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Highlights 

• Identifies ~4,000 consistent genes across PDAC microarrays, >50% of which have not been studied 
• Glycolysis and cell cycle are the most consistent processes in PDAC 
• Heterogeneous pathways underlie or correlate with clinicopathological variables  
• Identifies 205 genes with similar expression pattern in PDAC tissues and peripheral blood 
• Highlights 185 upregulated genes that are high priority therapeutic targets in PDAC 
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Abstract 

Genomic profiling has unveiled the molecular subtypes and mutational landscape of pancreatic ductal 
adenocarcinoma (PDAC). However, there is a knowledge gap on the consistency of gene expression across 
PDAC tumors profiled in independent studies and this limits follow up research. To facilitate novel drug 
target prioritization and biomarker discovery, we investigated the most consistently expressed genes in 
human PDAC. We identified ~4,000 genes highly or lowly expressed in at least 4 of 5 microarrays (adjusted 
P<0.05) and validated their expression pattern in additional datasets, bulk tumor and single-cell RNA 
sequencing samples. Over 50% of the genes were previously uncharacterized in PDAC; many correlated 
with proliferation, metastasis, mutation, tumor grade, and ~41% predicted overall survival. We identified 
185 high-priority targets (notably in cell cycle and glycolysis) whose inhibition suppressed PDAC cell 
viability in multiple RNA interference datasets and these genes predicted treatment in mouse models. Our 
results represent important milestone in the quest for mechanisms, drug targets and biomarkers in PDAC, 
and originate from an adaptable analytical concept that can aid discovery in other cancers. 
 
Keywords 

Consistent gene expression, PDAC, tumor stratification, therapeutic targets, target prioritization, 
biomarkers 
 
 
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive, highly metastatic and drug resistant disease, 
and as a result is one of the most lethal solid tumors1. Prior studies have unanimously converged on KRAS, 
TP53, SMAD4 and CDKN2A as the most frequently mutated genes in PDAC2–5. These oncogenic mutations, 
notably KRAS, dictate drug sensitivity, drive tumor initiation and facilitate progression6,7. Studies of gene 
expression profiles in PDAC have defined two to four major subtypes of PDAC2–4,8–10; these subtypes also 
impact therapeutic response and patient overall survival. Several other studies have performed gene 
expression profiling, RNA sequencing, proteomics, or metabolomics towards unravelling the unique 
molecular features that distinguish PDAC tissues from healthy pancreatic tissues. These multi-omics 
approaches facilitate hypothesis generation and novel discoveries on the mechanisms and therapeutic 
opportunities in PDAC. 
 
Although studies have generated an extensive amount of gene expression data from PDAC, genes that are 
frequently lowly or highly expressed in the tumors from the multiple datasets are largely unknown. 
Experimental validation studies often rely on data from small patient cohorts, most times on as few as one 
dataset, and focus on specific genes/pathways. This approach underestimates the scope of PDAC 
alterations, and several of those validated genes are not reproducibly changed in independent datasets. Other 
issues such as the actual proportion of PDAC cells in a tumor mass as well as sampling (e.g., surgically 
resectable vs non-resectable tumors) limit the clinical utility of gene findings. Establishing the consistent 
genes in PDAC and their expression pattern will facilitate drug target identification and prioritization, aid 
biomarker discovery, and enhance the prospects of finding the core molecular mechanisms driving this 
intractable disease.  
 
In this study, we first analyzed five published PDAC microarrays and defined a gene as ‘consistent’ if it is 
‘upregulated’ or ‘downregulated’ in at least 4 cohorts (adjusted P<0.05). We followed up with analyses and 
cross-validation of these genes in over 20 datasets, including microarrays (tumors and blood); bulk tumor 
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and single cell RNA sequencing; normal tissues and cancer cell line gene expression; drug response, and 
RNA interference datasets. We interrogated the association of the genes with several variables such as 
tumor subtypes, proliferation, metastasis, mutation and tumor grade, using at least two patient datasets in 
each case. Further, our analysis of Kaplan-Meier overall survival, Cox proportional hazards regression and 
gene essentiality (four datasets in each case) is to date the most extensive assessment of gene consistency 
relative to their potential clinical relevance. In cell lines and mouse models, we demonstrate the utility of 
the consistent genes in predicting drug response. Together, our findings will facilitate gene prioritization 
for basic, translational and clinical PDAC research, and thus pave way for better treatment opportunities 
for this disease. 
 
 

Results 

Consistently expressed genes in PDAC tissues 

To identify the most consistently expressed and potentially important genes in PDAC, we analyzed over 20 
publicly accessible datasets of gene expression or RNA interference (Fig. 1a, Extended Data Fig. 1a). We 
started with five microarray datasets containing a total of 331 pancreatic tumors and 204 non-tumoral tissue 
samples (Extended Data Fig. 1b). We described a gene as ‘consistent’ if its expression is high (or low) in 
at least 4 of the 5 datasets. Based on this criterion, we identified 2,010 consistently upregulated genes 
(hereafter CUGs) and 1,928 consistently downregulated genes (CDGs) (adjusted P<0.05). As many as 993 
(49% of CUGs) and 737 (38% of CDGs) were consistent in all five datasets (Fig. 1a), indicating that these 
genes have reproducible expression pattern in PDAC. The topmost 20 CUGs included LAMC2, TMPRSS4, 
S100P, SLC6A14, COL10A1, CTSE, LAMB3, CEACAM5/6, and glucose transporter SLC2A1 (Fig. 1b), and 
these appeared within the top 1-5% of highly expressed genes in all five datasets (Supplementary Table 

1a). On the other hand, the lowest CDGs included AOX1, IAPP, albumin (ALB), SERPINI2, PDK4 and 
PNLIPRP1/2 (Fig. 1b) and were also consistently the lowest expressed across the patient datasets. 
 
We analyzed the expression of the CUGs and CDGs in four independent PDAC patient cohorts and found 
that between 28% to ~80% of CUGs and CDGs were also high and low, respectively (Fig. 1c, 

Supplementary Note 1). Further, the topmost genes in the initial five datasets also appeared topmost in 
those four independent datasets (Extended Data Fig. 1c) supporting that CUGs and CDGs are expected to 
be reproducibly changed in most PDAC cohorts.  
 
In the initial five datasets, we also identified 2,722 additional genes (n=1,063 up- and 1,659 down) with 
consistent expression pattern in three of the five datasets (adjusted P<0.05) (Supplementary Table 1b). 
These included well-known genes in cancer such as ALDOC, HIF1A (in glycolysis), SNAI2, ZEB1 (in 
epithelial-mesenchymal transition), monocarboxylate transport 4 (SLC16A3), MMP2, GPNMB, KRT17 and 
INHBA (all upregulated) as well as downregulated genes such as GATA4, ADH1A, PTF1A, CBS, and genes 
encoding pancreatic digestive enzymes (e.g., PRSS1, CPA1 and CPB1) (Extended Data Fig. 1d, 

Supplementary Table 1b). Several of these genes, though not emphasized in our analysis, also maintained 
similar expression pattern in the four independent cohorts, altogether revealing an extremely complex 
molecular portrait of PDAC. As expected, many CUGs and CDGs have been mechanistically studied or 
proposed as PDAC biomarkers or therapeutic targets. However, we found no substantial prior PDAC 
publication on >50% of the ~4000 consistent genes (Fig. 1d, Supplementary Table 2), indicating the 
enormity of untapped opportunities for new discoveries. 
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To determine if the consistent genes reflect typical cancer profiles, we performed pathway enrichment and 
gene ontology (GO) analyses. The ‘cell cycle’, ‘extracellular matrix receptor interaction’, ‘pathways in 
cancer’, ‘focal adhesion’, ‘p53’, and ‘transcription factor binding’ emerged among the upregulated 
processes and are consistent with oncogenic alterations. These were accompanied by evidence of disrupted 
pancreatic beta cell homeostasis and profound metabolic alterations (Fig. 1e, Extended Data Fig. 1e). 
Interactome and disease ontology analyses further associated the consistent genes with precancerous 
conditions, PDAC and other malignancies (Extended Data Fig. 1f-g). Altogether, we have uncovered the 
most consistently upregulated and suppressed genes in human PDAC tissues and note an overwhelming 
paucity of experimental data on the role of these genes in this cancer type. 
 

 

Multiple molecular pathways underlie PDAC  
We examined specific pathways for the presence of the consistently deregulated genes. We focused on 
metabolism/transport, signaling, immunity, cell cycle and transcriptional regulation/epigenetics, all of 
which appeared in the pathway analysis – with an additional focus on transporters of which most are novel 
in PDAC. The number of genes we identified per process ranged from 45 in cell cycle, 76 in immunity, 229 
transporters, 459 in metabolism, 549 in signaling to 723 transcription factors and 32 epigenetic components 
(Supplementary Table 3). Across the PDAC cohorts, most cell cycle genes (39 out of 45) were upregulated 
(i.e., CUGs), topmost of which are SFN, CCNB1, BUB1, CDK1, and MAD2L1. The remaining six were 
CDGs namely ANAPC13, ANAPC5, MAD2L2, GADD45G, CCND2 and surprisingly MYC (Fig. 2a), which 
has been extensively implicated as a driver of cancer. In immunity, 60 of the 76 genes were CUGs, most 
notable of which were CXCL5, ITGA3, CCL20, IFI44L, and IFI27 (an unknown gene in PDAC), and the 
most enriched immune hallmarks were interferon alpha and gamma, TNFA/NF-κB, ‘inflammatory 
response’ and ‘IL2/STAT5’signaling (Fig. 2b, Extended Data Fig. 2a).  
 
In metabolism, glycolysis genes emerged as the most consistently upregulated in PDAC (Fig. 2c). Other 
notably upregulated metabolic genes included SULF1/2 (in glycan metabolism), GPX2/8 (in glutathione 
metabolism), NQO1 and NOX4 (in oxidation/reduction reaction) (Supplementary Table 3). In contrast, 
the serine biosynthetic pathway, which branches off from glycolysis, was down (Extended Data Fig. 2b). 

Most components of the tricarboxylic acid (TCA) cycle, which connects glycolysis to oxidative 
phosphorylation (OXPHOS), were down or not consistent (Fig. 2d). The OXPHOS ‘hallmark’ also 
emerged low (Extended Data Fig. 2c) as were components of fatty acid beta oxidation (Fig. 2e), which 
altogether reflect a potential vulnerability in PDAC mitochondrial metabolism. PDAC showed a selective 
upregulation of genes in fatty acid biosynthesis and cholesterol metabolism (Fig. 2e-f). Many genes in 
transsulfuration pathway and amino acid metabolism were low, with a notable exception of tryptophan 
metabolism, where TDO2 and KYNU (both CUGs) were identified (Extended Data Fig. 2c). Thus, 
although metabolism is generally considered altered in PDAC, these analyses reveal specific pathway 
components that their expression are more likely correlated with carcinogenesis. 
 
