
RECONSTRUCTING UNOBSERVED CELLULAR STATES FROM
PAIRED SINGLE-CELL LINEAGE TRACING AND

TRANSCRIPTOMICS DATA

A PREPRINT

Khalil Ouardini 1,2,3, Romain Lopez 1,†, Matthew G. Jones 4,5,7†, Sebastian Prillo1,
Richard Zhang 1, Michael I. Jordan 1,6,7 & Nir Yosef 1,7,8,9,†

1 Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, USA
2 École CentraleSupélec, Gif-sur-Yvette, France

3 École Normale Supérieure Paris-Saclay, Gif-sur-Yvette, France
4 Department of Cellular and Molecular Pharmacology, University of California, San Francisco, USA

5 Biological and Medical Informatics Graduate Program, University of California, Berkeley, USA
6 Department of Statistics, University of California, Berkeley, USA

7 Center for Computational Biology, University of California, Berkeley, Berkeley, USA
8 Ragon Institute of MGH, MIT and Harvard, USA

9 Chan Zuckerberg Biohub, San Francisco, USA

† Correspondance adressed to: romain_lopez@berkeley.edu (R.L.),
mattjones315@berkeley.edu (M.G.J.) and niryosef@berkeley.edu (N.Y.).

May 29, 2021

ABSTRACT

Novel experimental assays now simultaneously measure lineage relationships and transcriptomic
states from single cells, thanks to CRISPR/Cas9-based genome engineering. These multimodal
measurements allow researchers not only to build comprehensive phylogenetic models relating all
cells but also infer transcriptomic determinants of consequential subclonal behavior. The gene
expression data, however, is limited to cells that are currently present (“leaves” of the phylogeny). As
a consequence, researchers cannot form hypotheses about unobserved, or “ancestral”, states that gave
rise to the observed population. To address this, we introduce TreeVAE: a probabilistic framework for
estimating ancestral transcriptional states. TreeVAE uses a variational autoencoder (VAE) to model
the observed transcriptomic data while accounting for the phylogenetic relationships between cells.
Using simulations, we demonstrate that TreeVAE outperforms benchmarks in reconstructing ancestral
states on several metrics. TreeVAE also provides a measure of uncertainty, which we demonstrate to
correlate well with its prediction accuracy. This estimate therefore potentially provides a data-driven
way to estimate how far back in the ancestor chain predictions could be made. Finally, using real data
from lung cancer metastasis, we show that accounting for phylogenetic relationship between cells
improves goodness of fit. Together, TreeVAE provides a principled framework for reconstructing
unobserved cellular states from single cell lineage tracing data.
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Introduction

Recent advances in CRISPR/Cas9-based genome engineering and single-cell sequencing assays have enabled the
simultaneous measurement of lineage information and transcriptomic state at the single-cell resolution [1, 2]. Already,
these technologies have been been used to study mammalian embryogenesis [2] and cancer metastasis [3], amongst
other applications. In these studies, researchers use phylogenies - tree structures that describe relationships between
observed cells - to infer transcriptomic determinants of dynamic phylogenetic patterns. A key limitation thus far,
however, derives from the fact that only the leaves of these trees are directly observed whereas the internal nodes of the
tree represent unobserved, ancestral states. While rich insights can be yielded from the relationships between leaves
alone, accurately inferring these ancestral states of a tree would allow researchers to formulate far more sophisticated
“evolutionary” models of biological processes [4].

The variational autoencoder (VAE) [5] is a powerful framework for fitting flexible generative models to data in a scalable
fashion. In particular, such tools have been applied in several areas of molecular biology [6], including modeling
of single-cell RNA sequencing (scRNA-seq) data. Most of the subsequent research focuses on the case where each
datapoint is an independent replicate of the same generative process, providing better variational distributions or more
flexible models [7, 8, 9]. In this work, we seek to exploit the tree structure generated from lineage tracing as prior
information about the sample-sample covariance structure. In doing so, we seek to fit a prescribed model that can be used
to predict ancestral expression across the tree in a principled fashion. Here we introduce TreeVAE, a fully-probabilistic
approach that builds on previous work, such as the time-marginalized coalescent VAE [10], by tailoring the inference to
bespoke observation models for scRNA-seq and rich phylogenies inferred from CRISPR/Cas9-based lineage tracing
data. After describing our generative model and an inference procedure for it (Section 1), we compare TreeVAE to
alternative methods on simulated and real datasets (Section 2).

