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Abstract 8 

Genomic selection has been adopted nationally and internationally in different livestock and plant 9 

species. However, understanding whether genomic selection has been effective or not is an 10 

essential question for both industry and academia. Once genomic evaluation started being used, 11 

estimation of breeding values with pedigree BLUP became biased because this method does not 12 

consider selection using genomic information. Hence, the effective start point of genomic selection 13 

can be detected in two possible ways including the divergence of genetic trends and Realized 14 

Mendelian sampling (RMS) trends obtained with BLUP and Single-step genomic BLUP 15 

(ssGBLUP). This study aimed to find the start date of genomic selection for a set of economically 16 

important traits in three livestock species by comparing trends obtained using BLUP and 17 

ssGBLUP. For this purpose, three datasets comprised a pig dataset with 117k genotypes and 1.3M 18 

animals in pedigree, Angus cattle dataset consisted of ~842k genotypes and 11.5M animals in 19 

pedigree, and a purebred broiler chicken dataset included ~154k genotypes and 1.3M birds in 20 

pedigree were used. The genetic trends for pigs diverged for the genotyped animals born in 2014 21 

for average daily gain and backfat. In beef cattle, the trends started diverging in 2009 for weaning 22 

weight and in 2016 for postweaning gain, with little diverging for birth weight. In broiler chickens, 23 

the genetic trends estimated by ssGBLUP and BLUP diverged at breeding cycle 6 for two out of 24 

three production traits. The RMS trends for the genotyped pigs diverged for animals born in 2014, 25 

more for average daily gain than for backfat. In beef cattle, the RMS trends started diverging in 26 

2009 for weaning weight and in 2016 for postweaning gain, with a trivial trend for birth weight. 27 

In broiler chickens, the RMS trends from ssGBLUP and BLUP diverged strongly for two 28 

production traits at breeding cycle 6, with a slight divergence for another trait. Divergence of the 29 

genetic trends from ssGBLUP and BLUP indicates onset of the genomic selection. Presence of 30 
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 3 

trends for RMS indicates selective genotyping, with or without the genomic selection. The onset 31 

of genomic selection and genotyping strategies agree with industry practices across the 3 species. 32 

In summary, the effective start of genomic selection can be detected by the divergence between 33 

genetic and RMS trends from BLUP and ssGBLUP. 34 

Keywords: breeding values, genetic gain, genomic preselection, Mendelian sampling, single-step 35 

GBLUP 36 
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List of Abbreviations 39 

BLUP: Best Linear Unbiased Prediction 40 

ssGBLUP: single step Genomic Best Linear Unbiased Prediction  41 

EBV: Estimated Breeding Value(s) 42 

GEBV: Genomic Estimated Breeding Value(s) 43 

SNP: Single Nucleotide Polymorphism  44 

RMS: Realized Mendelian Sampling 45 

APY: Algorithm for Proven and Young 46 

ADG: Average Daily Gain 47 

BF: Backfat 48 

BTW: Birth Weight 49 

WW: Weaning Weight 50 

PWG: Post Weaning Gain 51 

PA: Parent Average 52 

PC: Progeny Contribution 53 

YD: Yield Deviation 54 

GI: Genomic Information  55 
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Introduction 56 

Genomic selection has been widely recognized as a successful tool for genetic improvement, as 57 

evident by the extensive genotyping in various livestock and plant species (Misztal et al., 2020; 58 

VanRaden, 2020). Genomic selection allows to preselect young animals and also parents with 59 

higher accuracy than with BLUP (Patry and Ducrocq, 2011a; Tyrisevä et al., 2018b). However, 60 

the actual gains with genomic selection depend on a number of factors, aside from the genetic 61 

parameters. These include the choice of animals for genotyping, quality of methods for genomic 62 

prediction, and fraction of genotyped animals used for breed improvement. Genotyping is not 63 

effective if only parents with large number of progenies are genotyped because their BLUP 64 

evaluations are already accurate. A genomic selection scheme using simple single-trait models, 65 

possibly with few phenotypes, may be less accurate than BLUP selection with more complete data 66 

and models (Muir, 2007). Finally, if genotyping is used only for marketing, e.g., young bull sales 67 

to commercial farms, such genotyping has no effect on the genetic improvement of the breeding 68 

population. 69 

With a large investment in genomic selection, it is of interest to find out the onset of the genomic 70 

selection and whether it is successful over the long run. There are several possible ways to find 71 

out the start date of genomic selection. One way to investigate the onset of genomic selection is 72 

by analyzing differences in genetic trends by BLUP and single-step genomic BLUP (ssGBLUP). 73 

