated trait; the known SNP(s), P<5e-8, at each established locus can be found in Table S16. 
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Figure 2. Regional plot, unconditioned (A) and conditioned (B), of the novel PAX3
locus associated with body mass index (BMI) in the Hispanic/Latino 
Anthropometry Consortium (HISLA), excluding Brazilian and Native American 
samples.  Linkage disequilibrium patterns are based on rs994108 (shown by the 
purple triangle) from the Hispanic Communities in Health Study/Study of Latinos. 

A. PAX3 locus associated with BMI

B.
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Figure 3. Variability in HISLA Stage 1+2, AAAGC, and GIANT P-values, Effect Sizes and Coded Allele 
Frequencies for Genome-Wide Significant Anthropometric Loci from HISLA Stage 1.  
Hispanic/Latino Anthropometry Consortium (HISLA); African American Anthropometry Genetics Consortium (AAAGC); Genetic 
Investigation of ANthropometric Traits (GIANT); WHRadjBMI - waist to hip ratio adjusted for BMI. *Asterisks indicating a SNPs that 
were significant either as a novel locus or new signals in a known locus.
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Figure 4. Correlations (rho) between effect estimates and the loadings of the principal 
components 1-5 in each consortia and the meta-analysis of all 3 consortia by trait. (A) 
height, (B) BMI, (C) Waist-to-hip ratio adjusted for BMI (WHRadjBMI) for men and women 
combined, (D) WHRadjBMI for women only, (E) WHRadjBMI for men only.
Hispanic/Latino Anthropometry Consortium (HISLA); African American Anthropometry Genetics Consortium (AAAGC); Genetic 
Investigation of ANthropometric Traits (GIANT); WHRadjBMI - waist to hip ratio adjusted for BMI
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Trait
Locus 
Name

SNP rsid
Genomic 

region
Chr

Position 
(hg19)

Effect/ Other 
Alleles

Stage EAF Beta SE P-value HetISq N Yes/ No

Novel loci  
Stage 1: Discovery 0.390 0.041 0.007 1.62E-08 0 43048
Stage 2: Validation 0.394 0.030 0.016 5.65E-02 8 9336

Stage 1 + 2 0.389 0.038 0.006 2.19E-09 0 52384
AAAGC 0.526 0.007 0.007 3.26E-01 0 42751
GIANT 0.342 0.0001 0.004 9.81E-01 - 233955

Stage 1: Discovery 0.741 0.041 0.007 2.287E-08 0 52365
Stage 2: Validation 0.709 0.005 0.017 7.62E-01 33.3 9336

Stage 1 + 2 0.735 0.035 0.007 1.16E-07 14.1 61701
AAAGC 0.307 0.027 0.008 7.00E-04 46.6 42752
GIANT 0.680 0 0.004 7.90E-01 - 233999

Stage 1: Discovery 0.520 0.060 0.010 1.02E-08 0 18591
Stage 2: Validation 0.526 0.013 0.028 6.54E-01 28.7 2747

Stage 1 + 2 0.515 0.049 0.0093 1.57E-07 1.9 23382
AAAGC 0.440 0.012 0.012 3.09E-01 0 15600
GIANT 0.610 0.0025 0.005 6.30E-01 - 86317

Stage 1: Discovery 0.009 0.328 0.057 1.08E-08 44.8 19640
Stage 2: Validation 0.004 -0.339 0.687 6.22E-01 0 1340

Stage 1 + 2 0.009 0.308 0.057 5.18E-08 52 20980
AAAGC 0.050 0.027 0.027 3.07E-01 0 15601
GIANT 0.002 no proxy

New signals in known loci  
Stage 1: Discovery 0.280 0.042 0.008 2.60E-08 0 43333
Stage 2: Validation 0.269 0.035 0.018 4.70E-02 0 9035

Stage 1 + 2 0.278 0.041 0.007 2.84E-09 0 52368
AAAGC 0.119 0.023 0.011 3.85E-02 0 42682
GIANT 0.253 0.013 0.004 9.90E-04 - 320704

Stage 1: Discovery 0.275 0.040 0.007 9.03E-09 0 54105
Stage 2: Validation 0.282 0.049 0.017 4.43E-03 0 9035