Of the 229 transporters, the neurotransmitter/amino acid transporter (SLC6A14), glucose transporter 
(SLC2A1), GABRP, KCNN4, and cobalamin transporter (TCN1) were topmost CUGs, whereas P2RX1, 
SLC7A2, SLC39A5, SLC43A1 and aquaporin 8 (AQP8) are the lowest CDGs (Fig. 2g). With respect to 
signaling, we analyzed genes across 39 major signaling pathways in the KEGG database. Known processes 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 29, 2021. ; https://doi.org/10.1101/2021.05.28.446056doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.28.446056
http://creativecommons.org/licenses/by-nc-nd/4.0/


such as HIF-1, p53, MAPK, Hippo, and AGE-RAGE signaling emerged as highly upregulated (Fig. 2h). 
In contrast, components of cGMP-PKG, PPAR and AMPK signaling were mostly downregulated (Fig. 2h). 
Of note, virtually every pathway had genes consistently up- and downregulated and implication of such 
dichotomous expression pattern is unknown. Regarding transcriptional signatures, BACH1 was the top 
enriched (Fig. 2i) and was recently reported to drive metastasis and the expression of glycolysis genes (HK2 
and GAPDH) in lung cancer11,12. On the other hand, AR and HNF1 transcriptional signatures are suppressed 
in PDAC (Extended Data Fig. 2d). We found that topmost upregulated transcription factors are TRIM29, 
ARNTL2, AEBP1 ANKRD22 and LEF1(in Wnt signaling), whereas the lowest expressed are IAPP, TMED6, 
KIAA1324, MT1M and ANPEP (Fig. 2j). Several epigenetic targets also emerged, including KDM5B, 
EZH2, HDAC1, HELLS, DNMT1, KDM2A/1B and histone protein encoding genes HIST1H2BC, 
HIST1H2BD, HIST1H2BE, HIST1H4H, HIST2H2BE (all CUGs), whereas SIRT3, CXXC1, ING3, KDM8, 
CITED2/4, KAT2B topped the downregulated epigenetic targets in PDAC (Extended Data Fig. 2e). These 
data shed light on the extensive molecular complexity of PDAC and highlight specific components that 
could be prime targets for mechanistic studies. 
 

 

 
The consistent genes show tumor-microenvironment cell expression pattern and are differentially 

expressed in blood samples 
Tumor-stromal interactions are important in PDAC initiation and maintenance and have emerged as a focus 
area for PDAC therapy10,13–15. Previous studies aimed to distinguish neoplastic from stromal signatures via 
microdissection10,14. We applied a different approach by first defining the consistent genes in tumors 
compared to non-tumors, and then using these genes to further determine the expression of the consistent 
genes in normal pancreas relative to other normal tissues using three datasets (Fig. 3a, Extended Data Fig. 

3a-c). We expected a tumor-specific CUGs to be low in normal pancreas and, reciprocally, tumor-specific 
CDGs to be high – a criterion that should accurately refine consistent genes that are potential therapeutic 
targets or altered at the early tumor stage. Indeed, 66% (n=1,333) of the CUGs and 72% (n=1,384) of 
CDGs met these tumor-specific criteria in ³2 datasets (Fig. 3b-3c). Clustering analyses showed that 
glycolytic genes HK1, GAPDH, ENO1, LDHA, and PKM, as well as cell cycle genes (except CCND2) were 
among the lowest expressed CUGs in normal pancreas. Others included TSC22D1, B2M, S100A6 and 
CFL1. For the CDGs, CEL, GP2, REG1A, REG1B, REG3G, PRSS3, PNLIPRP1 and PLA2G1B were among 
the highest expressed in normal pancreas (Extended Data Fig. 3a-c, Supplementary Table 4a). We 
noticed these CDGs were highly expressed in the ‘exocrine-like’ tumor subtype defined by Collison et al3, 
suggesting that tissues in that subtype were mainly normal or well-differentiated.  
 
To further verify tumor-specificity, we overlapped the normal pancreas genes from the human protein atlas, 
genotype-tissue expression and or GSE71729 datasets with the laser capture microdissection (LCM) RNA 
seq data of PDAC epithelium versus stromal cells (GSE93326, adjusted P<0.01)14. This comparison led to 
the discovery of 564 CUGs and 250 CDGs that we considered as exhibiting ‘core tumor-specific’ 
expression pattern (Fig. 3b-3c). With respect to CUGs (Fig. 3b), 392 genes were low in the stroma (i.e., 
high in epithelium), but were not low in normal pancreas. This subset contained several genes described as 
by Moffitt et al. as tumor-specific, including KRT7, AREG, S100A2, LYZ, TFF1, AGR2 and CTSE.  This 
suggests that those genes though low in the stroma, are more expressed in other normal tissue types 
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compared to the pancreas making them less ideal as drug targets. The other shown subset of genes (n=769) 
consisted of CUGs that are highly expressed in the stroma (Supplementary Table 4a).  
 
We performed pathway analysis with the 564 ‘core tumor-specific’ CUGs and identified ‘cell 
cycle/division’, ‘glycolysis’, ‘p53’ and ‘progesterone-mediated oocyte maturation’ (consisting of CCNB1, 
CDK1, HSP90AA1, MAD2L1, CCNB2, BUB1, CCNA2, CDK, CDC25B genes), among pathways lowly 
expressed in normal pancreas and reprogrammed towards high expression in neoplasia (Fig. 3d). In 
contrast, the 250 CDGs revealed that normal pancreas expresses high level of genes in ‘protein processing 
in endoplasmic reticulum’ (e.g., UBE2D4, ATF4, HERPUD1, MAN1A2, UBE2J1), ‘FoxO signaling 
pathway’ (IGF1R, SGK1, GABARAPL1, CCND2, NLK, FBXO25, BNIP3, FOXO3, GABARAP) and 
‘transcriptional misregulation in cancer’ (IGF1R, NUPR1, CCND2, PDGFA, RXRA, PBX1, AFF1, PBX3, 
MEIS1). Further, GO analysis showed that tumor-specific CUGs are associated with cytoplasmic, 
membrane and nuclear/nucleoplasmic activities (Fig. 3e), whereas tumor-specific CDGs are associated 
with endoplasmic reticulum (ER), golgi-apparatus and exosomes (Fig. 3f). Direct comparison of tumor to 
stroma using LCM data showed many CUGs and CDGs that are high and low, respectively, in the epithelial 
cells (Fig. 3g-h). Specifically, majority of the CUGs (48%, n=956) showed high expression in the 
epithelium compared to 21% that turned out to be elevated in the stroma. Similarly, although by a narrower 
margin, the majority of CDGs (18%, n=347) showed low expression in the epithelium compared to 11% in 
the stromal cells (Supplementary Table 4a). We recently published single cell RNA sequencing (scRNA 
seq) profile of human PDAC16. In this scRNA seq dataset, we called the epithelial population based on the 
expression of KRT19 (a CUG) and also identified immune cell populations. However, while we confirmed 
the tumor-specific expression of several CUGs and found that some others also showed expression in 
immune cells (Fig. 3i-j, Extended Data Fig. 3d-e). Integrative analyses of these data therefore more 
accurately reveal tumor-specific and non-specific consistent genes that could guide and broaden the 
translational prospects of targeting specific or heterogeneously expressed signatures. 
 
A major interest in cancer research is to determine gene alterations in tumors that may follow the same 
expression pattern in blood, and hence serve as potential biomarkers. We sought to determine the CUGs 
and CDGs that show high or low expression pattern in the peripheral blood mononuclear cells (PBMCs) of 
PDAC patients relative to healthy controls. To this end, we first determined the consistency of genes in 
microarray datasets of PBMC samples since that to our knowledge has not been previously reported. We 
observed that unlike in tumors, the blood datasets had considerably less differentially expressed genes, 
which led us to lower our selection criteria to P<0.05. Analysis of three datasets revealed a total of 1,592 
reproducibly changed genes in at least 2 datasets (Fig. 3k, Supplementary Table 4b, Note 2). The pathway 
and GO profile of PBMC data were also remarkably different from tumor profile and were specifically 
oriented towards platelet biology and innate immune response for upregulated genes, and T-cell function, 
signaling pathways (e.g., ‘TGFB’ and ‘NFkB’) and cell cycle for downregulated genes (Supplementary 

Table 4c, Fig. 3l). Nevertheless, we identified 138 CUGs and 97 CDGs (including glycolysis genes, 
MK167, MUC1/MUC4, TGFBR3, EIF3F/G/L) that retained their tumor expression pattern in blood (Fig. 

3m-n). These analyses identify consistent genes that display tumor-specific or microenvironment cell 
expression and represent probable biomarkers based of detectable expression in blood and tumor samples. 
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The consistent genes correlate with tumor subtypes and aggressive features 

We queried all tumor-specific or microenvironmental cell specific genes against classical and basal-like 
PDAC subtype classification as well as clinicopathological variables including proliferation, metastasis, 
mutation, tumor grade and patient survival outcome (Extended Data Fig. 4a, Supplementary Note 2). To 
determine the consistent genes associated with the basal-like and classical subtypes, we used 50 gene 
signatures of these subtypes published by Moffitt et al. 10 to stratify three patient cohorts (TCGA, Moffitt, 
and Puleo). Of note, ~70% of those 50 signature genes are among our consistent genes (Extended Data 
Fig. 4b). We found that in at least 2 cohorts, 2,101 and 1,779 genes (P<0.05) emerged as high in basal-like 
or classical tumor subtypes (Supplementary Table 5). We established that most of the overlapping CUGs 
(557 of 809, i.e., 69 %) were basal-like signatures and that 78% of CDGs (i.e., 273 of 350 overlapping hits) 
were classical subtype signatures (Fig. 4a). However, 1,503 of the total 3,938 CUGs/CDGs were not 
changed (P>0.05) between basal-like or classical subtypes in any of the three cohorts (Extended Data Fig. 

4c). This suggests that there is at least one other subtype of PDAC that is non-basal-like non-classical or 
share features of both. By our estimation, this subtype represents ~38% tumor samples based on the number 
of genes. This subtype notably expresses high TMPRSS4, SLC6A14, IFI27, CST1, STYK1 (CUGs) and low 
TMED6, PNLIPRP1, SERPINI2, ALB, AOX1 (CDGs), which are topmost consistent genes that neither 
mapped to basal-like nor classical subtypes (Supplementary Table 5). Of note, at the scRNA sequencing 
level, we hardly found a clear distinguishing pattern between the various subtypes (Extended Data Fig. 

4d). 
 