1 Tree Variational Auto-encoder (TreeVAE)

1.1 Formal Description of the Generative Model

We assume that we know a phylogeny T = (V,E, b), a directed rooted tree with vertex set V , edge set E and edge
length function b. We note the weight b(e) of an edge e = (u, v) as bu,v. The vertex set V is partitioned into L leaf
vertices VL = {1, . . . , L} (a set of cells) and I internal vertices VI = {L + 1, . . . , L + I} (ancestral cell states) such that
V = VL ∪ VI . Phylogenies may be inferred from single-cell lineage tracing mutation data using publicly available
methods such as Neighbor Joining [11] or Cassiopeia [12].

We introduce a probabilistic model describing the evolution of latent random variables zv at every vertex v along the
phylogeny T . Those latent variables correspond to a low-dimensional embedding of cell states, as explored in previous
work [13]. Unlike in most applications of generative models to single-cell data, where those variables are independently
sampled for every cell, we model correlation between cells with a Gaussian Random Walk (GRW) on T . For the root
node r, we sample from an isotropic Gaussian distribution:

zr ∼ Normal(0, Id), (1)

where d denotes the dimension of zr. Then, every vertex v ∈ V ∖ {r}, zv is sampled according to an isotropic Gaussian
distribution centered at its parent’s location and with covariance scaled by the edge length:

zv ∣ zπ(v) ∼ Normal (zπ(v), bv,π(v)Id) , (2)

where π(v) is the unique parent of v in T .

We observe the scRNA-seq measurements x1∶L = {x1, . . . xL}, as well as the library size (i.e., the number of gene
counts per cell) α1∶L = {α1, . . . αL} at each of the leaves. We propose to build on an observation model previously
used for single-cell transcriptomics data [13] whereby for each cell l and for every gene g, the gene expression xlg is
generated as:

xlg ∼ NegativeBinomial(αlρlg, θg), (3)

where ρlg = fg(zl) is the output of a neural network (f has a softmax output layer for normalization purposes) and θg
is a gene-wise global parameter learned by variational Bayes.

This model assumes that the correlation between cells is fully-characterized by the GRW as illustrated in Figure 1 and
described in the following likelihood decomposition:

pθ(x1∶L ∣ l1∶L) = ∫
L

∏
l=1

pθ(xl ∣ zl, αl)dp(z1∶L). (4)
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Figure 1: The proposed graphical model. Shaded vertices represent observed random variables. Empty vertices
represent latent random variables. Edges signify conditional dependency.

This model is an extension of the SVAE [14], and is a particular instance of the TMC-VAE [10], for which the phylogeny
is known a priori. We refer to those models as TreeVAEs in this manuscript.

1.2 Inference

As with standard VAEs, the marginal likelihood of (4) is intractable. We therefore develop a variational inference recipe
to (i) learn the parameters θ of the model and (ii) approximate the posterior distribution p (z1∶L ∣ x1∶L). Because our
model couples a complex non-linear observation model with a more simple correlation model in latent space (any
marginal distribution for the GRW is tractable), we may build upon previous work (SVAE and TMC-VAE) to derive a
variational inference recipe.

We introduce a mean-field variational approximation to the posterior p(z1∶L ∣ x1∶L) which we assume factorizes as:
q̄φ =∏L

l=1 qφ(zl ∣ xl), and we derive the evidence lower bound (ELBO):

log pθ(x1∶L) ≥ Eq̄φ [
L

∑
l=1

log
pθ(xl ∣ zl)
qφ(zl ∣ xl)

+ log p(z1∶L)] . (5)

Provided that one can calculate the marginal likelihood p(z1∶L) of the latent variables over the leaf nodes, and the
gradient of the ELBO with respect to the parameters of the variational distribution, one may then learn the parameters
of the generative model (θ) and the inference model (φ) via stochastic gradient ascent on the ELBO [5]. However, the
complexity of naive calculations of this marginal distribution is cubic in the number of leaves, and therefore unsuitable.
Fortunately, the marginalization of these latent variables is tractable in linear time, using a message passing algorithm
on the tree [15]. Although usually those algorithms are only derived for bifurcating trees, we propose here an extension
for multifurcating trees. Below, we derive the marginals for the base case of bifurcating trees (a triplet). We describe
the general recursive algorithm in Appendix A.

