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Abstract 
The prevalence of clonal haematopoiesis of indeterminate potential (CHIP) in healthy individuals 

increases rapidly from age 60 onwards and has been associated with increased risk for 

malignancy, heart disease and ischemic stroke. CHIP is driven by somatic mutations in stem 

cells that are also drivers of myeloid malignancies. Since mutations in stem cells often drive 

leukaemia, we hypothesised that stem cell fitness substantially contributes to transformation 

from CHIP to leukaemia. Stem cell fitness is defined as the proliferative advantage over cells 

carrying no or only neutral mutations. We set out to quantify the fitness effects of CHIP drivers 

over a 15 year timespan in older age, using longitudinal error-corrected sequencing data. It is 

currently unknown whether mutations in different CHIP genes lead to distinct fitness advantages 

that could form the basis for patient stratification. We developed a new method based on drift-

induced fluctuation (DIF) filtering to extract fitness effects from longitudinal data, and thus 
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quantify the growth potential of variants within each individual. Our approach discriminates 

naturally drifting populations of cells and faster growing clones, while taking into account 

individual mutational context. We show that gene-specific fitness differences can outweigh inter-

individual variation and therefore could form the basis for personalised clinical management.  

 

Introduction 
Age is the single largest factor underlying the onset of many cancers (de Magalhaes, 2013).  

Age-related accumulation and clonal expansion of cancer-associated somatic mutations in 

healthy tissues has been posited recently as a pre-malignant status consistent with the 

multistage model of carcinogenesis (Martincorena, 2019). However, the widespread presence of 

cancer-associated mutations in healthy tissues highlights the complexity of early detection and 

diagnosis of cancer (Ayachi et al., 2020; Genovese et al., 2014; Jaiswal et al., 2014; Lee-Six et 

al., 2019; Martincorena et al., 2015). 

 

Clonal haematopoiesis of indeterminate potential (CHIP) is defined as the clonal expansion of 

haematopoietic stem and progenitor cells (HSPCs) in healthy aged individuals. CHIP affects 

more than 10% of individuals over the age of 60 years and is associated with an estimated 10-

fold increased risk for the later onset of haematological neoplasms (Ayachi et al., 2020; 

Genovese et al., 2014; Jaiswal et al., 2014). There is a clear benefit of detecting CHIP early as 

the  association between clone size and malignancy progression is well-established (Jaiswal 

and Ebert, 2019; Jaiswal et al., 2014; Park and Bejar, 2020). 

 

The particular mechanisms by which common mutations of CHIP, e.g. DNMT3A, TET2, 

contribute to the progression of leukaemia are still not understood, which hinders early 

diagnosis of CHIP on a gene or variant-basis (Challen and Goodell, 2020; Jaiswal and Ebert, 

2019; Shih et al., 2012; Terradas-Terradas et al., 2020). In clinical practice, CHIP is diagnosed 

by the presence of somatic mutations at variant allele frequencies (VAF) of at least 0.02 in 

cancer-associated genes in more than 4% of all blood cells (Jaiswal and Ebert, 2019; Steensma 

and Bolton, 2020).  Clonal fitness, defined as the proliferative advantage of stem cells carrying a 

mutation over cells carrying no or only neutral mutations, has emerged as an alternative clone-

specific quantitative marker of CHIP (Watson et al., 2020; Williams et al., 2020). As mutations in 

stem cells often drive leukaemia (Jaiswal et al., 2014), we hypothesise that stem cell fitness 

contributes substantially to transformation from CHIP to leukaemia. 
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Stratification of individuals to inform clinical management for early detection or prevention of 

leukaemia will depend on our ability to accurately associate genes and their variants with 

progression to disease. However, it remains unresolved whether variant- or gene-specific 

fitness effects transcend other factors contributing to variable progression between individuals 

such as environment or genetics.  

 

Hitherto fitness effects have been predicted from large cross-sectional cohort data (Abelson et 

al., 2018; Watson et al., 2020). In this approach, single time-point data from many individuals is 

pooled to generate allele frequency distributions. Although this method allows the study of a 

large collection of variants, pooling prevents estimation of an individual’s mutational fitness 

effects from cross-sectional data. Inferring fitness from a single time-point creates additional 

uncertainty about whether a mutation has arisen recently and has grown rapidly (high fitness 

advantage), or arose a long time ago and grown slowly (low fitness advantage). With 

longitudinal samples, fitness effects of individual mutations can be estimated directly from the 

change in VAF over multiple time-points.  

 

In this study we work with longitudinal data from the Lothian Birth Cohorts of 1921 (LBC1921) 

and 1936 (LBC1936). Such longitudinal data are rare worldwide owing to their participants’ older 

age (70-90 years) and their three-yearly follow-ups over 15 years. We developed a new 

framework for extracting fitness effects from longitudinal data. Firstly, a drift-induced fluctuations 

(DIF) filter allowed us to better segregate between naturally drifting populations of cells and fast-

growing clones. Secondly, a context-dependent fitting method quantified the growth potential or 

fitness effects simultaneously for all selected mutations within each individual. We detected 

gene-specific fitness effects within our cohorts, highlighting the potential for personalised clinical 

management. 

 

Material and Methods 
Participant samples 
The Lothian Birth Cohort 1921 (LBC1921) contains a total of 550 participants at Wave 1 of their 

testing (done between 1999 and 2001) with a gender ratio of 234/316 (m/f) and a mean age at 

Wave 1 of 79.1 (SD=0.6) (Table 1, (Taylor et al., 2018)). The Lothian Birth Cohort 1936 

(LBC1936), contains a total of 1091 participants at Wave1 of their testing (done between 2004 

and 2007) with a gender ratio of 548/543 (m/f) and a mean age at Wave 1 of 69.5 (SD=0.8) 

(Table 1, (Taylor et al., 2018)). We previously identified 73 participants with CHIP at Wave 1 
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(Robertson et al., 2019). We sequenced DNA from those 73 LBC participants longitudinally and 

added 16 LBC participants with previously unidentified CHIP, for a total of 298 samples together 

with 14 “Genome in a Bottle” (GIAB) controls (Supplemental Table 1). 

 

Targeted, error-corrected Sequencing and Data filtering 
DNA was extracted from EDTA whole blood using the Nucleon BACC3 kit, following the 

manufacturer’s instructions. Libraries were prepared from 200ng of each DNA sample using the 

Archer VariantPlex 75 Myeloid gene panel and VariantPlex Somatic Protocol for Illumina 

Sequencing (Invitae, Table 2), including modifications for detecting low allele frequencies. 

Sequencing of each pool was performed using the NextSeq 500/550 High-Output v2.5 (300 

cycle) kit on the NextSeq 550 platform. To inform reproducibility, background model for error 

and batch correction, we sequenced “genome in a bottle” DNA in each batch of samples (DNA 

NA12878 Coriell Institute). 

 

Reads were filtered for phred ≥30 and adapters removed using!Trimmomatic (Bolger et al., 

2014) before undergoing guided alignment to human genome assembly hg19 using bwa-mem 

and bowtie2. Unique molecular barcodes (ligated prior to PCR amplification) were utilised for 

read deduplication to support quantitative multiplexed analysis and confident mutation detection. 

