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Abstract 16 

 17 

Structural variation (SV) plays a fundamental role in genome evolution and can 18 

underlie inherited or acquired diseases such as cancer. Long-read sequencing 19 

technologies have led to improvements in the characterization of structural variants 20 

(SVs), although paired-end sequencing offers better scalability. Here, we present 21 

dysgu, which calls SVs or indels using paired-end or long reads. Dysgu detects 22 

signals from alignment gaps, discordant and supplementary mappings, and 23 

generates consensus contigs, before classifying events using machine learning. 24 

Additional SVs are identified by remapping of anomalous sequences. Dysgu 25 

outperforms existing state-of-the-art tools using paired-end or long-reads, offering 26 

high sensitivity and precision whilst being among the fastest tools to run. We find that 27 

combining low coverage paired-end and long-reads is competitive in terms of 28 

performance with long-reads at higher coverage values. 29 

  30 
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Introduction 31 

 32 

Analysis of structural variants (SVs) with whole genome or targeted enrichment 33 

sequencing is used in the clinic for diagnosing acquired or inherited genetic diseases 34 

(1) and for investigating mechanisms of genomic complexity in cancer and other 35 

pathologies (2–6). Sequencing using short paired-end reads (PE) is well established 36 

for genomic analysis due to mature workflows and low sequencing costs, although 37 

increasingly, long-read (LR) sequencing technologies are being utilized for these 38 

purposes. These LR sequencing platforms permit much longer read-lengths which 39 

can potentially lead to improvements in mapping to repetitive or complex regions of 40 

the reference genome, and advantages for detecting SVs. However, the better 41 

scalability of paired-end technologies, with further improvements in development (7), 42 

means that SV calling with shorter reads is likely to remain an area of interest. 43 

SVs are usually defined as genomic rearrangement events over an arbitrary size of 44 

50 bp, falling into categories such as deletions (DEL), insertions (INS), duplications 45 

(DUP), inversions (INV) or translocations (TRA) (1). SVs below this threshold are 46 

often termed indels, although these can sometimes result from more complex events 47 

such as duplication, inversion or translocation. These labels are useful in 48 

conceptualizing simple genome rearrangements in terms of the reference genome 49 

structure, although complex SVs occurring in the germline or during cancer 50 

progression, can complicate interpretation. 51 

SVs can be detected in sequencing data using a variety of methods. For PE data, 52 

single alignments only span relatively small within-read SVs (indels) due to limited 53 

read-length, so information of SVs must be gleaned from assessing discordant 54 

mappings, changes in read-depth and the occurrence of split-reads which straddle 55 

breaksites (8). Recent methods also employ de novo assembly of SV-derived reads 56 

and further rounds of SV discovery through re-mapping of derived contigs to the 57 

reference genome (9, 10)28/05/2021 07:05:00. Alignment free methods are also 58 

possible, by analysing differences in k-mer content between a sample and reference 59 

(11). For LR sequences, SVs up to several kb can be detected within alignments due 60 

to the long read-lengths involved, and split-reads, changes in read depth and 61 

assembly of SV-reads can be utilized (8). 62 
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A large number of bioinformatics tools have been developed for detecting SVs using 63 

PE or LR data, although recent benchmarking studies highlight that existing 64 

algorithms are often limited in their ability to detect all classes and sizes of SVs, and 65 

there is still considerable room for improvement (12–14). The approach of quality 66 

filtering of putative SVs also differs widely between tools. In the simplest case 67 

variants are filtered based on the weight of evidence or number of supporting reads, 68 

although choosing suitable thresholds can be difficult and higher read-depths have 69 

also been associated with false positives (13). Statistical methods for quality scoring 70 

have been employed, for example the PE caller Manta employs Bayesian inference 71 

using read fragments supporting an allele to estimate a likelihood, followed by 72 

manual filtering (9). The LR caller nanovar utilizes a neural network classifier trained 73 

on simulated datasets, where 14 input features of each putative SV are used to 74 

classify events (15). To build on these advances, we considered that performance 75 

may be enhanced from training using non-simulated datasets. Additionally, we 76 

identified that there is an unmet need for an SV caller capable of analysing both PE 77 

and LR datasets.    78 

Here, we present our SV calling software dysgu, which can rapidly call SVs from PE 79 

or LR data, across all size categories. Conceptually, dysgu identifies SVs from 80 

alignment cigar information as well as discordant and split-read mappings. Dysgu 81 

employs a fast consensus sequence algorithm, inspired by the positional de Brujin 82 

graph, followed by remapping of anomalous sequences to discover additional small 83 