We also stratified the same three patient cohorts into high and low proliferation subsets using 26 known 
proliferation-associated markers. Interestingly, over 2,000 genes overlapped as differentially expressed 
between proliferation high/low in ³ 2 cohorts, indicating the high reproducibility of these stratification 
results (Fig. 4b, Supplementary Table 5). We found that a preponderance of CUGs (39%, n=783) were 
high in tumors expressing high proliferation markers whereas <2% (n=37) were high in proliferation-low 
tumors. In addition, the topmost genes in proliferation-high tumors were notably CUGs (Fig. 4b-4c). The 
proliferation-high CUGs were clearly enriched in ‘pathways in cancer’, ‘cell cycle/division’, ‘p53’ and 
proteasome, indicating the processes underlying tumor proliferation (Fig. 4d). Some CDGs, e.g., PSAT1 in 
serine metabolism, C9orf40, GPR3, PRPS2, SAMD1, IPO4, GIT1 and DFFA surprisingly emerged as high 
in proliferation-high tumors despite their low expression in tumor relative to non-tumor samples (see 
Supplementary Note 3). Otherwise, majority of CDGs (n=588, ~31%) were low in proliferation-high 
PDACs and these include genes such as superoxide dismutase 3 (SOD3), OGN, ALDH1B, SLC3A1 and 
complement components (C6/C7) (Fig. 4d). These CDGs were strikingly associated with physiologic 
pancreatic activities, e.g., ‘gastric and insulin secretion’, ‘protein digestion/absorption’, altogether revealing 
for the first time the processes whose differential gene changes underlie PDAC proliferation across cohorts.  
 
Metastasis accounts for >90% of cancer deaths and is a major feature of PDAC17. We analyzed three PDAC 
microarrays with metastasis samples and performed over 10 comparisons of metastatic versus primary 
PDAC or distant normal versus lymph nodes, peritoneal lung, or liver metastasis tumors (Supplementary 

Table 6, Supplementary Note 3). We found that several topmost CUGs in PDAC, e.g., LAMB3, LGALS4, 
CEACAM6, TFF2 were also the top upregulated genes in metastasis tissues (Extended Data Fig. 4e, 

Supplementary Table 6). The liver showed the highest overlap with CUGs. Specifically, in the GSE71729 
dataset, 91% of the CUGs differentially expressed in liver metastasis relative to normal liver were high. 
This is followed by the lymph node at 87% and lung metastasis 82%. Thus, >80% of CUGs are high in 
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metastasis. Analysis of the overlapping genes between GSE71729 and GSE19279 revealed 404 highly 
expressed CUGs and 315 lowly expressed CDGs in liver metastasis (Fig. 4e). Pathway and GO analyses 
revealed that the ‘metastasis-CUGs’ are involved in ‘focal adhesion’, ‘extracellular matrix-receptor 
interaction’, ‘p53’, ‘cell cycle’, ‘proliferation’ and ‘mitochondrial matrix’ – with notable less involvement 
of glycolysis (Fig. 4f). On the other hand, the CDGs lowly expressed in liver metastasis were enriched for 
the downregulation of metabolic pathways, which was clearly different from the pancreatic physiology-
associated profile noticed with the CDGs low in proliferation-high PDAC (Fig. 4e-f). Topmost CDGs in 
PDAC, e.g., FCN2/FCN3, CXCL12, CTSG, and lymphatic endothelial marker LYVE1, also showed a low 
expression across various metastatic samples (Extended Data Fig. 4e, Supplementary Table 6). We also 
found several CUGs and CDGs that strongly overlapped between liver and peritoneal metastasis samples 
(Extended Data Fig. 4f). Of note, the non-basal-like non-classical signatures at 8.9% (n=134) had more 
overlapping genes with metastasis than basal-like (115, n=5.5%) and classical subtypes (3.3%, n=58) 
(Extended Data Fig. 4g), further suggesting that this tumor subset could be more aggressive. At the single-
cell resolution, we observed that >370 CUGs were highly expressed in the epithelial cell compartment of 
liver metastasis tumors (Fig. 4g). Altogether, these data reveal the most robust gene signatures associated 
with PDAC metastasis, many of which have never been reported in any PDAC context. 
 
The most frequently mutated genes in PDAC are known (i.e., KRAS, TP53, SMAD4 and CDKN2A), but 
their impact on tumor gene expression pattern is not well-defined. We analyzed how tumors with the 
mutated genes differ in CUG- and CDG expression using TCGA data, and for each gene we separately 
compared tumors with mutation to those without. We found that KRAS-mutated tumors expressed high 
KRAS, SMAD4-mutated tumors expressed low SMAD4, but there was no change in TP53 or CDKN2A levels 
for tumors harboring mutations in TP53 or CDKN2A, respectively. Also noteworthy, regardless of the gene 
mutation considered, SMAD4 expression level was low (Supplementary Table 7a). KRAS mutation, 
mainly G12D, exerted the most profound impact on the CUGs and CDGs, followed by mutations in 
CDKN2A and SMAD4 (adjusted P<0.05, Fig. 4h, Supplementary Note 3). KRAS G12D alone almost 
exclusively accounted for all the differentially expressed CUGs and CDGs in mutated tumors (Fig. 4h), 
and we identified 418 overlapping CUGs and 286 CDGs altered in KRAS G12D, G12R and G12V tumors 
(Extended Data Fig. 4h, Supplementary Table 7b). TP53 mutations had the least impact probably 
because, unlike KRAS mutations which could easily be grouped into G12D, G12R and G12V, almost every 
2-3 samples had a different TP53 mutation indicating extensive heterogeneity. Pathway analysis of CUGs 
in KRAS G12D-mutated tissues identified ‘cell cycle’, ‘p53’, ‘glycolysis’ (Extended Data Fig. 4i) among 
other alterations that were repeatedly observed in the proliferation and metastasis comparisons. Thus, we 
conclude that of the gene mutations, KRAS mutation is the main orchestrator of the consistent gene 
expression changes observed in PDAC.  
 
We used TCGA and Puleo cohorts to further determine CUGs and CDGs that specifically distinguish poorly 
differentiated (Grade III) from moderately differentiated (Grade II) tumors, considering that such genes 
could complement histological grading and fine-tune diagnostic precision. We surprisingly found few 
overlapping genes (178 upregulated and 138 downregulated genes, P<0.05) between Grade III relative to 
Grade II tumors in both datasets. Nevertheless, of these genes, 58 upregulated genes in Grade III tumors 
were CUGs, including ZBED2, S100A2, KRT6A, IL20RB, MET, glycolysis genes (PFKP, LDHA), uridine 
phosphorylase 1 (UPP1) (Supplementary Table 8), suggesting indicators of poorly differentiated tumor 
grade. Several CUGs also showed specificity for Grade III based on receiver operating characteristics 
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(ROC) area under the curve (AUC) analysis (Supplementary Table 8). Only 10 CDGs, notably NDRG2, 
DCDC2, PDX1, MYOM1, ZFPM1, ACVR1B, emerged in the Grade III vs II comparison (Supplementary 

Table 8). The Puleo cohort contained many Grade I tumors (n=117 samples), which enabled us to further 
predict CUGs or CDGs associated with progression from well to poorly differentiated tumor stages and 
also compare Grade II vs I tumors. We identified 10 CUGs (including S100A2, HMGA1/2, WNT7B, RDX) 
and 21 CDGs, including PLA2G10, CREB3L1, ATP10B, TOX3, SLC37A1 and GATA6 from ROC AUC 
analysis. Pathway analysis of Grade II vs I tumor signatures showed ‘focal adhesion’, ‘Wnt’ and ‘PI3K-
Akt’ among processes in involved in the initial stages of tumor progression (Extended Data Fig. 4j). In an 
independent cohort of pre-malignant PDAC samples 18, we also observed differential expression of CUGs 
and CDGs (Extended Data Fig. 4k, Supplementary Table 9), which suggest that several of these 
alterations occur early in the tumor progression course. 
 
One common utility of gene expression data is for predicting patient overall survival (OS) outcome and 
hazard ratios. To determine which CUGs and CDGs best predict OS or risk of mortality, we performed 
Kaplan-Meier OS and univariate Cox regression analyses, respectively, for all genes in TCGA, Moffitt, 
Puleo and ICGC-AU cohorts (Supplementary Table 10a, Supplementary Note 3). We identified four 
consistent genes, namely OGN, C2orf40 (CDGs) and PLOD2, DIAPH3 (CUGs) that predicted OS in all 
four datasets. Indeed, 1,648, 441 or 61 CUGs/CDGs predicted OS in at least 1, 2 or 3 cohorts, respectively 
(P<0.05) (Fig. 4i-j). Further, the number of CUGs and CDGs that predicted OS in at least two cohorts 
largely mirrored the result of univariate Cox proportional hazards regression (Fig. 4k), and in an 
independent dataset of ‘bad’ versus ‘good’ prognosis tumors several CUGs/CDGs also emerged (Extended 

Data Fig 4l, Supplementary Table 10b). Of note, ‘PI3K-Akt’, ‘focal adhesion’, ‘carbon metabolism’ and 
‘glycolysis’ were the topmost pathways associated with the CUGs that predicted OS (Fig. 4l). Ultimately, 
we identified 25-30 predictors of OS in PDAC as the most robust, based on significant prediction in ³ 3 
cohorts. These predictors in multi-datasets included OGN, PLOD2, DIAPH3, C2orf40 (shown in Fig. 4i), 
ALDOA, GAPDH, PKM2, LDHA (in glycolysis), ADM, UPP1, ZNF189, DCBLD2, PLAG1 among others 
(Fig. 4m). Of note, for some genes a high expression predicted better outcome in a cohort, but worse 
outcome another indicating potential context-dependent caveats often not captured when using a single 
dataset (Supplementary Note 3). Taken together, we present the most extensive PDAC-centric cross-
platform analysis revealing gene expression pattern associated with clinical variables in patients. 
 

 

High priority consistent gene targets predict epigenetic inhibitors for PDAC therapy 
To determine high priority therapeutic targets among the consistent genes, we analyzed the CRISPR/Cas9 
knockout screen data from Project Achilles19, GECKO and Behan et al20,21 studies, and also analyzed the 
Project Drive22 shRNA knockdown screen data (Fig. 5a). The original publications used these RNA 
interference (RNAi) screens to determine the essential genes for growth/survival across human cancer 
cells/types. We first checked the essential gene results from these studies considering that they did not 
directly focus on PDAC. We found that of the genes identified by the Project Achilles as essential across > 
700 cell lines, 245 overlapped with our CUGs and 137 were CDGs. Also, over 400 CUGs overlapped with 
the cancer fitness genes defined by Behan et al. Further, 972 CUGs were among genes included in the 
Project Drive shRNA screen, which originally focused on ~8000 genes that the authors predicted to be 
essential in most cancers (Supplementary Table S11a). These observations reinforced our confidence that 
several consistent genes we identified are essential for the viability of PDAC and ostensibly in multiple 
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other cancer cell lines and types. In addition, the possibility of querying RNAi of between eight to ~24 
PDAC cell lines across four independent studies offered unprecedented statistical strength to our analyses.  
 