Stage 1 + 2 0.276 0.041 0.006 1.24E-10 0 63140
AAAGC 0.316 -0.016 0.008 5.02E-02 30 42750
GIANT4 0.017 0.036 0.012 3.99E-03 - 216522

Stage 1: Discovery 0.550 -0.032 0.005 5.53E-09 22.1 52156
Stage 2: Validation 0.565 -0.020 0.017 2.37E-01 19.3 6906

Stage 1 + 2 0.551 -0.031 0.005 1.98E-09 21.8 59062
AAAGC 0.772 -0.031 0.009 8.99E-04 24 41327
GIANT 0.633 0.006 0.004 1.10E-01 - 220370

rs148899910C6orf106

4 Proxy GIANT, rs1573905 (r2= 0.96 AMR)

Table 1. Potential novel loci and new signals in known loci from the Stage 1: Adult HISLA Discovery combined with results from the Stage 2: Adult HISLA Validation.1  In addition, lookup of results of 
each locus from the AAAGC and GIANT.

Abbreviations: Chr - chromosome; EAF - effect allele frequency; HetIsq - heterogeneity I-square; N - sample size; WHRadjBMI - waist to hip ratio adjusted for BMI; African American Anthropometry Genetics Consotrium AAAGC; Genetic Investigation of 
ANthropometric Traits (GIANT)

1 All studies were meta-analyzed using METAL (Willer et al 2010 PMID 20616382), with each study entered individuals into Stage 1+2 analyses.

2 These BMI and WHRadjBMI analyses did not include Brazilian and/or Native American samples. 
3 New loci or signals are those that were validated by HISLA stage 2 results that are directionally consistent with Stage 1 and remaining genome-wide significant after meta-analysis with Stage 1.

YesHeight

BMI ARRDC3 rs1505851 intronic 5 90893954

A/G

6intergenic

intergenic 2 223057288

12intronic

3intronic

118751105

C/Tintronic

T/C

B4GALNT3 rs215226 intronic 12 591300
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34232259

123131254
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Table 2. Novel loci and new signals in established loci by trait from a meta-analyses of HISLA, AAAGC, and GIANT.

Beta SE P-value HetISq Beta SE P-value EAF N Beta SE P-value
Novel loci 1  

BMI rs4675117 2 227769794 RHBDD1 T/C 0.374 343628 0.017 0.003 8.56E-08 0 0.348 0.019 0.003 2.23E-09 0.383 336107 0.006 0.002 1.82E-02
BMI rs9860730 3 64701146 ADAMTS9-AS2 A/G 0.642 428763 -0.016 0.003 1.67E-08 0 0.596 -0.015 0.003 3.80E-08 0.712 336107 -0.008 0.003 4.54E-03
BMI rs150992 5 98275197 CTD-2007H13.3 A/G 0.702 439077 0.018 0.003 5.40E-10 0 0.709 0.017 0.003 1.02E-08 0.693 336107 0.005 0.003 3.74E-02

Height rs17375290 1 61334177 NFIA A/G 0.806 364636 0.017 0.003 3.47E-08 0 0.801 0.017 0.003 3.00E-08 0.794 336474 0.002 0.002 4.58E-01
Height rs10737541 1 168214098 ANKRD36BP1 T/G 0.286 319809 -0.018 0.003 1.60E-09 0 0.320 -0.018 0.003 3.16E-10 0.226 336474 -0.004 0.002 4.37E-02
Height rs4618485 6 73555917 KCNQ5 A/G 0.634 348626 0.014 0.003 4.72E-08 39.20 0.637 0.018 0.003 4.34E-12 0.604 336474 0.003 0.002 7.02E-02
Height rs17493997 8 82044302 PAG1 C/G 0.360 325906 -0.015 0.003 3.42E-08 0 0.273 -0.017 0.003 2.73E-10 0.299 336474 -0.0003 0.002 8.56E-01

WHRadjBMI sex-combined rs16873543 6 45577134 RUNX2 T/C 0.703 209552 -0.018 0.004 3.20E-06 0 0.684 -0.022 0.004 9.65E-09 0.724 484563 -0.008 0.002 5.50E-04
New signals in established loci2

