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ABSTRACT 19 

Resolving the genetic architecture of fitness-related traits is key to understanding the evolution and 20 

maintenance of fitness variation. However, well-characterized genetic architectures of such traits in wild 21 

populations remain uncommon. In this study, we used haplotype-based and multi-SNP Bayesian association 22 

methods with sequencing data for 313 individuals from wild populations to further characterize known 23 

candidate regions for sea age at maturation in Atlantic salmon (Salmo salar). We detected an association at 24 

five loci (on chromosomes ssa06, ssa09, ssa21, and ssa25) out of 116 candidates previously identified in an 25 

aquaculture strain with maturation timing in wild Atlantic salmon. We found that at each of these five loci, 26 

variation explained by the locus was predominantly driven by a single SNP suggesting the genetic 27 

architecture of Atlantic salmon maturation includes multiple loci with simple, non-clustered alleles. This 28 

highlights the diversity of genetic architectures that can exist for fitness-related traits. Furthermore, this study 29 

provides a useful multi-SNP framework for future work using sequencing data to characterize genetic 30 

variation underlying phenotypes in wild populations.  31 
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INTRODUCTION 32 

Understanding the genetic processes underlying fitness variation is a fundamental goal in evolutionary 33 

biology. Identifying genetic variants that underlie fitness-related traits is therefore crucial, yet remains 34 

challenging. Substantial effort has been made to characterize the genetic architecture of traits – i.e. Are there 35 

few or many loci involved? Are loci effects small or large? How are loci distributed across the genome? And 36 

what are the allele frequencies at these loci [1–5]? It is generally assumed that in most cases single genetic 37 

variants translate into only small changes in complex traits, and therefore follow a polygenic [6,7] or an 38 

omnigenic [3,8] model of inheritance. 39 

Among genome-wide association studies published to date, many complex traits appear to be 40 

polygenic [9]. Although polygenicity is widespread, an increasing number of examples of major effect loci 41 

exist, whereby one locus explains a large proportion of the phenotypic variation [10,11]. In some cases, 42 

major effect loci can contain multiple tightly linked genes, coined “supergenes”, where localized reduction in 43 

recombination is often caused by larger chromosomal rearrangements. For example, this phenomenon is 44 

known to underlie phenotypic variation observed among ruff (Philomachus pugnax) mating morphs [12,13], 45 

Atlantic cod (Gadus morhua) [14,15] and rainbow trout (Oncorhynchus mykiss) migratory ecotypes [16], and 46 

Heliconius butterfly wing-pattern morphs [17]. More recent work has found that major effect loci can exist 47 

alongside a polygenic background where loci with a variety of effect sizes underlie trait variation [18,19]. 48 

Such mixed genetic architectures may be pervasive, but currently remain undetected due to the large sample 49 

sizes required for detecting loci with smaller effects [19] and it is possible that additional examples are to be 50 

found with future higher-powered studies. Although studies aimed at resolving genotype-phenotype links are 51 

mounting, well-characterized genetic architectures of fitness-related traits, particularly in natural populations, 52 

are still uncommon. 53 

While some trait-associated loci have been identified, such findings lead to other crucial questions: 54 

How have trait-locus associations arisen? Has the locus arisen through a single or multiple new mutations? 55 

Or alternatively, did the locus emerge via recombination that gave rise to new combinations of existing 56 

variants? Numerous studies from the past decade have shown that major effect loci involve the cumulative 57 

effects of multiple mutations, rather than a single mutation, thus highlighting the relevance of considering the 58 
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latter scenarios. For example, Bickle et al. [20] found that ~60% of variation in female abdominal 59 

pigmentation in Drosophila melanogaster can be explained by sequence variation at the bab locus, but a 60 

