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Abstract 1 

Long-molecule sequencing is now routinely applied to generate high-quality reference genome 2 

assemblies. However, datasets differ in repeat composition, heterozygosity, read lengths and 3 

error profiles. The assembly parameters that provide the best results could thus differ across 4 

datasets. By integrating four complementary and biologically meaningful metrics, we show that 5 

simple fine-tuning of assembly parameters can substantially improve the quality of long-read 6 

genome assemblies. In particular, modifying estimates of sequencing error rates improves some 7 

metrics more than two-fold. We provide a flexible software, CompareGenomeQualities, that 8 

automates comparisons of assembly qualities for researchers wanting a straightforward 9 

mechanism for choosing among multiple assemblies. 10 
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Background 13 

High-quality genome assemblies are essential for modern biological research. Genome 14 

assemblies serve as the reference for integrative study of organismal biology [1,2] and for 15 

phylogenomic comparisons [3,4]. Unfortunately, eukaryotic genome assemblies typically contain 16 

major errors. This is because eukaryotic genomes include large amounts of repetitive sequences 17 

that are difficult to resolve due to the limitations of sequencing processes and assembly 18 

algorithms [5]. The inability to resolve repetitive sequences leads to assembly fragmentation [6], 19 

to collapsing of multiple occurrences of repetitive sequence into fewer assembled sequences 20 

[7], and to misassembly of repetitive regions [8]. Such shortcomings of genome assemblies 21 

reduce the sensitivity and specificity of downstream analyses. For example, assembly 22 

fragmentation can lead to underestimation of syntenic relationships [9], and errors in gene 23 

prediction [7,10,11]. Furthermore, when sequence reads from different copies of a repetitive 24 

element map to a collapsed representation of the repeat, small differences between the repeat 25 

copies can be incorrectly identified as polymorphisms [12].  26 

Long-molecule sequencing can dramatically improve genome assemblies [13]. In particular, long 27 

reads can span tandem arrays of repetitive elements or interspersed repeats and thus help to 28 

resolve their sequences and structures [14]. Furthermore, long-molecule sequencing 29 

technologies are more robust to variation in GC composition than short-read technologies [15]. 30 

However, good data alone cannot guarantee a good assembly. The ability of assembly software 31 

to reconstruct the correct genome sequence varies across species, sequencing technologies, 32 

and algorithmic parameters [16–20]. This suggests that de novo genome assembly projects are 33 

likely to benefit from testing different assembly software and algorithmic parameters for their 34 

datasets. This requires overcoming two associated challenges: which algorithmic parameters to 35 

optimize, and how to compare assemblies in order to identify the best one. 36 

Assemblers can have dozens of parameters, making an exhaustive search of the parameter 37 

space of most assemblers impractical. However, the central principle of genome assembly 38 
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software is to determine overlaps between pairs of reads and stitch together reads that overlap 39 

the best [21]. Changing the parameters that impact the read overlapping process should thus 40 

have substantial impact on assembly quality. Indeed, for the popular Canu and FALCON 41 

assemblers, modifying minimum read length and minimum overlap length parameters can 42 

improve assembly quality [18]. Another parameter that should similarly affect assembly quality 43 

is the estimate of sequencing error used by the assembly software. If the true sequencing error 44 

rate is higher than the estimate used by the software, then true overlaps between reads would 45 

be missed. This would fragment the assembly. Alternatively, if the true sequencing error rate is 46 

lower than the estimate used by the software, the number of false overlaps would increase. This 47 

can lead to assembly fragmentation, collapse, or mis-assembly of repetitive regions. 48 

