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ABSTRACT 1 

Detection of de novo variants (DNVs) is critical for studies of disease-related variation and 2 

mutation rates. We developed a GPU-based workflow to rapidly call DNVs (HAT) and 3 

demonstrated its effectiveness by applying it to 4,216 Simons Simplex Collection (SSC) whole-4 

genome sequenced parent-child trios from DNA derived from blood. In our SSC DNV data, we 5 

identified 78 ± 15 DNVs per individual, 18% ± 5% at CpG sites, 75% ± 9% phased to the 6 

paternal chromosome of origin, and an average allele balance of 0.49. These calculations are all 7 

in line with DNV expectations. We sought to build a control DNV dataset by running HAT on 8 

602 whole-genome sequenced parent-child trios from DNA derived from lymphoblastoid cell 9 

lines (LCLs) from the publicly available 1000 Genomes Project (1000G). In our 1000G DNV 10 

data, we identified 740 ± 967 DNVs per individual, 14% ± 4% at CpG sites, 61% ± 11% phased 11 

to the paternal chromosome of origin, and an average allele balance of 0.41. Of the 602 trios, 12 

80% had > 100 DNVs and we hypothesized the excess DNVs were cell line artifacts. Several 13 

lines of evidence in our data suggest that this is true and that 1000G does not appear to be a static 14 

reference. By mutation profile analysis, we tested whether these cell line artifacts were random 15 

and found that 40% of individuals in 1000G did not have random DNV profiles; rather they had 16 

DNV profiles matching B-cell lymphoma. Furthermore, we saw significant excess of protein-17 

coding DNVs in 1000G in the gene IGLL5 that has already been implicated in this cancer. As a 18 

result of cell line artifacts, 1000G has variants present in DNA repair genes and at Clinvar 19 

pathogenic or likely-pathogenic sites. Our study elucidates important implications of the use of 20 

sequencing data from LCLs for both reference building projects as well as disease-related 21 

projects whereby these data are used in variant filtering steps. 22 

  23 
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INTRODUCTION 1 

de novo variants (DNVs) are important for assessing mutation rates  1 and have been shown 2 

to contribute to human disease (e.g., autism  2-10, epilepsy  11,12, intellectual disability  13-16, 3 

congenital heart disorders  17-19). Typically, the calling of DNVs from raw sequence data to final 4 

calls can take days to weeks. Multiple DNV workflows exist that primarily rely on CPU-based 5 

approaches 2-7,9,10,12-15,17,20-31. These workflows employ different strategies including strict 6 

filtering, utilizing multiple variant callers as opposed to using only one, machine-learning, and 7 

incorporation of genotypic information at other sites around the genome. Overall, there is no 8 

community consensus on a standard method for detecting DNVs. It is imperative that this process 9 

be streamlined and flexible to enable broad adoption across the community. In this study, we 10 

developed a rapid workflow to accelerate DNV calling using graphics processing units (GPUs) 11 

that is integrated into NVIDIA Parabricks 32 software. We also developed an equivalent, freely 12 

available open-source, CPU-based version of the workflow.  Together, the GPU-based workflow, 13 

Hare, and the CPU-based workflow, Tortoise, make up HAT. 14 

 15 

Our desire for a standardized, rapid DNV workflow stems from our interest in detecting 16 

these DNVs in the large number of whole-genome sequencing (WGS) data in families with 17 

neurodevelopmental disorders that has recently become available (https://anvilproject.org/data). 18 

Studies assessing individuals with WGS data based on DNA derived from blood have provided 19 

the field with our best estimates of DNV characteristics in humans 1. One recent dataset, with DNA 20 

derived from blood, consisting of 4,216 parent-child whole-genome sequenced trios from the 21 

Simons Simplex Collection (SSC) has been extensively studied for DNVs 6,33-35. We processed 22 

this data with HAT and found that our method performed well.  23 
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 1 

This led us to assess the newly generated, publicly available, WGS dataset from a cohort 2 

called the 1000 Genomes Project (1000G), where our initial goal was to build a control DNV 3 

dataset.  Overall, 1000G is a data resource for the study of genetic variation that includes 4 

individuals from diverse genetic ancestries 36,37.  Represented in the data are 602 trios from 18 5 

worldwide populations (Figure S1). Moreover, as a field standard, 1000G has been utilized in 6 

many applications as a control resource for filtering of genetic variation by allele frequency and/or 7 

variant presence-absence in the dataset38. 8 

 9 

 One complicating factor of DNV assessment in this resource is the fact that sequencing 10 

data is generated from DNA isolated from lymphoblastoid cell lines (LCLs) 37 as opposed to 11 

primary tissue. Epstein-Barr Virus is used to make these LCLs and passaging over time enables 12 

the accumulation of cell line artifacts. These artifacts can complicate variant filtration schemes and 13 

the utility of this data as a frequency control. As opposed to a random accumulation of mutations 14 

in each individual, we found that 80% of 1000G individuals had an excess of DNVs and 40% of 15 

all 1000G individuals had a profile matching a B-cell lymphoma. The similarity to this cancer is 16 

problematic, and it would be imperative that this data not be used as a control in the context of the 17 

study of these and related cancers. A secondary consequence of the excess DNVs is their presence 18 

at disease-related sites whereby simple filtering schemes may accidentally remove sites of interest 19 

in patients due to their presence in 1000G. 20 

  21 
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RESULTS 1 

Rapid DNV calling with GPUs 2 

 HAT consists of three main steps: GVCF generation, family-level genotyping, and filtering 3 

of variants to get final DNVs. We utilized existing features of the NVIDIA Parabricks software 4 

for rapid GVCF generation from GPU accelerated versions of  GATK 39 HaplotypeCaller and 5 

