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Abstract 

Motivation 

Identifying gene clusters of interest in phylogenetically proximate and distant taxa can help to 

infer phenotypes of interest. Conserved gene clusters may differ by only a few genes, which can 

be biologically meaningful, such as the formation of pseudogenes or insertions interrupting 

regulation. These qualities may allow for unsupervised clustering of similar gene clusters into 

bins that provide a population-level understanding of the genetic variation in similar gene 

clusters. 

Results 

We developed GeneGrouper, a command-line tool that uses a density-based clustering method 

to group gene clusters into bins. GeneGrouper demonstrated high recall and precision in 

benchmarks for the detection of the 23-gene Salmonella enterica LT2 Pdu gene cluster and 
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four-gene Pseudomonas aeruginosa PAO1 Mex gene cluster in 435 genomes containing mixed 

taxa. In a subsequent application investigating the diversity and impact of gene complete and 

incomplete LT2 Pdu gene clusters in 1130 S. enterica genomes, GeneGrouper identified a 

novel, frequently occurring pduN pseudogene. When replicated in vivo, disruption of pduN with 

a frameshift mutation negatively impacted microcompartment formation. We next demonstrated 

the versatility of GeneGrouper by clustering both distant homologous gene clusters and variable 

gene clusters found in integrative and conjugative elements. 

Availability 

GeneGrouper software and code are publicly available at 

https://github.com/agmcfarland/GeneGrouper. 

Background 

Physically proximate groups of genes, called gene clusters, are present in many 

microbial taxa (1). Gene clusters can include genes that form biosynthetic pathways or efflux, 

secretion, and signaling systems (1–5). Some gene clusters are arranged into one or multiple 

operons (6). Microbial genomes are under constant gene flux, driven by gene gain, loss, and 

rearrangements (5,7,8). The identification of intact, conserved gene clusters across different 

genomes can allow for inferences to be made as to the gene cluster’s functionality, stability, and 

taxonomic distribution (6,9). 

There are different, overlapping approaches used for the identification and classification 

of gene clusters. Approaches that incorporate a reference database of curated gene clusters 

include DOOR2, T346Hunter, TADB2.0, and MetaCRAST (10–13). Synteny-based approaches 

are generally split into those that identify all gene clusters at the genome level compared to 

within a defined genomic window. Examples of genome-level synteny tools are CSBFinder, 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 28, 2021. ; https://doi.org/10.1101/2021.05.27.446007doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.27.446007
http://creativecommons.org/licenses/by/4.0/


 

 3

GECKO3, and Mauve and genomic window tools include SynFind and SimpleSynteny (14–18). 

Gene cluster homology search approaches, like MultiGeneBlast or SLING, identify gene 

clusters that contain all or some of the gene cluster query genes (19,20). After identifying a set 

of gene clusters, some tools will further aggregate gene clusters into bins using sequence 

similarity networks or clustering (14,20). 

A challenge in analyzing large numbers of gene clusters is that many conserved gene 

clusters will display little variation in gene content, but that variation may nevertheless be 

biologically significant, for example an insertion disrupting key genes in a biosynthetic operon 

(6,21). A population-level understanding of gene cluster content can help to identify which 

genes are typically located in a gene cluster, and which are variable. Most tools require either 

custom analysis of tabular outputs or manual inspection of gene cluster synteny plots to identify 

variations in gene cluster content and their distribution within the analyzed genomes.  

We developed GeneGrouper to identify, quantify, contextualize, and visualize the degree 

of similarity for gene clusters that contain a queried gene of interest in a population of user-

supplied genomes. It is designed to work on thousands of genomes and is suitable for use on a 

personal computer. We demonstrate the utility of GeneGrouper by comparing its unsupervised 

clustering accuracy with existing tools in the identification of two distinct gene clusters, the 23-

gene catabolic microcompartment Pdu gene cluster found in Salmonella enterica LT2 and the 

four-gene MexR/MexAB-OprM Resistance-Nodulation-Division (RND)-type efflux pump gene 

cluster from Pseudomonas aeruginosa PAO1 in 435 taxonomically diverse genomes (22,23). 

GeneGrouper was next used to examine the diversity and distribution of gene complete and 

incomplete LT2 Pdu gene clusters in 1130 S. enterica genomes. Using GeneGrouper’s visual 

and tabular outputs, we identify a novel pseudogene present in a subset of otherwise gene-

complete LT2 Pdu gene clusters. We replicate the pseudogene in vivo and find that it negatively 

impacts microcompartment formation. 
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Implementation 

 GeneGrouper is written in Python 3 and uses the BioPython and Sci-Kit learn libraries 

for sequence processing, clustering, and analysis (24,25). Multithreading is implemented via the 

multiprocessing library (26). GeneGrouper calls on BLAST+, mmseqs2, and MCL for sequence 

detection, homology searching, and orthology clustering (27–29). Visualizations are generated 

using R and gggenes (30). 

Input and pre-processing 

 GeneGrouper requires two inputs: genome files and a translated seed gene sequence. 

Genome files must be in GenBank file format like those from the NCBI Refseq database (31). 

All genome files have coding sequence features extracted and stored in an SQLite database. A 

BLAST database is constructed from all extracted amino acid sequences. 

Seed homology searching 

A BLASTp search for the translated seed gene is performed using user-specified identity 

and coverage thresholds (Fig. 1A i). Upstream and downstream genomic regions of lengths 

corresponding to user-specified base-pair distances are extracted. In instances where extracted 

regions overlap, the region with the highest E-value is chosen. The genomic position of hits and 

the amino acid sequences within the defined genomic region are written to a seed gene-specific 

SQLite database. All sequences within the defined genomic region are extracted and stored as 

a FASTA file. 