Within targeted regions, variants were called using three tools (Lofreq (Wilm et al., 2012), 

Freebayes (Garrison and Marth, 2012) and Vision (ArcherDX, unpublished) – building a 

consensus from the output of all callers (Table 3).  

 

All filtered variants at 0.02 VAF met the following criteria: 1) the number of reads supporting the 

alternative allele surpasses the coverage criteria while exhibiting no directional biases (AO ≥ 5, 

UAO ≥ 3); 2) variants are significantly underrepresented within the Genome Aggregation 

Database (gnomAD; p ≤ 0.05); 3) variants are not obviously germline variants (stable VAF 

across all waves ~0.5 or ~1) that may have been underrepresented in the gnomAD database 

due to the narrow geographical origin of the Lothian Birth Cohort participants; 4) contain events 

that are overrepresented across the dataset - generally frameshift duplications and deletions - 

whose reads share some sequence homology to target regions yet are likely misaligned artefact 

from the capture method. In addition, we manually curated this list checking for variants that 

were previously reported, as per Jaiswal et al. (Jaiswal et al., 2014b), in the COSMIC 

(Catalogue of Somatic Mutations in Cancer) database or within the published literature (Table 

4). Finally, for any variant that surpassed the above criteria at, or above, 0.02 VAF across the 
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measured time period, we endeavored to include all other participant matched data points 

regardless of VAF level (SuppFig.1A). 

 

Computational prediction of missense variant effects 
To predict which missense variants are most likely to be damaging, we used six computational 

variant effect predictors recently identified as being most useful for identifying pathogenic 

mutations (Carter et al., 2013; Hecht et al., 2015; Ioannidis et al., 2016; Livesey and Marsh, 

2020; Raimondi et al., 2017; Riesselman et al., 2018; Vaser et al., 2016). Specifically, for each 

variant identified in this study, we determined what fraction of previously identified pathogenic 

and likely pathogenic missense variants from ClinVar, and what fraction of variants observed in 

the human population from gnomAD v2.1 for each computational predictor. We then averaged 

these fractions across all predictors. Note that DeepSequence was only included for DNMT3A 

and TP53 due to its computational intensiveness and difficulty of running on long protein 

sequences. 

 

Modelling to estimate fitness 
Given the longitudinal nature of this study we can directly fit the deterministic solution of an 

established minimal model of cell division (Till et al., 1964; Watson et al., 2020) to the time 

evolution of VAF trajectories in a participant’s genetic profiles (Fig.2C). For each individual we 

simultaneously estimate the fitness and time of acquisition of variants as well as the size of the 

stem cell pool. 

 

In this model cells exist in two states: stem cells (SCs) or differentiated cells (DCs). Under the 

assumption that DCs cannot revert to a SC state, differentiation inevitably leads to cell death 

and is treated as such. Furthermore, assuming that each SC produces the same amount of fully 

differentiated blood cells allows a direct comparison between the VAF of a variant as observed 

in blood samples and the number of SCs forming the genetic clone (clone size). For an 

individual with a collection of clones {𝑐#}#∈&, the VAF evolution in time 𝑣#(𝑡) of a clone 𝑐# 

corresponds to 𝑣#(𝑡) =
,-(.)
/0(.)

, where 𝑣#(𝑡) is the variant allele frequency of the variant at time 𝑡, 

𝑛#(𝑡) is the number of SCs carrying the variant and 𝑁(𝑡) corresponds to the total number of 

diploid HSPCs present in the individual. Finally, we assume that that 𝑁(𝑡) = 𝑁3 + ∑ 𝑛#(𝑡)#∈&  

where 𝑁3 is the average number of wildtype (WT) HSPCs in the individual. 
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The bias towards self-renewal of symmetric divisions is parameterised by 𝑠 and determines the 

fitness advantage of a clone. In normal haematopoiesis 𝑠 = 0, in which case clones undergo 

neutral drift. The stochastic time-evolution of neutral clones corresponds to that of a critical birth 

and death model (CBM) that we exploit to identify mutations with a clear proliferative advantage, 

as detailed below. For clones with non-neutral (fitness-increasing) mutations, 𝑠 > 0, and these 

clones grow in size exponentially in time as 𝑒:(.;.<) from an initial population of 1 SC at the time 

of mutation acquisition 𝑡=. 

 

Altogether, the exponential proliferation of an isolated genetic clone in an individual results in 

the logistic time-evolution of its corresponding VAF,  

𝑣(𝑡) 	= 	
1

2 + 2𝑁3𝑒;:(.;.<)
	, 

allowing us to estimate the fitness advantage in trajectories with at least 3 data points - 46% of 

all fit trajectories - using least-squares fitting. Further, when multiple fit clones are present in an 

individual we constrain the fit to share the stem cell pool size 𝑁(𝑡) for all variant trajectories in 

this individual. This increases the data/parameter ratio, and produces richer dynamics, where 

exponentially growing clones can be suppressed by the growth of a fitter clone. Critically, this 

implies that even non-competitive models, where trajectories grow independently of each other, 

will result in competitive dynamics in the observed VAF trajectories as variants strive for 

dominance of the total production of blood cells.  

 

Notice that this model cannot account for loss of heterozygosity events. Overall, only one 

variant - JAK2 c.1849G>T - averaged a VAF > 0.5 and was consequently left out of this study. 

Further, following the fit, three filters were implemented to detect inaccurately fitted trajectories 

left out from the reported fitness estimates: 1) individuals presenting a large r2-value, total 

squared error accumulated over all fitted trajectories in a participant (2 of 54 participants); 2) 

trajectories with a negative Pearson correlation coefficient between fit and observed data, e.g. a 

growing trajectory with a decreasing fit, which could result from fitter variants that were not 

captured in our gene panel (34 of 90 trajectories when using a 0.02 VAF filter, 8 of 96 

trajectories when using a drift-induced fluctuations filter, see below and Results for filtering 

approaches); 3) individuals with clinical records indicating treatment that could affect the clonal 

dynamics (1 participant, see SI methods). Both exclusion criteria 1 and 2 included participants 

that likely had clones with multiple mutations based on visual inspection. 
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Filtering fit variants using mathematical modelling of neutral drift 
A critical birth-death process (Fig.2C) predicts drift-induced fluctuations (DIF) in the size of 

clones with zero mean and variance 𝜎(𝑡)/ = 2𝜆𝑛(𝑡=)𝑡, where 𝑛(𝑡=) is the clone size at the start 

of the observation period of length 𝑡, and 𝜆 is the rate of symmetric self-renewing cell divisions. 

This results in a predicted linear relationship between the VAF of a clone, 𝑣, and the expected 

variance in the distribution of its fluctuations, 𝛥𝑣 (VAF gradient between two time points 

normalised to be independent of time, SI methods). More precisely, the distribution of DIF, 𝛥𝑣, 

will have expectation 𝜇FG = 0 and variance 𝜎FG/ = 𝑣(𝑡=)𝜆/𝑁, where 𝑁 is again the total number 

of HSPCs in the individual. In the presence of a sufficiently large growing non-neutral mutation, 

the expected size of DIF of neutral clones is no longer zero but decreases with VAF (SI 

methods), 𝜇FG	 ∼ −𝑣(𝑡=), while 𝜎FG/ remains proportional to VAF (SI methods). 