An assembly is better if it is more contiguous, accurate, and complete. The N50 length, which 49 

indicates that 50% of the assembled genome is in pieces longer than N50, provides a useful 50 

view of contiguity even if not biologically meaningful. In contrast, testing for the presence and 51 

completeness of protein-coding genes from related organisms [22] or concordance with 52 

transcriptomic data [10,23] can indicate assembly accuracy and completeness, but only in genic 53 

regions. Genome-wide measures of completeness or accuracy are less apparent. Many current 54 

projects lack datasets that would be ideal for such comparisons, including sequences from 55 

independent fosmid or BAC libraries, high-resolution genetic, optical, or chromatin interaction 56 

maps, or a high-quality reference assembly. Independently derived pairs of short Illumina DNA 57 

sequences exist for most long-molecule genome projects and these short reads can be used to 58 

detect structural errors in an assembly [24] or provide a base-by-base view of consensus 59 

accuracy [25]. Appropriately combining information from different quality metrics could provide 60 

a holistic view of genome assembly quality. However, the efforts required to identify the most 61 

meaningful metrics, collecting these metrics for multiple assemblies, and deriving summary 62 

statements of assembly accuracy and completeness requires considerable efforts. 63 
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To test the impact of varying the estimates of sequencing error on assembly quality and to 64 

establish a simple approach for selecting the best assembly, we obtained Pacbio reads for the 65 

red fire ant, Solenopsis invicta and generated 36 assemblies using Canu [26]. This species is a 66 

model for the study of social behavior, and a globally invasive pest [27]. The draft genome 67 

assembly for this species [28] has been cited more than 350 times despite its high fragmentation 68 

(69,511 sequences) and capturing only 79% of the genome [29]. Importantly, the fragmentation 69 

and the missing sequences affect genomic regions involved in environmental perception [30,31], 70 

and complex behavioral and developmental traits [32–36]. To compare the generated 71 

assemblies, we used four complementary metrics that characterize assembly contiguity, 72 

completeness, and accuracy. We show that varying error thresholds for finding overlaps between 73 

reads significantly improves contiguity, completeness, and accuracy of Canu assemblies. We 74 

present a tool that enables other researchers to easily compare and rank assemblies. 75 

Results 76 

Pacbio dataset and assembly parameters 77 

We obtained 2.9 million Pacbio reads, totaling 20.2 billion bases (45x genome coverage) from a 78 

diploid sample of S. invicta (N50 read length of 8,876 bp; Figure S1, Additional file 1). We first 79 

assembled this dataset using default parameters of Canu. We then generated 35 additional 80 

assemblies to test the effects of three parameters (full details in Table S1). We varied the raw 81 

overlap error rate threshold, using values corresponding to sequencing error rates of 12.5%, 82 

13.75%, 15% (default), 16.25%, and 17.5%. We varied the stringency of trimming raw reads, 83 

requiring a minimum of 4 overlaps (default), a more relaxed setting of 2 overlaps, and disabling 84 

trimming of raw reads altogether. We included this parameter in our tests because the default 85 

read trimming setting resulted in eliminating a relatively high amount, 28%, of our raw data. 86 

Finally, we varied the overlap error rate threshold for “corrected reads” that are generated by 87 

Canu at the end of the first step of the assembly pipeline. We tested values corresponding to 88 

sequencing error rates between 1.15% and 5.87% (default: 2.25%). 89 
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Long-read genome assemblies can contain considerable residual sequencing errors and 90 

unresolved haplotypes, i.e., genomic segments represented more than once in the assembly, 91 

typically due to high divergence or structural differences between haplotypes present in the 92 

original sample. To minimize the impacts of such issues on comparisons of assembly qualities, 93 

we performed one round of assembly “polishing” [37] and unresolved haplotype removal [38] 94 

prior to calculating assembly quality metrics. 95 

Measures of assembly contiguity, accuracy and completeness  96 

To compare the 36 genome assemblies, we obtained four metrics of assembly quality. We first 97 

calculated the NG50 metric, which is the N50 metric normalized by estimated genome size. 98 

Second, we determined the BUSCO score, which is the number of expected single-copy genes 99 