Orthology inference and assignment 

 GeneGrouper assigns orthology to all sequences extracted from the defined genomic 

region using an internal pipeline. The internal orthology identification scheme takes as input a 

FASTA file generated during the pre-processing phase containing all detected amino acid 
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sequences. Sequences are clustered using mmseqs2 linclust to generate a set of proximate 

orthology relationships, producing a set of representative amino acid sequences in FASTA 

format. An all-vs-all BLAST search is performed, with the resulting hits table filtered for identity, 

coverage, E-value, and desired number of matches. The E-values from the filtered hits table is 

used as an input for Markov Graph Clustering with MCL. MCL is run over multiple inflation 

values, with the lowest inflation value containing the highest count of unique orthologs selected 

by default. The MCL and mmseqs2 linclust ortholog group assignments are transferred to every 

sequence and stored (Fig. 1A ii). 

Genomic region clustering 

 Pairwise Jaccard distances are calculated for all genomic regions (Fig. 1A iii) (25). The 

DBSCAN algorithm is then run on the resulting dissimilarity matrix using a fixed minimum cluster 

size value over increasing epsilon values (32). For each epsilon value, the number of clusters, 

noise, silhouette score, and Calinksi-Harabasz score are calculated (33). The epsilon value 

demonstrating the best separation of clusters (defaulting to the highest Calinksi-Harabasz 

score) is selected. The previously constructed Jaccard distance matrix is subsetted for regions 

within each DBSCAN cluster label. For each cluster label, the mean dissimilarity for each region 

is calculated. The region with the lowest mean dissimilarity is selected as the representative for 

that cluster label. 

Outputs 

Tabular outputs containing the cluster label, region identifier, mean cluster label 

dissimilarity, and relative dissimilarity to the cluster representative is generated. Each unique 

cluster is assigned a numeric label. All gene regions that could not be assigned to any cluster 

are grouped into cluster label ‘c-1’. Three main visualizations are produced: The representative 

gene regions for each cluster with gene annotations (Fig. 1B), the dissimilarity contained within 
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each gene region, and the unique variants found in each gene region along with their count. 

Users can query specific clusters and generate a fourth visualization type showing the count, 

dissimilarity, and structure of each unique gene cluster within that queried cluster. 

Results and Discussion 

Gene cluster selection and rationale 

 435 genomes with chromosome-level assemblies were downloaded from the NCBI 

Refseq database on March 23 2021 (31). These genomes belonged to six taxa: Salmonella 

enterica, Klebsiella pneumoniae, Pseudomonas aeruginosa, Citrobacter, Enterobacter, and 

Clostridium (Table S1). These genomes were searched for the presence of complete and  

partial LT2 Pdu and PAO1 Mex gene clusters (Table 1). The LT2 Pdu gene cluster contains  

23 genes encoding bacterial microcompartments (BMC) that allow for the metabolism of 1,2-

propanediol. The LT2 Pdu gene cluster was selected to test whether GeneGrouper could detect 

and accurately bin a large gene cluster that contains multiple paralogs (i.e., pduA, pduJ, and 

pduT), present in multiple phylogenetically distinct genomes (i.e., S. enterica, K. pneumoniae, 

and Citrobacter) while avoiding the inclusion of other separate microcompartment gene clusters 

present in all six genera that share some orthologs (9). The PAO1 Mex gene cluster (mexR, 

mexA. mexB, and oprM) encodes for an RND efflux pump that has multiple homologs present 

within a genome and across virtually all Gram-negative species (2). The PAO1 Mex gene 

cluster is distinguished by its MarR-type proximal repressor, MexR, in P. aeruginosa. The PAO1 

Mex gene cluster was selected to test whether GeneGrouper could specifically detect a short 

gene cluster with multiple homologs within a species, and across all five Gram-negative taxa in 

our collection of genomes. 
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Identification of full or partial Pdu and MexAB-OprM gene clusters using different tools 

We compared the capacities of GeneGrouper, MultiGeneBlast, and CSBFinder to detect 

full or partial LT2 Pdu and PAO1 Mex gene clusters in all 435 genomes. Each tool was limited to 

only detecting gene clusters, and no internal scoring or clustering algorithm was used. Each 

individual gene cluster was then scored in a standard manner as ‘full’ (100% of expected gene 

clusters present), ‘partial’ (<100-70% present), or ‘other’ (<70% present). In this manner, the 

capacity for different tools to detect gene clusters was standardized to allow for direct 

comparison of the detection of specific gene clusters and limit idiosyncrasies in 

clustering/scoring approaches.  

For the detection of the LT2 Pdu gene cluster, GeneGrouper was run using the 

translated S. enterica LT2 PduA sequence as a seed, and a genomic search space of 2,000 bp 

downstream and 18,000 bp upstream to capture the two genes downstream and 22 genes 

upstream of pduA. PduA was selected as the seed because it is a member of the pfam00936 

protein family, which is the hallmark indication of BMC loci (9). For the detection of the PAO1 

Mex gene cluster, the P. aeruginosa PAO1 MexB sequence was used as a seed with a uniform 

search space of 10,000 bp upstream and downstream. For both searches a ≥60% identity and 

≥80% coverage threshold was used. The orthology assignments for each gene in the Pdu or 

PAO1 Mex gene clusters were then used to score gene clusters. 