 

We use the longitudinal trajectories of synonymous mutations, as a proxy for neutral mutations, 

in the LBC to fit linear regressions 𝜇FG	 ∼ −𝑣(𝑡=) and 𝜎FG/ ∼ 𝑣(𝑡=) (Fig.3B). The DIF filter then 

identifies variants whose growth cannot be explained by neutral drift fluctuations, that is variants 

𝑣 satisfying 𝛥𝑣 > 𝜇FG + 2𝜎FG(SI methods). 

 

Results 
 
The Lothian Birth Cohorts allow for longitudinal profiling of CHIP variants in advanced 
age 
The Lothian Birth Cohorts (LBCs) of 1921 (n=550) and 1936 (n=1091) are two independent, 

longitudinal studies of ageing with approximately three yearly follow up for five waves, from the 

age of 70 (LBC1936) and 79 (LBC1921) (Taylor et al., 2018). We previously identified 73 

participants with CHIP at Wave 1 through whole-genome sequencing (Robertson et al., 2019). 

Here, we used a targeted error-corrected sequencing approach using a 75 gene panel 

(ArcherDX/Invitae) to assess longitudinal changes in variant allele frequencies (VAF) and clonal 

evolution over 15 years across both LBC cohorts (Table 1). Error-corrected sequencing allowed 

accurate quantification, providing more sensitive clonal outgrowth estimates compared to our 

previous WGS data. We sequenced 298 samples (89 individuals across 2-5 time-points) and 

achieved a sequencing depth of 1953x mean coverage (1930x median) over all targeted sites 

with an average of 2.4 unique somatic variants (pan-cohort VAF 0.0005-0.87, median VAF 

0.025) detected per participant. We examined all participant-matched events across the time-

course: sequence quality control metrics revealed that only 12 of 466 data-points failed to meet 
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our quality criteria likely due to low initial VAF. The majority of our variant loci generally 

displayed a high number of supporting reads, with a mean of 186 (SuppFig.1A). 

 

For our initial analysis, we retained variants with at least one time-point at 0.02 VAF (Table 5). 

DNMT3A was the most commonly mutated CHIP gene (n=53 events in 42 participants), 

followed by TET2 (n=22 events in 18 participants), NOTCH1 (n=10 events in 9 participants), 

JAK2 (n=8 events in 8 participants) and U2AF2 (n= 7 events in 6 participants) (Fig.1A and 1C). 

Our mutation spectrum is consistent with previous studies in finding DNMT3A and TET2 as the 

most frequently mutated genes. However, we detected a lower frequency of mutations in 

splicing genes, such as SRSF2, U2AF1 and SF3B1, despite the older age of the cohort (Fig.1A 

and SuppFig.1A). This is in contrast to previously published cohort data, where splicing 

mutations became more prominent with increased age (McKerrell et al., 2015). The majority of 

mutations were missense, frameshift and nonsense mutations (Fig.1B). Clonal evolution and 

changes in VAF per participant over all time points are shown in Fig.1C and SuppFig.1C.  We 

detected some variants more frequently at certain hot spots within a gene such as p.Arg882His 

in DNMT3A, with previously unreported variants being present as well (Fig.1D-I, Table 2, 

(Jaiswal et al., 2014)). In the case of JAK2V617F, we identified two individuals who developed 

leukaemia at Wave 2 and received treatment between Waves 2 and 3, likely driving a clear 

reduction in clone size (Fig.1H). Those indivdiuals were excluded from further analysis. 

Overall, our sequencing approach allowed for high resolution, longitudinal mapping of CHIP 

variants over a 15-year time span across two cohorts from the same geographical region and 

born 9 years apart. 

 

Identification of harmful CHIP variants in the LBCs 
Stem cell fitness is defined as the proliferative advantage over cells carrying no or only neutral 

mutations. It remains incompletely understood to what extent fitness is gene- or variant-specific, 

or determined by the bone marrow microenvironment and clonal composition. Earlier estimates 

suggested a wide spread of fitness effects even for variants of the same gene (Watson et al., 

2020), which would make it difficult to clinically stratify individuals with CHIP. To determine the 

fitness effects of the variants identified in our cohorts (Fig.1A), we initially selected all CHIP 

variants in our data using the commonly used criterion of defining any variants with VAF>0.02 

as CHIP (Jaiswal and Ebert, 2019; Steensma and Bolton, 2020), and retaining only those 

variants with at least 2 time-points (Fig.2A). This approach identified 140 CHIP mutations 

(Fig.2B) overall. To estimate the fitness effect each variant confers, we fitted longitudinal 
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trajectories using birth-death models of clonal dynamics (Fig.2C) on trajectories with 3 or more 

time-points (Table 6). The resulting fitness values show an overall dependence of fitness on the 

gene level (Fig.2E), with a wide distribution of fitness for some genes, such as TET2 and 

DNMT3A (Fig.2D and 2E), but not others such as JAK2 (which are all the same variant).  
 

Longitudinal trajectories allow for a more accurate stratification of CHIP variants 
Since longitudinal data allow direct quantification of the growth in VAF over time, we can inspect 

the gradients (fluctuations) in VAF for variants that were classified as CHIP based on 

thresholding. We find that a VAF>0.02 threshold not only misses fast growing and potentially 

harmful variants (Fig.2A), but can include variants whose frequencies are shrinking (Fig.2A and 

2B) and thus either do not confer a fitness advantage or are being outcompeted by other clones. 

Overall, only 56% of CHIP mutations detected by thresholding at 0.02 VAF were growing during 

the observed time span (Fig.2B). Longitudinal data thus reveal limitations in defining CHIP 

mutations based on a widely used VAF threshold. We therefore sought to filter variants based 

on longitudinal information, by selecting variants whose growth cannot be explained by the drift 

in VAF from neutral fluctuations (Fig.3A). Using the longitudinal behaviour of synonymous 

mutations in the LBCs, as a proxy for neutral trajectories, we find that the predicted linear 

relationships for mean and variance of VAF-gradients (see Methods) accurately reflect the data 

(Fig.3B). This novel approach, which we named drift-induced fluctuations (DIF) filter, allows us 

to estimate the distribution of fluctuations due to the neutral drift of clone populations as a 

function of VAF and detects variants growing more than two standard deviations from the mean 

of the predicted neutral drift (Fig.3A, Table7). DIF-filtering resulted in 226 variant trajectories 

(Fig.3C), 97% of which grew over the observed time span. We note that the VAF of fit mutations 

may still shrink over time due to the presence of an even fitter clone in the same individual. This 

is in contrast to thresholding at 0.02 VAF, with only 56% of variants identified to be growing and 

thus likely to confer a fitness advantage. Of 226 variants we detected, only 81 would have been 

detected using the previous VAF-threshold filter approach. We recomputed fitness estimates for 

this new set of filtered trajectories (Fig.3F). Growing variants that were missed by the traditional 

filtering method include highly fit variants such as U2AF1 c.470A>G and NPM1 c.847-4C>T 

(Fig.3D and 3F). VAF-thresholding identified NOTCH1 as one of the top three most frequently 

mutated genes in our cohort. However, only 1 of the 8 variants identified was growing over the 

observed time-course. In contrast, all 6 NOTCH1 variants identified by using our DIF filter were 

growing, thus our filtering method allows us to more effectively separate benign from potentially 
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harmful variants. Overall, the variants only detected by DIF-filtering, but not VAF-thresholding, 

were of high fitness (Fig.3E).  