GWAS (genome-wide association study) analyzing the same trait did not identify a single SNP in bab that 61 

passed the genome-wide significance threshold. Alleles consisting of multiple SNPs were associated with 62 

high proportions of the variation, whereas, single SNPs had only small effects and were therefore missed in 63 

the single-SNP GWAS. Additionally, Linnen at al. [11] and Kerdaffrec et al. [21] also identify multiple 64 

mutations within a confined region that have cumulative effects on colour traits in deer mice and seed 65 

dormancy in Arabidopsis thaliana, respectively. In natural populations with gene flow such as in Linnen et 66 

al. [11] and Kerdaffrec et al. [21], this is perhaps not unexpected as theory predicts that clustered and major 67 

effect loci will evolve under such scenarios [22,23]. Given these findings, examining extended sequence 68 

haplotypes containing multiple SNPs, rather than each SNP independently, is important [24]. This can be 69 

achieved by using alternative strategies that look at combined effects of variants, rather than single-SNP 70 

methods typically used in GWAS. 71 

Here we investigate the genetic basis of Atlantic salmon (Salmo salar) sea age at maturity – the 72 

number of years spent in the marine environment before reaching maturity and returning to the natal river 73 

(freshwater) to reproduce. Age at maturity is an important life history trait affecting fitness traits such as 74 

survival, size at maturity and reproductive success [25,26]. Substantial variation in Atlantic salmon sea age 75 

at maturity is maintained due to a trade-off between mating success at spawning grounds and survival, 76 

whereby individuals that mature later are larger and have higher reproductive success on the spawning 77 

grounds, but lower survival and thus lower chance of reaching reproductive age. In contrast individuals that 78 

mature early are smaller and have lower reproductive success, but higher survival and thus higher chance of 79 

reaching reproductive age [27,28].  80 

Variation in maturation timing in Atlantic salmon is highly heritable [19,29,30] and consequently 81 

there is substantial interest in understanding the underlying genetic architecture. A large-effect locus on 82 

chromosome 25 explaining up to 39% of the variation in sea age at maturity was found in wild European 83 

populations [10] and domesticated salmon [31]. The primary candidate gene underlying the association of 84 

this locus is vgll3 due to its close proximity to the associated SNP variation [10,31,32] and its known 85 
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function in other species. The vgll3 gene encodes a transcription cofactor that, amongst other things, 86 

regulates adipogenesis [33] and is associated with variation in puberty timing in humans [34,35]. In addition 87 

to vgll3, Sinclair-Waters et al. [19] identified 119 other candidate genes for male maturation in a GWAS 88 

including >11,000 males from the same Atlantic salmon aquaculture strain. Two particularly strong 89 

associations between maturation timing were found on chromosome 9 in close proximity to six6 and 90 

chromosome 25, vgll3. The association of six6 was also found by Barson et al. [10] in wild Atlantic salmon, 91 

however, the signal disappeared after correction for population structure. Interestingly, the six6 gene is also 92 

associated with age at maturity in two Pacific salmon species [36], humans [35] and cattle [37]. However, 93 

Barson et al. [10] focused solely on single-SNP associations via GWAS without considering the possible 94 

influence of combined variant effects. 95 

Studies using sequencing data to examine variation associated with important fitness-related traits in 96 

wild populations are limited. However due to developments in sequencing technologies and bioinformatics, 97 

studies using this approach are likely to rise in number. We therefore aim to provide a useful and timely 98 

framework for characterizing genetic variation underlying phenotypes in wild populations in the future. 99 

Here, we focus on further characterizing the association between the loci identified in Sinclair-Waters et al. 100 

[15] and sea age at maturity in wild Atlantic salmon. We integrate re-sequencing data and phenotype 101 

information for 313 individuals from 53 wild population of Atlantic salmon with alternative GWAS 102 

strategies that consider the combined effects of variants, rather than single-SNP effects. This approach can 103 

provide better resolution of the variants that are potentially involved in controlling fitness-related traits such 104 

as maturation timing in Atlantic salmon. 105 

 106 

METHODS 107 

Study material 108 

Whole genome sequencing data was obtained for 313 wild individuals collected from 53 Norwegian 109 

and Finnish populations spanning the Norwegian coast and to the Barents sea in the north (59°N - 71°N) 110 

(Supplementary Table S1) previously reported in Bertolotti et al. [38]. The 313-individual dataset includes 111 
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populations belonging to both the Atlantic and Barents/White sea phylogeographic groups. These regions 112 

were studied in Barson et al. [10] using SNP-array data and a single SNP approach, therefore missing 113 

variants and potentially combined variant effects. Individuals were categorized into three maturation 114 

categories based on the number of years spent at sea prior to their first return migration to rivers for 115 

spawning: 1 (one year spent at sea), 2 (two years spent at sea), or 3 (three or more years spent at sea). Only 116 

five individuals had spent four years and were therefore combined with three-year fish for all analyses.  117 