Google DeepVariant 40 . The run times for GVCF generation are ~40 minutes per sample on a 4 6 

GPU node and can be run in parallel on all three family members in the parent-child trio. Post-7 

GVCF generation, the trio is genotyped using the GLnexus joint genotyper  41. Finally, our post-8 

genotyping custom DNV filtering workflow runs in ~1 hour with speedups at all steps with 9 

parallelization providing a clear advantage over CPU-based approaches (Figure 1A).  10 

 11 

 12 
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Figure 1: de novo variant calling in short-read whole-genome sequencing data. A) de novo 1 

workflow for detection of de novo variants (DNVs) from aligned read files (crams); B and C) 2 

Benchmarking DNV workflow in a monozygotic twin pair sequenced from DNA derived from 3 

blood; D) DNV detecting in four trios in the 1000 Genomes Project.   4 

 5 

 To benchmark HAT, we tested it on a monozygotic twin pair with WGS data derived from 6 

blood DNA. These individuals should share the same DNVs from generation in the germline. 7 

However, they may differ at some sites if DNVs occur in a post-zygotic, somatic manner. The 8 

twins shared 75 autosomal DNVs and contained 83 and 81 autosomal DNVs, respectively (Figures 9 

1B and 1C). The percent CpG was 19.3% and 17.2%, respectively and in line with previous 10 

published estimates of ~20% 1,6 (Figures 1B and 1C). As this monozygotic twin pair was discordant 11 

for the phenotype of autism, we also tested whether there were any protein-coding DNV 12 

differences between the two twins. These would potentially be relevant for autism, but there were 13 

no such differences. 14 

 15 

To establish a DNV callset from the 1000G data as a control, we started with the assessment 16 

of DNVs with HAT in four trios from the 1000G (Figure 1D). Two were chosen at random (i.e., 17 

HG00405, HG00408) and two were chosen because they were “famous” trios assessed in many 18 

other studies (i.e., NA12878 23,42, NA19240 23). One of these trios (HG00405) had 70 DNVs and 19 

a CpG percent of 21.4 as we would have expected from DNA derived from blood. To our surprise, 20 

the other trios had varying numbers of DNVs from 592 to 2,230 with NA12878 (arguably the most 21 

studied individual in 1000G) having the most DNVs. With the increase in DNVs the CpG percent 22 

dropped considerably down to ~10%. We also assessed 3,598 of the DNVs from the four trios by 23 
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manual visual inspection of the underlying reads in each family member (Table S1) and found that 1 

93.6% of the variants appeared to be true DNVs, 4.9% were inherited, and 1.5% were low 2 

confidence calls.  3 

 4 

Differences in DNVs in blood and LCLs 5 

 Our initial observations led us to focus on two main cohorts: the 602 trios from 1000G 6 

(Table S2) with DNA derived from LCLs and 4,216 trios from the Simons Simplex Collection 7 

(SSC) with DNA derived from blood. In the 1000G data we detected 445,711 total DNVs in the 8 

cohort (Table S3). There were 740 ± 968 DNVs per individual (Table S4) with a clear bimodal 9 

distribution (Hartigan’s dip test: D = 0.033, p-value = 1.32 × 10-4) wherein some individuals 10 

contained an excess of DNVs (Figure 2A). In the SSC, we identified 329,589 total DNVs in the 11 

cohort. There were 78 ± 15 DNVs per individual (Figure 2B, Table S5).  The values derived from 12 

the SSC data are in line with expectation and highlight the effectiveness of our DNV workflow. 13 

However, the values in the 1000G are higher than expected and we estimated the number of 14 

individuals with appropriate numbers of DNVs by splitting the 1000G data into two groups: 15 

individuals having less than or equal to 100 DNVs (n = 123) and individuals with greater than 100 16 

DNVs (n = 479). This estimate suggests that only 20.4% of trios in the 1000G have the correct 17 

number of DNVs and we thought those with excess DNVs may have cell line artifacts due to 18 

culturing of LCLs. 19 
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Figure 2: Comparison of characteristics of DNVs detected in1000 Genomes Project (1000G) 1 

and Simons Simplex Collection (SSC) callsets. A) Histogram of DNV counts from 1000G in 2 

602 trios; B) Histogram of DNV counts from SSC in 4216 trios; C) ; C) Percent of DNVs found 3 

within CpG sites versus the total number of DNVs for 1000G; D) Percent of DNVs found within 4 

CpG sites versus the total number of DNVs found for SSC; E) Percent of autosomal DNVs with 5 

paternal parent of origin  versus the total number of DNVs for 1000G; F) Percent of autosomal 6 

DNVs with paternal parent of origin  versus the total number of DNVs for SSC.  7 

 8 

We assessed two main features of typical DNVs to investigate our hypothesis that the 9 

excess DNVs found in individuals were cell line artifacts. These features are DNVs at CpG 10 

locations and the percent of DNVs arising on the paternal chromosome. As mentioned previously, 11 

the percent of DNVs at CpG should be ~20% and the percent of DNVs arising on the paternal 12 

chromosome should be ~80% 43. We saw that in the 1000G trios 14 ± 4.4% of DNVs per individual 13 

occurred at CpG sites (Figure 2C) with individuals with less than or equal to 100 DNVs having17.4 14 

± 5.2% DNV at CpG and in families with greater than 100 DNVs 12.7 ± 3.6% DNV at CpG. The 15 

difference in DNVs at CpG sites between these two groups was significant (Wilcoxon rank sum: 16 

p-value < 2.2 × 10-16). In the SSC, the percent of DNVs at CpG was 18 ± 4.7% and in line with 17 

expectation (Figure 2D). In the 1000G, the percent of DNVs that were phase-able for parent-of-18 

origin was 37.2 ± 7.5% (Figure S2). Of the phased variants, 61 ± 11.3% were on the chromosome 19 

of paternal origin (Figure 2E, Table S6). In the families with less than or equal to 100 DNVs this 20 

rose to 72.0 ± 8.5% and in the families with greater than 100 DNVs it fell to 58.6 ± 10.3%. This 21 

difference in percent phased variants of paternal origin was found to be significantly different 22 