Under genomic selection, BLUP cannot account for the fact that animals are being selected based 74 

on genomic information before having their phenotypes recorded (i.e., genomic preselection) and 75 

is therefore biased (Party and Ducrocq, 2009; Patry and Ducrocq, 2011b). On the contrary, 76 

ssGBLUP accounts for all sources of information jointly and is expected to be less affected by 77 

preselection bias (Legarra et al., 2009; VanRaden and Wright, 2013; Legarra et al., 2014). Superior 78 
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genetic trends by ssGBLUP compared to BLUP have been reported in several cases. Masuda et al. 79 

(2018) presented trends for milk yield in Holsteins by BLUP and ssGBLUP. While the trend by 80 

ssGBLUP increased at the expected beginning of the genomic selection, the trend by BLUP leveled 81 

off. Koivula et al. (2018) reported that including the genotypes of culled bull calves in the 82 

ssGBLUP analysis leads to higher genetic trends for milk production traits of Nordic Red Dairy 83 

Cattle compared to the situation where genomic information of the culled bull calves is ignored. 84 

Another way to investigate the onset of genomic selection is by analyzing genetic and phenotypic 85 

trends, expecting accelerating trends under genomic selection (Misztal et al., 2020). However, both 86 

trends are affected by changes in selection policies and incur some lag time. Additionally, changes 87 

in genetic parameters over time (Hidalgo et al., 2020) may cause fluctuations in the genetic trend. 88 

The third way is by analyzing realized Mendelian sampling (RMS) trends derived by genomic and 89 

traditional evaluations (Tyrisevä et al., 2018a; Tyrisevä et al., 2018b).  Genetic selection works by 90 

selecting animals with superior Mendelian sampling. The selection is based on phenotypes and 91 

progeny records in BLUP, and additionally on genomic information with genomic methods 92 

(Lourenco et al., 2020). When some animals are selected for superior Mendelian sampling, the 93 

average Mendelian sampling for all the animals is still zero, but for the selected animals is different 94 

than zero. Therefore, RMS for genotyped animals is likely to be different than zero with selective 95 

genotyping based on performance for both BLUP and ssGBLUP. Additionally, RMS is likely to 96 

be zero for both methods when genotyping involves all young animals or is random. However, the 97 

magnitude of RMS by ssGBLUP will be bigger because of the higher accuracy of genomic EBV 98 

(GEBV). Not only the accuracy is higher, but the average GEBV is usually greater than the average 99 

EBV, which translates into superior genetic trends. This study aimed to find the onset of genomic 100 
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selection by comparing the genetic and Mendelian sampling trends derived by ssGBLUP versus 101 

BLUP in pigs, Angus cattle, and broiler chickens.  102 
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Materials and Methods 103 

Pig data 104 

The pig data consisted of 934,148 records for average daily gain (ADG) and 856,546 for Backfat 105 

(BF) collected until 2019, and 1,310,240 animals in pedigree, of which 117,091 were genotyped 106 

for 43,910 SNP markers after quality control. This dataset was provided by Genus PIC 107 

(Hendersonville, TN). The descriptive statistics of studied traits can be seen in Table 1. 108 

American Angus data 109 

Genotypes, pedigree, and phenotypes for three traits including birth weight (BTW, N=9,003,125), 110 

weaning weight (WW, N=9,506,570) and post weaning gain (PWG, N=4,671,702) of Angus beef 111 

cattle were provided by the American Angus Association (St. Joseph, MO). The pedigree consisted 112 

of 11,573,108 animals, of which 842,199 were genotyped for 39,766 SNP markers.  The quality 113 

control of genotypes was conducted as in Lourenco et al. (2015b). The descriptive statistics of 114 

studied traits in American Angus can be seen in Table 2.  115 

Broiler chicken data 116 

The broiler chicken data were provided by Cobb-Vantress Inc. (Siloam Springs, AR). The dataset 117 

comprised phenotypes records on a purebred broiler chickens across 32 breeding cycles for three 118 

production traits referred as T1, T2 and T3. Each eight breeding cycles comprise one generation. 119 

The number of records for T1, T2 and T3 was 1,072,854, 228,992 and 265,891, respectively. The 120 

genotype file consisted of 154,318 birds genotyped for 54,713 SNP markers, and the pedigree 121 

consisted of 1,252,619 birds. The SNP data underwent quality control process as described in 122 