To determine the most probable therapeutic targets in PDAC, we focused on the CUGs since it is more 
logical to hypothesize that suppressing their expression will suppress tumor growth. Clustering analysis of 
Achilles and Project Drive (each containing 24 PDAC cell lines) identified 394 and 200 CUGs, respectively 
(Supplementary Table 11a). In the GECKO dataset (n=8 PDAC cell lines) we identified 231 CUGs of 
high essentiality and found 211 in the Behan et al dataset (n=20 PDAC cell lines). On average, we identified 
~206 essential CUGs across the four RNAi screens, of which 185 CUGs overlapped as essential in at least 
3 datasets (Fig. 5b). These most reproducible CUGs (herein called “high priority therapeutic targets”) 
included glycolysis genes (ALDOA, PKM, GAPDH), cell cycle/division genes (BUB1, CDK1, CDK2, 
MCMs), thioredoxin (TXN), KRAS, and ACTB (actin beta) involved in cell motility/membrane integrity. 
Pathway analysis revealed a remarkable similarity between the identified priority targets per dataset (Fig. 

5c-f). Specifically, ‘cell cycle/division’, ‘proteasome’, ‘spliceosome’ and ‘progesterone-mediate oocyte 
maturation’ were the most consistent pathways depicted by the high priority targets (Supplementary Table 

11b). Others included ‘p53’, ‘regulation of actin skeleton’ (Fig. 5d, 5f) as well as ‘biosynthesis of amino 
acids’ (Fig. 5d), which actually contained mainly glycolysis genes. GO analysis identified the biological 
process ‘cell cycle’, molecular function ‘protein and ATP binding’, and cellular component ‘nucleoplasm,’ 
‘cytosol’ and ‘cytoplasm’ as key ontologies linked to priority target CUGs (Supplementary Table 11b). 
 

To predict therapeutic agents that could be effective against PDAC, we used the 185 high priority targets 
to stratify PDAC cell lines in the cancer cell line encyclopedia (CCLE) and GSE57083 datasets into two 
groups (Extended Data 5a). Representative PDAC cell lines that best showed a higher expression of the 
priority genes included PA-TU-8902, PANC1, PANC-03-27 (i.e., the ‘high-expressing’) relative to AsPC-
1, CFPAC-1, and HPAF-11 (low expressing). We analyzed the sensitivity of these cells to therapies using 
data from the Genomics of Drug Sensitivity in Cancer (GDSC) project23 and identified several drugs that 
were effective against cell lines expressing high priority targets (Fig. 5g). Interestingly, bromodomain and 
extra-terminal motif (BET) protein inhibitors I-BET-762, OTX015, and AZD5153 emerged as effective in 
most high-expressing cell lines with the notable exception of PA-TU-8902 indicating a potentially resistant 
cell line (Fig. 5h). BETi act by repressing transcription and cell cycle24,25, which are core alterations 
associated with CUGs in PDAC. Given that gemcitabine, a major chemotherapy agent used for PDAC 
therapy, acts by suppressing nucleotide biosynthesis and cell cycle, we tested the combination of 
gemcitabine and BETi in TU8902 and other cell lines. We found that the cell lines were not strikingly 
sensitive in their response to BETi alone. However, BETi synergized with gemcitabine to suppress cell 
viability across all the tested cell lines (Fig. 5i-j, Extended Data Fig. 5b). Metabolomics revealed a 
strongly disrupted amino acid metabolism upon combination treatment, with the notable accumulation of 
serine (Fig. 5k, Extended Data Fig. 5c-d), which we previously observed is an indicator of nutrient 
deprivation and suppressed proliferation26. In both a human cell line subcutaneous xenograft model with 
TU8902 cell line, and in immunocompetent orthotopic mouse model with oncogenic Kras; Trp53 R172H/+ 
cells (KPC), the combination of gemcitabine and BETi BD-9136 synergistically suppressed tumor growth 
(Fig. 5l-m, Extended Data Fig. 5e). This was accompanied by a suppressed proliferation as indicated by 
Ki-67 staining (Fig. 5n). We conclude that the high priority genes are themselves useful targets for therapy 
and cell line stratification by their expression predict that targeting epigenetics could be an effective 
combinatorial therapeutic option against pancreatic tumors. 
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Discussion 

Genomic profiling has paved way for unprecedented discoveries in many cancers27,28. For the first time, we 
have extensively leveraged on multiple published datasets to define the most consistently expressed genes 
in human PDAC – providing a refined set of genes for future research. These genes are unambiguous in 
their expression pattern and can be expected to be significantly changed in any comparison of PDAC tissues 
to non-tumoral pancreas. Over 50% of the 3,938 identified consistent genes are not functionally 
characterized in PDAC revealing untapped opportunities for future new discoveries. Among the consistent 
genes, those previously studied were often proposed as therapeutic targets, biomarkers in PDAC or were 
shown to exhibit the same pattern as described in our work, providing additional confidence in the potential 
of the uncharacterized genes/drug targets. Further, several genes previously identified as tumor/stroma 
specific or signatures of basal-like and classical PDAC subtypes10,14,29, also emerged in our analysis of 
multiple datasets. These observations reinforce confidence in the strength of our findings and align with 
our conclusion that these consistent genes are plausibly important in PDAC. We show that the identified 
consistent genes correlated with several clinicopathological indices, are detectable in blood, and contain 
high-priority essential therapeutic targets in PDAC, which altogether broaden the utility of the genes in 
basic and translational research.  
 
Certain key observations are noteworthy. We found several known genes (e.g., HIF1A, SLC16A3, EPCAM 
and SOX9) that retained a consistent expression pattern but did not meet our inclusion criteria. Issues of 
gene probe identification also may have caused some genes, e.g., KRT17 and INHBA, to fail our consistency 
test. Accordingly, we believe our estimate of ~4000 consistent genes in PDAC, though numerous at face 
value, is conservative and underlies the molecular complexity of this lethal disease. We recommend the use 
of analytical tools for pathway enrichment and gene ontology30 when the goal is to determine individual 
overrepresented pathways that may be investigated in experimental contexts. We also note that not all 
consistent genes followed the same expression pattern across comparisons. For example, several CUGs 
were indistinctly expressed in normal pancreas compared to other tissues and some were even higher in the 
normal pancreas. This was also notable with glycolysis genes, which have been traditionally considered 
high in most cancer types. For example, in single cell RNA sequencing data, we found that several core 
glycolysis genes ALDOA, GAPDH, ENO1, and PKM2 are highly expressed in both the tumor and immune 
cell compartments. We believe such CUGs should not be considered tumor specific, but that tumor non-
specificity does not render them less important. Indeed, correlation with proliferation, metastasis and other 
clinical parameters also showed that in those comparisons some tumor non-specific consistent genes were 
nevertheless significantly changed – with glycolysis genes strongly appearing as the best candidates in most 
comparisons. Therefore, our identification of tumor-specific and non-specific genes could help facilitate 
hypothesis generation for studies targeting or exploring biomarkers of both compartments.  
 
Next, by stratifying tumors using signatures of basal-like and classical subtypes previously published by 
Moffitt et al10, we establish that PDAC does not easily bin into two subtypes. Our data indicate that there 
exist at least one other subtype that is neither basal-like nor classical or at best combines features of both 
subtypes. We propose calling those subsets ‘non-basal-like non-classical’ and we observe that their core 
signatures include the high expression of TMPRSS4, SLC6A14, IFI27, CST1 and STYK1. Of note, IFI27, a 
novel target in PDAC that was a strong marker of epithelial cell compartment in our analysis has been 
implicated in metastasis in two recent studies31,32 and we find that the non-basal-like non classical signatures 
more overlap with liver metastasis signatures, suggesting that this subtype may be the most aggressive. It 
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is also noteworthy that basal-like and classical subtype signatures are hardly distinguishable in their 
expression pattern at the single cell level. Specifically, several signatures of both subtypes are either 
strongly expressed in the epithelial cell compartment or showed minimal expression. Thus, the mechanistic 
roles of PDAC subtype signatures are likely context dependent. In the context of OS, some genes predicted 
better outcome in one cohort and worse outcome in another. This pattern might reflect differences in 
patients’ clinical course or tumor subtypes and suggest that observations of survival prediction should not 
be generalized without testing in independent cohorts. Our findings also demonstrate that although some 
pathways, e.g., cell cycle and glycolysis, consistently ranked top, alterations in PDAC are hardly 
attributable to just one pathway. For example, although ‘focal adhesion’, ‘p53’, ‘ECM-receptor alterations’ 
and ‘pathway in cancer’, are the most prominently upregulated pathways from CUGs, other enriched 
pathways emerged in subsequent comparisons such as in metastasis, survival and notably PBMCs samples.  
 
Based on data from normal pancreas, proliferation-high tumors, RNAi, and mutational landscapes, we 
propose that the high expression of glycolysis- and cell cycle/division pathway components are at least two 
persistent alterations governing the origin and progression of PDAC. This notion is consistent with a prior 
study, which found that genomic rearrangements and alterations in cell cycle likely occur at the early stage 
of PDAC17. Glycolytic and cell cycle/proliferation profile of normal pancreas are broadly low but are high 
in almost every tumor comparison we performed. The notion that glycolysis drives cancer is the foundation 
of the century-old Warburg effect, which recently was substantiated to promote both tumor and immune 
cells in the microenvironment33. Despite the long-standing appreciation of glycolysis, the molecular details 
remain incompletely defined. For example, the role of specific glycolytic enzymes or their isoforms e.g., 
HKs, PFKP and ENO2, remain unclear, and the therapeutic prospects of inhibiting these individually and 
in combination are largely unknown. Similar to glycolysis, despite the prevailing acceptance of cell cycle 
as a major cancer hallmark, most cell cycle genes we identified have never been studied in PDAC. We also 
identified KRAS among the priority genes. Specific inhibitors for KRAS for human studies are lacking and 
targeting the pathway component was ineffective in prior clinical trial 34. However, the continual emergence 
of KRAS in PDAC studies, coupled with experimental evidence of its role in tumorigenesis in mice6,7, 
suggest that efforts should continue to explore new ways to target KRAS. Other processes such as 
‘proteasomes’ and ‘spliceosomes’ contained consistent genes in PDAC that showed essentiality across 
high-throughput RNAi screens19,20,22. These genes are also low in normal pancreas and hence are among 
the most attractive unexplored PDAC therapeutic target. 
 