(Wilcoxon rank sum: p-value < 2.2 × 10-16). The drop leveled off to ~50% in the individuals with 23 
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the most DNVs (Figure 2D). In the SSC, we were able to phase 37% of DNVs (Figure S3) with 1 

the percent of DNVs phased to paternal chromosome of origin was 75% ± 9.24 and that was also 2 

in line with expectation (Figure 2F).  3 

 4 

We also tested whether there was a difference in the allele balance (AB) in the child at 5 

DNV sites in the 1000G and the SSC (Figure S4). We found that the 1000G had a mean AB of 6 

0.42 and in the SSC it was nearly perfect at an AB of 0.49 in line with expectation of 0.5. This 7 

indicated a lower average AB level in 1000G from newly arising mutations from cell line artifacts.  8 

 9 

Overall, these comparisons showed that the individuals in the 1000G with less than or equal 10 

to 100 DNVs behaved more like true DNVs in regard to CpG percentage, percent arising on the 11 

paternal chromosome, and allele balance. This also was true for the SSC trios where DNA was 12 

derived from blood. However, individuals in the 1000G with > 100 DNVs did not have statistical 13 

properties of true DNVs providing evidence they may be cell line artifacts. 14 

 15 

DNVs by 1000G population 16 

While we expected there to be no difference in DNV counts per individual by ancestry we 17 

sought to see if there were any populations with excess DNVs (Figure 3A). The population with 18 

the most DNVs was the CEU having on average 1,688 DNVs per individual. We hypothesized 19 

that this may be because the CEU is one of the oldest cohorts in the 1000 Genome Project dating 20 

back to the HapMap project 44 and these individuals may have cell lines that have been cultured 21 

more over time than other populations. 22 
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 1 

Figure 3: Assessment of five replicates of NA12878.  A) Population distribution of 1000G 2 

dataset. B) UpSet plot demonstrating the number of variants detected in the replicates (at the 3 
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bottom of the plot the percent of true DNVs is listed for each category); C) Phylogenetic tree of 1 

the five replicates. 2 

 3 

DNVs increase over time 4 

 We utilized the fact that the 1000G individual NA12878 has been studied and sequenced 5 

multiple times over the past ten years by WGS 37 (SRA identifiers: SRR944138 and SRR952827). 6 

Presumably, across time, the utilization of NA12878 has required additional culturing of this cell 7 

line, and potentially even by different laboratories. We aggregated five Illumina WGS datasets 8 

from this individual, downsampled them to ~30x coverage, and assessed them with HAT. The data 9 

for this individual ranged from the year 2012 to the year 2020 and we found that the 2012 10 

experiment had the least DNVs (n = 2,060) and the 2020 experiment had the most DNVs (n = 11 

2,230) (Figure 3B). Overall, the five replicates had a large overlap of DNVs (n = 1,820) across all 12 

samples. These shared DNVs constitute what were present in the ancestor of all the cell line 13 

replicates. DNVs not shared by all five replicates are sometimes shared by a subset of the replicates 14 

and are sometimes unique to the replicate. To formally assess the ancestral state, we built a 15 

phylogenetic tree based only on the DNVs and saw that the farthest replicates from each other in 16 

the tree were the 2012 and 2020 replicates (Figure 3C). To further assess the DNVs in NA12878, 17 

we randomly sampled 25 DNVs from the union dataset from the five replicates. We performed 18 

Sanger sequencing on DNA from NA12878 and her parents (NA12891, NA12892) (Figure S5-19 

S29, Table S7). We found that 24 of the 25 DNV sites gave clear results in the Sanger sequencing 20 

with 23 confirming as real DNVs. Surprisingly, we found two sites, chr12_91353615_T_C and 21 

chr13_81142986_T_A, that were determined to be true de novo variants but were previously 22 

shown to be a false positive reading using Sanger sequencing 23. In the Sanger experiments, one 23 
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site chr11_134531608_C_G showed subtle evidence for the variant allele in NA12878, so we 1 

pursued deep amplicon sequencing of this region in the trio using Oxford Nanopore Technologies 2 

(ONT) sequencing (Figure S30).  This resulted in a variant allele frequency of 11% in NA12878 3 

suggesting this is a cell line artifact. This was elevated in comparison to the background rate of 4 

1% in NA12891 and 0% in NA12892, that is in line with expectation for error rates from ONT. 5 

Intriguingly, this DNV was only found in one of the NA12878 replicates (2018_1). Overall, this 6 

indicates that 96% of DNVs called with HAT are real (24/25) and this estimate is close to the 7 

93.6% we saw by manual inspection of underlying read data at 3,598 DNV sites (see above). 8 

 9 

Genomes with cancer mutation profiles 10 

 We used mutation profile analysis 45 (Table S8) to determine whether the DNVs identified 11 

in individuals from the 1000G had any certain characteristics. For this analysis, we utilized a 12 

method that would enable comparisons to known mutational profiles that are either age-related 13 

(reminiscent of true DNVs) or are seen in cancers (Figure 4A and Figure 4B). There were 186 14 

individuals (30%) that had a strong contribution of an age-related signature (Signature 1A, 15 