Lourenco et al. (2015a).   123 
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Statistical models 124 

The statistical model for broiler chicken traits was as in Lourenco et al. (2015a), for pig traits was 125 

as in Steyn et al. (2020) and for beef traits was as in Garcia et al. (2020). The (co)variance 126 

components used in all analyses were provided by Angus Genetics Inc., PIC, and Cobb-Vantress. 127 

Both BLUP and ssGBLUP were run in a multiple-trait animal model framework. The pedigree 128 

relationship matrix (A) was used in BLUP and the realized relationship matrix (H) was used in 129 

ssGBLUP. The structure of H-1 is explained in Misztal et al. (2009) and Aguilar et al. (2010). 130 

Genomic analysis and software 131 

Because of the large number of genotyped animals, the algorithm for proven and young (APY) 132 

was used to create the inverse of G (𝐆!"#$% ) as proposed by Misztal et al. (2014a) and Fragomeni 133 

et al. (2015). In APY, the matrix of genomic relationships among genotyped animals is partitioned 134 

based on core and noncore animals. The number of core individuals was selected based on the 135 

number of eigenvalues explaining 98% of the variance of G (Pocrnic et al., 2016) using 136 

PREGSF90 (Misztal et al., 2014b). The number of core individuals for broiler chickens, pigs, and 137 

beef cattle was estimated as 5030, 11,094, and 13,000, respectively. 138 

Solutions for BLUP and ssGBLUP were obtained by using the preconditioned conjugate gradient 139 

algorithm with iteration on data as implemented in the BLUP90IOD2 (Tsuruta et al., 2001). The 140 

convergence criterion was set to 10−12 for all evaluations. 141 

Criteria to investigate the starting point of Genomic preselection 142 

Genetic trends: The point of divergence in genetic trends obtained by ssGBLUP and BLUP were 143 

used as a way to identify the onset of genomic selection. To explain how the difference between 144 
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 10 

predictions from ssGBLUP and BLUP can indicate the start of genomic selection, consider the 145 

decomposition of  the (genomic) estimated breeding values ((G)EBV) of individual i as in Aguilar 146 

et al. (2010), VanRaden and Wright (2013), and Lourenco et al. (2015a):  147 

𝐸𝐵𝑉 = 𝑤%&𝑃𝐴& +𝑤'&𝑌𝐷& +𝑤(&𝑃𝐶&        (1) 148 

and 149 

𝐺𝐸𝐵𝑉 = 𝑤%
)𝑃𝐴) +𝑤'

)𝑌𝐷) +𝑤(
)𝑃𝐶) +𝑤*𝐺𝐼      (2) 150 

Then, the difference between GEBV and EBV is: 151 

𝐺𝐸𝐵𝑉 − 𝐸𝐵𝑉 = 0𝑤%
)𝑃𝐴) +𝑤'

)𝑌𝐷) +𝑤(
)𝑃𝐶) +𝑤*𝐺𝐼1 − (𝑤%&𝑃𝐴& +𝑤'&𝑌𝐷& +𝑤(&𝑃𝐶&) =152 

0𝑤%
)𝑃𝐴) −𝑤%&𝑃𝐴&1 + 0𝑤'

)𝑌𝐷) −𝑤'&𝑌𝐷&1 + 0𝑤(
)𝑃𝐶) −𝑤(&𝑃𝐶&1 + 𝑤*𝐺𝐼  (3) 153 

where PA is the parent average, YD is yield deviation (phenotypes adjusted for the fixed effects), 154 

PC is the progeny contribution, and GI is the genomic information which is equal to GP-PP, in 155 

which GP is the genomic prediction derived using G and PP is the pedigree prediction derived 156 

using 𝐀''; the superscripts c and 𝑔 denote components related to conventional BLUP and 157 

ssGBLUP, respectively, and 𝑤%	𝑡𝑜	𝑤* are weights that sum to 1.  158 

When inbreeding is ignored in A and both parents are known, then, 𝑤% = 2/𝑑𝑒𝑛, 𝑤' =159 

(𝑛+,&/𝛼)/𝑑𝑒𝑛,  𝑤( = 0.5𝑛.+/)/𝑑𝑒𝑛, and 𝑤* = (𝑔00 − 𝑎''00 )/𝑑𝑒𝑛, in which 𝛼  is the variance ratio 160 