 

We further stratified variants using a combination of computational predictors (Fig.3G, see 

Methods), categorising the most prevalent CHIP variants into damaging (6 variants), possibly 

damaging (3 variants) and likely benign (2 variants), as well as frameshifts and terminations (34 

variants, which are also most likely damaging to protein structure and thus protein function). The 

novel DIF-filter therefore produces a low false discovery rate of pathogenic variants, with 88% of 

the detected fit variants being predicted to be likely damaging, frameshift or termination. As our 

approach detects very few benign variants by design, we were unable to report statistically 

significant differences between the fitness distributions classified by damaging. Further, 

predicted benign mutations selected as fit could be the result of clonal hitchhiking (mutations co-

occurring in cells carrying a damaging mutation). 

 

Taken together, measuring changes in synonymous variants combined with mathematical 

models of neutral drift results in an alternative method, DIF-filtering, that improves on the 

threshold-based definition of CHIP mutations (Fig.3A), by replacing an arbitrary cut-off on VAF 

by a choice of false discovery rate and as a result selecting fewer trajectories with shrinking 

VAF (Fig.2B and 3C). Importantly, only 2 time points are necessary to apply DIF-filtering, 

making this a widely applicable method for existing cohorts and future studies. 

 

Predicting trajectories using our fitness estimates from single-time point data 
We further analysed differences in the distributions of fitness between genes using a non-

parametric test. Despite having small sample sizes for many genes we still detected statistically 

significant differences among the distributions of fitness effects (Fig.3H). In particular, we found 

that mutations in gene SF3B1 conferred a higher fitness advantage over mutations in common 

genes such as DNMT3A, TET2 or ASXL1. Differences in the distribution of fitness allow us to 

predict the future growth of mutations from initial time-points. For example, if a patient presents 

with a variant in gene SF3B1 or DNMT3A at 0.02 VAF, their growth is predicted to differ by 

158% percent in 3 years (respectively achieving 0.057 and 0.026 VAF, assuming median fitness 

for each gene), warranting a clinical follow-up over that time-frame. We have also tested 

differences in fitness by genes when summarised into functional categories and found 

trajectories of genes involved in DNA methylation to have lower fitness than genes involved in 

splicing, the cohesin complex and histone methylation (SuppFig.2G and 2H).  
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Discussion 
The clinical potential for stratifying progression of CHIP depends on whether genes confer 

distinct fitness advantages. Indeed, most studies so far have not shown a clear distinction of 

fitness effects on a gene basis, and have shown considerable overlap in fitness coefficients 

between variants of different genes. We show that fitness can substantially differ by gene and 

gene category. Combining longitudinal data with a new method to identify CHIP variants allows 

for more accurate fitness estimates of CHIP than cross sectional cohort data, and motivates 

further studies with increased sample sizes.  

 

The strength of our approach, combining longitudinal data with our new DIF-filtering method, is 

exemplified by NOTCH1 and LUC7L2. NOTCH1 variants identified by a 0.02 VAF threshold 

were prominent in the LBCs (Fig.1A). However, all but one of these were shrinking in frequency. 

In contrast, our DIF-filtering method identified 6 variants conferring a fitness advantage, 

including the only increasing variant detected at a 0.02 VAF level, c.4598A>C (Fig.3C). 

Although NOTCH1 mutations commonly occur in leukaemia, this specific mutation has not been 

reported in COSMIC, thus more cohort studies are needed to clarify a role for NOTCH1 in CHIP 

(Ferrando, 2009; Rossi et al., 2012). LUC7L2 is a pre-mRNA splicing factor that has been  

previously reported to be involved in CHIP, MDS and AML (Hershberger et al., 2016; Sperling et 

al., 2017). LUC7L2 was excluded from our list of CHIP mutations when using a 0.02 VAF cut-

off. In contrast, we find several LUC7L2 mutations using DIF-filtering, thus supporting previous 

findings. Other well-described CHIP genes that were only detected using DIF-filtering include 

NPM1, TP53 and U2AF2 (see Fig.2E and 3F,(Jaiswal et al., 2014)). DIF-filtering also results in 

higher fitness estimates for some genes, such as PPM1D, U2AF1 and RAD21, because we 

either detected more trajectories of a gene with the DIF filter or were able to detect other 

variants at small VAF in the same individuals (Fig.2E and 3F). Importantly, a minimum of two 

time points per participant is needed to apply DIF-filtering, making this method widely applicable 

to future prospective studies and existing cohorts. 

 

Synonymous mutations in our study reached a VAF of up to 0.02 (Fig.3B). Some previous 

studies have claimed that neutral events will typically not expand to > 0.001 VAF over a human 

lifespan (Lee-Six et al., 2018), and that all synonymous variants detected are likely hitchhikers 

(Watson et al., 2020).  Our longitudinal data clearly show many synonymous and non-

synonymous mutations larger than 0.001 VAF that do not grow in VAF (Fig.3A) or whose growth 
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and shrinkage over time is consistent with neutral drift (Fig.3B and SI methods). If the 

synonymous mutations were able to grow to such high frequencies by hitchhiking on clones with 

fit mutations, these no longer have a fitness advantage over the observation period. An 

alternative explanation considers the number N of self-renewing cells (HSPCs). For an 

individual aged t, neutrally drifting mutations are only expected to achieve ∼ √𝑡/𝑁 VAF. Recent 

studies, therefore, suggest that the high frequency at which CHIP is found in the elderly is likely 

the result of a small pool of stem cells (Zink et al., 2017).  Estimates for the number of HSPCs in 

healthy adult humans vary widely, with recent phylogenetic estimates suggesting 50k-200k 

(Lee-Six et al., 2018), whereas other estimates suggest 11-22k (Abkowitz et al., 2002). On the 

lower end, a study based on allometric scaling estimates that the “pool of actively replicating 

cells that contribute to hematopoiesis” is around 500 cells (Dingli and Pacheco, 2006). In our 

study, the distribution of gradients of synonymous variants provides the estimate	𝜃 ∼ 𝜆/𝑁, 

where 𝜃 corresponds to the slope of the linear relation between variance and vaf (Fig.3B) and 𝜆 

to the rate of self-renewing divisions. Using the well-established rate 𝜆 = 1.3/year (once every 

40 weeks, (Catlin et al., 2011)) we obtain an estimate on the number of HSPCs of 𝑁 ∼ 6500 

(see SI methods for a more detailed analysis).  The presence of neutral events reaching large 

VAFs in our data could be explained by a depletion of the stem cell pool in participants of the 

LBC (80 years mean across all collected blood samples). Both a study of somatic mutations in a 