Signature 1B). To our surprise, the other contributing signatures in individuals were primarily 16 

those associated with B-cell lymphomas (Signature 5, Signature 9 and Signature 17) in 241 17 

individuals (40%). This was intriguing because lymphoblastoid cell lines are generated from B-18 

cells that are infected with Epstein Barr Virus and demonstrates that new mutations are not arising 19 

in a random manner. Rather they are being generated in a manner consistent with the development 20 

of cancer in the same cell type.  21 
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Figure 4: Mutational properties of DNVs. A) Mutation signature analysis showing the total 1 

number of DNVs and the individuals with each signature type; B) Heatmap of individuals based 2 

on their mutational signatures; C) Mutations in the DNA repair gene RAD18 shown on their 3D 3 

structure (and modeled using mupit). Also, shown are known cancer mutations from The Cancer 4 

Genome Atlas (TCGA); D) Location of DNVs based on their phased parent-of-origin in 5 

NA07048. Most notable there are a cluster of mutations on the maternal chromosome on 6 

chromosome 2; E) DNVs in IGLL5 shown on their 3D structure (and modeled using mupit).  7 

The image on the left is modelling variants discovered in 1000G, the image on the right is 8 

modelling variants discovered in SSC. 9 

 10 

We further sought to determine what the mechanism was for the generation of a B-cell 11 

lymphoma-like state. First, we determined whether there was high rate of aneuploidies in the cell 12 

lines. By digital karyotyping (Table S9) we found that 595 individuals (98.8%) had a typical 13 

chromosome complement (46,XX or 46,XY), four were missing a sex chromosome (45,X0), one 14 

was 47,XXY, one had three chromosome 12 (47,XY), and one had three chromosome 9 (47,XY). 15 

This demonstrated that while these aneuploidies are occurring in some cell lines, they are probably 16 

not the main driving factor. Next, we looked at DNVs in genes involved in DNA repair and found 17 

17 individuals contained a missense or loss-of-function in one of these genes (Table S10). 18 

Individuals with B-cell lymphoma profiles and disruptive mutations in DNA repair genes included 19 

mutations in the following genes FANCF (HG01126), MUS81 (NA10838), POLB (NA10838), 20 

POLD1 (NA19677), POLE (HG01096), RAD18 (NA12864) (Figure 4C), RAD51 (HG02683), 21 

RPA4 (HG02630), and two individuals with mutations in FANCA (HG02841, HG03200) and WRN 22 

(HG04115, NA19161), respectively (Table 1). Third, we looked at Epstein Barr Virus load in each 23 
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of the genomes (Table S11) and found that there was a weak, yet significant, correlation with the 1 

number of DNVs (p = 2.32 × 10-5, r = 0.17) (Figure S31). By visual inspection of phased variation 2 

in all individuals we also identified individuals with clusters of mutations (e.g., NA07048, Figure 3 

4D, Figure S32). 4 

 5 

Excess of DNVs in IGLL5 6 

 We applied a multi-phase approach to determine if there were any genes with enrichment 7 

of protein-coding DNVs in individuals with greater than 100 DNVs. In the first phase, we tested 8 

whether there was genome-wide significance for enrichment of protein-coding DNVs (missense, 9 

loss-of-function) in any specific genes. By application of two methods (chimpanzee-human, 10 

denovolyzeR), we identified 29 significant genes (ARMC3, BCL2, BCR, C6orf15, CCDC168, 11 

CSMD3, EGR3, EXO1, HLA-B, HLA-C, IGLL5, KMT2D, LINGO2, LTB, MEOX2, MUC16, 12 

MUC22, NPAP1, PCLO, PRPF40A, RUNX1T1, SGK1, STRAP, TMEM232, TNXB, TTN, WDFY4, 13 

XIRP2, ZNF488) with excess of DNVs (Table S11). In the second phase, we tested these 29 genes 14 

to see whether there were significantly more protein-coding DNVs in individuals with greater than 15 

100 DNVs in comparison to individuals with less than or equal to 100 DNVs. Only IGLL5 was 16 

significant in this comparison (1.79 × 10-3) (Table S12, Table S13, Figure 4E). To test whether 17 

this finding was relevant only to LCLs, we looked for protein-coding DNVs in SSC and only found 18 

one missense variant (Figure 4E). This gene did not have significant excess of DNVs in SSC.  19 

 20 

DNVs identified in clinically relevant variants 21 

 We tested whether any of the DNVs detected were already known to be pathogenic or 22 

likely-pathogenic in the Clinvar 46 database (Table 1). There were 15 mutations meeting these 23 
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criteria (Table S14). We rescored these variants using Franklin software to assess their 1 

pathogenicity and found that 13 were also pathogenic or likely-pathogenic by this approach. 2 

Twelve of these variants were associated with described phenotypes in Clinvar. These included a 3 

missense variant in SOS1 involved in Noonan syndrome, a missense variant in SCN2A involved in 4 

seizures, a stop gained variant in UNC80 involved in a syndrome with hypotonia, intellectual 5 

disability, and characteristic facies, a missense variant in THRB involved in thyroid hormone 6 

resistance, a missense variant in PKHD1 involved in polycystic kidney disease, a stop-gained in 7 

ERCC6 involved in Cockayne syndrome, a stop-gained in ANO5 involved in gnathodiaphyseal 8 

dysplasia, a stop-gained in PHF21A involved in inborn genetic disease, a missense in MYO7A in 9 

Usher syndrome type 1, a stop-gained in ROBO3 in Gaze palsy with progressive scoliosis, a 10 

missense in COL4A1 involved in inborn genetic disease, and a missense in POLG involved in 11 

POLG-related disorder. 12 

 13 

Table 1. DNVs in DNA damage repair genes and clinically relevant variants 14 
Category individual de novo variant variant type gene 