MultiGeneBlast was run in search mode with default settings on each individual genome 

using an input FASTA file that contained all the translated gene sequences belonging to either 

LT2 Pdu or PAO1 Mex gene clusters. BLAST results for each identified gene cluster were 

filtered such that each individual query gene was matched to its single best hit, with a coverage 

cutoff of ≥80%, and no identity cutoff to allow for phylogenetically distant hits to be preserved. 

Each gene cluster was then scored. 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 28, 2021. ; https://doi.org/10.1101/2021.05.27.446007doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.27.446007
http://creativecommons.org/licenses/by/4.0/


 

 8

 CSBFinder inputs were pre-processed prior to gene cluster searching. The proteomes 

for all six genera were generated by clustering with mmseqs2 linclust (34). Afterwards, orthology 

identification was performed using OrthoFinder with default settings (35). Genomes with 

orthology assignments were then converted into the CSBFinder format. The orthology 

assignments for each gene present in either the LT2 Pdu or PAO1 Mex gene clusters were 

converted to a ‘patterns’ file and used to search all genomes for the respective gene clusters 

and then scored. 

All approaches identified full LT2 Pdu gene clusters in almost all S. enterica and 

Citrobacter sp, and most K. pneumonia genomes. Between all three approaches, 224 to 288 full 

and 13 to 20 partial LT2 Pdu gene clusters were predicted (Fig. 2A). CSBFinder had the most 

conservative results and did not identify any K. pneumoniae genomes carrying the LT2 Pdu 

gene cluster. GeneGrouper and MultiGeneBlast had comparable counts for full and partial LT2 

Pdu gene cluster detection, with GeneGrouper identifying fewer full and more partial LT2 Pdu 

gene clusters. 

 We next searched the same set of genomes for the presence of the PAO1 Mex efflux 

pump operon and its proximal regulator, MexR. All approaches identified either 72 or 73 

genomes carrying the full PAO1 Mex gene cluster, and all were in P. aeruginosa (Fig. 2B). 

CSBFinder only identified full MexAB-OprM gene clusters. GeneGrouper iden2tified three partial 

PAO1 Mex gene clusters, all in P. aeruginosa. MultiGeneBlast identified 402 partial PAO1 Mex 

gene clusters, distributed throughout P. aeruginosa, S. enterica, K. pneumoniae, Citrobacter, 

and Enterobacter. 

 Using our standardized methods for the detection of either the LT2 Pdu or PAO1 Mex 

gene cluster, all tools compared similarly in the capacity to detect genomes carrying a full gene 

cluster. CSBFinder reported lower numbers of full or partial gene clusters in phylogenetically 
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distant genomes. This is likely due to the orthology pre-processing step using OrthoFinder. 

MultiGeneBlast had higher numbers of partial gene clusters detected, especially for PAO1 Mex 

gene clusters. The large number of partial gene clusters was likely due to the BLAST-based 

scoring system that did not use an identity cutoff, compared to the reference orthology group 

approach used by GeneGrouper and CSBFinder. Importantly, these results demonstrate that 

GeneGrouper detects similar numbers of full or partial gene clusters compared to existing 

methods using a standardized scoring method. 

Accuracy of GeneGrouper automated gene cluster binning 

GeneGrouper uses an unsupervised learning approach to aggregate each individual 

gene cluster into a cluster label. Each cluster label should contain gene clusters that have 

similar, but not always identical, gene content, over a defined distance. Therefore, a cluster 

label will likely contain both full and partial gene clusters but should not contain unrelated gene 

clusters. We tested whether this was the case by comparing the results of our standardized 

gene cluster identification with the clustering results produced by GeneGrouper. Prior to testing, 

the ground truth of each genome for the presence of a full, partial, or absent LT2 Pdu/ PAO1 

Mex gene cluster was determined. 

The LT2 Pdu gene cluster was searched for in all genomes with GeneGrouper using the 

same parameters as before. GeneGrouper assigned 654 different gene clusters to four different 

cluster labels and had 12 gene clusters with no clustering solution that were placed in cluster 

label ‘c-1’ (Table 2, Fig. S1, Fig. S2A). Cluster label ‘c0’ contained the Pdu gene cluster from S. 

enterica LT2 and was designated as being the cluster label that contained all expected 

instances of full or partial LT2 Pdu gene clusters (from here on referred to as GG-cluster). 

Overall, the precision and recall scores of GG-cluster compared favorably with the scores from 

the standardized approaches (Fig. 3A). GG-cluster had a lower precision when used to predict 
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the presence of only full LT2 Pdu gene clusters. However, the precision increased to 1 when 

predicting full or partial Pdu gene clusters. Comparatively, the recall remained almost 

unchanged, with a score of 1 when identifying full Pdu gene clusters and 0.99 when identifying 

full or partial Pdu gene clusters. GG-cluster missed one instance of a partial Pdu gene cluster 

that was assigned to cluster label ‘c-1’, which contains gene clusters for which no clustering 

solution was found. This Pdu cluster was split in two in the referenced assembly, being present 

at the start and end of different contigs. These results demonstrate that GG-cluster accurately 

identified almost all LT2 Pdu gene clusters of either full or partial status and did not incorrectly 

identify non-Pdu gene clusters as LT2 Pdu gene clusters. 