Triplet example Let (xr, xa, xb) be a triplet of random variables, following a local Gaussian diffusion model:

xr ∼ Normal(0, Id) (6)
xa ∣ xr ∼ Normal(xr, br,aId) (7)
xb ∣ xr ∼ Normal(xr, br,bId). (8)

We note as φ(⋅ ;µ,σ2) the probability density function of the multivariate Gaussian distribution with mean µ and
covariance σ2I . Completing the square, we have that p(xa, xb ∣ xr) identifies as an unnormalized Gaussian density:

p(xa, xb ∣ xr) = Zφ(xr;µ, ν), (9)

with ν−1 = b−1
r,a + b−1

r,b and µ = ν ( xa
br,a

+ xb
br,b

) , (10)

and a tractable normalization constant Z. The marginal likelihood p(xa, xb) simply follows from integrating out the
prior p(xr).
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1.3 Posterior Predictive Density

Unlike the vanilla VAE, our TreeVAE model explicitly helps define posterior predictive densities for latent variables zi
and gene expression measurements xi at each internal node i ∈ VI of the phylogeny. On the latent space, the posterior
predictive is approximated as:

p(zi ∣ x1∶L) ≈ ∫ p(zi ∣ z1∶L)dq̄φ. (11)

Similarly, on the feature space, the posterior predictive is approximated as:

p(xi ∣ x1∶L) ≈ ∫ pθ(xi ∣ zi)dp(zi ∣ z1∶L)dq̄φ. (12)

All quantities appearing in (11) and (12) are readily available after training, except for the conditional distribution
p(zi ∣ z1∶L) for which we use another message passing algorithm, that also has linear time complexity (Appendix A).

2 Performance Benchmarks

To assess the performance of our approach, we evaluate the accuracy of the posterior densities. This is a sensible
approach, as we seek to correctly estimate the cellular states at ancestral nodes of the phylogeny. Towards this end,
we report several metrics to evaluate the quality of pθ(zi ∣ x1∶L) (on latent space), as well as pθ(xi ∣ x1∶L) (on feature
space). Because the ground truth for these densities is generally intractable, we propose three sets of experiments. First,
we benchmark the quality of our approximate posterior predictive density on a Gaussian process factor analysis model
(Section 2.1), for which the ground truth is tractable. Second, we provide a benchmark on a simulated single-cell RNA
sequencing data, using the prior predictive density as (approximate) ground truth (Section 2.2). Finally, we explore the
application of TreeVAE to real single-cell data from cancer metastasis (Section 2.3).

For the experiments in Section 2.1 and 2.2, we simulate ground truth tree topologies using a generalized birth-death
model. A tree is simulated by beginning with a single node. We use two exponential distributions, parameterized by α
and β, to model the time until a cell divides (i.e., birth of a new lineage) and the time until a cell dies, respectively. We
repeat the birth-death process until a desired number of leaves is reached.

Throughout, we compare the imputation accuracy of TreeVAE to two baselines. The first one is a naive approach based
on averaging gene expression at all the leaves beneath an internal node. The second one is based on averaging the latent
space for leaves below an internal node from a fitted VAE before decoding. Such heuristics have been used in several
scRNA-seq data analysis scenarios [16]. We ran VAE and TreeVAE on a NVIDIA TITAN Xp, and fitting the data took
less than a few minutes for every dataset.

2.1 Gaussian Process Factor Analysis Simulations

As a first test-bed, we consider a simulation framework based on the Gaussian process factor analysis model [17], for
which posterior predictive densities are tractable (fully-specified in Appendix B, with derivations for the ground truth).
This model is obtained by using a linear Gaussian conditional distribution in place of the negative binomial decoder
in (3):

xl ∣ zl ∼ Normal (Wzl + β,σ2) . (13)

We adapt the observation model of the VAE and the TreeVAE accordingly. Each simulated dataset is based on a tree
with 100 leaves (cells) and 100 genes. All results are averaged across ten simulations.

In this setting, we compare the posterior predictive on the latent variables pθ(zi ∣ x1∶L) as well as the one on the features
pθ(xi ∣ x1∶L) to their respective ground truth. On the latent space, we report the mean square error of the mean of the
posterior predictive pθ(zi ∣ x1∶L) (MSE; lower is better), the k-nearest neighbors purity (Purity; higher is better) [18]
and the cross entropy between the prior distribution pθ(z1∶L) and the approximate posterior q̄φ (CE; lower is better). (To
note, latent space metrics do not apply for the average baseline.) On the feature space, we report the average Pearson
correlation for imputation of ancestral gene expression across all genes (r; higher is better), as well as the Spearman
correlation (ρ; higher is better), and the mean-square error for gene expression (MSE; lower is better).