DNA 
damage 
repair gene 

HG01074 chr3_48447050_C_G missense ATRIP 
HG02841 chr16_89799603_A_G splice_donor FANCA 
HG03200 chr16_89762010_C_T missense FANCA 
HG01126 chr11_22625482_T_G missense FANCF 
NA18875 chr5_80654794_G_A missense MSH3 
HG02650 chr6_31759121_C_T missense MSH5 
NA10838 chr11_65865247_C_T missense MUS81 
NA10838 chr8_42357362_AT_A frameshift POLB 
NA19677 chr19_50407375_G_A missense POLD1 
HG01096 chr12_132634327_C_T missense POLE 
HG01755 chr15_89321792_C_T missense POLG 
NA12864 chr3_8958938_G_T missense RAD18 
HG02683 chr15_40729853_T_C missense RAD51 
HG02630 chrX_96884884_G_A missense RPA4 
NA19919 chr3_133644039_A_G missense TOPBP1 
HG04115 chr8_31120294_C_T missense WRN 
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NA19161 chr8_31124967_G_T missense WRN 

Clinvar 
pathogenic / 

likely 
pathogenic 

HG03795 chr11_22274728_C_T stop_gained ANO5 
NA10854 chr13_110179298_C_T missense COL4A1 
NA10842 chr10_49530737_G_A stop_gained ERCC6 
HG02668 chr1_111787063_C_T missense KCND3 
HG02466 chr1_39485559_G_A missense MACF1 
HG02129 chr11_77206108_G_A missense MYO7A 
HG03122 chr11_45949458_G_A stop_gained PHF21A 
NA12707 chr6_52058438_C_T missense PKHD1 
HG01755 chr15_89321792_C_T missense POLG 
HG02892 chr11_124875581_C_T stop_gained ROBO3 
HG03635 chr2_165310406_G_A missense SCN2A 
NA10830 chr2_39023106_C_T missense SOS1 
NA10831 chr3_24143512_G_A missense THRB 
HG01629 chr2_209775898_C_T stop_gained UNC80 
HG00558 chr16_88435401_G_A missense ZNF469 

 1 
 2 
DISCUSSION 3 

While the 1000G data has been extensively studied in the past, there has been no previous 4 

cross-cohort assessment of DNVs. This limitation is primarily because family-based sequencing 5 

was not available until 2020 when this cohort was sequenced by high-coverage short-read WGS 6 

ten years after the initial ground-breaking publication on the 1000G 47. Determining DNV profiles 7 

across this dataset of diverse individuals is critical for assessment of mutation rates in the human 8 

population, while also providing a more complete catalog of all genetic variants within these 9 

individuals. The decision to sequence these individuals using DNA derived from lymphoblastoid 10 

cell lines was a practical one. However, it opened the door to the possibility of cell line artifacts, 11 

while simultaneously introducing a dynamic aspect to this extensive set of controls. As control 12 

samples, the cell lines that were used as the inputs for the 1000G are still actively used across 13 

laboratories, acting as matched controls for workflows to known sets of variants.  The large 14 

distribution of DNVs across the 1000G suggest that a subset of the control source inputs are 15 

dynamic, and in some cases, harbor a spectrum of genetic variants associated with B-cell 16 
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lymphomas or named clinical syndromes.  Laboratories using control samples from the 1000G 1 

should account for both the presence and dynamic nature of the reported DNVs and in some cases 2 

may consider changing which control samples to use within the laboratory to avoid any of the 3 

associated issues with the presence of DNVs.  Additionally, other public efforts to establish 4 

reference data sets using cell lines should consider the impacts of DNVs on their project design. 5 

 6 

We utilized a novel and accelerated analysis workflow to detect DNVs from short-read, 7 

whole-genome sequencing data. We showed this new workflow is of high-quality by running it on 8 

4,216 trios with WGS, from the SSC, on DNA derived from blood. This analysis revealed expected 9 

number of DNVs, percent of DNVs at CpG sites, percent of DNVs phased to the paternal 10 

chromosome of origin, and average allele balance of the DNV. This was an important analysis and 11 

was in contrast to our DNV analysis of the 1000G. In total, we identified 445,711 DNVs in the 12 

602 children from 1000G assessed in this study. We provide a cross-cohort joint-genotyped VCF, 13 

family-level VCFs, DNV calls, and phased DNV results for the 602 trios in this study as a public 14 

community resource (Globus endpoint: “Turner Lab at WashU - DNV in 1000 Genomes Paper”, 15 

direct link: https://app.globus.org/file-manager?origin_id=3eff453a-88f4-11eb-954f-16 

752ba7b88ebe&origin_path=%2F). Originally, it was assumed that the DNVs across the 1000G 17 

would have been random and minimal, and yet only 20% of the offspring (123 children) have a 18 

number of DNVs around expectation (< 100) and the remainder have an excess of DNVs with the 19 

most extreme case being an individual (HG02683) having 11,219 DNVs. We hypothesized that 20 

the excess DNVs were cell line artifacts and found multiple lines of evidence to support this 21 

hypothesis, including a reduction in the percent of DNVs at CpG as well as the reduction in percent 22 

phased to the paternal parent-of-origin chromosome with increasing DNVs, respectively. A 23 
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detailed analysis of individual NA12878, who has been studied various times over the years, 1 

revealed increasing DNVs in the more recently sequenced samples also supporting this hypothesis.  2 

The changes in the DNVs for NA12878 suggest the dynamic nature of the DNVs, demonstrating 3 

that the number is increasing over time. 4 

 5 

When mutational signature analysis was performed on this new set of DNVs, the most 6 

common mutation signatures were those seen in B-cell lymphomas. This signature was found in 7 