115-yr-old woman and a recent longitudinal study following the evolution of clones in an 

individual from age 103 to 110 (3 time points) found that likely benign clones achieved VAFs of 

up to 0.3 (van den Akker et al., 2020; Holstege et al., 2014)- suggesting a very small pool of 

stem cells. Another possible explanation is that the observed variants arose in cells with faster 

rates of self-renewing symmetric divisions 𝜆, either due to natural selection of faster dividing 

HSPCs or because the observed variants in the LBC arose in different HSPC compartments, 

such as multipotent progenitor cells (Barile et al., 2020; Morcos et al., 2020; Takahashi et al., 

2021). Since we can only directly measure 𝜃, it is possible that both a depletion of the pool of 

HSPCs at old age and heterogeneity in the self-renewal rate 𝜆 have enabled neutral events to 

reach high VAFs. Despite the disparity of estimates on the number of HSPCs in healthy 

individuals between studies, the fitness estimates we report (Fig.2 and Fig.3) are valid for the 

wide ranges of reported HSPC estimates (SuppFig.2E and 2F and SI methods).  

 

In this work, we have assumed each mutation to uniquely identify a clone. It is possible for 

multiple mutations to have occurred in the same clone, though this has been estimated to be as 

rare as 0.16 double mutants per person, for mutations conveying a fitness advantage 𝑠 = 0.1,  
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achieving  VAF > 0.005 at age 80 (Watson et al., 2020). There may be a few variants that are 

double mutants, and these would increase the distribution of fitness reported for individual 

genes (Fig.2C and 3F), but not strongly affect the median fitness per gene. Double mutant 

clones in which one mutation is a hitchhiker contributing little to the fitness effect could be 

identified by seeking trajectories with very similar fitness values. Further work could estimate the 

fitness effects of double mutants by identifying possible subclone structures and then fitting 

models separately for each case. Ultimately, we will need single-cell targeted sequencing or 

colony growth essays combined with sequencing to verify the identity of clones with multiple 

mutations. 
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Figure Legends 
Figure 1. Clonal Haematopoiesis in the Lothian Birth Cohorts of 1921 and 1936. 
A. Counts of unique events that exceeded 0.02 VAF across the range of the longitudinal cohorts 

(approx. 70 - 79 years and 79 - 91 years in LBC36 and LBC21, respectively) in our panel of 75 

haematopoietic genes. 

B. Counts of the functional consequences of the unique events listed in Fig.1A, highlighting 

missense mutations as the most frequently encountered event type.  Several other key protein 

altering event types rank highly, including frameshift insertions/deletions and nonsense 

mutations. 

C. Schematic of the top seven most affected genes in the cohort with the largest clone size of 

an event in any given gene shown.  All affected participants have been clustered across all 

time-points, with the point size scaled by VAF and coloured by the functional consequence of 

the variant (as per Fig.1B and legend).  Participants broadly cluster together across their time-

course, driven by the expanding or stable VAF of their harboured mutations and and 

underscores the high prevalence and large clone size of common clonal haematopoietic drivers, 

namely, DNMT3A, TET2 and JAK2. 

D. Clone size trajectories of all DNMT3A mutations across the time-series in both LBC21 and 

LBC36 coloured by the functional consequence of the variant (as per Fig.1B and 1C). 

E. Locations of the somatic mutations discovered in DNMT3A.  Protein affecting events are 

marked and labeled across the structure of the gene (missense in red, truncating in purple, 

stacked for multiple events) highlighting a strong, previously described tendency for CH events 

in DNMT3A to occur in conserved structural and domain loci (which are coloured and labeled 

along the amino acid length of the protein). 

F. Clone size trajectories of all TET2 mutations across the time-series in both LBC21 and 

LBC36 coloured by the functional consequence of the variant (as per Fig.1B and 1C). 

G. The locations of somatic mutations in TET2.  Protein affecting events are marked and 

labeled across the structure of the protein (missense in red, truncating in purple, stacked for 

multiple events). 

H. Clone size trajectories of all JAK2 mutations across the time-series in both LBC21 and 

LBC36 coloured by the functional consequence of the variant (as per Fig.1B and 1C).  Points 

marked in black denote time-points after which the affected participant received treatment for 

leukaemia - potentially driving the observed reductions in clone size. 
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I. The locations of somatic mutations in JAK2.  Protein affecting events are marked and labeled 

across the structure of the protein (missense in red, truncating in purple, stacked for multiple 

events).  Here, all eight JAK2 mutations are p.Val617Phe (JAK2-V617F) missense variants. 
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Figure 2. Fitness effects of variants thresholded at 0.02 VAF. 
A. VAF measurement 𝑣(𝑡=) at initial time-point 𝑡= vs time-normalized gradient in VAF, 

Q	𝑣(𝑡R,S) − 𝑣(𝑡=)T	/	U𝑡R,S − 𝑡=, between initial and last time-points 𝑡= and 𝑡R,S  of all variants 

detected in the LBC with at least 2 time-points. Each data point corresponds to a trajectory in 

the LBC and has been coloured according to its CHIP status based on the 0.02 VAF threshold 

(dashed green line). Blue and orange respectively denote whether or not trajectories achieved a 

VAF > 0.02 during the observed time-span. Inset: Close-up of low VAF region showing a large 

number of variants below 0.02 VAF. Note data below 0.01 VAF were only included if the 

trajectory later rises above 0.01, hence the data are less dense below VAF=0.01. 

B. Number of trajectories passing the currently used 0.02 VAF-threshold, broken down into 

whether VAF is increasing or decreasing from first to last time-point. 

C. Schematic of mathematical model of clonal dynamics. Stem cells naturally acquire mutations 

over time leading to the formation of genetic clones. Artwork includes images by Servier Medical 

Art licensed under CC BY 3.0.  

D. Fitted trajectories (lines) and fitness estimates (box-plots) for all variants in selected genes 

DNMT3A, JAK2, ASXL1, TET2. Note decreasing trajectories occur even for non-zero fitness 

because our model fitting takes into account the presence of other fit mutations in the same 

individual. 

E. Fitness effects of mutations ranked by median fitness. Note fitness is displayed on a 

logarithmic scale to emphasize relative differences in fitness between variants. Boxplots show 

median and exclusive interquartile range.  
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Figure 3. Filtering trajectories based on whether they exceed neutral fluctuations. 
A. Time-normalised gradient in VAF vs VAF for variants detected in the LBC with at least 2 time-

points and at least one VAF >0.01 per trajectory, with synonymous (orange dots), non-

synonymous fit (blue dots) and likely neutral (purple dots) mutations, classified based on 

whether the gradient exceeds the drift-induced fluctuations (DIF) of synonymous mutations (red 

line, two standard deviations above mean, green line).  Inset: Close-up of low VAF region. Note 

that data below 0.01 VAF were only included if the trajectory later rises above 0.01, hence the 

data are less dense below VAF=0.01. 

B. Statistics of fluctuations of synonymous mutations. Both the mean (middle) and variance 

(top) of time-normalised VAF-gradients were fitted with a linear model. Only data at VAF ≥ 0.01 

where used as data below this are incompletely sampled (see A). The fit was weighted by the 

number of data in each bin (bottom). 