Lastly, we have demonstrated the utility of these consistent genes in predicting therapeutic options in 
PDAC. We predict that inhibitors of epigenetic process, namely inhibitors of bromodomain containing 
proteins, could be effective in PDAC. This observation, which we confirmed in two different in vivo models, 
will require further exploration. Besides predicting therapies, these genes are potentially direct therapeutic 
targets. In conclusion, we have performed the most comprehensive multi-dimensional analysis of gene 
expression pattern in PDAC to date and have unraveled >2000 consistent genes not yet functionally 
characterized or associated with this disease. Our data is a novel knowledge base and resource for high 
confidence basic, translational, and clinical studies. It is expected to revolutionize future understanding of 
true drivers of PDAC and facilitate the application of such insight in improving patient care.  
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Methods 

Identification of the consistent genes 

The following five human PDAC microarray datasets were used for the initial identification of the 
consistent genes: GSE71729 (46 normal pancreas, 145 tumor tissues), GSE62452 (61 non-tumoral vs 69 
tumor tissues), GSE28735 (45 non-tumoral vs 45 tumor tissues), GSE16515 (16 normal vs 36 tumor tissues) 
and GSE15471 (36 non-tumoral vs 36 tumor tissues). These datasets were obtained from the National 
Center for Biotechnology Information gene expression omnibus (NCBI GEO) 
(https://www.ncbi.nlm.nih.gov/geo/). All datasets were analyzed separately. For each dataset, the 
differentially expressed genes in pancreatic tumors compared to non-tumoral control samples were 
determined using limma package (v 3.38.3) in R software (v 3.5.2) after quantile normalization. Where 
there are multiple probes identifying a particular gene, we obtained the average for that gene prior to 
analysis. We used adjusted P<0.05 for selecting differentially expressed genes per dataset. Genes that met 
the adjusted p-value cut off, and were upregulated in at least four of the five datasets, were included as 
consistently upregulated genes (CUGs). Similarly, genes that showed low expression in at least four 
datasets were included as consistently downregulated genes (CDGs). Subsequently, we generated a matrix 
file containing the significantly changed consistent genes for each of the five datasets (n=2010 CUGs, and 
n=1928 CDGs in total). For some gene symbols and alias (e.g. PKM2), conversion to current human gene 
nomenclature was necessary for cross-dataset comparison. For that we used either the 
https://www.biotools.fr/ portal or limma built-in function for alias conversion.  The consistent genes were 
ranked using their average ‘expression score’ (i.e., the product of logFC and -log P-value) across the five 
datasets. Besides the list of CUGs and CDGs (expressed in at least four datasets), we extracted genes that 
showed consistent expression in at least three datasets, provided they are unchanged in the remaining two 
datasets (n=2,722, adjusted P<0.05, see Supplementary Table 2). These genes were only used in 
completing metabolic pathway drawings in cases where they are critical components of the pathway but 
did not meet selection cut-off of the CUGs and CDGs list described in this work. Where applicable, those 
genes were marked with asterisks. 
 
Cross-validation of consistent genes in independent tumor and blood datasets 

For cross-validation of CUGs and CDGs in independent patients cohorts, we included four additional 
microarray datasets, namely, GSE32676 (7 non-malignant pancreas vs 42 tumor tissues, P<0.05), 
GSE62165 (13 control samples vs 118 tumors, adjusted P<0.01), and GSE19279 (compared 3 normal vs 4 
tumors, P<0.05) and GSE19650 – a laser capture microdissection data, 7 normal pancreas vs pre-malignant 
tissues of invasive cancer originating in intraductal papillary-mucinous neoplasm (IPMN, n=3), intraductal 
papillary-mucinous adenoma (IPMA, n=6), and intraductal papillary-mucinous carcinoma (IPMC, n=6), 
P<0.05). For analysis of differential gene expression in peripheral blood mononuclear cells (PBMCs) and 
comparison with the tissue data, we used three datasets: GSE15932 (8 healthy control vs 8 samples from 
non-diabetic PDAC patients), GSE49641 (18 healthy controls vs 18 PDAC patients), and GSE74629 (14 
healthy control vs 22 non-diabetic PDAC patients). These datasets were processed and statistically 
compared following same methods as for tumors. Of note, some of these datasets have additional sample 
groups that are not necessarily tumors vs non-tumors. Where those additional samples were analyzed (e.g., 
metastasis vs distant normal tissues in GSE71729, we followed the analysis steps used for tumor vs non-
tumors). Additional microarray datasets included were E-MTAB-6134 (309 tumors) obtained from 
ArrayExpress (https://www.ebi.ac.uk/arrayexpress/) as well as the International Cancer Genome 
Consortium – Australia cohort (ICGC-AU, 269 tumors). These two data were mainly used for tumor 
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stratification, clustering and analysis of correlation with clinical parameters. Accession numbers of these 
datasets are indicated in Extended Data Fig. 1a. 
 

RNA Sequencing data 

The patients RNA seq data we used were The Cancer Genome Atlas (TCGA) PDAC data (150 tumors) 
downloaded from cBioPortal (https://www.cbioportal.org/) and a laser microdissection (LCM) data 
GSE93326 (65 epithelium vs 65 stroma) downloaded from NCBI GEO. We retained only genes with an 
expression value ³1 in at least half of the samples contained per dataset. To determine differential gene 
expression, we analyzed TCGA data with limma package after log2 transformation, whereas the raw count 
values for GSE93326 were analyzed with DESEq2 package (v 1.22.2) in R. Unless otherwise indicated, 
adjusted P<0.05 was used as cut off for differential gene expression. We also included the normal tissue 
RNA seq from the Human Protein Atlas (HPA, 37 tissues including the pancreas) and the Genotype-Tissue 
Expression (GTEx, 36 tissues including the pancreas). The HPA and GTEx data were both downloaded 
from the HPA archive version 19 (https://www.proteinatlas.org/) and used as described below.  
 
Single-cell RNA sequencing analysis 

The determination of the consistent gene expression at the single-cell level was done using our recently 
published human sample data from PDAC to liver metastasis (n = 5) 35or adjacent normal (n=3) versus 
PDAC tumor samples (n=16)16. For the metastasis samples, we first derived genes differentially expressed 
in the tumor epithelial compartment relative to other microenvironmental cell population. These genes were 
subsequently overlapped with the CUGs and CDGs to extract the common genes. 
 

Determination of normal pancreas expression of the tumor-derived consistent genes 

To determine lowly expressed CUGs or high GDGs in normal pancreas, we used the HPA and GTEx data 
(each contained ³ 97% of the consistent genes). We extracted the CUGs/CDGs from each dataset and 
calculated their median expression values for all other tissues except the pancreas. Genes that their 
expression in the pancreas was lower than the median for all other tissues were considered lowly expressed 
in the pancreas, and vice versa. Genes that showed low- or high expression in both the HPA and GTEx 
datasets were selected as consistently low or highly expressed genes in the pancreas. We also analyzed 
normal tissues in the GSE71729 dataset. Specifically, we compare the combined gene expression of normal 
liver (n=27), lung (n=19), lymph node (n=10) and spleen (n=11) to that of normal pancreas (n=46, P<0.01). 
Genes with the same expression pattern in GSE71729 as in HPA/GTEx were selected as highly consistent 
in normal tissues. 
 
PDAC stratification by proliferation, basal-like and classical subtypes 

For the proliferation high- versus low tumor identification and comparison, we first generated tumor sample 
data subset containing the expression values of 26 known proliferation genes (Extended Data Table 2) 
from each of TCGA (n=150), GSE71729 (n=145), and Puleo (n=309) datasets. On each subset, we 
separately applied unsupervised hierarchical clustering and partitioned the tumor samples into proliferation 
high- and low clusters. Sample numbers were as follows: TCGA – 64 proliferation-high vs 86 low; 
GSE71729 – 77 proliferation-high vs 68 low; and Puleo – 99 proliferation-high vs 210 low. For generating 
the basal-like and classical subtype subsets, we used the 25 basal-like and 25 classical gene signatures 
published by Moffitt et al10. These genes were applied to rank each of TCGA, GSE71729 (Moffitt) and 
Puleo datasets into the two subsets. We then used limma package to derive the differentially expressed 
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genes between compared groups. CUGs that emerged as significantly upregulated in at least two of the 
three datasets (P<0.05) were considered high in proliferation-high tumors and vice versa. The same rule 
was applied for CDGs. 
 
Correlation of consistent genes with metastasis 

We used three bulk tumor datasets, namely, GSE19279, GSE42952, and GSE71729 to determine the 
consistent genes correlated with metastasis. With GSE19279 our analysis was liver metastasis samples 
(n=5) vs liver normal (n=3) or primary PDAC (n=4). With GSE42952, we compared tumor samples of liver 
metastasis (n=7) vs tumor samples (n=6) from patients that had ‘good’ prognosis (i.e., longer survival time, 
n=6) or ‘bad’ prognosis (i.e., shorter survival time, n=6). On the same dataset, the ‘good’ or ‘bad’ prognosis 
samples were also separately compared to peritoneal metastasis samples (n=4). With GSE71729, the 
following comparisons were performed: liver metastasis (n=25) vs distant site normal liver tissue samples 
(n=27); lung metastasis (n=8) versus normal lung samples (n=19) and lymph node metastasis (n=9) vs 
normal lymph node samples (n=10). In addition, we compared each of the mentioned metastasis tissue 
samples to primary PDAC (n=145). The CUGs and CDGs differentially changed in the respective 
comparisons (P<0.05) were identified and are presented in Supplementary Table 6.  
 

 

Differential expression of CUGs/CDGs based on frequently mutated genes  

For the impact of frequently mutated genes in PDAC (i.e., KRAS, TP53, SMAD4 and CDKN2A), we 
extracted the mutation profiles for each tumor sample in TCGA data as obtained from cBioPortal. For 
KRAS, we analyzed for G12D, G12R and G12V since these had considerable sample sizes. Specifically, 
we performed the following comparisons: tumors with G12D mutation (n=42), G12V mutation (n=26) and 
G12R mutation (n=22) each separately compared to no alteration in KRAS (n=43). For TP53, there were 
80 indicated unique mutations of which the most represented (i.e., R175H and R248W) had four samples 
each. Therefore, we compared all tumors with any TP53 mutation (n=100) to those with no alteration 
(n=50). The same approach was taken for SMAD4 (55 mutation vs 95 no alteration) and CDKN2A (80 
mutation vs 70 no alteration). Furthermore, we compared tumors with no alteration in any of these four 
genes (n=23) to tumors with a mutation in all four (n=24). Determination of differentially expressed genes 
were performed as described above and determined which CUGs and CDGs were altered by these 
mutations. 
 
Kaplan-Meier overall survival, Cox regression and ‘good’ versus ‘bad’ prognosis data analyses 

Kaplan-Meier (KM) overall survival was performed for each gene in TCGA (146 tumors), GSE71729 (125 
tumors), Puleo (288 tumor) and ICGC-AU (267 tumors) datasets. For TCGA, we selected the samples that 
were used for survival analysis in the original article on PDAC4. For the other datasets, we included all 
samples for which there is an accompanying survival data. We derived median expression value per gene 
and used it to rank samples into ‘high’ and ‘low’ groups for that gene. We then performed KM OS analysis 
with log-ranked test. Univariate Cox proportional hazards regression analysis was performed with the same 
sample size as used for KM except that the gene expression was set as continuous variables. The associated 
P-values was derived using the Wald statistic. Both the KM and Cox regression analysis were performed 
using survival package (v 2.43-3) in R and statistical significance was considered as P<0.05. Although all 
genes that were significantly predictive at least in one cohort were highlighted, we placed greater emphasis 
on genes that were significant in two or more cohorts. We also compared the consistent gene expression in 
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tumors of patients with ‘bad’ prognosis (shorter survival time) vs ‘good’ (longer survival time) using the 
microarray dataset GSE42952 (tumors: n=6 good prognosis vs n=6 bad prognosis). The data was analyzed 
following the same procedure as in the five microarrays used for CUGs/CDGs identification.  
 