40% of individuals in the 1000G. This is important as the lymphoblastoid cell lines are generated 8 

from B-cells and points to a non-random accumulation of mutations that are in line with the 9 

development of cancer in this cell type. In particular, we identified mutations in key DNA repair 10 

genes as well as a statistically significant excess of DNVs in IGLL5 48,49. This gene is found to be 11 

mutated in B-cell lymphomas and protein-coding DNVs are identified in 27 individuals in this 12 

cohort; all of which have >100 overall DNVs. From our work, we identify two contributing factors 13 

causing these higher levels of DNVs, one is the mutation of DNA repair genes while the second is 14 

an excess of Epstein-Barr Viral load. Future work using long-read sequencing and de novo 15 

assemblies will be imperative to identify complete viral integration in these genomes as integration 16 

sites can have impacts on cell line stability.  One unexpected consequence of B-cell lymphoma 17 

mutation signatures in some individuals from the 1000G would be a new pathway to study the 18 

mechanisms and biology of the development of this cancer. 19 

 20 

In addition to the DNA repair gene DNVs, we identified fifteen pathogenic or likely-21 

pathogenic DNVs that had already been implicated in a database of clinical variation (Clinvar). 22 

This calls into question the use of the 1000G data as a control for both B-cell lymphomas and more 23 
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generally for DNVs identified in clinical patients. More importantly, the extensive spectrum of 1 

DNVs that can appear in a cell line call into question the use of control samples derived from 2 

lymphoblastoid cell lines. Currently, to our knowledge the Genome in a Bottle and Human 3 

Pangenome Reference Consortium (HPRC) are building reference databases and pangenomes 4 

using DNA from lymphoblastoid cell lines. Although it does seem that the use of blood for some 5 

samples was at least initially discussed for the HPRC 6 

(https://www.genome.gov/Pages/Research/Sequencing/Meetings/HGR_Webinar_Summary_Mar7 

ch1_2018.pdf), it does appear the project has defaulted to using lymphoblastoid cell lines. We find 8 

it is imperative that these efforts consider utilizing native DNA isolated from blood as the source 9 

or utilize a family-based design to identify and remove DNVs. In this way, the highest quality 10 

references can be built that will stand the test of time. Finally, we recommend that much like the 11 

Simons Simplex Collection, that studies assessing DNVs in individuals with a particular phenotype 12 

of interest, also sequence DNA from blood cells and not DNA post-culturing of lymphoblastoid 13 

cell lines. 14 

  15 
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METHODS 1 

Software Code availability 2 

The description for HAT (Hare And Tortoise) can be found at 3 

https://github.com/TNTurnerLab/HAT.  Hare, which was used for analyses in this paper are 4 

present at https://github.com/TNTurnerLab/GPU_accelerated_de_novo_workflow, v1.0. We also 5 

developed a fully open-source CPU-based version of the code that does not require the NVIDIA 6 

Parabricks license, Tortoise,  and it is available at  https://github.com/TNTurnerLab/Tortoise.  We 7 

found that Tortoise is just as accurate as Hare, with high level of overlap between the two versions 8 

when tested on NA12878 and the monozygotic twin pair (Figure S33).   9 

 10 

1000 Genomes trio whole-genome sequencing dataset 11 

As described previously 37, a total of 602 trios from the 1000 Genomes Project (1000G) 12 

were whole-genome sequenced, from lymphoblastoid cell line DNA, at the New York Genome 13 

Center. We downloaded the publicly available aligned data files (crams), totaling around 27TB, 14 

onto the Washington University Information Technology’s Research Infrastructure Services (RIS), 15 

a LSF based, high compute server for further analysis described below.  The download locations 16 

are described here 17 

http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000G_2504_high_coverage/1000G_18 

2504_high_coverage.sequence.index and here 19 

http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000G_2504_high_coverage/1000G_20 

698_related_high_coverage.sequence.index. Details of the 602 trios are found in Supplemental 21 

Table S2.  22 

 23 
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Simons Simplex Collection whole-genome sequencing dataset 1 

 We downloaded Simons Simplex Collection whole-genome sequencing alignment files 2 

(crams) from SFARI Base using Globus, totaling around 239TB, onto the RIS. Importantly, these 3 

genomes were sequenced, from DNA derived from blood, at the New York Genome Center 35. We 4 

utilized the crams as the starting point for running in HAT. In total, we assessed 8,922 individuals 5 

from both quad (unaffected father, unaffected mother, one child with autism, one child without 6 

autism) and trio (unaffected father, unaffected mother, one child with autism) families resulting in 7 

a total of 4,216 parent-child sequenced trios. The following individuals were not present in the 8 

Globus link and were excluded from the study: SSC03147, SSC03138, SSC03133, SSC03146, 9 

SSC06708, SSC06703, SSC06699. 10 

 11 

Single-nucleotide variant and insertion/deletion calling 12 

The NVIDIA Parabricks program version 3.0.0 was utilized to call single-nucleotide 13 

variants (SNVs) and small insertions/deletions (indels) with GATK 39 version 4.1.0 and Google’s 14 

DeepVariant 40 version 0.10 using default parameters (note for DeepVariant the model_type 15 

utilized is WGS). The reference genome utilized for these analyses was 16 

GRCh38_full_analysis_set_plus_decoy_hla.fa as the data was originally mapped to this reference 17 

genome 37. For each individual, a GVCF was generated for these two variant callers. The GVCFs 18 

were then genotyped, on a per trio basis, using the GLnexus 41 version 1.2.6 joint genotyper using 19 

prebuilt configs for each respective caller. Post-calling, we checked the counts of all variants and 20 

heterozygous variants per chromosome in each individual as a quality check (Figure S34).  21 