We report the results in Table 1. On latent space, TreeVAE outperforms the VAE with respect to all three metrics. In
particular, the MSE metric suggests that TreeVAE learned a more accurate posterior approximation compared to VAE.
Moreover, the k-NN purity and cross entropy metric show that the latent space inferred by TreeVAE is more reflective
of the phylogeny compared to VAE (as expected). On the feature space, TreeVAE also outperforms baselines on all
three metrics. Although all the correlation scores are rather high for all methods in this setting, TreeVAE still provides a
substantial improvement over the naive baselines.
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LATENT SPACE FEATURE SPACE
MSE Purity CE r ρ MSE

Average - - - 0.828 0.803 0.768
VAE 2.28 0.372 2,515 0.846 0.821 0.863
TreeVAE 1.89 0.450 281 0.869 0.844 0.541

Table 1: Results on the Gaussian process factor analysis simulations (averaged across ten different simulations).

LATENT SPACE FEATURE SPACE
Purity CE r ρ MSE

Average - - 0.350 0.314 7.53
VAE 0.523 8,481 0.402 0.324 5.81
TreeVAE 0.615 1,577 0.413 0.327 5.80

Table 2: Results on the Gaussian process Poisson Log-normal simulations (averaged across ten different simulations).
MSE is reported on normalized counts.

2.2 Gaussian Process Poisson Log-normal Simulations

Although the linear Gaussian system described previously helps diagnose the effectiveness of our inference procedure,
it remains an unrealistic model for describing scRNA-seq data. Therefore, we instead use a Poisson Log-normal
observation model as a more realistic simulation framework. More precisely, in place of the observation model
described in (3), we generate xl as:

yl ∣ zl ∼ Poisson (exp{Wzl + β}) (14)
xl ∣ yl ∼ Binomial (yl, p) , (15)

in which p was adjusted to bring the frequency of zeros to 80% in the dataset. Each simulated dataset is based on
a tree with 500 leaves (cells) and 1000 genes. All results are averaged across ten simulations. Because the ground
truth distribution for both posterior predictive densities are not accessible, we slightly modify the evaluation metrics
presented previously. First, we do not report MSE on the latent space because it cannot be evaluated. Second, because
the gene expression posterior predictive pθ(xi ∣ x1∶L) is no longer tractable, here we use the prior predictive distribution
pθ(xi) as a proxy for ground truth. We report the results in Table 2. On the latent space, TreeVAE outperforms the
VAE on both metrics. This emphasizes again that the TreeVAE produces representation at internal nodes that are more
reflective of the tree structure. On the feature space, we observe that the correlation scores are generally low compared
to the previous experiment, likely due to the high level of noise from binomial sub-sampling. However, even in this
setting we observe similar trends as from our previous experiment: the TreeVAE outperforms both metrics. Finally, we
investigate the relationship between certainty and accuracy in our TreeVAE model. As expected, our estimates become
more uncertain closer to the root and this in turn affects model accuracy (Figure 2).

2.3 Analysis of Cancer Metastasis Data

CE ELBO

scVI 21,348 268.43
TreeVAE 3,051 266.09

Table 3: Results on the cancer metastasis
data. ELBO denotes the evidence lower-
bound on observed data.

We next assess the performance of the TreeVAE model on real
CRISPR/Cas9 single-cell lineage tracing data. As a proof of concept,
we analyzed a single clone of 603 cells from a recent dataset that traced the
lineages of lung cancer tumors as they metastasized throughout a mouse [3].
Here, we leverage the tree reconstructed from CRISPR/Cas9 barcodes with
Cassiopeia [12] as used in the original study. Because Cassiopeia does not
explicitly model the edge weights of the phylogeny, we separately inferred
these based on the assumption of an ultrametric tree. Finally, because a
large fraction of genes detected by scRNA-seq do not have a strong relation-
ship to the lineage, we only considered the top 100 genes autocorrelated
with the phylogeny, as evaluated by Hotspot [19].