(n=4,415) present and intact in the assembly [22]. Third, we obtained and mapped short-read 100 

Illumina sequences from a PCR-free sequencing library to each assembly. This mapping 101 

enabled us to measure the resolved length of each assembly, which we defined as the 102 

cumulative length of the regions that have between 5x coverage and twice the median coverage 103 

(Figure S2A, Additional file 1). Instead of total assembly length, which can be affected by 104 

assembly artifacts, the resolved length metric shows how much of the genome is potentially 105 

usable for analysis through standard approaches. The lowest-coverage regions can be 106 

symptomatic of sequencing or assembly issues. Similarly, regions with particularly high coverage 107 

typically contain collapsed repeats and cause false-positives in SNP datasets. Finally, we 108 

measured the percentage of solid read pairs, which we define as the percentage of all read pairs 109 

that mapped in their entirety (i.e., without clipping) and within the expected distance and 110 

orientation of their mate (i.e., concordantly) to resolved regions of the genome. This metric 111 

summarizes assembly accuracy because assembly errors such as mis-joins, inversions, 112 

collapses and consensus errors often cause clipped and non-concordant read mapping [39]. 113 

This metric also summarizes assembly completeness, as all reads are expected to map to a 114 

complete assembly of the organism’s diploid genome. Furthermore, unlike likelihood-based 115 
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metrics of assembly quality [40], the absolute value of solid read pairs is meaningful in its own 116 

right as it should approach 100% for perfect sequences and a perfect assembly. 117 

Four complementary metrics reveal extensive variation in assembly quality 118 

We found a 2.3-fold difference in the NG50 metric of contiguity between assemblies (237,734 bp 119 

to 543,457 bp). We similarly found 1.4-fold variation in the number of missing or incomplete 120 

single-copy genes (141 to 202). Furthermore, resolved assembly lengths vary up to 12.6 Mb, 121 

i.e., by up to ~2.8% of genome size. Finally, there was a 2.6% range in the proportion of Illumina 122 

read pairs that map concordantly to resolved regions of the assemblies. These four 123 

measurements of assembly quality have positive but weak correlations (average 0.66; 124 

Spearman’s rank correlation coefficient), highlighting their complementarity and the importance 125 

of considering multiple measures of genome quality (Figure S3, Additional file 1). 126 

To select the best assembly, we summed the ranks of the assemblies in each metric, weighted 127 

by the complement of the average correlation of the metric with other metrics (Fig. 1). Twenty-128 

three assemblies (64%) had higher overall quality than obtained through default parameters. In 129 

particular, the best ranked assembly had 17.2% higher NG50 (518,074 vs 441,945 bp), 11.3% 130 

less missing or incomplete expected single-copy genes (141 vs 159), 1.8 Mb higher resolved 131 

length and 0.33% more solidly mapping Illumina reads (57.81% vs 57.62%) than the default 132 

assembly. This best ranked assembly was based on an overlap error threshold corresponding 133 

to a sequencing error rate of 13.75% for raw reads, 3.45% for corrected reads, and no trimming 134 

of raw reads.  135 

In this experiment, the estimated error rate for corrected reads had the most significant impact 136 

on the overall assembly quality (generalized linear model; p < 10-5), followed by the estimated 137 

error rate for raw reads (p < 0.05). There was no general trend for the impact of raw read trimming 138 

on assembly quality (p = 0.5). 139 
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Fig. 1: Assembly qualities and overall rank. Thirty-six polished genome assemblies ordered 140 

on the y-axis from best (top) to worst (bottom) based on the weighted sum of their ranks 141 

(rightmost panel) in each of the four metrics (other panels). The x-axis shows the range of values 142 

of each metric, or of the weighted rank in case of the rightmost panel. The best assembly and 143 

the one generated using default parameters are highlighted in yellow. Twenty-three assemblies 144 

scored higher than the ‘default’ assembly. This visualization is derived from the output of our 145 