 22 

 23 
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 1 

de novo variant calling 2 

 DNVs were called by identifying all putative DNVs in GATK and DeepVariant based on 3 

the parent and child genotypes, respectively. Specifically, the parent genotypes had to be 4 

homozygous for the reference allele (i.e., 0/0) and the child had to be, at a minimum, heterozygous 5 

for the alternate allele (e.g., 0/1, 1/1). DNVs identified in both GATK and DeepVariant 6 

(intersection of the two callers) were then identified and further filtering was carried out as follows: 7 

depth, in each trio member, at the DNV position had to be >= 10, the genotype quality of the DNV 8 

had to be > 20, the DNV had to have an allele balance > 0.25, and there could be no presence of 9 

the DNV allele present in any reads in the parents. Finally, we removed DNVs in low complexity 10 

regions, centromeres, and recent repeats from further analysis.  11 

 12 

To assess the quality of our DNVs, we manually scored 3,980 sites, by visualizing the 13 

underlying read data in each trio member, with SAMtools version 1.9 tview. To score these sites, 14 

we looked at the first column (variant location in the read data as seen in tview images) of both 15 

parents and the proband sample to see what variants were present (example shown in Figure S35). 16 

If there was any variant in the first column of the mother or father, regardless of quality, that 17 

matched the main variant in the proband’s first column, then we denoted the variant as maternal, 18 

paternal, or both depending on whether it was the mother’s variant that matched the proband or 19 

the fathers or both parents. If the main variant in the first column of the parental samples did not 20 

match the proband’s variant, then we knew this sample would be a DNV, thus verifying our results.  21 

 22 
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As a second check of our DNVs, we randomly sampled 25 DNV sites in NA12878 and 1 

performed Sanger sequencing in NA12878 and parents (NA12891, NA12892). Primers were 2 

designed using Primer3Plus (https://primer3plus.com) to target each of the 25 variants. PCR 3 

reactions were run using the primers, genomic DNA for individuals NA12878 (Coriell tube label 4 

NA12878 * N44 12/02/2019), NA12891 (Coriell tube label NA12891 * H3 7/25/2019), and 5 

NA12892 (Coriell tube label NA12892 * F3 8/6/2019), and Thermo Scientific Phusion High-6 

Fidelity PCR Master Mix with HF Buffer. All PCR products underwent PCR clean-up and Sanger 7 

sequencing through Genewiz (https://www.genewiz.com). Trace files with the Sanger sequencing 8 

data were assembled and visualized as chromatograms using Sequencher 5.4.6 9 

(http://www.genecodes.com). For 24 of the variants, the result from Sanger sequencing was clear. 10 

However, for site chr11_134531608_C_G we saw evidence of the alternate allele at a low 11 

frequency. To test whether this signal was real, we pursued deep sequencing of the amplicon on 12 

an Oxford Nanopore Technologies (ONT) MinION sequencer as follows. PCR products for 13 

amplicon chr11_134531608_C_G, in each of the three individuals, underwent purification using 14 

the QIAquick PCR Purification Kit. A library of the purified products was prepared using the 15 

Oxford Nanopore Technologies (ONT) Rapid Barcoding Kit (SQK-RBK004). Sequencing of the 16 

library was performed using the ONT MinION sequencer and the MinKNOW software. The fastq 17 

output files containing the sequencing data for all three samples were mapped to the amplicon 18 

reference sequence using minimap2 50 (version 2.21) and all had coverage depth > 100x. A bam 19 

file and indexed bam file were generated for each sample using SAMtools 51 (version 1.9). The 20 

bam files were then visualized using the Integrated Genomics Viewer 52 to determine the count of 21 

each nucleotide base at the variant position.  22 

 23 
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 1 

Phasing of de novo variants 2 

We utilized Unfazed version 1.0.2 (https://github.com/jbelyeu/unfazed) 53 to phase the de 3 

novo variants in our study with regard to the parent-of-origin chromosome. First, a bed file 4 

containing de novo variants was generated for each individual. Second, the de novo bed file, 5 

DeepVariant full genome trio VCF, and the alignment files for all trio members were run through 6 

Unfazed. Since Unfazed uses different approaches to phasing on the X chromosome in males and 7 

females, we only focus on phased variants on the autosomes in this study. 8 

 9 

NA12878 additional datasets 10 

 We identified additional high-coverage whole-genome sequencing data from NA12878 11 

from the SRA (https://www.ncbi.nlm.nih.gov/sra) and other sources. These included SRA data 12 

SRR944138 from 2012 and SRR952827 from 2013, McDonnell Genome Institute data 13 

gerald_HFKWMDSXX and H_IJ-NA12878 both from 2018, and the high-coverage data from 14 

2020. To avoid differences due to coverage, we downsampled all datasets to 30x using SAMtools. 15 

All data was re-mapped to build 38 using SpeedSeq 54 version 0.1.2 and run through the DNV 16 

workflow using the NA12891 and NA12892 parental WGS data from 2020 1000G.  We again did 17 

a count check for total and heterozygous variants per chromosome (Figure S36). 18 

 19 

Phylogenetic tree of de novo variants 20 

To assess the differences between different NA12878 replicates we built a multi-sequence 21 

FASTA file where each FASTA represents the aggregate of all possible DNVs identified in this 22 

individual. The specific steps to build the tree were as follows: 1) we first merged the samples 23 
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together and converted the genotypes for each DNV site from 0/0 or 0/1 to the nucleotide 1 

counterparts (e.g., AA, CG, TC) for all of the NA12878 samples; 2) next we converted these 2 

genotype symbols to their IUPAC code; 3) we then collapsed the IUPAC symbols into a sequence 3 

per sample and placed them into a FASTA file. We also included a reference "sample", which was 4 

just the reference allele at each DNV site and 4) we used MEGAX 55 version 10.2.4 to create a 5 

maximum likelihood phylogenetic tree. 6 

 7 

Mutation profile assessment 8 

 We utilized the deconstructSig 45 software version-1.9.0 inside of Parabricks to perform 9 

mutation signature analysis. The prominent signature was chosen for an individual and if there was 10 

not one prominent signature than the weights of two signature was equal to or greater than (>= 11 