C. Number of trajectories passing the DIF filter, broken down into whether VAF is increasing or 

decreasing from first to last time-point. 

D. Variant trajectories in one individual classified according to the DIF filter. Mutations with 

positive fitness effects are coloured according to variant classification (see Fig.1B) while likely 

neutral trajectories are shown in grey. For fit variants, points correspond to the observed VAF 

measurements and lines to the model fit. While the TET2 variant was also detected using the 

0.02 VAF-threshold, the NPM1 and U2AF1 were only detected using the DIF-filter, as they did 

not reach 0.02 VAF. In particular the U2AF1 variant is fast growing (s=0.364). 

E. Fitness effects of variants broken down by filtering method. 

F. Fitness effects of mutations ranked by median fitness. Note fitness is displayed on a 

logarithmic scale to emphasize relative differences in fitness between variants (E&F).  

Boxplots show median and exclusive interquartile range  

G. Fitness effects of variants broken down by predicted mutation effect (see Methods). 

H. Analysis of variance of the distribution of fitness across genes. Heatmap of all statistically 

significant (p<0.05) Kruskal-Wallis H statistics, labeled by effect size, computed for all 

combinations of pairs of genes.  

I. Predicted growth of SF3B1 and DNMT3A variants over 10 years, all starting at 0.02 VAF, 

using the median fitness effects per gene (F). 
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Supplemental Figure Legends 
Figure S1. Clonal Haematopoiesis in the Lothian Birth Cohorts. 
A. Sequence quality metrics for our mutation calls across all participants and time-points filtered 

for 0.02 VAF.  Plotted here are the AO (the number of sequenced reads supporting the 

alternative allele (mutation)) against the UAO (the number of sequenced reads with unique start 

sites that support the alternative allele - an additional measure of molecular complexity in our 

sequencing libraries).  The red dotted lines denote the filter thresholds in both measurements 

(AO ≥ 5, UAO ≥ 3) and points are scaled by the VAF of the somatic mutation.  Having mined for 

participant matched data points for any variant that surpasses our 0.02 VAF threshold, only 12 

data points failed to meet our filter criteria (of 466). We did not exclude these as they were 

supported with matching events across any participants’ time series. 

B. Box and jitter plot of the variant allele frequency of all observed events in the 1st Wave at a 

0.02 VAF filter coloured by variant classification and ordered by largest mean VAF. 

C. Schematic of all affected genes in the cohort with the largest clone size of an event in any 

given gene shown.  All affected participants have been clustered across all time-points, with the 

point size scaled by VAF and coloured by the functional consequence of the variant (as per 

legend).  
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Figure S2. Cohort properties for fitness estimates 
A - D. Box plots show median (bold line) and mean (dashed line) and exclusive interquartile 

range.   
A. Distribution of maximum VAF, 𝑣, per participant of the LBC. 𝑣 is computed as the mean over 

all observations of a trajectory. One trajectory with 𝑣 > 0.5 was excluded for this distribution.  

B. Distribution of maximum inferred fitness, 𝑠, per participant of the LBC. This distribution only 

shows participants with at least one trajectory selected as fit using the DIF filter. 

C. Distribution of maximum inferred 𝑠 ∗ 𝑣 per participant in the LBC. 𝑠 corresponds to the 

inferred fitness of a variant and 𝑣 to its average observed VAF. This distribution only shows 

participants with at least one trajectory selected as fit using the DIF filter. 

D. Distribution of maximum VAF, 𝑣, of synonymous mutations per participant of the LBC. 𝑣 is 

computed as the mean over all observations of a trajectory. 

E. Hypersurface of parameters producing the same fit to the evolution of a fit clone in a 

participant of the LBC. Each marker corresponds to a combination of parameters (fitness, 

number of wild type HSPCs in individual and time of mutation acquisition) fitted to the trajectory 

of a participant in the LBC. The colour scale shows the absolute difference between the inferred 

fitnesses associated with each marker and the fit producing the least squared error. All markers 

shown are within a relative tolerance of 10-3 of the solution presenting the least squared error. 

F. Hypersurface of parameters producing similar fits to the evolution of clones in a participant of 

the LBC with 3 fit variants. Each marker corresponds to a combination of parameters (fitness, 

number of wild type HSPCs in individual and time of mutation acquisition). Curves were fitted 

simultaneously, sharing a common number of HSPCs. The colour scale shows, for each variant, 

the absolute difference between the inferred fitnesses associated each marker and to the fit 

producing the least squared error. All markers shown are within a relative tolerance of 2x10-3 of 

the solution presenting the least squared error. Notice that the fitness of variant DDX41 

marginally increases when the time of mutation acquisition meets the boundary at age 0 in the 

exponentially decreasing hypersurface of parameter solutions. 

G. Fitness effects of mutations grouped by gene category and ranked by median fitness. Note 

fitness is displayed on a logarithmic scale to emphasize relative differences in fitness between 

variants.  

H. Analysis of variance of the distribution of fitness across genes. Heatmap of all statistically 

significant (p<0.05) Kruskal-Wallis H statistics, labelled by effect size, computed for all 

combinations of pairs of genes. 
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Supplementary Methods for
“Longitudinal dynamics of clonal hematopoiesis

identifies gene-specific fitness effects”

1 Birth-death model of clonal dynamics

Consider a populationX(t) of haematopoietic stem and progenitor cells (HSPCs)
in an individual at time t. A classical model of stem cell population assumes that
HSPCs divide and differentiate according to the following birth-death process,
[3, 4]:

HSPC → HSPC +HSPC, with (λ+ s) dt, (1)
→ D +D, with λdt,

→ HSPC +D, with A dt,

where D denotes a differentiated cell. Since differentiated cells cannot self-renew,
differentiation will result in cell death and is treated as such. The deterministic
behaviour of this system is given by

dX

dt
(t) = sX(t). (2)

Consequently, the time evolution of the population of HSPCs is

X(t) = X(0)est, (3)

where X(0) corresponds to the initial population at time t = 0. It is clear that
parameter s regulates the excess growth towards self-renewal and dictates the
evolution of X (t).