CompareGenomesQualities tool. 146 
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Processing and chromosome-level scaffolding of best assembly for use as the 147 

reference assembly 148 

To make the best assembly suitable for use as the reference assembly for the red fire ant, we 149 

corrected residual sequencing errors [41] and replaced rare alleles in the assembly [42] by 150 

mapping short read population-sequencing datasets (270x genome coverage) [29,36] to the 151 

assembly and substituting the most common variant at each locus [43]. Additionally, we removed 152 

contigs that appeared to be from bacteria, fungi or plants (Table S2). Finally, we ordered and 153 

oriented the contigs into chromosome-level scaffolds using genetic maps, complemented by 154 

optical maps, and paired RNA sequencing reads. The resulting assembly captures 347 Mb 155 

(77%) of the fire ant genome in 16 chromosomes, and another 38 Mb (8%) in 916 unplaced 156 

contigs (Figure S2B, Additional file 1). At time of writing, this is the most complete genome 157 

assembly of the red fire ant Solenopsis invicta (Table S3). A comparison with the draft genome 158 

of the species [28] shows high collinearity and the inclusion of many more sequences in our 159 

assembly (Figure S4, Additional file 1). 160 

Discussion 161 

We show that small changes in the estimates of sequencing error rates used by the genome 162 

assembly software Canu produced more contiguous, accurate and complete assembly of the 163 

red fire ant genome than when using default parameters. The best assembly was obtained by 164 

lowering the estimated sequencing error rate for raw reads but increasing the estimated error 165 

rate for corrected reads. The first change suggests that default parameters may lead to false-166 

positive detection of overlaps – probably among copies of repetitive sequences – and erroneous 167 

reciprocal correction of the repeat copies. The second change suggests that read correction 168 

does not always live up to the standards expected by subsequent steps of the assembly 169 

software. The general message that changing parameters affects outcomes should hold for other 170 

datasets. However, the impacts of particular parameter levels will depend on dataset specific 171 

features including repeat composition of the genome and the lengths and the error profiles of 172 
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sequenced reads. For example, to obtain the highest quality assembly from a different Pacbio 173 

dataset from the same species, we had to increase the overlap error rate thresholds for raw 174 

reads by 2% and decrease error rate estimates for corrected reads by 0.5% (data not shown).  175 

Our work also shows the importance of considering multiple metrics that can reveal independent 176 

aspects of assembly quality. To fill a gap in existing metrics, we also estimated genome-wide 177 

assembly completeness and accuracy using a new metric, the percentage of solidly mapping 178 

Illumina read pairs. The idea behind the metric is two-fold. First, a completely resolved assembly 179 

should have a near homogenous coverage. This is because if all copies of a repeat are present 180 

in the assembly, the read mapper will distribute the reads evenly across the different copies even 181 

if it cannot precisely determine which copy the read originated from. Additionally, if the assembly 182 

accurately represents the genome, all reads should map in their entirety to a contiguous stretch 183 

of the assembly (i.e., without clipping or splitting of reads, and concordantly with respect to their 184 

mate). This only holds if Illumina read pairs are derived from the same individual that was 185 

sequenced for genome assembly. Furthermore, contaminants, mapping errors and the haploid 186 

nature of genome assemblies means that not all reads will map perfectly to a perfect assembly. 187 

However, a higher value of the metric should indicate a more complete and accurate assembly. 188 

Because of this simplicity of interpretation and simultaneous quantification of both completeness 189 

and accuracy, we expect that our metric can become a standard for reporting the quality of 190 

published genome assemblies alongside N50 and BUSCO. 191 

Lastly, rather than linearly combine the results of different assembly metrics, which can 192 

overemphasize correlated characteristics, we weight the metrics by their relative independence. 193 

This provides a robust framework for comprehensive comparison of assembly qualities. To 194 

simplify the application of our genome comparison approach we have created a tool, 195 