0.31) both signatures were represented in the tables and figures.  12 

 13 

Karyotype analysis 14 

Read-depth based karyotypes were generated by assessment of the aligned sequence data. First, 15 

the number of reads per chromosome was calculated using SAMtools 51 in each individual. Second, 16 

the size of each chromosome was generated using the reference genome data and by removing 17 

locations of gaps from the reference. Third, the copy number of each of the chromosomes was 18 

calculated as follows: ((fold coverage per chromosome) / (fold coverage of chromosome 1))*2.  19 

 20 

Viral analysis 21 

 We ran SAMtools idxstats on all individuals to determine the number of mapped reads to 22 

each chromosome. We then calculated the copy number of EBV in each individual as follows: 23 
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EBV copy number = ((mapped reads to EBV * 150 base pairs per read) / length of EBV) / ((mapped 1 

reads to chromosome 1 * 150 base pairs per read) / length of chromosome 1)  2 

 3 

DNV enrichment in genes 4 

 To test for DNV enrichment in genes we utilized two methods: chimpanzee-human and 5 

denovolyzeR. These were run as previously described 8,56.  6 

 7 

Annotation of protein-coding DNVs 8 

 We uploaded the DNV calls to the open-cravat program (https://opencravat.org/) and 9 

specifically identified Clinvar as one of the annotation categories. Rescoring of DNVs in Franklin 10 

was performed using Franklin (https://franklin.genoox.com). 11 

 12 

 13 
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manager?origin_id=3eff453a-88f4-11eb-954f-752ba7b88ebe&origin_path=%2F).  1000 1 

Genomes Acknowledgement for deep coverage of the extended 3202 genomes (or subset thereof): 2 

The following cell lines/DNA samples were obtained from the NIGMS Human Genetic Cell 3 

Repository at the Coriell Institute for Medical Research: [NA06984, NA06985, NA06986, 4 

NA06989, NA06991, NA06993, NA06994, NA06995, NA06997, NA07000, NA07014, 5 

NA07019, NA07022, NA07029, NA07031, NA07034, NA07037, NA07045, NA07048, 6 

NA07051, NA07055, NA07056, NA07340, NA07345, NA07346, NA07347, NA07348, 7 

NA07349, NA07357, NA07435, NA10830, NA10831, NA10835, NA10836, NA10837, 8 

NA10838, NA10839, NA10840, NA10842, NA10843, NA10845, NA10846, NA10847, 9 

NA10850, NA10851, NA10852, NA10853, NA10854, NA10855, NA10856, NA10857, 10 

NA10859, NA10860, NA10861, NA10863, NA10864, NA10865, NA11829, NA11830, 11 

NA11831, NA11832, NA11839, NA11840, NA11843, NA11881, NA11882, NA11891, 12 

NA11892, NA11893, NA11894, NA11917, NA11918, NA11919, NA11920, NA11930, 13 

NA11931, NA11932, NA11933, NA11992, NA11993, NA11994, NA11995, NA12003, 14 

NA12004, NA12005, NA12006, NA12043, NA12044, NA12045, NA12046, NA12056, 15 

NA12057, NA12058, NA12144, NA12145, NA12146, NA12154, NA12155, NA12156, 16 

NA12234, NA12239, NA12248, NA12249, NA12264, NA12272, NA12273, NA12274, 17 

NA12275, NA12282, NA12283, NA12286, NA12287, NA12329, NA12335, NA12336, 18 

NA12340, NA12341, NA12342, NA12343, NA12344, NA12347, NA12348, NA12375, 19 

NA12376, NA12383, NA12386, NA12399, NA12400, NA12413, NA12414, NA12485, 20 

NA12489, NA12546, NA12707, NA12708, NA12716, NA12717, NA12718, NA12739, 21 

NA12740, NA12748, NA12749, NA12750, NA12751, NA12752, NA12753, NA12760, 22 

NA12761, NA12762, NA12763, NA12766, NA12767, NA12775, NA12776, NA12777, 23 
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NA12778, NA12801, NA12802, NA12812, NA12813, NA12814, NA12815, NA12817, 1 

NA12818, NA12827, NA12828, NA12829, NA12830, NA12832, NA12842, NA12843, 2 

NA12864, NA12865, NA12872, NA12873, NA12874, NA12875, NA12877, NA12878, 3 

NA12889, NA12890, NA12891, NA12892]. The data were generated at the New York Genome 4 

Center with funds provided by NHGRI Grants 3UM1HG008901-03S1 and 3UM1HG008901-5 

04S2. We are grateful to all of the families at the participating SSC sites, as well as the principal 6 

investigators (A. Beaudet, R. Bernier, J. Constantino, E. Cook, E. Fombonne, D. Geschwind, R. 7 

Goin-Kochel, E. Hanson, D. Grice, A. Klin, 25D. Ledbetter, C. Lord, C. Martin, D. Martin, R. 8 

Maxim, J. Miles, O. Ousley, K. Pelphrey, B. Peterson, J. Piggot, C. Saulnier, M. State, W. Stone, 9 

J. Sutcliffe, C. Walsh, Z. Warren, and E. Wijsman). We appreciate obtaining access to phenotypic 10 

and genetic data for the monozygotic twin pair on SFARI Base. Approved researchers can obtain 11 

the SSC population dataset described in this study (https://www.sfari.org/resource/simons-12 

simplex-collection/) by applying at https://base.sfari.org.  13 

 14 
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