BMI rs10540 11 494662 RNH1 A/G 0.116 470714 -0.021 0.004 1.01E-07 0 0.131 -0.023 0.004 5.75E-09 0.135 336107 -0.007 0.004 4.16E-02
BMI rs4807179 19 1956035 CSNK1G2 A/G 0.484 309507 0.020 0.003 2.75E-10 0 0.523 0.018 0.003 1.52E-08 0.632 336107 0.014 0.002 1.06E-08
BMI rs4813428 20 21451848 NKX2-2 T/C 0.132 321797 0.029 0.005 2.89E-10 0 0.095 0.029 0.005 1.46E-10 0.093 336107 0.013 0.004 2.47E-03

Height rs4912122 1 19876438 NKX2-2 A/G 0.413 334951 -0.015 0.003 6.33E-09 0 0.423 -0.019 0.003 1.45E-13 0.350 336474 -0.012 0.002 1.58E-11
Height rs4425978 1 42243878 HIVEP3 T/C 0.516 351587 0.014 0.003 2.14E-08 0 0.472 0.016 0.003 3.63E-10 0.533 336474 0.008 0.002 5.41E-06
Height rs618555 1 86481084 COL24A1 T/C 0.323 320239 0.019 0.003 5.47E-12 0 0.258 0.016 0.003 2.90E-08 0.311 336474 0.008 0.002 1.67E-05
Height rs6545538 2 56217900 MIR216A A/G 0.308 305704 0.022 0.003 1.23E-13 0 0.309 0.019 0.003 2.59E-11 0.266 336474 0.011 0.002 1.25E-08
Height rs2741311 2 233239743 ALPP T/C 0.054 463609 0.046 0.005 1.41E-21 49.6 0.064 0.030 0.005 4.78E-10 0.080 336474 0.033 0.003 2.39E-24
Height rs6935954 6 26255451 HIST1H2BH A/G 0.374 345378 0.042 0.003 3.06E-59 46.5 0.359 0.018 0.003 3.29E-12 0.425 336474 -0.027 0.002 1.10E-54
Height rs6900530 6 35280971 DEF6 T/C 0.207 123137 -0.057 0.005 3.09E-28 79 0.088 -0.036 0.005 6.75E-12 0.027 336474 -0.073 0.005 1.03E-42
Height rs9472006 6 43067487 PTK7 A/G 0.141 212931 -0.027 0.005 4.37E-09 0 0.081 -0.034 0.005 7.04E-14 0.041 336474 -0.013 0.004 2.86E-03
Height rs3822957 6 76607280 MYO6 A/G 0.235 279818 -0.023 0.003 4.88E-12 84.4 0.197 -0.023 0.003 3.44E-12 0.142 336474 -0.015 0.002 1.98E-09
Height rs1342330 6 144065685 PHACTR2 A/T 0.547 353259 0.014 0.003 1.70E-08 0 0.565 0.017 0.003 6.95E-12 0.520 336474 0.006 0.002 8.84E-04
Height rs6936615 6 154355100 OPRM1 A/G 0.859 415248 -0.018 0.003 2.47E-08 0 0.834 -0.020 0.003 2.33E-09 0.830 336474 -0.003 0.002 1.73E-01
Height rs991946 6 166329862 RP11-252P19.3 T/C 0.495 379912 -0.019 0.002 1.28E-14 36.7 0.481 -0.019 0.002 9.96E-15 0.479 336474 -0.013 0.002 3.92E-13
Height rs7816300 8 109787856 TMEM74 T/C 0.253 397735 -0.015 0.003 2.24E-08 0 0.264 -0.016 0.003 5.47E-09 0.299 336474 -0.002 0.002 3.94E-01
Height rs4520250 9 88924057 ZCCHC6 A/C 0.387 295945 0.015 0.003 3.80E-08 55.9 0.322 0.016 0.003 1.48E-08 0.339 336474 0.010 0.002 4.36E-08
Height rs7029157 9 97000863 snoU13 T/C 0.138 262808 0.028 0.004 5.85E-11 16.8 0.115 0.026 0.004 1.00E-09 0.088 336474 0.030 0.003 4.55E-22
Height rs12347744 9 97575273 C9orf3 T/C 0.053 454111 -0.032 0.005 6.55E-11 65.8 0.056 -0.030 0.005 6.06E-10 0.061 336474 -0.031 0.004 1.04E-17
Height rs7024254 9 109498129 ZNF462 A/G 0.280 324351 0.017 0.003 1.04E-08 23.7 0.278 0.036 0.003 6.10E-35 0.204 336474 0.010 0.002 6.50E-06