CompareGenomeQualities, that will derive the four complementary metrics we presented and 196 

rank the assemblies based on weighted sum of ranks, producing summary tables and figures 197 

analogous to Fig. 1. The tool is agnostic to the assembly approach: as inputs it requires a set of 198 
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genome assemblies in FASTA format, an estimated genome size, indication of which taxonomic 199 

phylum to use for BUSCO score calculations, and paired Illumina sequences (Supplementary 200 

text, Additional file 1). Furthermore, the tool is modular, thus additional metrics of assembly 201 

quality, such as those obtained from QUAST [16] or Merqury [44], can be included for ranking 202 

and visualization using simple tabular files. 203 

Conclusions 204 

We show that tweaking algorithmic parameters used by genome assembly software can 205 

significantly improve assembly qualities. In particular, we find that the estimates of sequencing 206 

errors used by assembly software are relevant parameters to optimize. Furthermore, given the 207 

challenges of considering biologically relevant metrics of genome quality to compare genome 208 

assemblies, we present a tool, CompareGenomeQualities, that automates this process. The tool 209 

combines complementary metrics of contiguity, completeness, and accuracy. Contiguity is 210 

measured by normalizing the classic N50 metric by genome size. Completeness and accuracy 211 

are measured in genic regions by testing for the presence of expected single-copy genes 212 

(BUSCO score) [22], and of the whole genome using two metrics derived from mapping 213 

characteristics of Illumina reads. We expect that CompareGenomeQualities will be helpful to the 214 

many researchers now sequencing eukaryotic genomes.  215 

Methods 216 

Sample collection and sequencing 217 

We collected male pupae of the fire ant Solenopsis invicta from one single-queen colony from 218 

Campo Grande, Brazil (GPS coordinate: 20°38’46.85”S 50°38’36.58”W, permit number: 219 

14BR015531/DF). Since the pupae are from a single-queen colony, they are full brothers. Males 220 

of this species are haploid, while the females are diploid. Samples were flash-frozen and 221 

preserved at -80° centigrade until further processing. Species and colony organization (i.e., 222 

single- or multiple-queen) were confirmed respectively using partial sequencing of the 223 

mitochondrial cytochrome c oxidase I gene and an RFLP marker assay [29].  224 
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Pacbio sequencing of a pool of 21 haploid brothers for assembly 225 

We extracted DNA from twenty-one pupae using a CTAB-phenol-chloroform protocol [45]. From 226 

this DNA, the Centre for Genomics Research in Liverpool prepared an SMRT library with a size 227 

selection of 10 kb and sequenced the library using 5 SMRT cells on a Pacbio Sequel device (V2 228 

chemistry). 229 

Assembly parameters and workflow 230 

We generated a total of 36 assemblies from the Pacbio sequences, using Canu (version 1.6) 231 

[26]. We generated one assembly using default parameters to serve as a reference point for all 232 

comparisons. We generated the remaining 35 assemblies to test the effects of three parameters: 233 

error rate threshold for detecting overlaps between raw reads (rawErrorRate), minimum number 234 

of overlaps required to not trim or split raw reads (corMinCoverage), and error rate threshold for 235 

detecting overlaps between corrected reads (correctedErrorRate). For rawErrorRate, we tested 236 

the values 0.25, 0.275, 0.30 (default), 0.325, and 0.35 corresponding to sequencing error rates 237 

of 12.5%, 13.75%, 15% (default), 16.25%, and 17.5%. For corMinCoverage, we tested the 238 

values 4 (default), 2, and 0. Zero disables trimming and splitting of raw reads, whereas two 239 

represents a more lenient trimming and splitting stringency compared to the default. For 240 

correctedErrorRate, we tested values specific to each combination of rawErrorRate and 241 

corMinCoverage. That is, we used the -correct option of Canu to generate corrected reads for 242 

the fifteen combinations of rawErrorRate and corMinCoverage. We then estimated the error rate 243 

of corrected reads by mapping them to the GCF_000188075.1 assembly [28] using minimap2 244 