SNP calling & filtering 118 

Variant calling and the first round of filtering was done in a larger set of individuals described in 119 

Bertolotti et al. [38]. Raw Illumina reads were mapped to the Atlantic salmon genome (ICSASG_v2) [39] 120 

using bcbio-nextgen v.1.1 [40]with the bwa-mem aligner v.0.7.17 [41]. Genomic variation was identified 121 

using the Genome Analysis Toolkit (GATK) v4.0.3.0., following GATK’s best practice recommendations. 122 

Picard v2.18.7 [42] was used to mark duplicates and GATK was used for joint calling [43]. Variants were 123 

annotated using SNPeff v. 4.3 [44]. Variant call were further filtered with GATK’s variant filtration 124 

according to the following --filterExpression: “MQRankSum < -12.5 || ReadPosRankSum < -8.0 || QD < 2.0 125 

|| FS > 60.0 || (QD < 10.0 && AD[0:1] / (AD[0:1] + AD[0:0]) < 0.25 && ReadPosRankSum < 0.0) || MQ < 126 

30.0". SNPs were then filtered using SNPable procedure [45], where 100 bp kmers are mapped to reference 127 

genome (ICSASG_v2) using Burrows-Wheeler Aligner (bwa aln) [46], and only SNPs within regions with 128 

reads that uniquely map are retained. We then removed additional SNPs with vcftools using the following 129 

criteria: --min-alleles 2, --max-alleles 2, --maf 0.0000000001, --max-missing 0.7, --remove-indels, --minGQ 130 

10, and –minDP 4. A subset 313 individuals from wild populations was then extracted from this larger 131 

dataset using vcftools [47]. This reduced dataset was used for all subsequent analyses. 132 

Principal component analysis 133 

We produced a reduced SNP dataset by pruning one SNP from each SNP pair with a correlation 134 

coefficient (r2) greater than 0.2 within a 50 kb block using the --indep-pairwise 50 10 0.2 function 135 

implemented in PLINK v1.9 [48]. This yielded 403,540 SNPs to examine population structure using a 136 

principal component analysis, smartpca, implemented in the EIGENSOFT v5 software [49]. 137 
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Data preparation 138 

In this study, we focus on genomic regions containing the 116 candidate loci for age at maturity 139 

identified in Sinclair-Waters et al. [19]. We extracted SNP genotype data from 500 kb regions surrounding 140 

the 116 trait-associated SNPs identified in Sinclair-Waters et al. [19] using vcftools’ [47] position filtering 141 

functions --from-bp and --to-bp, as well as allele filtering function --mac 1 to keep only polymorphic sites. 142 

SNPs that were within 250 kb of an adjacent SNP were analyzed together by examining a region that extends 143 

250 kb upstream of the first SNP to 250 kb downstream of the last SNP.  144 

The current Atlantic salmon genome (ICSASG_v2) contains a known assembly error within the 500 145 

kb region surrounding the known candidate loci vgll3 [31]. A misplaced and misoriented scaffold currently 146 

placed downstream of vgll3 belongs within a gap in the assembly just upstream of vgll3 on ssa25. For this 147 

reason, we constructed a revised assembly for this chromosome. SNP calling was performed as described 148 

above. We then retained SNPs that had met the filtering criteria. A total of 8 candidate SNPs are located 149 

within regions of the genome that were moved. To find the position of these SNPs in the revised 150 

chromosome 25 sequence, we extracted 200 bp surrounding each of these SNPs from the current genome 151 

assembly (ICSASG_v2) using the getfasta function in BEDTools [50]. The 200 bp sequence was then blasted 152 

to the fixed assembly to determine the new position of each SNP using Blast’s blastn function [51]. Using 153 

the new SNP positions, SNP genotypes within a 500 kb region surrounding the moved candidate SNPs were 154 

extracted from the fixed dataset using vcftools. 155 

Association testing at candidate regions 156 

We applied three association mapping methods to describe the genetic architecture underlying sea age 157 