(residual variance over additive genetic variance), 𝑛.+/) is the progeny size,  𝑛+,&  is the number 161 

of records, 𝑔00(𝑎00) is the diagonal element of 𝐆$%(𝐀''$%) for animal i, den is the sum of the 162 

numerators of  𝑤% to 𝑤*. 163 

The components of (G)EBV equations for individual i are as following: 164 
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𝑃𝐴0 = 0(𝐺)𝐸𝐵𝑉1(0) + (𝐺)𝐸𝐵𝑉4(0)1/2; 165 

𝐺𝐼0 = 0−∑ (𝑔05/𝑔00 − 𝑎05/𝑎00)5,570 𝐺𝐸𝐵𝑉51; 166 

𝑌𝐷0 = (𝑦0 − ∑ 𝑥055 𝒃G); 167 

𝑃𝐶0 = ∑ (2(𝐺)𝐸𝐵𝑉8 − (𝐺)𝐸𝐵𝑉9)8 /𝑛.+/);  168 

Where (𝐺)𝐸𝐵𝑉1(0) and (𝐺)𝐸𝐵𝑉4(0) are (genomic) breeding values of sire and dam of individual i,  169 

𝑦0 is the ith record of animal i, 𝒃G is the solutions for the level of fixed effects related to record i, 170 

𝑥05 is element of a design matrix relating 𝒃G to  𝑦0, and k refers to progeny and m indicates mate of 171 

animal i. 172 

The components GP and PP are ignored under BLUP, which results in biased EBV if animals are 173 

selected based on genomic information. The bias arises not only from the lack of GP and PP, but 174 

from a combination of elements including the fact that PA, PC, and YD are not adjusted based on 175 

genomic information. For instance, if parents are non-genotyped, the difference between the 176 

predictions from BLUP and ssGBLUP originates from the contributions due to PC and GI of 177 

genotyped animals. For young animals without own and progeny records, the difference between 178 

EBV and GEBV comes from GI and PA enhanced by genomic information of parents, the latter 179 

to a smaller extent. However, as own and progeny records are added to the data, the amount of 180 

weight given especially to PC increases, and the weight of GI decreases.  181 

When EBV or GEBV are used for selection of parents, GEBVs have higher accuracy (𝑟:,:;
) ). This 182 

will generate a difference in amount of genetic gain (∆𝐺) in the next generation. Therefore, it can 183 

be shown as ∆𝐺) = 𝑖𝑟:,:;
) 𝜎: and ∆𝐺& = 𝑖𝑟:,:;

& 𝜎:, and finally ∆𝐺) ≥ ∆𝐺&, in which i is the selection 184 

intensity and 𝜎: is the additive genetic standard deviation. Hence, under genomic selection, 185 
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 12 

GEBVs are higher than EBV because greater accuracy of GEBV allows the selection of superior 186 

animals based on GP. Subsequently, a divergence in (G)EBV trends indicates the beginning of the 187 

genomic selection. 188 

To obtain the genetic trend under traditional BLUP and ssGBLUP, the (G)EBVs were averaged 189 

by birth year for genotyped bulls in the beef cattle population and all genotyped individuals in the 190 

pig and chicken populations. Only animals with phenotypes were used for deriving the genetic 191 

trends. Genetic trends were obtained using a simple linear regression of (G)EBV for each trait on 192 

year of birth. For both BLUP and ssGBLUP, the genetic base was set to where more than one 193 

thousand genotyped individuals were available per year/generation. This corresponded to breeding 194 

cycle 1 in broiler chickens, and birth year 2012 in pigs and, 2007 in beef cattle. The mean GEBV 195 

from ssGBLUP was set to the same base as EBV from BLUP. 196 

Realized Mendelian Sampling (RMS): The RMS for the genotyped individual i was estimated 197 

as: 198 

𝑅𝑀𝑆0 = (𝐺)𝐸𝐵𝑉0 	− 𝑃𝐴0       (4) 199 

Under some idealized evolutionary process (e.g., random mating, absence of selection, and large 200 

population size) all components are expected to be zero for the same generation. 201 

E[PA] = E[YD] = E[PC] = E[GP] = E[PP] =0 202 

and consequently E[RMS]=0. When all or a random subset of young animals are used as parents 203 

of the next generation, the average RMS is close to 0.  However, in the population under selection 204 

the equalities may not hold; therefore,  𝐸(𝑅𝑀𝑆) ≠ 0.  205 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 28, 2021. ; https://doi.org/10.1101/2021.05.28.446145doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.28.446145
http://creativecommons.org/licenses/by/4.0/