(version 2.5-r574; -a -L -x map-pb) [46] and calculating the total edit distance between the reads 245 

and the reference divided by the total number of mapped bases (Figure S5, Additional file 1). 246 

We only considered coding regions of highly conserved, single-copy genes for the calculation 247 

(n=988), because reads mapping to such regions are extremely unlikely to be mismapped. The 248 

gene structures were downloaded from Ensembl BioMart, those matching the criteria: 249 

orthologous to the nematode C. elegans and without a paralog. We derived the mismatch rate 250 
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by obtaining a pileup of the primary alignments in the coding regions of the genes using samtools 251 

(version 1.4.1) [47]. The fifth column of the pileup format provided the number of mismatches, 252 

and the fourth column provided the number of mapped bases. At first, we set correctedErrorRate 253 

to twice the estimated error rate and generated one assembly for each of the 15 combinations 254 

of rawErrorRate and corMinCoverage. However, ten out of the fifteen assemblies were highly 255 

fragmented (N50 < 100 kb), suggesting more noise in corrected reads than estimated. Indeed, 256 

for the set of corrected reads obtained using default parameters, our estimate of the error 257 

threshold deviated from the default value by almost 3%. We thus assembled each set of 258 

corrected reads twice more by increasing the calculated error threshold by 3% and by 6% and 259 

generated 30 more assemblies. Overall, we tested error rate of corrected reads between 1.15% 260 

and 5.87%. We excluded the ten assemblies that had N50 lower than 100 kb from comparisons. 261 

For all except the default assembly, we changed two other parameters from their default values. 262 

By default, Canu’s read correction step only corrects the longest input reads that would represent 263 

40x genome coverage. However, as trimming of raw reads alone (corMinCoverage) can discard 264 

up to 28% of data, we were apprehensive of losing more and disabled further subsetting of input 265 

reads by setting corOutCoverage to 100 [48]. Additionally, we changed the corMhapSensitivity 266 

parameter from “normal” to “high” to increase the sensitivity of overlap detection between raw 267 

reads [49]. 268 

We polished all assemblies and removed “unresolved haplotigs” before comparison as they can 269 

impact BUSCO and read mapping metrics (Table S4). For polishing, we used raw Pacbio data 270 

in BAM format with the SMRTLink software suite (version 5.1.0.26412), which takes into account 271 

quality signals inherent to SMRT sequencing [37]. To remove unresolved haplotigs, we used 272 

Pacbio reads in FASTA format with the purge_haplotigs pipeline (version 0b9afdfd) [38], which 273 

works on the principle that redundantly assembled loci will have high sequence similarity and 274 

half the mean genome coverage. Minimap2 (version 2.5-r574; -a -L -x map-pb) [46] was used to 275 

map Pacbio reads to the assemblies; we discarded reads shorter than 1000 bp before mapping. 276 
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Figure S6 (Additional file 1) shows coverage histograms of the best assembly before and after 277 

running purge_haplotigs. The best assembly was further polished using Illumina reads later (see 278 

below, “Removal of residual sequencing errors and rare alleles from the best assembly”). 279 

Assembly quality metrics and ranking 280 

For each assembly, we obtained measures of contiguity, accuracy and completeness. First, we 281 

used QUAST (version 4.6.1) [50] to get the NG50 metric of contiguity assuming the genome size 282 

to be 450 Mb [29]. Second, we used BUSCO (version 3.0) [22] to determine how many of the 283 

genes expected to be present in a single copy in Hymenopteran species (n=4,415) are indeed 284 

present and intact in each assembly. This BUSCO score provides a measure of assembly 285 

accuracy and completeness in genic regions. For a genome-wide measure of accuracy and 286 

completeness, we downloaded Illumina read-pairs derived from a brother of the individuals used 287 

for Pacbio sequencing and from another male of a nearby colony: SRA runs SRX4907869 and 288 