at maturity at each of the candidate regions identified in Sinclair-Waters et al. [19]. First, a multi-SNP 158 

approach examining associations between phenotype and haplotypes was conducted using Bayesian linear 159 

regression implemented in hapQTLv1.00 [52]. In this approach, a hidden Markov model is used to 160 

characterize haplotype structure and ancestry [53]. Haplotype sharing at each marker is then used to quantify 161 

genetic similarity among individuals. Haplotype associations are identified by testing for an association 162 

between genetic similarity at each marker and the phenotype [52]. Each of the extracted vcf files was 163 
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converted to bimbam format using PLINK 1.9 [54]. The resulting bimbam files were used as input for 164 

hapQTL. Second, single SNP associations were also identified using a Bayesian linear regression method 165 

implemented in hapQTL [55]. For all hapQTL association tests, sex and the six most significant principal 166 

components (see above) were included as covariates in the models. Each hapQTL run consisted of 2 EM runs 167 

(-e 2) with 40 steps (‐w 40), 2 upper clusters (‐C 2), 10 lower clusters (‐c 10).  Three replicate hapQTL runs 168 

were performed for each of the 116 selected regions. Based on recommendations from Jeffreys [56], Bayes 169 

factors greater than three were considered evidence for an association of either SNPs or haplotype with sea 170 

age at maturity phenotype. 171 

Third, a multi-SNP approach aimed to estimate the number and identity of SNPs underlying trait 172 

variation at each candidate region using Bayesian Variable Selection regression implemented in PiMASS 173 

[55]. Due to computational restrictions, the PiMASS analysis was performed for only candidate regions that 174 

had a SNP or haplotype association with Bayes factor greater than 3. Prior to the PiMASS analysis, all 175 

missing genotypes were imputed in BIMBAM [55] as mean genotypes (-wmg) using default settings. 176 

Additionally, our phenotype values for sea age at maturity were adjusted to correct for confounding effects 177 

of sex and population structure by regressing the phenotype on sex and the six most significant principal 178 

components (see above) using the lm function in R. PiMASS was run with the residual phenotype values. We 179 

placed priors on the proportion of variance explained by SNP(s) (hmin = 0.001 and hmax = 0.999) and the 180 

number of SNPs in the model (pmin = log
1

𝑁
 and pmax = log

300

𝑁
, where N is the total number of SNPs). Each 181 

run consisted of a burn-in of 1000000 steps, followed by 2500000 steps where parameter values were 182 

recorded every 1000 steps. For each analysis, we examined the posterior inclusion probability for each SNP, 183 

the distribution of the number of included SNPs and the distribution of the proportions of variance explained 184 

per model. We also examined the path of estimated Bayes factors and parameter values (h, p, s) across all 185 

recorded iterations to check for convergence of runs. 186 

To further assess whether more than one SNP in a candidate region was significantly associated with 187 

sea age at maturity, we regressed out the top-associated SNP from the residual phenotype values described 188 

above and reran PiMASS using the previously-used priors and settings. We then examined the posterior 189 

inclusion probability for each SNP, the distribution of the number of included SNPs, and the distribution of 190 
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proportion of variance explained to determine whether there was evidence for multiple SNP associations 191 

within a given candidate region. 192 

 193 

RESULTS 194 

Principal component analysis 195 

The first six principal components (PCs) calculated with the pruned SNP dataset explained 1.96%, 196 

0.68%, 0.63%, 0.59%, 0.56% and 0.51% of the genetic variance, respectively (Supplementary Figure S1). 197 

These six PCs were included in subsequent association analyses to reflect population structure among 198 

samples.  199 

Associations identified with hapQTL 200 

Single-SNP and haplotype association analyses with hapQTL revealed strong (Bayes factor > 3) 201 

association signals at 5 of the 116 candidate regions (Figure 1, Supplementary Figure S2). The strongest 202 

association observed within each region was with a single SNP, rather than an extended haplotype, 203 

suggesting a single mutation underlies the effect of each of these regions on maturation timing. However, 204 

exceptions occurred in the ssa09:24636574-25136574 and ssa25:28389273-28889273 regions, where second 205 

association signals were found upstream of the primary association signal and were most strongly linked to 206 

an extended haplotype. For instance, strong haplotype association scores (Bayes factor > 3) spanned a 26971 207 

bp region (ssa09:24781742-24808713) containing an uncharacterized gene (LOC106610978) and pcnx4. In 208 

the ssa25:28389273-28889273 region, a strong haplotype signal was found within edar (Figure 1).  209 