 13 

For simplicity, assume that parents and earlier generations are not genotyped. Let index s denotes 206 

ungenotyped animals selected for genotyping based on phenotype or BLUP (the first stage of 207 

selection), then E[YD]=δ, where 𝛿 = 𝑖1𝑟:,:;!𝜎:, in which 𝑖1 is the selection intensity at the first 208 

stage of selection, 𝑟:,:;! is the accuracy of evaluation based on phenotype or BLUP and  𝜎: is the 209 

additive genetic standard deviation. Assuming young animals with neither progeny nor genotype: 210 

𝐸[(𝐺)𝐸𝐵𝑉1] = 𝐸[𝑤%𝑃𝐴1 +𝑤'𝑌𝐷1] = 𝑤%𝑃𝐴1 +𝑤'𝛿; with 𝐸(𝑅𝑀𝑆) = 𝑤'𝛿   (5) 211 

Therefore, if animals are preselected based on phenotype or BLUP, RMS from either BLUP or 212 

ssGBLUP is nonzero. Its value depends not only on the selection differential but also on the 213 

coefficient 𝑤', which is a function of variance ratio and the number of records.  214 

Now assume that in the second stage of selection, the animals preselected based on phenotypes or 215 

BLUP are genotyped and reevaluated (index sg). On average, an animal with superior phenotype 216 

may also have a superior genomic prediction, E[GP]=τ, where 𝜏 = 𝑖1)U𝑟:,:;!"
' − 𝑟:,:;!

' 		𝜎: , with 𝑖1) 217 

selection intensity in the second stage of selection and 𝑟:,:;!"
'  is the reliability of selection based on 218 

the genomic reevaluation. Then, 219 

𝐸[𝐺𝐸𝐵𝑉1)] = 𝐸[𝑤%𝑃𝐴 + 𝑤'𝑌𝐷 + 𝑤*𝐺𝐼] = 𝑤%𝑃𝐴 + 𝑤'𝛿 + 𝑤*𝜏,				𝐸[𝑅𝑀𝑆] = 𝑤'𝛿 + 𝑤*𝜏    (6) 220 

With many genotyped animals, the coefficient w4 can be close to 1, with accuracy of 𝐺𝐸𝐵𝑉1)  221 

greater than the one of 𝐸𝐵𝑉1. Accordingly, RMS will be greater under genomic selection. The 222 

selective genotyping based on superior phenotypes (YD) can be replaced by superior progeny 223 

difference (PC) indicating that both have a similar effect on EBV, GEBV, and RMS. 224 

The above derivations suggest that the RMS is close to zero when all animals are genotyped or 225 

when genotyping is at random. With selective genotyping, RMS is nonzero and is greater with 226 
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ssGBLUP than with BLUP. Because selective genotyping is the practice in livestock populations, 227 

the divergence in RMS trends obtained based on EBV and GEBV can also indicate the start point 228 

of the genomic selection. The same animals which were used for obtaining the genetic trends, were 229 

engaged in attaining the RMS trends. 230 

 231 

  232 
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Results 233 

1) Pig production traits 234 

Figure 1 shows the genetic trends for ADG and BF in genotyped pigs. The annual changes in 235 

average breeding values in genetic standard deviation units from 2012 to 2019 for ADG and BF 236 

were 0.27 and 0.04 for ssGBLUP and 0.18 and 0.02 for BLUP, respectively. The trends from 237 

ssGBLUP and BLUP diverged after 2013. In the last year of data (2019), the differences between 238 

average breeding values from ssGBLUP and BLUP were 0.67 SD for ADG and 0.17 SD for BF. 239 

The genetic trend for ADG increased over time with a slightly increase in BF observed in recent 240 

years. The change in the genetic trend for BF was possibly due to the correlated response with 241 

body weight traits, as well as changes in breeding practices and in the selection objective in recent 242 

years. 	243 

The RMS (Figure 2) for ADG increased from around 0.04 in 2012, reached a peak of 0.10 in 2016, 244 

then declined. Relatively large RMS suggests preselection on a correlated trait -before genotyping. 245 

Smaller RMS for BF could be due to a correlated response to ADG. 246 

2) Beef production traits 247 

The genetic trends achieved by BLUP and ssGBLUP for BTW, WW, and PWG in genotyped 248 