SRX4907871, respectively [29]. We cleaned the Illumina reads (Supplementary text, Additional 289 

file 1) and mapped them to the assemblies using default parameters of bwa-mem (version 290 

0.7.17) [51]. Next, for each assembly, we used mosdepth (version 0.2.6) [52] to obtain read 291 

depth at each base (or, 1 bp windows) of the assembly in a BED file. We then filtered the 292 

windows with depth lower than 5x (assembler chaff) or higher than twice the median coverage 293 

(collapsed regions) using custom scripts. The number of bases retained after filtering is the 294 

resolved length of the assembly, a measure of assembly completeness. Next, we used bedtools 295 

(version 2.28.0) [53] to obtain the subset of Illumina read mappings that overlapped with resolved 296 

regions of the genome. Finally, using a custom script, we counted the number of Illumina read-297 

pairs that overlapped with resolved regions of the genome and mapped such that neither read 298 

of the pair was clipped and both the reads mapped concordantly with respect to each other. The 299 

read-pairs that fulfill the above criteria are considered to be solidly mapped and provide a 300 

measure of assembly accuracy and completeness. 301 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 30, 2021. ; https://doi.org/10.1101/2021.05.28.446135doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.28.446135
http://creativecommons.org/licenses/by-nc-nd/4.0/


Parameter exploration improves genome assemblies 14 

To consolidate the four assembly quality metrics into an overall rank, we first ranked the 302 

assemblies by each metric. We then calculated Spearman’s rank correlation coefficient between 303 

pairs of metrics and, from this, each metric's average correlation with all other metrics. Finally, 304 

we summed the ranks of the assemblies, weighted by one minus the average correlation of the 305 

metric with other metrics (i.e., the complement of the average correlation). 306 

Determining the significance of assembly parameters 307 

We modelled the overall assembly rank as a function of the three assembly parameters (Figure 308 

S7, Additional file 1). Interaction terms were removed from the model in a stepwise procedure 309 

based on their level of significance. To ensure the data fit the assumptions of the linear model, 310 

we inspected homoscedasticity, multicollinearity, the relationship between residuals and 311 

predicted values, and recognized them as satisfactory across the model.  312 

Removal of residual sequencing errors and rare alleles from the best assembly 313 

To remove residual sequencing errors and rare alleles from the best assembly, we used eighteen 314 

Illumina whole-genome sequence datasets along with the Pacbio reads used for assembly. The 315 

Illumina datasets included all thirteen “bigB” labelled SRA runs from BioProject PRJNA542606 316 

[36], and all five “bigB” labelled SRA runs from BioProject PRJNA396161 [29]. We cleaned the 317 

Illumina reads (Supplementary text, Additional file 1) and mapped them to the assembly using 318 

default parameters of bwa-mem (version 0.7.17) [51]. We mapped the raw Pacbio reads to the 319 

assembly using minimap2 (version 2.17; -a -L -x map-pb) [46]; we discarded reads shorter than 320 

1000 bp before mapping. Finally, we used pilon (version 1.23) [43] on the assembly and the 321 

resulting alignments to generate a polished assembly. Here, Pacbio sequences are used to 322 

disambiguate Illumina read mappings in repetitive regions of the genome [54]. 323 

Identification of foreign DNA in the best assembly 324 

To identify foreign DNA in the best assembly, we used Kraken2 (version 2.0.8) [55] to compare 325 

the contigs to NCBI’s non-redundant databases of nucleotide sequences (downloaded on April 326 

22, 2020) and 231 new, insect viral sequences from the literature [56]. 327 
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Ordering and orienting contigs 328 