SVs. A machine learning classifier is then employed to generate a useful quality 84 

score which can be used to prioritize variants.   85 

 86 

  87 
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Results 88 

Dysgu is a general purpose de novo SV and indel caller that can analyse PE or LR 89 

sequencing datasets. SV-associated reads are first identified by assessing alignment 90 

gaps, split-read and discordant mappings, soft-clipped reads and read-depth 91 

changes. SV signals are clustered on a graph and contigs are generated for putative 92 

breakpoints. One-end anchored SVs - events with a single soft-clipped sequence 93 

without a corresponding mapping, are re-aligned to the reference genome to identify 94 

additional small SVs. Putative SV events are labelled with a rich set of features 95 

describing sequencing or mapping error metrics and supporting evidence. Events 96 

are further classified using a machine learning model to prioritise variants with higher 97 

probability. 98 

 99 

Testing datasets 100 

To assess precision and recall statistics we utilized benchmark datasets provided by 101 

the Genome in a Bottle (GIAB) consortium. Primarily, we assesses a germline call 102 

set derived from the Ashkenazi son sample (HG002) that combines five sequencing 103 

technologies and 68 call sets plus manual curation into a high quality and 104 

comprehensive benchmark (16). The HG002 benchmark is stratified into high 105 

confidence regions (Tier 1), where precision and recall can be confidently 106 

determined, as well as less confident regions (Tier 2, followed by ‘all’ regions) which 107 

potentially involve more complex genomic regions, or the completeness of the 108 

benchmark is uncertain. However, as only SVs ≥ 50 bp appear in Tier 1 regions, we 109 

also analysed all unfiltered SVs in the GIAB dataset which has a minimum SV size 110 

threshold ≥ 20 bp, appreciating that the ‘All-regions’ benchmark shows lower 111 

completeness compared to Tier 1 regions. In addition, we assessed recall on the 112 

HG001 cell line that has corresponding deletion calls (≥ 50 bp) provided by GIAB 113 

(17). As the machine-learning classifier that dysgu employs was trained using calls 114 

derived from HG001 (see Methods), we did not assess precision using this dataset. 115 

 116 

Performance using paired-end short reads 117 

Dysgu was tested on HG002 at coverages of 20× (Figure 1, Table 1, 2, 118 

Supplemental_Table_S1.pdf) and 40× (Supplemental_Fig_S1.pdf, 119 

Supplemental_Table_S2.pdf - Supplemental_Table_S4.pdf) using Illumina 148 bp 120 
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paired-end reads. Performance was compared to the popular SV callers manta (9), 121 

delly (18), and lumpy (19). We also compared indel calling performance with strelka 122 

(20) and gatk down to a size of 30 bp. Strelka calls indels up to 50 bp whilst gatk 123 

calls deletions and insertions to around the insert size. 124 

 125 

For Tier 1 SVs at 20× coverage, dysgu called the largest number of true deletions 126 

and insertions (n = 3894), with 708 more variants called than the next best caller 127 

manta (n = 3186) (Table 1). Precision-recall curves indicated that probability values 128 

estimated by dysgu using machine learning were useful for stratifying variants by 129 

quality, with higher probability values correlating with precision (Table 1A-D). Dysgu 130 

had the highest precision for deletion calls (95.6 %), as well as the highest recall for 131 

deletions (61.7 %) and insertions (23.8 %). Manta showed the highest precision for 132 

insertion variants (97.6 % vs dysgu 90.6 %) but had a lower recall (14.2 %) than 133 

dysgu. As a percentage value, dysgu called 7.9 % more deletions and 67 % more 134 

insertions than manta. Overall, dysgu showed higher F1 scores than the next best 135 

caller, manta, with an F1 score 4.2 % higher for deletions and 12.8 % higher for 136 

insertions.  We also assessed the level of duplication, defined as the ratio of 137 

duplicated true-positive calls relative to unique true-positive calls. The problem of 138 

duplication arises when a single SV event leads to multiple calls in the output file. 139 

Generally, all PE callers displayed a low level of duplication below < 1.5 % (Table 1). 140 