We fit the TreeVAE with the observation model described in (3). In this experiment, we have limited ground truth
because neither latent variables nor gene expression is known at the ancestral nodes of the phylogeny. We still propose
to compare to scVI [13], a VAE with identical observation model as the TreeVAE considered in this experiment. As a
first metric, we report the cross-entropy score on the latent space (CE, as in previous experiments). Then, we propose a
comparison of the evidence lower bound (ELBO) on observed samples. Although in this experiment we do not have
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Figure 2: Relationship between uncertainty and error in the Gaussian Process Poisson Log-normal simulation exper-
iments with the TreeVAE model. (a) Variance of posterior predictive density on latent space for each internal node
compared to the depth (Pearson’s r = 0.6761). (b) Error and uncertainty of each prediction (Pearson’s r = −0.6765).

Figure 3: Behavior of TreeVAE internal node predictions. (a) Variance of posterior predictive density on latent space
for each internal node. Uncertainty is negatively correlated with depth (Pearson’s r = −0.60). (b) Predicted expression
of CEACAM5 for each internal node. Color gradient at the leaves indicates observed gene expression.

held-out data because we may only observe one cell at each leaf of the tree, we expect these numbers to be comparable
because the same neural architecture, noise models, and hyperparameters were used for fitting both models. Our results,
reported in Table 3, suggest that TreeVAE better fits the data and proposes an approximate posterior that is more
reflective of the tree structure.

Finally, we investigate the behavior of TreeVAE’s predictions of ancestral gene expression. As expected, TreeVAE’s
imputations are more certain closer to the observations at the leaves and becomes more uncertain for nodes closer
to the root (Figure 3a). We next predict the ancestral gene expression of CEACAM5, an important cell adhesion
molecule that is associated with metastatic invasion [20]. We observe a predicted pattern that broadly agrees with tree
structure and observations at the leaves (Figure 3b) and offers rich hypotheses on the subclonal dynamics of CEACAM5
expression. Critically, because our Bayesian model quantifies uncertainty, we can directly evaluate the stability of a
given hypothesis, unlike naive averaging. Overall, these results underscore the promise of the TreeVAE model for gene
expression prediction.

Discussion

By explicitly taking into account phylogenetic information for generative modeling of single-cell transcriptomic states,
we introduce a framework for building more realistic latent representations of cells and inferring unobserved, or
“ancestral”, intermediates. We demonstrate that TreeVAE provides robust predictions of unobserved cellular states and
outperforms vector arithmetic in the latent space provided by state-of-the art algorithms like scVI [13]. Additionally,
TreeVAE provides meaningful measures of uncertainty around its predictions, a critical feature for a researcher weighing
several scientific hypotheses.

To the best of our knowledge, TreeVAE is the first generative model of single-cell measurements that takes into account
a-priori dependencies between samples (cells). This is an under-explored area, as there are often technical challenges to
fitting such models. The message-passing algorithm described in this manuscript, and the implementation available
in PyTorch was sufficient for generating the results in this manuscript, although we are currently exploring several
areas of future research around TreeVAE and similar models. First, we describe in this study a training procedure
that uses full-batch updates. However, we anticipate that a more sophisticated, minibatch-based training scheme is
necessary for improving scaling the inference procedure to larger trees (e.g., those with >50,000 cells). Second, the
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inference algorithm for TreeVAE could be improved by exploiting just-in-time compilation, for example with JAX [21],
to speed-up the message passing algorithm.

We anticipate that the TreeVAE model described here will set the stage for several analytical avenues of interest. First,
we expect that integrating accurate representations of unobserved cellular intermediates with accurate uncertainty
quantification will enable a more sensitive differential expression analyses on the phylogeny. Second, the representations
of ancestral states will also enable the identification of putative causal genes leading to particular phylodynamic patterns
like subclonal expansions or differential metastatic behavior (as in [3]). Finally, these robust representations throughout
a phylogenetic model will aid in the development of quantitative models of cell-state transitions throughout dynamic
processes.

There is currently an unmet need to develop datasets that would aid in the construction and validation of models
like TreeVAE. Ideally, these datasets would track at least a subset of marker genes dynamically over the course of
development and could be used to evaluate predictive accuracy on real scRNA-seq data. Utilizing time-series datasets
from model organisms for which cell lineages are stereotypical, like that of C. elegans, could be of great use towards
this aim (e.g., [22]). Beyond this, we envision that maturing light-sheet microscopy technologies [23, 24] could be
paired with unbiased readout of cellular transcriptomic states to create comprehensive molecular atlases of dynamic
processes.