Receiver operating characteristics  

We calculated the sensitivity (true positive rate) of each gene in TCGA and the Puleo data with respect to 
predicting tumor grade. For TCGA we used Grade 3 (n=69) and Grade 2 (n= 75) tumors, which constituted 
the entire data sample size. For Puleo data we analyzed Grade 3 (n=48) and Grade 2 (n=134), and in addition 
mainly the Grade 2 and Grade 1 (n=117). In each case, we performed receiver operating characteristics 
using the pROC package (v 1.13.0) and extracted the area under the curve (AUC) values. We used AUC > 
60% as minimum cut off for sensitivity. Besides this, differential expression of genes in Grade 3 vs 2 in 
both TCGA and Puleo datasets were performed as described above for these datasets. 
 

Pathway and gene ontology analyses 

Pathway analysis were performed using DAVID functional annotation platform (https://david.ncifcrf.gov/, 
v 6.8), or the gene set enrichment analysis tool (GSEA, v 4.0.3) with GSEAPreranked option. Ranking of 
the genes was based on the product of the logFC and -log(P-value) and analysis was based on only genes 
that were already determined to be significantly altered in the respective comparisons performed. GSEA 
for KEGG pathway, hallmark and transcriptional signatures were run with default parameters, except gene 
set size filter set at min=10. Gene ontology analyses were performed with DAVID. Details about the 
number of genes used are indicated in the Figure legends, where applicable. 
 
Assignment of genes to functional classes 

We assigned the genes to their known functions, e.g., ‘metabolism’, ‘immunity’, etc, using published gene 
lists or gene lists extracted from KEGG or Molecular Signatures Database (MSigDB). For metabolism, we 
adapted a list of previously published 2,764 metabolic genes 36 and assorted them into metabolic and 
transporter genes. We also used a published list of 1,988 genes encoding transcriptional regulators in 
human37. We compiled a list of signaling genes (2,091 genes - KEGG), and a list of ~400 immune gene 
signatures from the Molecular Signatures Database (MSigDB)38,39. To the extent possible, these genes were 
used, especially in Fig. 2, to assign the consistent genes to their known pathways. 
 
Determination of essential consistent genes 

For essential gene analysis, we focused on the CUGs. To determine CUGs that are essential for PDAC 
viability, we used the CRISPR/Cas9 knockout screen data from Project Achilles, GECKO, Behan et al data 
assessed via BioGRID Open Repository of CRISPR Screens (ORCS)1.0 each of which covered >17,000 
genes. In addition, we used shRNA knockdown screen data from Project Drive (includes ~8,000 genes). 
For Achilles we analyzed 24 PDAC cell lines with complete dependency scores; for GECKO we analyzed 
8 cell lines, for ORCS it was 20 cell lines, and for Project Drive we analyzed 24 cell lines. Coverage of the 
CUGs was near complete. Specifically, of the 2,010 CUGs, we found 1,962 (~98%) in the Achilles data, 
1,947 (~97%) in the GECKO data and 1,916 (95.3%) in Behan et al. ORCS data. The Project Drive, which 
was originally based on 7,975 genes predicted to be essential, included 972 CUGs (48%). We used the 
available CUGs per dataset to perform unsupervised hierarchical clustering. We then partitioned each 
dataset into two clusters: genes that their knockdown strongly impacted viability and genes with no strong 
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impact. Only the CUGs that strongly impacted viability in at least three datasets were presented as 
essential/priority targets for PDAC. 
 

Cell line stratification and prediction of drug response  

The 185 high priority therapeutic targets identified in this work was used to stratify PDAC cell lines in the 
cancer cell line encyclopedia (CCLE) (n=44 cell lines) and GSE57083 (AstraZeneca) datasets (n=23 cell 
lines). In the case of GSE57083, most cell lines existed as biological duplicates and for these their gene 
expression profiles were averaged to generate one datapoint per cell line as in the CCLE data. Thereafter, 
cell lines in the two datasets were stratified into those that have a high expression of the priority genes and 
those with low expression using clustering analysis. Following the identification of representative cells in 
high-expressing or low-expressing subgroups, the therapeutic sensitivity of the high-expressing groups 
were then determined using in the Genomics of Drug Sensitivity in Cancer (GDSC) data23, which contains 
experimentally determined sensitivity score for >195 compounds. Compounds that were effective against 
cell lines expressing a higher level of the high priority genes were selected for further validation studies. 
 

Cell culture, inhibitors, metabolomics 

The human PDAC cell lines namely, BxPC-3, PA-TU-8902, ASPC1, CFPAC-1 and PANC1 were obtained 
from the American Type Culture Collection or the German Collection of Microorganisms and Cell Cultures 
(DSMZ). The mouse PDAC cell line used is the 7940b cells (C57BL/6J strain)40 derived from KPC tumor 
(Ptf1a-Cre;LSL-KrasG12D; Trp53flox/+) – also called the KPC cell line. The cell lines were mycoplasma-tested 
(Lonza MycoAlert Plus, LT07-710), used within 10 passages and cultured in DMEM (Gibco, 11965-092) 
with 10% fetal bovine serum (FBS). The cells were cultured in 37°C incubator under humidified 
atmosphere. For the inhibitors tested: AZD5153 and gemcitabine were obtained from Cayman Chemicals 
(USA) while bromodomain containing protein inhibitor BD-9136 was a kind gift from Prof. Shaomeng. 
Wang (University of Michigan). Cell viability experiments were performed using CellTiter-Glo® 2.0 Cell 
Viability Assay (Cat # G9241, Promega) according to manufacturer’s instruction. Metabolomics profiling 
was performed by liquid chromatography tandem mass spectrometry (LC/MS/MS) and analyzed as 
previously described26. 
 

Subcutaneous xenograft tumor implantation 

All animal studies were performed in accordance with the guidelines of Institutional Animal Care and Use 
Committee (IACUC) and approved protocol. For mouse tumor xenograft, ~6 weeks old female athymic 
nude mice NU/J (Stock No:  002019, The Jackson Laboratory) were maintained in the facilities of the Unit 
for Laboratory Animal Medicine (ULAM) under specific pathogen-free conditions. On the day of xenograft 
tumor injection, PA-TU-8902 cell line was harvested from culture plate according to normal cell culture 
procedures. The cells were counted, washed 1x with PBS and resuspended in 1:1 solution of serum free 
DMEM (Gibco, 11965-092) and Matrigel (Corning, 354234). Mice were subcutaneously (s.c.) injected on 
both flanks with 500,000 cell lines in 100 μL volume. When tumors became palpable, mice were 
randomized into the four treatment groups: vehicle, gemcitabine, BD-9136 and gemcitabine+BD-9136 
following the same dosing regimen used for orthotopic experiment. Tumor size was assessed twice/week 
using a digital caliper and tumor volume was calculated as V = 1/2(length × width2). At endpoint, mice 
were euthanized, and the tumors harvested, weighed, and processed for further analysis. 
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Mouse pancreatic orthotopic tumor model 

To establish the orthotopic model, 50,000 KPC cells were injected into the pancreas of the wild type 
C57BL/6J mice (~8 weeks old). The cell lines were suspended at 1:1 ratio of serum free DMEM and 
Matrigel and injected in a 50 μL final volume. Five days post-injection, the mice were randomized into 
experimental and control groups (n=6 mice) based on body weight. Experimental groups consisted of 
gemcitabine (100 mg/kg body weight twice a week), BRD4 inhibitor BD-9136 (20 mg/kg body weight 5 
days a week), or both. Vehicle consisted of 20% PEG400, 6% Cremophor EL, and ~74% PBS solution. 
Treatments were administered by intraperitoneal injection. At endpoint, body and tumor weight were 
taken and tissues extracted from further processing.  
 
Histology and Ki67 staining 

Tumor tissue section and Ki-67 staining was done according to protocol in our lab as previously 
published35,41. 
 

Statistics and additional analysis 

Details about the analyzed or plotted samples are described above and presented in Figure legends where 
applicable. Survival plots were generated with survminer package (v 0.4.3). Additional R packages used: 
pheatmap (v 1.0.12) and gplots (v 3.0.1) for heatmap, ggfortify for principal component analysis. 
Network visualization and disease ontology analysis were performed with enrichplot (v 1.6.1) and DOSE 
(v 3.12.0) in R (v 3.6.2). We determined which CUGs or CDGs are well-studied or novel in PDAC by 
querying PubMed using each gene symbol. Search terms were the gene symbol and ‘pancreatic’ or 
‘pancreatic cancer’. Genes that returned 0 or to less than 5 relevant results were considered novel. 
 
Data source and availability 

All data used in this study are publicly available under the indicated accession numbers along with the 
clinical data where applicable. The microarrays were obtained from NCBI GEO or ArrayExpress databases. 
The ICGC-AU microarray data (release_28) was downloaded from https://dcc.icgc.org/projects/ along with 
the associated clinical data and had no embargo (March 2020). The cancer essential gene data from the 
Project Achilles, Project Drive and GECKO screens were downloaded from the DepMap Public 20Q1 
(https://depmap.org/portal/download/), while ‘03_scaledbayesianfactor’ data from Behan et al20 CRISPR 
screen was downloaded from BioGRID ORCS (https://orcs.thebiogrid.org/Dataset/114). Drug response 
data were accessed via the Genomics of Drug Sensitivity in Cancer (GDSC) portal 
(https://www.cancerrxgene.org/). 
 
URLs 

ArrayExpress database http://www.ebi.ac.uk/arrayexpress 
cBioPortal https://www.cbioportal.org/ 
Human Protein Atlas https://www.proteinatlas.org/ 
International Cancer Genome Consortium (ICGC) data portal https://dcc.icgc.org/projects/ 
NCBI GEO Datasets: https://www.ncbi.nlm.nih.gov/geo/ 
DepMap https://depmap.org/portal/download/ 
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Supplementary Note 
 
1. Additional independent cohorts 

The additional datasets were included to ascertain whether any randomly selected PDAC cohorts will reflect 
the consistent genes and their expression pattern as found in the original five microarray datasets used for 
discovering the consistent genes. As shown in Fig. 1c, many CUGs and CDGs retained their expression 
pattern in these additional cohorts. Importantly, several topmost consistent genes also appeared within the 
top differential genes in each of the additional cohorts (Extended Data Fig. 1c). Thus, the identified 
consistent genes are reproducibly changed in most PDAC cohorts. 
 