PAO1 Mex gene clusters were searched for using GeneGrouper as previously 

described, identifying 2213 gene clusters contained within 40 cluster labels (Table 2, Fig. S3, 

Fig. S2B). Cluster label ‘c0’ contained the P. aeruginosa PAO1 Mex gene cluster and was 

designated as being the cluster label that contained all expected instances of full or partial 

PAO1 Mex gene clusters and thus designated as GG-cluster. All approaches had between 0.99 

and 1 precision and recall for the identification of full PAO1 Mex gene clusters (Fig. 4B). GG-

cluster missed assigning one PAO1 Mex gene cluster that was binned in cluster label ‘c-1’ and 

missed three instances where MexB was a pseudo gene and therefore could not be detected in 

the initial search. For the prediction of full or partial PAO1 Mex gene clusters, MultiGeneBlast 

had a precision score of 0.12, likely due to the high degree of sequence identity between 

homologous RND efflux pump components. All other tools scored between 0.98 and 1 for 

precision and recall. These results indicate the GeneGrouper clustering assignment can sort 

through different variations of highly similar gene content and identify specific RND efflux pump 

components. 
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Application: Distribution and diversity of full and partial Pdu gene clusters in S. enterica 

 Although S. enterica is known to carry the LT2 Pdu gene cluster, it is unclear how full 

and partial LT2 Pdu gene clusters are distributed within the species, and whether unique 

insertions, deletions, or outright losses of the gene cluster have occurred and propagated. This 

is of interest because even in the presence of interruptions, functional LT2 Pdu gene cluster 

variants may still exist, and can inform on which genes may not be necessary. We used 

GeneGrouper to search for the LT2 Pdu gene cluster in in 1130 complete or chromosomal-level 

genome assemblies from the RefSeq database downloaded on March 23, 2021 (Table S2) (30). 

The S. enterica LT2 PduA sequence was used as a seed to search and cluster the gene content 

for a genomic region of 2000 bp downstream and 18000 bp upstream of any pduA homolog 

(Table 2). The search returned four distinct cluster labels with distinct gene clusters and two 

total unclustered gene clusters, which were visualized using GeneGrouper’s visualization 

command (Fig. 1B). GeneGrouper reports the Jaccard dissimilarities of each region within a 

cluster relative to the region representative so that differences in gene content can be efficiently 

quantified and assessed. Cluster label ‘c0’ contained the S. enterica LT2 strain LT2 Pdu gene 

cluster, which had zero dissimilarity with the representative region of cluster label ‘c0’. In total, 

cluster label ‘c0’ contained 1120 regions with a 0 and 0.076 dissimilarity at the 50th and 95th 

percentiles, respectively. These low dissimilarities indicated that cluster label ‘c0’ had very little 

variation in gene content relative to its representative region. 

To examine the variability in gene content within cluster label ‘c0’, GeneGrouper’s 

cluster inspection command was run to visualize the count of identical occurrences of each 

gene cluster (Fig. S4). 48 separate identical gene clusters were present, the majority of which 

had all 23 LT2 Pdu genes. The tabular output was queried to reveal that of the gene clusters 

identified, 920 (81.4%) carried all 23 LT2 Pdu genes, 10 (0.88%) did not have a LT2 Pdu gene 

cluster identified, and the remaining 200 (17.6%) had predicted LT2 Pdu gene clusters with 
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between one and five pseudogenes. Interestingly, gene clusters carrying a pduN pseudogene 

but otherwise complete were the most common non-complete gene cluster observed (Fig. 4A). 

A whole-genome phylogeny of all 1130 genomes was created using Phylophlan 3.0 with the 

provided 400 marker sequence database and visualized with ggtree along with a presence-

absence matrix of each Pdu component extracted from GeneGrouper’s tabular output (36,37). 

We found that genomes with pduN pseudogenes were present almost entirely in the same 

section of the phylogenetic tree (Fig. 4B). This is a surprising finding, as PduN is a necessary 

component for proper Pdu microcompartment formation (22). PduN is a member of the BMC 

vertex protein family (pfam03319), which are necessary for capping the vertices of BMCs and 

imparting the standard polyhedral morphology (22,38,39). Absence of PduN leads to malformed 

and elongated microcompartment structures and disrupted growth on the substrate 1,2-

propanediol (22). The PduN mutation found in strain S. enterica Ty2 (GCF_000007545.1) 

contained a nucleotide deletion at position 68 that resulted in a frame-shift mutation (Fig. S5). 

The effects of this deletion on microcompartment formation were tested in S. enterica 

LT2 (See Supplemental Text for methods). In order to determine the effect of the PduN 

frameshift and resulting pseudogene seen in our analysis, strains containing this frameshift 

(denoted ΔN::N*) were generated and compared to strains containing the intact Pdu gene 

cluster (WT), a full PduN deletion (ΔN), and a negative control lacking the essential pfam00936 

genes pduA and pduJ (ΔAΔJ) (Fig. 6) (40). Microcompartment formation was tested using a 

GFP encapsulation assay, in which GFP is targeted to microcompartments using an N-terminal 

signal sequence sufficient for microcompartment targeting (41,42). We found that strains 

expressing the pduN pseudogene (ΔN::N*) exhibited aberrant microcompartment morphologies 

similar to those observed in the pduN knockout strain (ΔN), indicating improper 

microcompartment assembly due to a loss of vertex capping. This phenotype is distinct from the 

bright fluorescent puncta throughout the cytoplasm in the WT strain, indicative of normal 
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microcompartment assembly and morphology, as well as the ΔAΔJ negative control containing 

polar bodies, indicative of aggregation. These results demonstrate the utility of GeneGrouper in 

rapidly identifying pseudogenes that dramatically alter the functionality of BMC gene clusters.  