The stochastic behaviour of this model, on the other hand, is more involved.
Assuming that X (0) = 1, X (t) has the following probability distribution [1]:

P {X (t) = m} =

{
(1− α) (1− β)βm−1, m > 0,

α, m = 0,
(4)

1
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where

α =
λ (est − 1)

(λ+ s) est − λ
, β =

(λ+ s) (est − 1)

(λ+ s) est − λ
. (5)

More generally, the distribution accounting for the case when the initial popu-
lation is a > 0,

pXm (t, a) = P {X (t) = m | X (0) = a} , (6)

can be analytically derived as

pXm (t, a) =

{∑min(a,m)
j=0

(
a
j

)(
a+m−j−1

a−1

)
αa−jβm−j (1− α− β)

j
, m > 0,

αa, m = 0.
(7)

Of particular relevance is the mean and variance of X (t), if X (0) = a:

µX (t) = aest and σ2
X (t) =

a (2λ+ s)

s
est
(
est − 1

)
. (8)

2 A stochastic model of neutral clones

Assume that all HSPCs in an individual follow a critical birth-death (CBD)
process (s = 0). When a mutation occurs in a HSPC it gives rise to a genetic
clone ci with

ni (t) = Number of HSPC cells in clone ct at time t. (9)

For now, we assume that mutations have no impact in the bias towards self-
renewal, s, and that ni in turn follows a CBD process. We refer to {ci}i∈C
as the collection of all neutral clones (s = 0) present in the individual. If we
denote by ti the time of acquisition of the mutation, so that ni (ti) = 1, then
the probability distribution of ni (t) is given by the limiting case s→ 0 of (4) ,
[1]. That is, for any t > ti,

P {ni (t) = m} =


(

1
1+λ(t−ti)

)2 (
λ(t−ti)

1+λ(t−ti)

)m−1

, m > 0
λ(t−ti)

1+λ(t−ti) , m = 0,
(10)

Further, given t0 > ti, for any t > t0 consider

pni
m (t, a) := P {ni (t+ t0) = m | ni (t0) = a} . (11)

The mean and variance of this probability distribution can be derived, again,
as the limit s→ 0 of (8),

µni
(t) = ni (t0) and σ2

ni
(t) = 2λni (t0) (t− t0) . (12)

2
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2.1 Distribution of VAF gradients in neutral clones

Next, we want to understand how the stochastic evolution of HSPC counts
over time translates to the evolution of the variant allele frequency (VAF or
blood share) of genetic clones. Further, rather than the distribution of VAFs at
a particular time, we want to derive the distribution of expected gradients of
VAF between two time points.

2.1.1 Linear scaling of random variables

First, let us remind the scaling properties of the mean and variance of a random
variable under affine transformations. Let X be a random variable with mean
µX and variance σ2

X and define Y as

Y =
X + b

k
, (13)

for scalars b and k. Then mean and variance scale as follows,

µY =
µX + b

k
and σ2

Y =
σ2
X

k2
. (14)

2.1.2 Distribution of VAF evolution

Since we assume that all HSPCs in the individual follow a CBD process, the
total population of HSPCs remains stable, on average, at N . Further, since
asymmetric divisions are far more common than symmetric divisions, we can
assume that the number of differentiated blood cells produced by a clone of
HSPCs is directly proportional to the clone’s size. We therefore model the VAF
of a clone ci at time t > ti as

vi (t) =
ni (t)

2N
, (15)

where the factor 2 in the denominator is the result of diploidy in HSPCs.

Further, for any time t > t0 > ti we can consider the probability distribution
pvim(t, a) of the evolution of VAF from an initial state vi(t0) = a as in (11). It
follows from the distribution of clone sizes (12) and scaling properties (14) that

µvi (t) = vi (t0) and σ2
vi (t) =

2λni (t0) (t− t0)

4N2
. (16)
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When observing VAF distributions, it is worth noting the natural emergence of
parameter

θ =
λ

N
.

A CBD model of the evolution of clones in HSPCs, therefore, yields that the
variance of the distribution of VAFs at time t from an initial state vi(t0) is

σ2
vi (t) = θvi(t0) (t− t0) . (17)

2.1.3 Distribution of VAF gradients between two time points

Again, for any t > t0 > ti consider the VAF evolution vi(t) of a neutral clone ci
and the resulting probability distribution of the time-adjusted gradient

∆vi (t) =
vi (t)− vi (t0)√

t− t0
. (18)

From scaling properties (14) and the distribution of VAFs of neutral clones (16)
and (17), it follows that

µ∆vi
(t) =

µvi (t0)− vi (t0)√
t− t0

= 0 (19)

and

σ2
∆vi

(t) =
σ2
vi (t)

t− t0
= θvi (t0) . (20)

Notice that by considering a time-adjusted gradient (taking the square root of
the time difference) the variance of ∆vi (t) becomes independent of time.

3 A stochastic model of neutral clones in the
presence of a fit clone

In the following we want to study the evolution of a neutral clone’s gradient in
the presence of a non-stochastic growing mutation (the deterministic limit for
s� 0). Consider an individual with a collection of neutral clones, {ci}i∈I , that
harbours a mutation at time tf giving rise to a clone cf with a fitness advantage
s > 0.

In the continuum limit, the deterministic evolution (3) of the clone’s size nf (t)
is

nf (t) = es(t−tf ).
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The total pool of HSPCs in this individual is, therefore, comprised of a collection
of wild type HSPCs that remains constant in time at Nw and a mutant growing
population of size nf (t):

N (t) = expected amount of HSCs at time t
= Nw + nf (t).

The evolution of the time-adjusted VAF gradient of neutral clones then becomes

∆vi (t) =
vi (t)− vi (t0)√

t− t0

=
1

2
√
t− t0

(
ni (t)

N (t)
− ni (t0)

N (t0)

)
.

3.1 Neutral drift in the presence of a fit clone

Here we will show that ∆vi(t) = a(t)∆ṽi(t) + b(t), where ṽi(t) corresponds to
the evolution of a neutral clone’s VAF in the absence of fit clones,

ṽi(t) =
ni(t)

2Nw
, (21)

and a(t) and b(t) are functions of time, independent of the random process ni(t).

First, notice that

vi(t) =
ni(t)

2N(t)

= f(t)ṽi(t), (22)

with f(t) = Nw/N(t). The mean value theorem asserts that ∃ξ ∈ [t0, t] so that

f(t0) = f(t)− (t− t0)f ′(ξ) (23)

and

∆vi(t) =
f(t)ṽi(t)− f(t0)ṽi(t0)√

t− t0
= f(t)∆ṽi(t) +

√
t− t0f ′(ξ)ṽi(t0). (24)

3.2 Estimating the mean gradient of neutral variants

Since the expectation operator µ(·)(t) is a linear operator and µ∆ṽi(t) = 0, (24)
yields

µ∆vi
(t) =

√
t− t0f ′(ξ)ṽi(t0). (25)
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From the definition of f(t) it follows that, f ′(ξ) = −2svf (ξ)f(ξ). Combining
this expression with (22) we have

µ∆vi
(t) = −vi(t0)2svf (ξ)

f(ξ)

f(t0)

√
t− t0, (26)

and assuming f(ξ) ≈ f(t0),

µ∆vi
(t) ≈ −vi(t0)2svf (ξ)

√
t− t0 (27)

for ξ ∈ [t0, t]. We use the Lothian Birth cohort (LBC) data to extract statistics
about the distributions of VAF and fitness of clones to check that this linear
relation holds true (see Fig. 3B and S2A-D). We find that the median over all
participants with a measurable fit mutation (fit mutations can occur outside the
set of sequenced genes) of the maximum realisation of vf (t)∗s across all present
fit clones is

median
p∈LBC

max
f∈p

vf ∗ s ≈ 4× 10−3 (28)

where vf is the averaged VAF over all data points (see Fig S2C). Further, the
average over all combinations of t, t0 in our data is

√
t− t0 ≈ 2.5. With these

we estimate
µ∆̃vi

(t) ≈ −avi(t0), (29)

with a ≈ 0.02.