Height rs10119624 9 118305438 DEC1 A/G 0.640 353374 0.021 0.003 2.56E-16 31.1 0.635 0.022 0.003 8.02E-17 0.671 336474 0.012 0.002 3.20E-10
Height rs2902635 10 105476045 SH3PXD2A T/G 0.729 308782 -0.021 0.003 1.59E-12 0 0.739 -0.017 0.003 1.62E-08 0.805 336474 -0.015 0.002 7.65E-12
Height rs17659078 11 2284590 ASCL2 A/C 0.241 354931 0.019 0.003 1.78E-10 9 0.243 0.016 0.003 3.45E-08 0.273 336474 0.004 0.002 2.24E-02
Height rs11605693 11 122837037 C11orf63 T/C 0.470 380447 -0.017 0.002 3.44E-12 0 0.449 -0.018 0.002 3.07E-14 0.447 336474 -0.013 0.002 4.45E-13
Height rs621794 11 125849462 CDON A/G 0.475 380049 -0.014 0.002 1.46E-08 0 0.438 -0.014 0.002 7.29E-09 0.429 336474 -0.009 0.002 1.76E-07
Height rs11221442 11 128577624 FLI1 C/G 0.202 352360 -0.022 0.003 2.03E-12 78.8 0.207 -0.023 0.003 2.03E-13 0.252 336474 -0.008 0.002 2.59E-05
Height rs12300112 12 103147575 LINC00485 C/G 0.126 154014 0.041 0.006 4.31E-13 45.2 0.063 0.038 0.006 3.11E-11 0.027 336474 0.038 0.005 4.61E-12
Height rs11616067 12 116393174 MED13L A/G 0.775 327941 0.021 0.003 6.38E-12 21 0.802 0.018 0.003 2.80E-09 0.768 336474 0.012 0.002 6.01E-09
Height rs17197170 14 21977962 METTL3 A/G 0.856 310344 -0.026 0.004 5.40E-12 64.9 0.858 -0.025 0.004 3.74E-11 0.828 336474 -0.018 0.002 3.07E-14
Height rs11076551 16 51109492 RP11-883G14.4 A/G 0.289 434688 0.014 0.003 2.14E-08 21.6 0.370 0.015 0.003 5.87E-09 0.376 336474 0.009 0.002 2.51E-07
Height rs12918773 16 89741403 C16orf55 A/G 0.138 279104 -0.024 0.004 7.45E-09 46.1 0.100 -0.024 0.004 3.50E-09 0.112 336474 -0.024 0.003 4.71E-19
Height rs1346490 19 7244233 INSR A/C 0.521 333896 0.015 0.003 3.99E-09 12.3 0.617 0.014 0.003 4.86E-08 0.620 336474 0.009 0.002 1.67E-07
Height rs17457472 19 17493610 PLVAP A/C 0.035 356712 -0.051 0.007 5.70E-14 0 0.039 -0.042 0.007 9.89E-10 0.040 336474 -0.019 0.004 1.12E-05

WHRadjBMI sex-combined rs17099388 5 142095250 FGF1 A/G 0.165 105460 0.039 0.007 3.14E-09 0 0.074 0.037 0.007 2.47E-08 0.041 484563 0.025 0.005 2.00E-07
WHRadjBMI sex-combined rs7975017 12 26428793 SSPN T/C 0.243 267044 -0.021 0.004 7.57E-09 5.50 0.263 -0.021 0.004 1.05E-08 0.239 484563 -0.014 0.002 2.00E-09

Abbreviations: Chr-chromosome; EAF-effect allele frequency; HetIsq-heterogeneity I-square; N-sample size; WHRadjBMI-waist to hip ratio adjusted for BMI; African American Anthropometry Genetics Consortium AAAGC; Genetic Investigation of ANthropometric 
Traits (GIANT).  1 Novel locus defined by no known published variants within 1Mb (+/-500 Kb) of the lead SNP. 2 Known locus defined by a 1Mb region with previously identified signal(s) for the indicated trait; the known SNP(s), P<5e-8, at each established locus can 
be found in Table S16.
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