Additional gene cluster searches using GeneGrouper 

 To demonstrate the applicability of GeneGrouper to other gene cluster types and use 

cases, we searched for an additional two different seed genes (Table 1). The Pst gene cluster  

(pstSCAB) is present in many Gram-negative and positive bacteria, encodes for a four-

component phosphate ABC-transporter and is adjacent to the negative phosphate regulon 

regulator, phoU (43). The Pst gene cluster is present in many Gram-negative and positive 

bacteria and regulates the uptake of inorganic orthophosphate (44). We wanted to test whether 

distant or proximal homologs of the Escherichia coli Pst gene cluster were present in our 

genomes. Identity and coverage parameters were lowered to 15% and 70%, respectively, and 

only the best BLAST hit from each genome was kept (Table 2). A total of 393 gene clusters 

were binned into six cluster labels (Fig. S6A,B). Interestingly, S. enterica, K. pneumoniae, and 

Enterobacter had similar gene cluster arrangements, even between clusters, with the main 

difference being the genes upstream of the Pst gene cluster. Interestingly, the Pst gene cluster 

has been described in Clostridium and verified to be a homolog of the E. coli Pst gene cluster 

(43). In this search, only one Clostridium genome has a Pst gene cluster identified and placed 

alone in cluster label ‘c-1’, suggesting that the Pst gene cluster may not be carried by all 

Clostridium. Another unexpected finding was that only 62.8% of P. aeruginosa genomes carried 

a homolog of pstS in a conserved gene cluster assigned to cluster label ‘c0’. However, gene 

clusters in this cluster label lacked other members of Pst and instead were associated with type 

II secretion genes. This context suggests that the pstS gene in cluster label ‘c0’ may serve a 

different functional role compared pstS found in the Pst gene cluster in E. coli (45,46). 
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 In another example use case, traC, a type IV secretion system (T4SS) gene found in 

integrative and conjugative elements (ICEs) was searched for in all 435 genomes (Table 2) 

(47). ICEs have highly variable gene content across both its cargo genes and the components 

necessary for integration and conjugation (48). To search for traC, identity and coverage 

parameters were maintained as above, with unlimited numbers of hits per genome. A 20000 

upstream/downstream genomic range was used, which is on the lower end of ICE sizes (shown 

to range in size from 37-143 kb) (49). Clustering returned 74 separate gene clusters binned in 

four different cluster labels, and 10 gene clusters assigned to cluster label ‘c-1’ (Fig. S7A,B). 

Expectedly, there was high dissimilarity within cluster labels. However, one cluster label, ‘c3’, 

exhibited low mean dissimilarity and was present in both S. enterica and K. pneumoniae 

genomes, suggesting these genomes carry the same ICE. Cluster label ‘c0’ was found in 46% 

of all K. pneumoniae genomes, raising the possibility of a particular mobile or ancient ICE 

acquisition. 

Conclusions 

 We demonstrate that GeneGrouper is a simple and accurate tool for identifying gene 

clusters of interest in a large number of genomes using a single seed gene and a specified 

genomic window. The use of a gene cluster representative for each cluster label allows for a 

more intuitive understanding of the diversity of gene clusters that exist in a population, 

especially when coupled with additional visual metadata, and allow for easy identification and 

comparison of biologically relevant features. The provided tabular outputs allows for researchers 

to further probe identified gene clusters for their own specific questions. There exist some 

limitations in our approach, namely the absence of gene clusters that do not have the seed 

gene and the presence of incomplete gene clusters due to low-quality assembly genomes. 

Despite these limitations, comparisons with existing gene cluster detection tools demonstrates 
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that GeneGrouper’s automated clustering and overall approach provides similarly accurate 

predictions. 

 In an example application, GeneGrouper was used to determine whether the LT2 Pdu 

gene cluster was present in 1130 complete S. enterica genomes and, if so, how intact the gene 

cluster was. We further probed the consequences of pseudogene formation in pduN and found 

that the pduN pseudogene results in formation of distinct, aberrant microcompartment structures 

similar to those observed in a pduN knockout strain. The example application demonstrates that 

GeneGrouper enables researchers to rapidly identify gene clusters containing unusual features, 

specifically pseudogenes that may disrupt proper function, by contextualizing their occurrence 

against other highly similar gene clusters in a population. This comparative approach has the 

potential to save time in situations where researchers are choosing model gene clusters for a 

study by identifying common and unusual related gene clusters. This can help to prevent 

erroneous conclusions if studies are performed on a gene cluster containing unique genetic 

features compared to the typical gene cluster in a population. 
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Figure and table captions 

Figure 1: A (i-iii). Summarized gene extraction and clustering workflow. B. GeneGrouper’s 

main output for a search of Pdu gene clusters in 1130 S. enterica genomes. The left panel 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 28, 2021. ; https://doi.org/10.1101/2021.05.27.446007doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.27.446007
http://creativecommons.org/licenses/by/4.0/


 

 16

displays BLAST hit statistics for each seed gene belonging to a gene cluster in a cluster label. 

The middle panel displays the gene cluster architecture that is representative of the cluster 

label. The right panel shows the dissimilarity of other gene clusters in the cluster label. ‘X’ 

indicates a pseudogene. Numbers above gene arrows are internal orthology identifiers. 

Figure 2: Counts of gene cluster types. A. LT2 Pdu. B. PAO1 Mex. 

Figure 3: Precision and recall scores for comparisons. A. LT2 Pdu. B. PAO1 Mex. 

Figure 4: Whole genome analysis of 1130 S. enterica genomes for the LT2 Pdu gene cluster. 

A. Count of pseudo gene occurrence. B. Whole-genome phylogeny (left) and a 

presence/absence/or pseudo gene matrix for the LT2 Pdu gene cluster. 