We estimate the mean of VAF fluctuations of neutral clones by averaging the
fluctuations of synonymous trajectories (clonal trajectories of genetic variants
not changing the coded amino acid) with the same VAF, v, across all partici-
pants, µvi(t0)=v(∆vi(t)). Fitting a weighted linear regression model on our data
yields

µvi(t0)=v(∆vi(t)) = −av + b (30)

with a ≈ 0.3 and an intercept b ≈ 10−3 to account for the lack of observations of
extinction events (see Fig. 3B). There are a number of possible reasons for the
numerical discrepancy of the theoretically estimated and empirically observed
slope, such as the approximation f(ξ) ≈ f(t0) made above, but also the fact
that many individuals will have multiple fit clones affecting the gradients of
VAF of neutral variants.

3.3 Estimating the variance of gradients

From (24) and scaling of random variables (14) we find

σ2
∆vi

(t) = f(t)2σ2
∆ṽi

(t). (31)
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First notice that, in the presence of a small fit clone nf (t) < Nw ⇔ vf (t) <
0.25, the scaling factorf(ξ) is bounded by 1/2 < f(ξ)−1 < 1. This initial
approximation yields a bound on the variance of fluctuations in the presence of
small clones:

σ2
∆ṽi

(t)

4
< σ2

∆vi
(t) < σ2

∆ṽi
(t). (32)

A more careful analysis shows a linear relation σ2
∆vi

(t) ∼ vi(t0). Combining
(31) and (17) we obtain

σ2
∆vi

(t) =
λf(t)2

Nwf(t0)
vi(t0). (33)

Then, approximating f(t) ≈ f(t0) yields

σ2
∆vi

(t) ≈ λ

Nw + nf (t)
vi(t0). (34)

Finally, from the definition of VAF it follows that Nw + nf (t) = Nw

1−2vf (t) and

σ2
∆vi

(t) ≈ λ(1− 2vf (t))

Nw
vi(t0). (35)

To estimate σ2
∆vi

(t) from the LBC data we approximate σ2
∆vi

(t) by the vari-
ance of observed gradients over all synonymous trajectories with vi(t0) = v,
σ2
vi(t0)=v(∆vi(t)). To compute the variance over trajectories with vi(t) = v we

bin trajectories by VAF size. Then a linear regression fit using weighted least
squares (weighted by bin size) yields (Fig. 3B):

σ2
vi(t0)=v(∆vi(t)) ≈ 2× 10−4v. (36)

4 Estimation of the number of HSPCs in partic-
ipants of the LBC.

Combining (35) and (36) we can provide an approximation of the number of
HSPCs in an individual

Nw ≈
λ(1− 2vf (t))

2× 10−4
. (37)

Denoting by vi the mean VAF of a clone vi(t) over the observed time span in
the LBC, we approximate

vf (t) ≈ median
p∈LBC

max
i∈I

vi ≈ 3.38× 10−2, (38)
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as the median over all participants in the LBC of the mean VAF of their largest
clone (Fig. S2A). Further, we use the well-established estimate that HSPCs
divide symmetrically for self-renewal every 40 weeks [2], λ = 1.3, and estimate

Nw ≈ 6000 (39)

4.1 Estimations not accounting for the presence of fit clones

Since fit variants remain relatively small, notice that estimate (39) does not
differ much from the estimate obtained directly from the evolution of neutral
clones in the absence of a fit clone (20),

Nw =
λ

2× 10−4
≈ 6500. (40)

An even simpler approach to estimating the number of HSCs is provided by
the distribution of neutral clones (16). At age t the maximum VAF reached by
neutral clones, ci, should be .

max
ni(0)=1

vi(t) ≈ µvi(t) + 2σvi(t)

= N−1
w

(
0.5 +

√
2λt
)
. (41)

In the LBC data, we estimate maxni(0)=1 vi(t) using the mean size and age of
synonymous trajectories vs (Fig. S2D):

mean
p∈LBC

max
vs∈p

vs ≈ 1× 10−2. (42)

Using the average age of participants during the observation of the trajectories
used to compute the above estimate, t ≈ 80 years, we obtain the rough estimate

Nw ≈ 1000. (43)

5 Drift-induced fluctuations filter

In the LBC, we estimate linear relations (30) and (36) and select clonal tra-
jectories, v(t), growing more than the expected growth over the observed time
span,

∆v(t) > µvi(t0)=v(∆vi(t)) + 2σ2
vi(t0)=v(∆vi(t)), (44)

as mutations conferring a fitness advantage, s > 0.
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Notice that, although this sieving method depends on the length of the obser-
vation period t − t0, estimate (30) takes into account the average observation
period of clonal trajectories. Further, the square root scaling of time in (27)
reduces in the impact of the difference of observation periods; a span of 3 to 5
data points per trajectory yield

√
6 ≤
√
t− t0 ≤

√
12 .

6 Estimating clonal fitness

Given an individual with a collection of fit clones {ci}i∈F with fitness parameters
{si}i∈F , their predicted deterministic time evolution is

vf (t) =
esf (t−tf )

Nw +
∑
i∈F e

si(t−ti)
, (45)

for f ∈ F . We fit this evolution to data using least squares to infer parameters
(sf , tf ) for each clone {cf}f∈F and a parameter Nw shared across all clones
present in the individual.

We note the existence of a hypersurface of parameters yielding the same evolu-
tion. In the case of a single fit clone, vf (t), equation (45) can be re-parametrised
as

vf (t) =
1

2 + 2a(s)e−st
, (46)

with a(s) = Nwe
stf . Therefore, any combination of parameters Nw and tf

satisfying Nw = a(s)e−stf will produce the same VAF evolution vf (t) (Fig. S2E
and S2F). Let us highlight that, although different choices of Nw will result in
a different tf , the order of mutation acquisition remains unchanged with any
choice of parameters in the specified hypersurface.

In this study we have refrained from fitting the 2-parameter model given both
the impracticality of providing realistic bounds to a(s) (constraining Nw within
a pre-established ranges and t0 < tf < t within achievable times as a function of
fitness) and to show the existence of global solutions that span across different
estimates of Nw in the literature through no or minor adjustments of inferred
fitness values (Fig. S2E and S2F).

7 Multiple fit clones

If two clones with s1,2 > 0 are present in an individual, the VAF is given by

vi =
esit

N0 + es1t + es2t
. (47)
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Assume without loss of generality that the second clone is fitter, s2 > s1, and
consider under what conditions the VAF of the first clone will shrink, i.e.,

dv1

dt
< 0, (48)

which is equivalent to

s1v1 <
es1t (s1e

s1t + s2e
s2t)

(N0 + es1t + es2t)
2 . (49)

Solving for t gives

t >
1

s2
ln
( s1

∆s
N0

)
, (50)

where ∆s = s2 − s1. From this we can see the fitter clone will always cause
the first clone’s VAF to shrink for times greater than (50). As we expect, this
happens earlier for fitter secondary clones (greater s2), and there is a further log-
arithmic dependence on the fitness of the first clone (later shrinking for greater
s1), the size of the neutral HSPC pool (later shrinking for greater N0), and the
difference in fitness between the two clones (earlier shrinking for larger ∆s).
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