We find differences in the location of the top-associated SNPs found here and those identified in 210 

Sinclair-Waters et al. [19]. For regions ssa06:27541960-28218141, ssa09:10915066-11415066 and 211 

ssa25:28389273-28889273, the top-associated SNP was located further upstream than in Sinclair-Waters et 212 

al. [19]. Contrastingly, the strongest associated SNPs within the regions ssa09:24636574-25136574 and 213 

ssa21:49390687-49890687 differed only slightly (<5000 bp) between studies (Table 1). 214 
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 218 

 219 

Figure 1. Plots displaying single SNP associations (black points) and haplotype associations (red line) scores 220 
from hapQTL for the five candidate regions with Bayes factors greater than 3. Y-axis shows the Bayes factor 221 
indicating the association strength. X-axis shows the position on the respective chromosomes. 222 
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Table 1. Strongest association signals for each candidate region showing evidence of an association with sea age at maturity, the genes in closest proximity 223 
and association values from hapQTL. Top SNPs for each region from previous SNP-array study [19]. 224 

Candidate 

region 

Top signal Closest gene Bayes 

Factor 

-log10(P-

value) 

Allele 

frequency 

Top SNP(s)
a 

Candidate 

gene(s)
a
 

ssa06:27541960-

28218141 

6:28045390  (SNP) pecam1 

(intron) 

3.835 5.107 0.320 6:27791960 

6:27968141 
 

slc9a3r1 

recql5 
LOC106606978 

ssa09:10915066-

11415066 

9:11266848 (SNP) asap2a 

(upstream) 

4.696 5.434 0.074 9:11165066 mboat2 

ssa09:24636574-

25136574 

9:24888841 (SNP) six6 

(upstream) 

6.184 4.242 0.425 9:24886574 six6 

ssa21:49390687-

49890687 

21:49645222 

(SNP) 

taar13c 

(upstream) 

3.172 4.649 0.464 21:49640687 taar13c 

ssa25:28389273-

28889273 

25: 28651640 

(SNP) 

[ICSASG_v2: 
25:28669350] 

vgll3 

(downstream) 

12.893 

 

6.406 

 

0.358 

 

25:28910202 vgll3 

aFrom Sinclair-Waters et al. [19].225 
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Multi-SNP associations identified using PiMASS 226 

Multi-SNP association analysis with PiMASS showed that at four of five candidate regions, a single-227 

SNP model was most commonly used to explain variation in sea age at maturity. At one candidate region, 228 

ssa09:24636574-25136574, a multi-SNP model including two SNPs was most commonly used to explain 229 

variation in sea age at maturity. Median proportion of variance explained by each candidate region ranged 230 

between 4% and 19% (Figure 2, Table 2). However, when the top-associated SNP was regressed out from 231 

the phenotype values, no SNPs were selected to explain sea age at maturity for all five candidate regions. 232 

Additionally, post-regression median proportion of variance was substantially lower – ranging between 0% 233 

and 1% (Supplementary Figure S3, Table 2). This would suggest that sea age variation explained by each of 234 

these regions is largely driven by a single mutation. We observe no obvious trends in parameter values or 235 

Bayes factors, suggesting models converged and burn-in period was adequate (Supplementary Figure S4 236 

&S5). 237 

238 

239 
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240 

241 

 242 

Figure 2. PiMASS results for each of the tested candidate regions: A. ssa06:27541960-28218141, B. 243 
ssa09:10915066-11415066 C. ssa09:24636574-25136574, D. ssa21:49390687-49890687, and E. 244 
ssa25:28389273-28889273. Plots display the following results for each candidate region: i) posterior 245 
inclusion probability (PIP) indicating the probability of a SNP being included in a model explaining sea age 246 
at maturity variation, ii) truncated distribution of the number of SNPs included in a model explaining sea age 247 
at maturity variation, and iii) distribution of proportion of variance explained per recorded iteration (2500). 248 
Red line indicates the median proportion of variance explained. 249 