Figure 5: Phase contrast and GFP fluorescence microscopy images of various Salmonella 

strains expressing ssD-GFP (GFP tagged with the signal sequence from PduD). Row labels 

indicate micrograph type and column labels indicate bacterial strain. GFP fluorescence images 

depict fluorescent, cytosolic puncta indicative of microcompartments in the wild type (WT) strain. 

Fluorescent polar bodies in the pduA pduJ double knockout strain (ΔA ΔJ) indicate improper 

compartment formation. Elongated fluorescent structures in the pduN knockout (ΔN) and pduN 

frameshift (ΔN::N*) indicate improper vertex capping. 

Table 1: Genes used for searches and comparisons, and the gene clusters they represent. 

Table 2: Search parameters used for GeneGrouper in this study. 

Figure S1: GeneGrouper main output for the LT2 Pdu gene cluster after searching 435 

genomes. 

Figure S2: GeneGrouper heatmap output displaying the percentage of genomes searched that 

have at least one gene cluster in a cluster label. Asterisks indicate that a genome had more 
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than one gene cluster in a single cluster label. A. LT2 Pdu gene cluster. B. PAO1 Mex gene 

cluster. 

Figure S3: GeneGrouper main output for the PAO1 Mex gene cluster after searching 435 

genomes. 

Figure S4: GeneGrouper cluster inspection output of cluster label ‘c0’ from Figure 1. Counts of 

each unique gene cluster architecture (termed subcluster) (left panel), gene cluster architecture 

representative (middle panel), and dissimilarity to the first subcluster (right panel). ‘X’ indicates a 

pseudogene. Numbers above gene arrows are internal orthology identifiers. 

Figure S5: Alignment of pduN and the pduN pseudogene. Pair-wise sequence alignments of 

the translated and untranslated pduN frameshifted pseudogene (N_pseudo) and the wild type 

pduN translated and untranslated sequence (N_real) 

Figure S6: GeneGrouper output for the Pst gene cluster after 435 genomes. A. Main output. B. 

Heatmap output.  

Figure S7: GeneGrouper output for the T4SS gene cluster after 435 genomes. A. Main output. 

B. Heatmap output. 

Supplemental methods: Methods used to generate knockouts, introduce frameshift mutations, 

and align PduN. 

References 
 

1.  Medema MH, Kottmann R, Yilmaz P, Cummings M, Biggins JB, Blin K, et al. Minimum 
Information about a Biosynthetic Gene cluster. Nat Chem Biol. 2015 Sep;11(9):625–31.  

2.  Li X-Z, Plésiat P, Nikaido H. The Challenge of Efflux-Mediated Antibiotic Resistance in 
Gram-Negative Bacteria. Clinical Microbiology Reviews. 2015 Apr 1;28(2):337–418.  

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 28, 2021. ; https://doi.org/10.1101/2021.05.27.446007doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.27.446007
http://creativecommons.org/licenses/by/4.0/


 

 18

3.  Chen R, Wong HL, Kindler GS, MacLeod FI, Benaud N, Ferrari BC, et al. Discovery of an 
Abundance of Biosynthetic Gene Clusters in Shark Bay Microbial Mats. Front Microbiol 
[Internet]. 2020 [cited 2021 Apr 5];11. Available from: 
https://www.frontiersin.org/articles/10.3389/fmicb.2020.01950/full#B49 

4.  Williams RH, Whitworth DE. The genetic organisation of prokaryotic two-component 
system signalling pathways. BMC Genomics. 2010 Dec 20;11:720.  

5.  Price MN, Arkin AP, Alm EJ. The Life-Cycle of Operons. PLOS Genetics. 2006 Jun 
23;2(6):e96.  

6.  Brandis G, Cao S, Hughes D. Operon Concatenation Is an Ancient Feature That Restricts 
the Potential to Rearrange Bacterial Chromosomes. Molecular Biology and Evolution. 2019 
Sep 1;36(9):1990–2000.  

7.  Tetz VV. The pangenome concept: a unifying view of genetic information. Med Sci Monit. 
2005 Jul;11(7):HY24-29.  

8.  Karcagi I, Draskovits G, Umenhoffer K, Fekete G, Kovács K, Méhi O, et al. Indispensability 
of Horizontally Transferred Genes and Its Impact on Bacterial Genome Streamlining. 
Molecular Biology and Evolution. 2016 May 1;33(5):1257–69.  

9.  Axen SD, Erbilgin O, Kerfeld CA. A Taxonomy of Bacterial Microcompartment Loci 
Constructed by a Novel Scoring Method. PLOS Computational Biology. 2014 Oct 
23;10(10):e1003898.  

10.  Cao H, Ma Q, Chen X, Xu Y. DOOR: a prokaryotic operon database for genome analyses 
and functional inference. Briefings in Bioinformatics. 2019 Jul 19;20(4):1568–77.  

11.  Martínez-García PM, Ramos C, Rodríguez-Palenzuela P. T346Hunter: a novel web-based 
tool for the prediction of type III, type IV and type VI secretion systems in bacterial 
genomes. PLoS One. 2015;10(4):e0119317.  

12.  Xie Y, Wei Y, Shen Y, Li X, Zhou H, Tai C, et al. TADB 2.0: an updated database of 
bacterial type II toxin–antitoxin loci. Nucleic Acids Res. 2018 Jan 4;46(Database 
issue):D749–53.  

13.  Moller AG, Liang C. MetaCRAST: reference-guided extraction of CRISPR spacers from 
unassembled metagenomes. PeerJ [Internet]. 2017 Sep 7 [cited 2021 Apr 5];5. Available 
from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5592083/ 

14.  Svetlitsky D, Dagan T, Chalifa-Caspi V, Ziv-Ukelson M. CSBFinder: discovery of colinear 
syntenic blocks across thousands of prokaryotic genomes. Bioinformatics. 2019 May 
15;35(10):1634–43.  