Angus bulls are shown in Figure 3. The annual changes in (G)EBV for genotyped animals, in 249 

genetic standard deviation units, from 2006 to 2018 for BTW, WW, and PWG were -0.01, 0.11, 250 

and 0.08 for ssGBLUP and -0.01, 0.09, and 0.09 for BLUP, respectively. In the last year of data 251 

(2018), the differences between average breeding values from ssGBLUP and BLUP were 0.01, 252 

0.23, and 0.06 SD for the three traits, respectively.  253 
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For BTW, the difference between the genetic trends for ssGBLUP and BLUP was negligible, but 254 

for WW and PWG genetic trends diverged considerably from 2016 afterward. For WW and PWG, 255 

the annual genetic gain after 2016 from ssGBLUP was 0.06 and 0.02 SD greater than BLUP, 256 

respectively. As it can be seen in Figure 3, there is a genetic improvement for all traits. However, 257 

genetic trend of BTW is downward relative to WW and PWG. Low BTW is desirable to avoid 258 

calving problems. On the other hand, BTW is positively correlated with WW and PWG; therefore, 259 

a stronger pressure is needed to keep BTW low while increasing WW and PWG. Based on the 260 

divergence, genomic selection is less important for BTW because this trait has already been 261 

recorded at the time of genotyping.  Therefore, selection for BTW is based on parent average, 262 

phenotype deviation, and genomic prediction. Differently, there was a clear impact of genomic 263 

selection for WW from 2009−with an accelerated trend in 2017, and the genomic selection on 264 

PWG is slightly visible from 2017.   265 

The RMS (Figure 4) looks very different for the 3 traits. For BTW, the trend is small and negative, 266 

at around -0.02, with small changes at the end. It suggests that the heaviest calves were not 267 

genotyped; calves are selected for lower BTW to reduce calving difficulty. For WW, RMS is large 268 

and increasing over time from 0.12 to 0.29. Such a trend suggests that the primary genotyping is 269 

after weaning and based on WW. For PWG, RMS is smaller although rising to 0.17. As the 270 

differences between EBV and GEBV were small for PWG, the values of RMS for PWG could be 271 

just a correlated response to WW as the genetic correlation between WW and PWG is high. 272 

3) Broiler chicken traits 273 

Trends were favorable for all traits with faster improvement in recent years. Figure 5 shows the 274 

difference between genetic trends obtained using ssGBLUP and BLUP in genetic standard 275 

deviation units for T1, T2, and T3 in genotyped birds. Divergence for the genetic trends by 276 
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ssGBLUP and BLUP occurred in breeding cycle 6 for T2 and T3. For T1, some divergence was 277 

visible from breeding cycle 2 to 16 in favor of BLUP and then from breeding cycle 20 afterwards 278 

in favor of ssGBLUP, although the divergence was reduced later. It seems that for T1 slight 279 

divergence in favor of BLUP up to breeding cycle 19 was spurious, and this divergence could 280 

represent low genomic merit of animals selected for genotyping.  281 

The RMS trends (Figure 6) show relatively large values for T1 (up to 0.14) and small values for 282 

the other traits (0.04 or less).  Animals were selected for T1 by BLUP, then superior animals were 283 

genotyped. Therefore, RMS for T1 is high. Small RMS for the other two traits measured later 284 

suggests only a correlated response from T1 because all animals measured for these traits were 285 

already genotyped.  286 

 287 

Discussion 288 

History of adoption of genomic selection 289 

In this study, we used data provided by PIC, American Angus Association and Cobb-Vantress. 290 

Although each of them took different approaches when implementing genomic selection and 291 

genotyping became available, all changed to ssGBLUP after some time which corresponds to 292 

breeding cycle 6 in broiler chickens, year 2014 in pigs and year 2013 in beef cattle. 293 

PIC started using ssGBLUP for genomic evaluations in this population in late 2013, so the first 294 

results of genomic selection were visible in 2014. Before that, selection was based on BLUP 295 

(William Herring, PIC, Hendersonville, TN, personal communication). 	296 
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Angus Genetics Inc. incorporated genomic information on 15 markers in 2009 using a correlated 297 

trait approach (Kachman, 2008). The panel was updated to 384 markers in 2010 and moved to the 298 

50k SNP chip after that. Finally, ssGBLUP was implemented for Angus cattle evaluations in 2017 299 

(Kelli Retallick, Angus Genetics Inc., St. Joseph, MO, personal communication). 300 