  250 
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Table 2. PiMASS results prior to and after regression of top-associated SNP identified in the initial PiMASS 251 
analysis. These include the mode of the distribution of the number of SNPs and the median of the 252 
distribution of proportion of variance explained (PVE) for a model explaining sea age at maturity. 253 

Candidate region Mode # of SNPs 

 

Median PVE Mode # of SNPs 

(post-regression) 

Median PVE 

(post-regression) 

ssa06:27541960-

28218141 

1 0.05 

 

0 

 

0 

ssa09:10915066-
11415066 

1  0.07 
 

0 0.01 

ssa09:24636574-

25136574 

2  0.09 

 

0 0.01 

ssa21:49390687-

49890687 

1  0.04 

 

0 0 

ssa25:28389273-
28889273 

1 0.19 
 

0 0.01 

 254 

 255 

DISCUSSION 256 

Despite that combined effects of multiple variants at trait-associated loci are playing an important role 257 

in controlling fitness traits across a variety of species [11,20,21], our results indicate that sea age at 258 

maturation in Atlantic salmon is predominantly associated with single SNP variation at candidate regions. 259 

Using resequencing data to analyse 116 candidate loci and an analytical framework aimed at detecting multi-260 

SNP associations, we find that single SNPs explain the variation in sea age at maturity in almost all cases. 261 

This work targeting candidate genes identified in aquaculture salmon strains suggests a mixed genetic 262 

architecture where a combination large-effect loci and smaller-effect loci also underlies age at maturity in 263 

wild Atlantic salmon populations. Two core loci, vgll3 and six6, likely play a key role in determining age at 264 

maturity and additional smaller effect loci may be important for fine-tuning the trait across heterogeneous 265 

environments.  266 

Theoretical modelling predicts that clustering of tightly linked adaptive mutations will occur under 267 

gene flow and selection in populations inhabiting spatially and/or temporally heterogeneous environments 268 

[22,23]. Although this seems to be a plausible scenario under which the genetic architecture of age at 269 

maturity has evolved in Atlantic salmon, our work suggests that the association in each of the candidate 270 

regions is driven by a single mutation. We cannot rule out, however, the possibility that the examined 271 

regions have pleiotropic effects and contain SNPs controlling other adaptive traits that have weak or no 272 

correlation with maturation timing. It is also possible that we did not have sufficient power to detect 273 
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additional SNPs in these regions with small effects or with rare alleles. However, previous empirical studies 274 

have found few, but complex, loci with clusters of adaptive mutations [11,20,21], thus motivating our 275 

investigation of multi-SNP and haplotypic effects. Remington [24] also highlights the importance of 276 

distinguishing between allelic effects and single mutational effects when examining the genetic architecture 277 

of adaptive variation and its evolution. Our findings, however, suggest that alternative genetic architectures 278 

are feasible. One possible explanation could relate to the multiple whole genome duplication events that have 279 

occurred in Atlantic salmon and other salmonids [57]. The presence of multiple gene copies may impact the 280 

evolution of genetic architecture for traits such as age at maturity in Atlantic salmon. It is also possible that 281 

gene flow among Atlantic salmon populations is too restricted to neighbouring populations and/or strength of 282 

selection is insufficient for the establishment of linked mutations, as there is a rather specific balance of gene 283 

flow and selection required for clustered loci to arise [58]. Both an extension of models predicting genetic 284 

architecture and additional empirical studies – on a wider variety organisms and traits – are needed to 285 

evaluate the generality of particular architectures and to further understand the conditions under which they 286 

evolve. 287 

We find additional evidence that a large-effect locus on ssa25, vgll3, largely underlies age at maturity 288 

in Atlantic salmon corroborating findings from a number of association studies on Atlantic salmon 289 

maturation [10,19,31,32,59]. The second strongest associated locus in this study is located in close proximity 290 

to six6 on ssa09. This locus was previously found to be associated with early maturation in male farmed 291 

Atlantic salmon [19], with sea age at maturity in wild Atlantic salmon prior to population structure correction 292 