15.  Winter S, Jahn K, Wehner S, Kuchenbecker L, Marz M, Stoye J, et al. Finding approximate 
gene clusters with Gecko 3. Nucleic Acids Res. 2016 Nov 16;44(20):9600–10.  

16.  Darling AE, Mau B, Perna NT. progressiveMauve: Multiple Genome Alignment with Gene 
Gain, Loss and Rearrangement. PLOS ONE. 2010 Jun 25;5(6):e11147.  

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 28, 2021. ; https://doi.org/10.1101/2021.05.27.446007doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.27.446007
http://creativecommons.org/licenses/by/4.0/


 

 19

17.  Tang H, Bomhoff MD, Briones E, Zhang L, Schnable JC, Lyons E. SynFind: Compiling 
Syntenic Regions across Any Set of Genomes on Demand. Genome Biol Evol. 2015 Nov 
11;7(12):3286–98.  

18.  Veltri D, Wight MM, Crouch JA. SimpleSynteny: a web-based tool for visualization of 
microsynteny across multiple species. Nucleic Acids Res. 2016 Jul 8;44(Web Server 
issue):W41–5.  

19.  Medema MH, Takano E, Breitling R. Detecting Sequence Homology at the Gene Cluster 
Level with MultiGeneBlast. Mol Biol Evol. 2013 May;30(5):1218–23.  

20.  Horesh G, Harms A, Fino C, Parts L, Gerdes K, Heinz E, et al. SLING: a tool to search for 
linked genes in bacterial datasets. Nucleic Acids Res. 2018 Nov 30;46(21):e128.  

21.  Zangelmi E, Stanković T, Malatesta M, Acquotti D, Pallitsch K, Peracchi A. Discovery of a 
New, Recurrent Enzyme in Bacterial Phosphonate Degradation: (R)-1-Hydroxy-2-
aminoethylphosphonate Ammonia-lyase. Biochemistry. 2021 Apr 20;60(15):1214–25.  

22.  Cheng S, Sinha S, Fan C, Liu Y, Bobik TA. Genetic Analysis of the Protein Shell of the 
Microcompartments Involved in Coenzyme B12-Dependent 1,2-Propanediol Degradation 
by Salmonella. Journal of Bacteriology. 2011 Mar 15;193(6):1385–92.  

23.  Poole K, Tetro K, Zhao Q, Neshat S, Heinrichs DE, Bianco N. Expression of the multidrug 
resistance operon mexA-mexB-oprM in Pseudomonas aeruginosa: mexR encodes a 
regulator of operon expression. Antimicrobial Agents and Chemotherapy. 1996 Sep 
1;40(9):2021–8.  

24.  Cock PJA, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, et al. Biopython: freely 
available Python tools for computational molecular biology and bioinformatics. 
Bioinformatics. 2009 Jun 1;25(11):1422–3.  

25.  Buitinck L, Louppe G, Blondel M, Pedregosa F, Mueller A, Grisel O, et al. API design for 
machine learning software: experiences from the scikit-learn project. arXiv:13090238 [cs] 
[Internet]. 2013 Sep 1 [cited 2021 Apr 5]; Available from: http://arxiv.org/abs/1309.0238 

26.  McKerns MM, Strand L, Sullivan T, Fang A, Aivazis MAG. Building a Framework for 
Predictive Science. arXiv:12021056 [cs] [Internet]. 2012 Feb 6 [cited 2021 Apr 5]; Available 
from: http://arxiv.org/abs/1202.1056 

27.  Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: 
architecture and applications. BMC Bioinformatics. 2009 Dec 15;10(1):421.  

28.  Steinegger M, Söding J. MMseqs2 enables sensitive protein sequence searching for the 
analysis of massive data sets. Nature Biotechnology. 2017 Nov;35(11):1026–8.  

29.  Enright AJ, Van Dongen S, Ouzounis CA. An efficient algorithm for large-scale detection of 
protein families. Nucleic Acids Res. 2002 Apr 1;30(7):1575–84.  

30.  gggenes @ METACRAN [Internet]. [cited 2021 Apr 5]. Available from: https://www.r-
pkg.org/pkg/gggenes 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 28, 2021. ; https://doi.org/10.1101/2021.05.27.446007doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.27.446007
http://creativecommons.org/licenses/by/4.0/


 

 20

31.  O’Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, et al. Reference 
sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional 
annotation. Nucleic Acids Res. 2016 Jan 4;44(Database issue):D733–45.  

32.  Ester M, Kriegel H-P, Xu X. A Density-Based Algorithm for Discovering Clusters in Large 
Spatial Databases with Noise. :6.  

33.  Caliński T, Harabasz J. A dendrite method for cluster analysis. Communications in 
Statistics. 1974 Jan 1;3(1):1–27.  

34.  Steinegger M, Söding J. Clustering huge protein sequence sets in linear time. Nature 
Communications. 2018 Jun 29;9(1):2542.  

35.  Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative 
genomics. Genome Biology. 2019 Nov 14;20(1):238.  

36.  Asnicar F, Thomas AM, Beghini F, Mengoni C, Manara S, Manghi P, et al. Precise 
phylogenetic analysis of microbial isolates and genomes from metagenomes using 
PhyloPhlAn 3.0. Nature Communications. 2020 May 19;11(1):2500.  