Genetic trends 301 

We assessed the genetic trends of several traits in broiler chickens, pigs, and beef cattle to 302 

investigate the effectiveness of genomic selection. Assuming those differences in genetic basis 303 

between BLUP and ssGBLUP are correctly accounted for by the method described in Vitezica et 304 

al. (2011), the effectiveness of genomic selection can be evaluated indirectly by measuring the 305 

differences between genetic trends from BLUP and ssGBLUP. If the genetic trend by ssGBLUP 306 

is accelerating in a favorable direction and the genetic trend by BLUP is decelerating, genomic 307 

selection is likely practiced for the particular trait. If the genetic trends by both methods converge 308 

to the same point, the selection based on genotypes is not stronger than the selection based on 309 

parent average and phenotypes.  The genetic trends can also be influenced by the genetic 310 

correlations among traits, especially with sequential selection, where a trend for an earlier 311 

measured trait influence a trait measured later.  Based on the divergence point of genetic trends 312 

from BLUP and ssGBLUP in our study, the starting point of genomic selection in Angus cattle is 313 

2013, in pigs is 2014, and in broiler chickens is breeding cycle 6. These starting points agree with 314 

the history of implementation of genomic selection in those populations. 315 

If the genetic evaluations are based on ssGBLUP or GBLUP (H or G matrix), the estimates of 316 

genetic trends using BLUP (A matrix) are biased provided that a large portion of selected 317 

candidates are genotyped. As the correlation between the elements of G and A22 increases, the 318 

genetic trends by two methods will converge.  However, some factors such as preselection of 319 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 28, 2021. ; https://doi.org/10.1101/2021.05.28.446145doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.28.446145
http://creativecommons.org/licenses/by/4.0/


 19 

selection candidates (Jibrila et al., 2020), incomplete pedigree information, and also the existence 320 

of young animals without own and progeny records but with genotypic information (Shabalina et 321 

al., 2017) makes this difference larger.  322 

The main purpose in investigating genetic trends is to verify whether selection is effective and 323 

whether there is an agreement with phenotypic trends. A disagreement suggests changes in the 324 

environment, ineffective selection, or biased genetic trends. When there is a disagreement between 325 

BLUP and phenotypic trends, but an agreement between the latter and ssGBLUP trends, there is 326 

strong evidence for biased BLUP trends. Masuda et al. (2018) showed genetic trends for milk yield 327 

traits based on BLUP were biased downwards for US Holstein bulls and cows. Especially for bulls, 328 

the bias in EBV was because of failure in accounting for genomic preselection and underestimated 329 

PC because daughters were also genotyped, and therefore, preselected before having their 330 

phenotypes recorded. In the same study, the authors showed a good agreement between phenotypic 331 

and ssGBLUP, meaning the latter can account for preselection and is not biased under genomic 332 

selection. 333 

Therefore, when the BLUP trends become biased, it means selection based on genomic 334 

information became effective and BLUP EBV−or any measure derived from it, as deregressed 335 

proofs−should not be used anymore. It should be noted that not only genomic preselection can 336 

cause bias in BLUP evaluations, but also selection on correlated traits (Sorensen and Kennedy, 337 

1984), poorly-defined unknown-parent groups (Misztal et al., 2013), preferential treatments of 338 

selection candidates (Dehnavi et al., 2018) and non-random mating (Tsuruta et al., 2020) can 339 

generate bias in BLUP. 340 

Realized Mendelian sampling 341 
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The value and trends for RMS illustrate selective genotyping, where the decision to genotype is 342 

based on phenotypes or BLUP evaluations. RMS was large for T1 in broiler chickens, for WW in 343 

Angus, and for ADG in pigs where genotyping followed phenotyping. That RMS trend indicates 344 

that an increasing number of piglets are being genotyped, reducing selective genotyping. As 345 

genotyping becomes less expensive while the cost of phenotyping keeps constant, genotyping 346 

more young animals becomes economically justified. For broiler chickens, RMS for later traits as 347 

T2 and T3 was close to zero, indicating no new preselected genotyping based on these traits. 348 

Although we investigated RMS and genetic trends to identify the starting point of genomic 349 

selection, those two approaches are closely related. As genomic selection works by selecting 350 

animals with superior Mendelian sampling, there is a sharp increase in breeding values estimated 351 

under genomic methods. This increase in breeding values is evident for selected animals and also 352 

their progeny (Tyrisevä et al., 2018a), where animals with large number of genotyped progenies 353 

are more likely to have greater Mendelian sampling (Masuda et al., 2018). Consequently, because 354 

of larger Mendelian sampling, there is an impact in genetic trends when animals are selected based 355 

on genomic information, especially if the selection happens before phenotypes are recorded. 356 