To assign the polished and filtered contigs to one of the sixteen fire-ant chromosomes, we 329 

generated genetic maps from RAD sequencing (RADseq) of seven fire ant families [32]. We 330 

further derived contig connectivity information from Bionano optical maps [29] and RNA 331 

sequencing (RNA-seq) of various tissue types and developmental stages: all SRA runs from 332 

BioProjects PRJNA542606 [36], PRJNA422376 [57], PRJNA266847, and PRJNA393960. We 333 

provided these as input to ALLMAPS (version 0.8.12) [58], assigning them equal weight to 334 

reduce the propagation of biases of any one dataset. 335 

To create genetic maps, we first demultiplexed the RADseq reads using a custom script and 336 

cleaned the demultiplexed reads using default parameters of stacks2 (version 2.5) [59]. Second, 337 

for each family, we mapped the cleaned RADseq reads to the assembly using default 338 

parameters of bwa-mem (version 0.7.17) [51] and genotyped the individuals using stacks2 (-X 339 

"populations: -e ecoRI --vcf"). The VCF output of stacks contained only bi-allelic sites. Next, for 340 

each family, we plotted the number of called sites for each individual on the x-axis and the 341 

corresponding number of homozygous sites on the y-axis (Figure S8, Additional file 1). Because 342 

the individuals are haploid, we expect an almost 1:1 correlation between the number of called 343 

sites and the number of homozygous sites. We performed a linear regression in R (y ~ x + 0) 344 

and eliminated individuals that were two standard deviations away from the regression line. We 345 

additionally removed individuals that jumped out on the plot as having too few called sites. 346 

Next, we filtered variant sites based on the number of missing observations (because the 347 

individuals are haploid males, we treated heterozygous calls as missing observation), mean site 348 

depth, mean genotype quality, and minor allele frequency. The respective thresholds were 349 

chosen by inspecting each variable’s frequency histogram and testing several values (Figure 350 

S9, Additional file 1). We found a suitable threshold for the number of missing observations to 351 

be around 25-30% of the number of individuals in the family, for mean site depth to be around 352 

99th percentile, for mean genotype quality to be around 10th percentile, and for minor allele 353 
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frequency to be either 0.38 or 0.10. Next, we phased the filtered genotypes using a haplotype 354 

doubling method [32] and converted the phased and filtered genotypes matrix to a format 355 

suitable for MSTmap [60]. For MSTmap, we used the distance_function kosambi and 356 

population_type DH for all the families and family-specific values for the parameters 357 

cutoff_p_value (between 10-6 and 10-10) and missing_threshold (either 0.25 or 0.30). The variant 358 

sites clustered into expected 16 linkage groups for six out of the seven families. However, one 359 

family had very few markers: only 389, while the other families had between 5,000 and 17,000 360 

markers. We discarded the family with 389 markers and converted linkage groups from the 361 

remaining five families to ALLMAPS compatible format. Scripts used for linkage map creation 362 

and conversion to ALLMAPS format, including those from the steps below, are available online 363 

(see Availability of data and materials). 364 

For Bionano optical maps, we first scaffolded the assembly using the hybrid scaffolding option 365 

of IrysView software (version 2.5.1) and using the aggressive preset. The process generated an 366 

XMAP file, among others, containing the contig connectivity information, which we converted to 367 

ALLMAPS compatible format using bionano2Allmaps.pl script [61]. We eliminated paths with 368 

less than four markers before running ALLMAPS. 369 

We mapped RNA-seq reads to our assembly using default parameters of bwa-mem (version 370 

0.7.17) [51] and eliminated reads that mapped to more than one location in the genome [62]. 371 

Next, we generated ab initio gene predictions using AUGUSTUS (version 3.2.3; --gff3=on --372 

species=fly) [63]. Next, we used AGOUTI (version 0.3.3-25-ga7e65d6) [64] to generate contig 373 

connectivity information from read mappings and ab initio gene predictions. Finally, we used a 374 

custom script to convert AGOUTI’s output to ALLMAPS compatible format. 375 
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