37.  Yu G, Smith DK, Zhu H, Guan Y, Lam TT-Y. ggtree: an r package for visualization and 
annotation of phylogenetic trees with their covariates and other associated data. Methods 
in Ecology and Evolution. 2017;8(1):28–36.  

38.  Tanaka S, Kerfeld CA, Sawaya MR, Cai F, Heinhorst S, Cannon GC, et al. Atomic-Level 
Models of the Bacterial Carboxysome Shell. Science. 2008 Feb 22;319(5866):1083–6.  

39.  Wheatley NM, Gidaniyan SD, Liu Y, Cascio D, Yeates TO. Bacterial microcompartment 
shells of diverse functional types possess pentameric vertex proteins. Protein Sci. 2013 
May;22(5):660–5.  

40.  Kennedy NW, Ikonomova SP, Slininger Lee M, Raeder HW, Tullman-Ercek D. Self-
assembling Shell Proteins PduA and PduJ have Essential and Redundant Roles in 
Bacterial Microcompartment Assembly. Journal of Molecular Biology. 2021 Jan 
22;433(2):166721.  

41.  Fan C, Bobik TA. The N-terminal region of the medium subunit (PduD) packages 
adenosylcobalamin-dependent diol dehydratase (PduCDE) into the Pdu 
microcompartment. J Bacteriol. 2011 Oct;193(20):5623–8.  

42.  Nichols TM, Kennedy NW, Tullman-Ercek D. A genomic integration platform for 
heterologous cargo encapsulation in 1,2-propanediol utilization bacterial 
microcompartments. Biochemical Engineering Journal. 2020 Apr 15;156:107496.  

43.  Fischer R-J, Oehmcke S, Meyer U, Mix M, Schwarz K, Fiedler T, et al. Transcription of the 
pst Operon of Clostridium acetobutylicum Is Dependent on Phosphate Concentration and 
pH. J Bacteriol. 2006 Aug;188(15):5469–78.  

44.  Mandal RK, Kwon YM. Global Screening of Salmonella enterica Serovar Typhimurium 
Genes for Desiccation Survival. Front Microbiol [Internet]. 2017 [cited 2021 May 13];8. 
Available from: https://www.frontiersin.org/articles/10.3389/fmicb.2017.01723/full 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 28, 2021. ; https://doi.org/10.1101/2021.05.27.446007doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.27.446007
http://creativecommons.org/licenses/by/4.0/


 

 21

45.  Sun Y-Y, Chi H, Sun L. Pseudomonas fluorescens Filamentous Hemagglutinin, an Iron-
Regulated Protein, Is an Important Virulence Factor that Modulates Bacterial 
Pathogenicity. Front Microbiol [Internet]. 2016 Aug 23 [cited 2021 May 13];7. Available 
from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4993755/ 

46.  Korotkov KV, Sandkvist M, Hol WGJ. The type II secretion system: biogenesis, molecular 
architecture and mechanism. Nature Reviews Microbiology. 2012 May;10(5):336–51.  

47.  Beker M, Rose S, Lykkebo CA, Douthwaite S. Integrative and Conjugative Elements 
(ICEs) in Pasteurellaceae Species and Their Detection by Multiplex PCR. Front Microbiol 
[Internet]. 2018 Jun 26 [cited 2021 May 13];9. Available from: 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6028734/ 

48.  Johnson CM, Grossman AD. Integrative and Conjugative Elements (ICEs): What They Do 
and How They Work. Annu Rev Genet. 2015;49:577–601.  

49.  Liu M, Li X, Xie Y, Bi D, Sun J, Li J, et al. ICEberg 2.0: an updated database of bacterial 
integrative and conjugative elements. Nucleic Acids Res. 2019 Jan 8;47(D1):D660–5.  

 

  

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 28, 2021. ; https://doi.org/10.1101/2021.05.27.446007doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.27.446007
http://creativecommons.org/licenses/by/4.0/


 

 22

 Tables 

Table 1 

Gene name Species Gene cluster 

name
a Description Gene cluster 

length Accession
b 

pduA Salmonella 

enterica LT2 Pdu biosynthetic 

gene cluster 23 P0A1C7 

mexB Pseudomonas 

aeruginosa PAO1 Mex RND-type efflux 

pump 4 P52002 

pstS Escherichia coli Pst 
inorganic 

phosphate ABC-

transporter 
5 P9WGU1 

traC Salmonella 

enterica T4SS 
Type-IV 

secretion 

system 
variable P18004 

a
Internal gene cluster name used. 

b
UniProt accession ID. 
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Table 2 

Gene 

cluster 

name
a 

Upstream-

Downstream 

search 

length (bp) 

Seed 

identity 

(%) - 

Coverage 

(%) - 

Hitcount 

Total 

gene 

clusters 

found 

Total 

cluster 

labels 

Total 

unclustered 

gene 

clusters 

Genomes 

with hit Dataset Run time 

(h:m:s)
b 

LT2 Pdu 2000-18000 30 - 80 - 

unlimited 654 4 12 324 435 

mixed 00:01:48 

PAO1 

Mex 
10000-

10000 
30 - 80 - 

unlimited 2213 40 55 423 435 

mixed 00:03:22 

Pst 8000-8000 15 - 70 - 

1 394 7 1 394 435 

mixed 00:00:54 

T4SS 20000-

20000 
15 - 70 - 

unlimited 81 4 10 59 435 

mixed 00:00:37 

LT2 Pdu 2000-18000 30 - 80 - 

unlimited 2252 4 2 1128 1130 

single 00:04:12 
a
Internal gene cluster name used. 

b
hours:minutes:seconds 
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