Since the first report of CRISPR/Cas9-based single-cell lineage tracing [25], the promise of these technologies has been
to build complete, probabilistic fate maps of complex, dynamic biological processes. Yet, this promise has yet to be
fully realized. Towards this, we foresee the TreeVAE model setting a foundation for this aim and beyond. With efforts
around improving the engineering of the software, formulating sound statistical questions from these inferences, and
developing sufficient ground truth datasets for evaluation we believe that more sophisticated TreeVAE models will be a
key tool in the single-cell lineage tracing toolbox. Taken together, we proffer that continued development of such a tool
would substantially work towards the ultimate promise of these lineage tracing technologies.

Code Availability

The code to reproduce the experiments of this manuscript is available on GitHub https://github.com/
khalilouardini/treeVAE-reproducibility. TreeVAE was implemented using an earlier version of the scvi-tools
codebase [26].
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A Message Passing Algorithms

In the main text of this manuscript, we presented a simple marginalization procedure provided for a triplet of nodes,
based on completing the square. The procedure may be used recursively as part of a well-established message passing
algorithm for computing marginal likelihood of leaf observations in the context of binary trees, and in particular
explained in the TMC-VAE manuscript [10]. In this appendix, we present a generic message passing algorithm for
multifurcating trees (Section A.1). In particular, we propose a generalization of the normalizing constant formula
for multifurcating trees, a key contribution for dealing with phylogenetic information inferred from Cassiopeia and
other algorithms that do not necessarily produce binary trees. We then demonstrate how to use this algorithm for
computations of the marginal likelihood of the leaves p(z1∶L) (Section A.2) and for posterior predictive densities
p(zi ∣ z1∶L) (Section A.3).

A.1 The base message passing algorithm

Let T = (V,E, b) be a phylogeny with vertex set V , edge set E and edge length function b. We note the weight b(e) of
an edge e = (u, v) as bu,v . Again, the vertex set V is partitioned into L leaf vertices VL = {1, . . . , L} (a set of cells) and
I internal vertices VI = {L + 1, . . . , L + I} (ancestral cell states) such that V = VL ∪ VI . For a node i let I = i1, . . . , in
denote the indices of its n children.

Message passing is defined recursively, starting from a source node s (always an internal node), and requesting messages
from each of its neighbors. We initialize the message of each the leaf l with the following content:

logZl = 0, νl = 0, µl = zl, (16)
where zl is the evidence at leaf l.

Then, we use the following update rules to propagate messages from a set of child nodes (i1, . . . , in) to a parent node i:

ν−1
i =

n

∑
j=1

1

νij + bi,ij
, µi = νi

n

∑
j=1

µij
νij + bi,ij

(17)

and for the normalizing constant:

logZi = −
d(n − 1)

2
log(2π) − d

2
logT − 1

2T

⎛
⎝∑j≠l

⎛
⎝ ∏
k∈(1,...,n)∖(j,l)

(νik + bi,ik)
⎞
⎠
∣∣µij − µil ∣∣2

⎞
⎠

(18)

with T = ∑ni=1 (∏j≠i(νij + bi,ij)).

A.2 Computing marginals

In order to calculate the marginal likelihood of leaf observations p(z1∶L), we run the message passing algorithm using
the root node as the source, and using the leaf observations (z1, . . . , zL) as local evidence. This is described in [10],
although our last steps differ from it, as they did not integrate out the prior in their calculations. For this, we compute
the integral of the last message with the prior:

logZ∞ = logZr −
∥µr∥2

2(1 + νr)
− d

2
log 2π(1 + νr), (19)

where r indicates the root. We then calculate the desired marginal distribution as:

log p(z1∶L) = logZ∞ +
L

∑
l=1

logZl. (20)

A.3 Computing posterior predictive densities

In order to calculate the conditional distribution p(zi ∣ z1∶L) for an arbitrary internal node i, we run the message passing
algorithm using the query node i as the source and using the leaf observations (z1, . . . , zL) as local evidence. In contrast
to [10], we take into account the prior information during the message passing protocol. To do this, we add a dummy
node attached to the root with null evidence and unit diagonal variance.

A.4 Implementation and unit tests

We implemented this message passing information in vanilla PyTorch. In order to check our calculations, we have
developed a suite of unit tests for random trees, with ground truth based on the Gaussian conditioning formula.
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B Gaussian Process Factor Analysis Model

In this appendix, we describe the Gaussian process factor analysis model used for simulating data, and define a tractable
ground truth for both posterior predictive densities.