2. Consistency of gene expression in peripheral blood mononuclear cells   
We analyzed three published microarrays of peripheral blood mononuclear cells (PBMCs) (Extended Data 

Fig. 1a). We identified 672 genes consistently upregulated at least in two cohorts of PDAC PBMCs, 
including 54 genes in all three datasets (Supplementary Table 4b). In contrast, there were 920 consistently 
downregulated genes at least in two PBMC datasets, including 77 downregulated in all three 
(Supplementary Table 4b). These expressions reflect a less consistent gene expression pattern in blood 
compared to tissues, likely due to expected hemodynamic changes that are not applicable in tumors. Of the 
consistent genes, those downregulated in tissues (i.e., the CDGs) were particularly less overlapping. 
Specifically, only ~10% of the overlapping consistently downregulated genes in PBMCs showed same 
expression pattern with CDGs. Pathway alterations consistently underlying differentially expressed genes 
in the blood of PDAC patients are unknown. To this end we performed pathway annotation and GO analysis 
with all genes consistently expressed in at least two of the three PBMCs datasets analyzed. The result 
revealed alterations in immunologic and coagulation pathways and are presented in Supplementary Table 

4c. 
 
3. Expression pattern of the consistent genes in basal-like vs classical subtypes, proliferation-high, 

metastasized tumors and survival profile 

Stratification of tumor samples (in TCGA, Moffitt, and Puleo cohorts) by basal-like and classical subtypes 
yielded a highly reproducible set of genes, including 889 genes (e.g., A2ML1, KRT6A, MUC16, LY6D, 
KRT5, S100A2, KRT14) highly expressed in basal-like tumors and 741 highly expressed genes (e.g., REG4, 
CLCA1, TM4SF20, BTNL8, ITLN1, MYO1A, CLDN18) in classical subtypes in all three patients’ cohorts. 
Similar reproducibility was observed with proliferation markers, where 956 genes were highly expressed 
and 731 lowly expressed in all three cohorts. Moreover, of the used proliferation markers, 8 (30%), i.e., 
TOP2A, FOXM1, CDK1, CCNB1, RRM2, MKI67, BUB1, and TYMS emerged in the top ranked 25 
upregulated genes across the three cohorts (shown Fig. 4b). These data confirm the reproducibility of the 
stratification in these independent cohorts and reveal genes underlying proliferation in PDAC. There were 
genes that however showed discordant expression pattern. For example, PSAT1, C9orf40, GPR3, PRPS2, 
SAMD1, IPO4, GIT1 and DFFA showed high expression in proliferation-high tumors but are consistently 
low in PDAC (i.e., CDGs). Such deviant expression pattern was also seen for 37 CUGs, notably including 
novel genes such as IGFBP7, ISLR, ITGBL1, SFRP2, COL16A1, MATN3, PLXDC1, and known genes such 
as LYZ, TIMP1, NNMT, CXCR4. We conclude that for these genes their expression pattern in tissues is not 
a reliable indices of tumor proliferation state.  
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With respect to metastasis, some CUGs were switched to ‘downregulated’ in metastasized tumors, while 
some CDGs are highly expressed. The switched expression pattern of these genes either suggest a less 
critical role in metastasis or may underscore our earlier point that at least more than two subtypes of PDAC 
exist given that several genes could not be easily assigned in a dichotomous analysis. There were also some 
inconsistencies in the pattern of survival prediction. For example, the high expression of glycolysis gene 
ALDOA predicted poor OS in Moffitt cohort but not in TCGA, whereas high LDHA predicted in TCGA but 
not Moffitt cohort. Further, high expression of zinc transporter SLC39A10 predicted poor OS in TCGA, but 
better OS in the Moffitt cohort. Such molecular distinction could be leveraged upon for defining unique 
tumor subsets for functional characterization of highly context-dependent genes.  
 
To determine expression changes at the initial progression phase, we analyzed a dataset on progressive 
PDAC stages, from intraductal papillary mucinous adenoma, neoplasia to carcinoma tissues18. Whereas 281 
(14%) of the CUGs appeared at all three stages, most of the CUGs were expressed at the IPMA stages, 
further supporting a possible role of these genes at the tumor initiation and progression phases. Another 
strategy that could reveal genes that made may be involved in tumor progression is to examine genes that 
are differentially expressed across tumor grades. Comparison of Grade 3 versus 2 tumors in TCGA and 
Puleo cohorts revealed 309 differential genes (P<0.05), of which 178 were high and 131 were low.  Genes 
in the respective tumor grade comparison are in Supplementary Table 8.  
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Figure Legends 

 
Figure. 1. Consistently expressed genes in human PDAC tissues.  
a, Schematic overview illustrating the identification and potential utility of the consistent genes. Five PDAC 
microarray datasets were used for the identification of the genes (see Fig. 1b) and ‘consistent’ was defined 
as genes significantly up or downregulated in at least 4 datasets (adjusted P<0.05). CUGs – consistently 
upregulated genes; CDGs – consistently downregulated genes. See Methods and Extended Data Fig. 1b for 
sample sizes. 
b, Topmost 20 highly and lowly expressed genes (i.e., CUGs and CDGs respectively) based on average 
expression rank in the five datasets. 
c, Number of CUGs and CDGs with the same high or low pattern in the independent microarray datasets 
GSE19279, GSE32676, GSE19650 and GSE62165. *Dataset of pre-malignant tumor stages. See Methods 
for sample sizes/types. 
d, Pie chart indicating the novelty of the consistent genes (i.e., CUGs and CDGs) in PDAC based on the 
number (n) of prior publications (0, £5 and >5) as observed via PubMed search. Highlighted in red are 
topmost CUGs with no prior publication; in green are topmost CDGs with no prior publication. 
e, Gene set enrichment plots of KEGG pathways or Hallmark associated with the consistent genes. The 
plots were generated using the average ranked expression score of the consistent genes (n=3,938) that are 
significantly changed at adjusted P<0.05 at least in 4 of the 5 ‘discovery’ datasets.  
 
 

Figure 2. The consistent genes are components of various pathways. 

a, Components of cell cycle that showed consistent expression pattern. 
b, Gene set enrichment plots indicating upregulated consistent immune signatures. The indicated genes are 
top in the pathways shown. 
c, Schematic depiction of the genes in the glycolytic pathway.  
d, Depiction of genes in the tricarboxylic acid (TCA) cycle. 
e, Depiction of genes in fatty acid biosynthesis and breakdown (beta oxidation). 
f, Depiction of genes in cholesterol metabolism. 
g, Heatmap showing the most consistently expressed nutrient and ion transporters (top 20 
up/downregulated). 
h, Word cloud showing signaling processes associated with the CUGs and CDGs. 
i, Gene set enrichment plot of transcriptional signatures, indicating upregulated BACH1_01 signatures. 
Highlighted genes (in red) were among the topmost of enriched signatures of BACH1_01 signatures. 
j, Heatmap showing the most consistently expressed transcription factors (top 20 up/downregulated). 
Fig. 2c-f, * indicates genes identified as consistent in 3/5 datasets; all other indicated genes have consistent 
expression pattern in ³4 datasets; in red – CUGs, in green – CDGs, in gray – genes not captured as consistent 
and are shown given their known position/role in the respective pathways. 
 
 
 
Figure 3. Consistent genes show tumor-specificity and expression changes in patients’ blood 

a, Workflow for the identification of tumor-microenvironmental cell expressed CUGs and CDGs. 
Expression in PDAC was compared to normal tissues in the Human Protein Atlas (HPA, n=36 tissue types), 
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Genotype-Tissue Expression (GTEx, n=36 tissue types) RNA seq data and GSE71729 dataset (normal 
tissues: pancreas, n=46; liver, n=27; lung, n=19; lymph node, n=10; spleen, n=11). Similar expression 
pattern in ³2 of HPA, GTEx or GSE71729 was the gene selection criteria. DEGs – differentially expressed 
genes. 
b, Venn diagram showing CUGs overlap in normal pancreas and with highly expressed genes in epithelium 
compared to stroma from laser microdissection dataset (GSE93326).  
c, Venn diagram showing CDGs overlap in normal pancreas and with highly expressed genes in the stroma 
(low in epithelium).  
d, Pathway annotation of the 564 tumor-specific CUGs (high in the epithelium and lowly expressed in 
normal pancreas). 
e, GO cellular component associated with the 564 tumor-specific CUGs (high in the epithelium and lowly 
expressed in normal pancreas).  
f, GO cellular component associated with the 250 tumor-specific CDGs (low in the epithelium relative to 
stroma and highly expressed in normal pancreas). Bars in Figure 3e-f are colored ‘darkgray’ to distinguish 
the plots (from normal pancreas) for that of cancer tissues. 
g, Heatmap showing differential expression of the topmost tumor-specific CUGs in the tumor epithelium. 
h, Heatmap showing differential expression of the lowest tumor-specific CDGs in the tumor epithelium. 
i, Uniform manifold approximation and projection (UMAP) of single cell RNA sequencing data depicting 
epithelial and immune cell population as marked by KRT19 and PTPRC expression, respectively. 
j, UMAP showing the expression of glycolysis genes in the epithelial, immune cells or in both 
compartments. 
k. Schematic overview of the analysis of peripheral blood mononuclear cell (PBMCs) datasets (GSE15932, 
GSE49641, and GSE74629, P<0.05). 
l, Pathway analysis of consistently downregulated genes in 2 of GSE15932, GSE49641, and GSE74629 
PBMC datasets. 
m-n, Venn diagram showing overlapping genes between CUGs and CDGs from tissues and consistent 
genes in PBMCs. 
 