[10] and two species of Pacific salmon (Sockeye salmon and Steelhead trout) [36]. Additionally, we found 293 

another three loci associated with sea age at maturity: pecam1, asap2aa and taar13c. The handful of loci 294 

found here suggests that wild Atlantic salmon have a mixed genetic architecture where multiple loci, with a 295 

variety of effect sizes, control maturation timing – similar to what has been found in male farmed Atlantic 296 

salmon [19]. Knowledge of this mixed genetic architecture is highly relevant for how we predict the 297 

evolution of maturation timing in wild Atlantic salmon populations. A large body of work has shown the 298 

relevance of genetic architecture in determining evolutionary responses [60–68]. Recent works highlight the 299 

relevance of the genetic architecture underlying fitness traits when predicting a population’s response to 300 
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environmental changes [69] and selective pressures such a fishing [70]. Future work elucidating how such 301 

mixed genetic architectures affect predicted evolution of traits, compared to that of omnigenic or polygenic 302 

architectures, will be valuable.  303 

We find differences in locations of top-associated SNPs identified here and in Sinclair-Waters et al. 304 

[19]. This is not surprising given that we are examining sequence data that captures more SNP variation 305 

compared to SNP-array data used in Sinclair-Waters et al. [19]. Furthermore, we failed to find associations 306 

between sea age at maturity and many of the candidate regions identified in Sinclair-Waters et al. [19]. For 307 

example, several candidate regions on ssa03 and ssa04 displayed particularly strong association signals in 308 

aquaculture salmon, however, no signals at these regions were found here. Additionally, only one association 309 

peak at ssa06:27541960-28218141 was found here, whereas two independent associations within this region 310 

were found in aquaculture salmon [19]. Such differences may reflect changes in the genetic architecture of 311 

the trait evolving since the domestication of Atlantic salmon. Although, we would not expect large changes 312 

to occur given the domestication is relatively recent, just 10 to 15 generations ago [71]. Furthermore, this 313 

study is likely under-powered to detect all previously identified loci, particularly those with smaller effect 314 

sizes or rare alleles, due to smaller sample size. Additionally, there could be differences in genetic 315 

architecture among environments [72] and/or genotype by environment interactions giving rise to distinct 316 

genetic architectures in wild populations versus aquaculture strains. 317 

We do not find strong evidence of multi-SNP associations at candidate loci examined in this study, 318 

however, we cannot yet disregard the utility of multi-SNP association methods for further resolving the 319 

genetic architecture of Atlantic salmon maturation. First, we do not examine the entire genome due to 320 

computational restrictions, rather, we focussed on 116 previously identified candidate regions. Second, the 321 

Atlantic salmon genome is highly complex [39] and therefore errors in the assembly that may be disruptive 322 

for haplotype-based analysis could exist. As new and improved versions of the Atlantic salmon genome are 323 

published, our ability to test for haplotypic associations will improve. Furthermore, in a few cases 324 

(ssa09:10915066-11415066, ssa09:24636574-25136574, ssa25:28389273-28889273) the PiMASS analyses 325 

post-regression of the top SNP selected no SNPs for a model explaining sea age at maturity variation, 326 

however, the median proportion of variance explained across all iterations was greater than zero. This may 327 
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suggest that a weak signal was present, but was being missed due to insufficient power. Although this is 328 

largely speculative, it suggests that ruling out the possibility of multi-SNP associations at these particular 329 

candidate regions may be premature. Higher-powered studies (i.e. more individuals per population) may help 330 

to resolve this in the future.  331 

In conclusion, our analytical framework, combining both single and multi-SNP association methods, 332 

reveals that single SNP variation is sufficient for explaining the association of previously identified 333 

candidate loci for Atlantic salmon maturation timing. Previous empirical and theoretical work have described 334 

trait-associated loci that have complex alleles with multiple variants, our findings therefore demonstrate the 335 

diversity of genetic architectures for fitness-related traits. Additional data, and a greater diversity of species 336 

and traits, will serve to better understand why this diversity of genetic architectures exists and how these 337 

particular genetic architectures evolve. The analytical framework used here will be a valuable resource for 338 

accomplishing this as individual-level resequencing data for wild species with phenotyped individuals 339 

becomes increasingly available. 340 
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