B.1 Full specification of the generative model

Let τ = (E,V, b) be a phylogeny with N nodes. We index the vertex set V = L⋃I by leaves L = {1 . . . L} and internal
nodes I = {L + 1 . . .N}. As for the TreeVAE model, latent variables zv for each vertex v form a multivariate Gaussian
vector:

z1∶N ∼ Normal(0,Σ), (21)

where Σ has for shape Nd ×Nd (the latent space is d-dimensional). For every leaf n, observation xn is generated as:

xn ∣ zn ∼ Normal (Wzn, σ
2Ip) , (22)

with W ∈ Rp×d and σ > 0 (the feature space is p-dimensional).

B.2 Posterior distribution

The posterior distribution p(z1∶L ∣ x1∶L) is tractable via Gaussian conditioning formula. Indeed, it is easy to see that
(z1∶L, x1∶L) is a Gaussian vector:

(z1∶L

x1∶L
) =

⎛
⎜⎜⎜⎜⎜⎜
⎝

z1

⋮
zL
x1

⋮
xL

⎞
⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜
⎝

z1

⋮
zL

Wz1 + σe1

⋮
WzL + σeL

⎞
⎟⎟⎟⎟⎟⎟
⎠

∈ R(Ld+Lp), (23)

where e1∶L is sampled from a Gaussian isotropic distribution. Consequently, we can characterize the distribution of this
vector by its mean and covariance. The random vector is centered, as z1∶L and e1∶L are both centered. Let us denote the
covariance matrix of (z1∶L, x1∶L) by Λ ∈ R(Ld+Lp)×(Ld+Lp). We decompose Λ with a block structure:

Λ = ( Σz1∶L Λz1∶L,x1∶L

ΛTz1∶L,x1∶L
Λx1∶L

) , (24)

and where each term can be calculated as follows:

Marginalized latent covariance Σz1∶L ∈ R(Ld)×(Ld) is the marginalized covariance Σ of the leaves (computed by
adequately slicing Σ).

Marginalized feature covariance Λx1∶L
∈ R(Lp)×(Lp) such that for all pairs of leaves (i, j), Λi,jx1∶L

∈ Rp×p is the
block encoding correlations between xi and xj :

Λk,lx1∶L
= Cov(xk, xl) = Cov(Wzk + ek,Wzl + el) =WΣk,lW

T + σ2Ip. (25)

Correlation term The matrix Λz1∶L,x1∶L
∈ R(Ld)×(Lp) encodes correlations between z1∶L and x1∶L such that:

Λz1∶L,x1∶L
=
⎛
⎜
⎝

Σ1,1W
T . . . Σ1,LW

T

⋮ ⋱ ⋮
ΣL,1W

T . . . ΣL,LW
T

⎞
⎟
⎠
= {Σk,lW

T }Lk,l=1, (26)

where the previous result comes from the simple fact that for a pair of leaves (k, l), we have:

Cov(zk, xl) = E [zk(Wzl + el)T ] = Σk,lW
T , (27)

where Σk,l is the marginalized Σ corresponding to the correlations between variables zk and zl.

Finally, we may use the Gaussian conditioning formulas to derive the posterior distribution p(z1∶L ∣ x1∶L):

E [z1∶L∣x1∶L] = Λz1∶L,x1∶L
(Λ−1

x1∶L
)x1∶L (28)

Var [z1∶L∣x1∶L] = Σz1∶L −Λz1∶L,x1∶L
(Λ−1

x1∶L
)ΛTz1∶L,x1∶L

(29)
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B.3 Posterior predictive densities at internal nodes

In all our imputation experiments, we are interested in the posterior predictive density of the internal nodes. For both
quantities, we integrate over a suitable set of latent variables. On latent space, we utilize the following decomposition:

p(zi ∣ x1∶L) = ∫ p(zi ∣ z1∶L)dp(z1∶L ∣ x1∶L), (30)

where p(zi ∣ z1 . . . zL) may be computed exactly using the message passing algorithm (as in Section A.3) for any
internal node i. On feature space, we similarly proceed and integrate out latent variables:

p(xi ∣ x1∶L) = ∫ p(xi ∣ zi)dp(zi ∣ x1∶L). (31)

Therefore, we can efficiently compute the posterior predictive of any internal node through MCMC sampling in two
steps. First, we sample from the posterior predictive distribution on latent space at node i: p(zi ∣ x1∶L). Then, we
generate xi ∣ zi with the generative model specified in Section B.1.
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