 357 

Conclusions 358 

To detect the effective starting point of genomic selection, two possible ways included 359 

divergence point of genetic trends and RMS trends obtained by ssGBLUP and BLUP using official 360 

datasets from pigs, beef cattle, and broiler chickens were used. The effective starting point of 361 

genomic selection in Angus cattle, pigs, and broiler chickens was determined as year 2013, 2014, 362 

and breeding cycle 6, respectively. The difference between genetic and RMS trends from 363 
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ssGBLUP and BLUP is more obvious in a population under more intense selection, as in pigs and 364 

broilers compared to beef cattle. In general, the effective starting point of genomic selection can 365 

be detected by the divergence between genetic and RMS trends from BLUP and ssGBLUP, 366 

although RMS trends are present for traits recorded before genotyping and later used for 367 

genotyping decisions.  The results and procedures presented here can help to evaluate the 368 

efficiency of the implementation of genomic selection in breeding programs. 369 
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Table 1. Descriptive statistics of pig data 
Trait no. Records Mean SD no. Genotypes  no. Animals in Pedigree  

ADG 934,148 696.86 97.45 116,943 1,310,240 

BF 856,546 9.39 2.78 116,943 1,310,240 

ADG: Average Daily Gain; BF: Backfat; SD: Standard Deviation 
  480 
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Table 2. Descriptive statistics of Angus data 

Trait no. Records Mean SD no. Genotypes  no. Animals in Pedigree  

BTW (lb) 9,003,125 80.57 9.87 842,199 11,573,108 

WW (lb) 9,506,570 593.72 99.52 842,199 11,573,108 

PWG (lb) 4,671,702 362.50 147.93 842,199 11,573,108 

BTW: Birth Weight; WW: Weaning Weight; PWG: Post Weaning Gain 
SD: Standard Deviation 

   481 
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Figure 1. Genetic trends obtained using single-step GBLUP (ssGBLUP) and pedigree BLUP 482 
(PBLUP) for average daily gain (ADG) and backfat (BF) in the genotyped pigs by year of birth. 483 
Genetic trends are presented in additive genetic standard deviation scale and the genetic base is 484 
adjusted to 2012. 485 
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Figure 2. Realized Mendelian sampling (RMS) trends estimated by single-step GBLUP 488 

(ssGBLUP) and pedigree BLUP (PBLUP) for average daily gain (ADG) and backfat (BF) in the 489 

genotyped pigs. Mendelian sampling trends are presented in additive genetic standard deviation 490 

scale. Solid black line represents the zero-base line and dotted green vertical line shows the start 491 

date of genomic selection. 492 
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Figure 3. Genetic trends obtained using single-step GBLUP (ssGBLUP) and pedigree BLUP 495 
(PBLUP) for birth weight (BTW), weaning weight (WW), and post weaning gain (PWG) in the 496 
genotyped Angus bulls by year of birth. Genetic trends are presented in additive genetic standard 497 
deviation scale and the genetic base is adjusted to 2007. 498 
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Figure 4. Realized Mendelian sampling (RMS) trends estimated by single-step GBLUP 500 
(ssGBLUP) and pedigree BLUP (PBLUP) for birth weight (BTW), weaning weight (WW), and 501 
post weaning gain (PWG) in the genotyped Angus bulls. Mendelian sampling trends are 502 
presented in additive genetic standard deviation scale. Solid black line represents the zero-base 503 
line and dotted green vertical line shows the start date of genomic selection. 504 
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Figure 5. The difference between genetic trends obtained using single-step GBLUP (ssGBLUP) 507 
and pedigree BLUP (PBLUP) in genetic standard deviation units for three production traits 508 
referred as T1, T2, and T3 in a purebred broiler chicken line across 32 breeding cycles. 509 
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Figure 6. Realized Mendelian sampling (RMS) trends estimated by single-step GBLUP 511 
(ssGBLUP) and pedigree BLUP (PBLUP) for three production traits referred as T1, T2, and T3 512 
in a purebred broiler chicken line across 32 breeding cycles. Mendelian sampling trends are 513 
presented in additive genetic standard deviation scale. Solid black line represents the zero-base 514 
line and dotted green vertical line shows the start date of genomic selection. 515 
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