 
Figure 4. The consistent genes correlate with features of PDAC aggressiveness and poor prognosis 

a, Venn diagram showing the number of core genes (in bold) overlapping between CUGs and CDGs in 
basal-like and classical subtypes of PDAC. The basal-like and classical subtype genes included were those 
high in basal-like relative to classical and vice versa in at least 2 of TCGA (n=31 basal-like vs 31 classical), 
GSE71729 (n=27 basal-like vs 27 classical) and Puleo (n=64 basal-like vs 64 classical tumor samples) 
datasets (P<0.05). 
b, Venn diagram showing the number of CUGs or CDGs overlapping with differentially expressed genes 
in proliferation (‘pro’)-high tumors. Genes were selected as altered in proliferation-high tumors if 
differentially expressed (P<0.05) relative to proliferation-low tumors in at least 2 of TCGA (n=64 pro-high 
vs 86 pro-low), GSE71729 (n=77 pro-high vs 68 pro-low) and Puleo et al. (n=99 pro-high vs 210 pro-low) 
tumors (P<0.05). 
c, Heatmap depicting the topmost genes consistently high in at least 2 of the 3 datasets stratified by 
proliferation markers. *proliferation markers used for the tumor stratification; included as positive controls. 
d, Pathway annotation of the 783 CUGs and 588 CDGs that overlapped with genes differentially expressed 
in proliferation-high vs low tumors in at least 2 datasets. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 29, 2021. ; https://doi.org/10.1101/2021.05.28.446056doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.28.446056
http://creativecommons.org/licenses/by-nc-nd/4.0/


e, Venn diagram showing CUGs and CDGs overlapping with genes in liver metastasis compared to normal 
liver tissues from GSE71729 and GSE19279 datasets (P<0.05). See Methods for sample sizes/types. 
f, Pathway annotation of the 404 CUGs and 315 CDGs overlapping in the liver metastasis compared to 
normal liver tissues from GSE71729 and GSE19279 datasets. 
g, Single cell RNA sequencing data showing the overlap between CUGs or CDGs and epithelial gene 
signature from liver metastasis samples (n=5 tumors tissues). 
h, Number of differentially expressed genes in tumors with mutation versus tumors with no alteration in 
the indicated genes in TCGA data. “All mutation” refers to tumors with mutation in any of KRAS, TP53, 
SMAD4, CDKN2A versus tumors with no recorded mutation. On the right, overlap of genes differentially 
expressed in KRAS G12D tumors versus in “All mutation”. 
i, Kaplan-Meier (KM) overall survival plots (log-rank test) of genes that predicted survival in the clinical 
cohorts analyzed. Tumor sample size, TCGA (n=146), Puleo et al (n=288); ICGC (n=267); GSE71729 
(n=125).  
j, Venn diagram showing overlaps of KM OS predictors in TCGA, GSE71729, Puleo et al.  and ICGC-AU 
cohorts. 
k, Venn diagram showing the number of CUGs and CDGs that predicted OS or hazard ratio (univariate 
Cox regression) in at least 2 out of TCGA, GSE71729, Puleo et al. and ICGC-AU cohorts. Sig – significant 
(P<0.05). 
l, Pathway annotation of the 441 genes that predicted OS in at least two datasets.  
m, Topmost genes that predicted overall survival in PDAC. These genes predicted OS in at least 3 of the 4 
datasets mentioned above and were ranked based on the sum of their log (P-value) across the datasets. Log-
transformation was applied only for P<0.05. 
 
 
 
Figure 5. The high priority therapeutic targets predict epigenetic inhibitors for PDAC 

a, Schematic overview of the workflow for the RNA interference (RNAi) screen data analysis. 
b, Venn diagram showing the overlapping essential genes in PDAC cell lines as derived from the Project 
Drive, Project Achilles, Behan et al. and GECKO screen data. In bold are the number of CUGs, in total 
185, that overlapped as essential for survival in at least 3 of the 4 RNAi screen data. On the right are 
selected components among the 185 high priority targets. 
c-f, Pathway annotation of genes that emerged as essential for PDAC survival/growth in Project Achilles 
(n=394 CUGs), GECKO (n=231 CUGs), Behan (n=211 CUGs) and Project Drive (n=200 CUGs). 
g-h, Heatmaps showing the sensitivity of PDAC cell lines expressing high priority genes to various 
compounds tested in the cancer drug response project. 
i, Viability assay of PDAC cell lines treated with BETi AZD5153 alone or in combination with 
gemcitabine for 72h. On the right, viability assay of TU8902 cells treated with BETi BD-9136 at high 
concentration. 
i, Viability assay of TU8902 cell line treated with gemcitabine, BETi BD-9136 or both (48 h). Treatments 
were in quadruplicates; representative of >2 independent experiments. On the right, treatment with BD-
9136 or AZD5153 alone or in combination with gemcitabine for 48 h. 
l, Metabolomics profiling showing amino acids (intracellular abundance) disrupted by the inhibitors after 
24 h treatment. Data normalized to untreated control; a.u.- arbitrary unit; experiment was in triplicates. 
Schematics of the mouse experiment. Mice were treated with gemcitabine at 100 mg/kg body weight 
2x/week and with BD-9136 at 20 mg/kg body weight 5 times/week. 
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m, Tumor volume of subcutaneously implanted TU8902 cell lines (n=4 mice per group, injected on both 
flanks, n=8 tumors per arm) and KPC (7940b cell) orthotopic tumors (n=6 mice per group). Figures 5j 
and l, * P<0.05, ** P<0.01, **** P<0.0001. 
n, Representative micrograph (20X) of Ki-67 staining of the xenograft tumor samples derived from 
TU8902 cell lines. Figures 5j, k and m – statistics by analysis of variance (ANOVA). 
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Extended Data Figure Legends 

 
Figure S1. Consistently expressed genes in human PDAC tissues 

a, Gene datasets analyzed in the quest for consistent genes, priority targets and drug response predictors. In 
red are cell line datasets; GSE15932, GSE49641 and GSE74629 are microarray datasets of peripheral blood 
mononuclear cells. All other datasets are expression profile data from tissues. 
b, The five ‘discovery’ microarray datasets of pancreatic ductal adenocarcinoma (PDAC) used for the 
identification of the consistently upregulated genes (CUGs) and consistently downregulated genes (CDGs). 
Genes were defined as ‘consistent’ if significantly upregulated or downregulated in at least 4 of the 5 
datasets. 
c, Heatmap showing that the additional microarray datasets reproducibly depicted the topmost consistent 
genes derived from the 5 ‘discovery’ datasets.  
d, Topmost up- or downregulated genes that were expressed in 3 of the 5 datasets. In Figure S1c-d: orange 
– upregulated; blue – downregulated; blank/white – no data or not significantly changed in the 
corresponding dataset. 
e, GSEA plots showing additional pathway enrichment in PDAC as derived with the consistent genes. 
Several genes such as LAMC2, LAMB3 and genes encoding collagens are shared between ‘Focal adhesion’ 
and the ECM receptor interaction shown in Fig. 1e. 
f, Interactome network analysis derived using the top 500 CUGs and 500 CDGs. 
g, Enrichment plot showing the disease ontology associated with the top 500 CUGs and 500 CDGs. As 
shown, these genes are associated with various cancer types as well as premalignant lesions. 
 

 
Figure S2. Multiple molecular pathways underlie PDAC  

a, GSEA plot showing immune signatures upregulated of PDAC. The listed genes are top in the 
respective pathways. 
b, Serine pathway genes are consistently downregulated in PDAC. PSPH was not significantly changed 
in any of the 5 datasets. 
c, GSEA plot showing the downregulation of oxidative phosphorylation (OXPHOS); on the right, 
transsulfuration pathway and tryptophan pathways respectively. 
d, GSEA plots showing the downregulation of AR and HNF1 signatures. 
e, Heatmap showing epigenetic genes consistently upregulated or downregulated in PDAC. 
 
 
Figure S3. Consistent genes show tumor-specificity and expression changes in patients’ blood 
a, Heatmap showing CUGs that are the top lowly expressed or CDGs that are the top highly expressed in 
normal pancreas relative to other tissues from the Human Protein Atlas RNA seq data.  
b, Heatmap showing CUGs that are the top lowly expressed or CDGs that are the top highly expressed in 
normal pancreas relative to other tissues from the genotype-tissue expression (GTEx) project. 
c, Heatmap showing topmost CUGs lowly expressed or CDGs highly expressed in normal pancreas 
compared to normal liver, lymph, lung tissues in the GSE71729 (P<0.01). 
d, Dot plot showing gene markers of various cell populations in the PDAC single cell RNA sequencing 
(scRNA seq) data used to validate tumor-specific and microenvironmental cell expression pattern of 
CUGs and CDGs. 
e, UMAP plots visualizing T-cell (CD3E), myeloid (CD14) and acinar cell population in the scRNA seq 
data. 
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Figure S4. The consistent genes correlate with tumor subtypes and aggressive features 

 
a, Schematic of analysis performed to identify association with clinicopathological variables. Tumor 
stratification was performed with TCGA (n=150 samples), GSE71729 (n=125), and Puleo (n=309) 
cohorts; mutation analysis was with TCGA, while OS and Cox regression was with TCGA (n=146), 
GSE71729 (n=125), Puleo (n=288) and ICGC-AU (n=269) cohorts. 
b, Heatmap showing the stratification of three patient cohorts into classical and basal-like subtypes using 
the top 50 gene signatures published by Moffitt et al. (2015). Most of the 50 genes were captured in 
TCGA and Puleo et al. dataset. 
c, Venn diagram showing the overlap of CUGs and CDGs with genes that were not significantly changed 
(P>0.05) in the comparison of basal-like and classical TCGA, Puleo et al. and GSE71729 (Moffitt) 
tumors. In bold indicates the number of CUGs/CDGs that are not changed in any of the three datasets. 
The topmost CUGs and CDGs are listed. 
d, Representative patient single cell RNA seq data showing the epithelial cell (marked by KRT18/19) 
expression of basal-like, classical, and non-basal-like non-classical subtypes of PDAC. 
e, Plots showing consistent genes in the topmost genes in metastasis vs normal primary tissues or 
metastasis vs primary tumors. 
f, Venn diagram showing the overlap of CUGs and CDGs with genes differentially expressed in liver and 
peritoneal metastasis samples from the dataset GSE42952. Next, heatmaps showing expression of genes 
that overlapped between liver and peritoneal metastasis. The samples for liver or peritoneal metastasis 
were compared to samples of patients who had ‘bad’ prognosis. 
g, Venn diagram showing the overlap of the basal-like/classical subtype signatures with liver metastasis 
signatures derived from GSE71729 and GSE19279 (liver metastasis vs liver normal tissues). 
h, Venn diagram showing the overlap of GUGs and CDGs respectively expressed in various KRAS 
mutation tumors relative to tumors without KRAS mutation. 
i, Pathways represented by genes upregulated or downregulated in tumors in KRAS G12D mutation. 
i, Pathways upregulated or downregulated in Grade II relative to Grade I tumors from Puleo et al. 
datasets. 
k, Heatmap showing top CUGs differentially expressed in premalignant pancreatic diseases, e.g., IPMA – 
intraductal papillary mucinous adenoma, IPMC – intraductal papillary mucinous carcinoma, IPMN – 
intraductal papillary mucinous neoplasms. 
l, Venn diagram showing the number of CUGs and CDGs that are highly lowly expressed in tumors from 
patients that had ‘bad’ prognosis (pr.) (shorter survival time, <7 months, n=6) compared to those that had 
‘good’ prognosis (longer survival time, >50 months, n=6) based on the dataset GSE42952. 
 
 
 
 
Figure S5. The high priority therapeutic targets predict epigenetic inhibitors for PDAC therapy. 
a, Schematic illustration of the cell line stratification. The 185 high priority targets were used to stratify 
PDAC cells in the cancer cell line encyclopedia (n=44 cell lines) and GSE57083 datasets (n=23 cell lines) 
into those expressing the priority genes at high and low levels, respectively. 
b, Viability assay of PDAC cell lines treated with BETi AZD5153 alone or in combination with 
gemcitabine for 72 h. 
c-d, Metabolomics profiling showing the metabolites altered in the intracellular compartment and culture 
media(extracellular) upon treatment with AZD5153 alone or in combination with gemcitabine for 24 h. d, 
Amino acid changes in media (extracellular compartment) of the treated TU8902 cell lines. 
e, Tumor volume of the TU8902 xenograft treated with gemcitabine or in combination with BD-9136. 
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