 141 

  TP FP Precision Recall Duplication F1 

  DEL INS DEL INS DEL INS DEL INS DEL INS DEL INS 

dysgu 2601 1293 119 134 0.956 0.906 0.617 0.238 0.001 0.012 0.750 0.377 

manta 2411 775 187 19 0.928 0.976 0.572 0.142 0.000 0.008 0.708 0.249 

delly 2178 58 536 0 0.803 1.000 0.517 0.011 0.001 0.000 0.629 0.021 

lumpy 2037   350   0.853   0.483   0.001   0.617   

 142 

Table 1. Performance using PE 20× data on the HG002 ‘Tier 1 regions’ benchmark. 143 

The numbers of deletion (DEL) and insertion (INS) variants are quantified. 144 

Duplication is defined as the ratio of duplicate true-positive calls to the number of 145 

true-positive calls. TP – true-positive, FP – false-positive. Best scores are shaded 146 

blue. 147 

 148 
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We also stratified variants by size using the All-regions benchmark to investigate 149 

size constraints of SV calling (Table 2, Supplemental_Table_S4.pdf). For deletions in 150 

the 30 – 50 bp range, dysgu showed similar performance to gatk with similar 151 

precision, recall and F1 scores. For insertions in the 30 - 50 bp range, dysgu showed 152 

higher precision (95.8 %) and recall (28.9 %) than strelka and gatk. 153 

 154 

For SVs ≥ 50 bp, dysgu showed a good balance of precision and recall across all 155 

size ranges with the highest F1 scores among callers (Table 2). For deletion SVs 156 

dysgu generally displayed the highest precision but showed a lower recall for large 157 

SVs. For example, delly showed a higher recall than dysgu for deletions ≥ 5000 bp 158 

(41.1 % vs 33.7 %), but only had a precision of 34.4 % vs dysgu 94.8 %. 159 

For insertion SVs, dysgu showed the highest recall, but manta displayed the best 160 

precision of 98.2 %. Dysgu was the best caller for identifying loci with large insertions 161 

(≥ 500 bp) finding n=386, vs manta n=23 and gatk n=49. However, as dysgu utilizes 162 

insert size statistics to estimate large insertions length, calculated insertion sizes are 163 

expected to be less accurate compared to de novo assembly-based callers such as 164 

manta and gatk (data not shown). 165 
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dysgu 0.961 0.964 0.977 0.948 0.361 0.234 0.368 0.337 0.525 0.377 0.534 0.498 

manta 1.000 0.962 0.952 0.820 0.008 0.219 0.286 0.335 0.015 0.357 0.440 0.476 

gatk 0.962 0.929 1.000   0.361 0.105 0.001   0.525 0.189 0.002   

strelka 0.980 1.000     0.262 0.003     0.413 0.005     

delly 0.964 0.886 0.744 0.344 0.242 0.164 0.377 0.411 0.387 0.276 0.500 0.375 

lumpy 0.895 0.916 0.720 0.299 0.002 0.148 0.378 0.409 0.004 0.255 0.496 0.345 

In
s
e
r
t
io
n
s
 

dysgu 0.958 0.909 1.000 1.000 0.289 0.144 0.108 0.111 0.444 0.249 0.195 0.199 

manta 0.989 0.982 1.000   0.012 0.100 0.007   0.023 0.182 0.014   

gatk 0.922 0.908 1.000 1.000 0.250 0.101 0.014 0.028 0.393 0.182 0.027 0.054 

strelka 0.880 0.938 1.000   0.225 0.006 0.003   0.358 0.013 0.005   

delly 0.972 1.000     0.057 0.006     0.108 0.012     

 166 

Table 2. SV calling stratified by size using PE 20× data on the HG002 the ‘All-167 

regions’ benchmark. Best scores are shaded blue. 168 

 169 
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At 40× coverage, all callers displayed improved recall and F1 scores although at the 170 

expense of lower precision (Supplemental_Fig_S1.pdf, Supplemental_Table_S2.pdf 171 

- Supplemental_Table_S4.pdf). Interestingly, this phenomenon was also reported in 172 

a recent benchmarking study suggesting that at higher coverage values, absolute 173 

numbers of sequencing and mapping artifacts are more likely to be mistaken for SV 174 

events with low allelic fraction (12). Overall, at 40× coverage dysgu maintained a 175 

good balance of precision and recall compared to other callers, in line with 20× 176 

coverage, showing the highest F1 score for deletions and insertion calls. 177 

 178 

We next investigated the intersection of variant calls between tools, or the set of SVs 179 

shared between tools, and displayed results using an upset plot (Figure 1E, F), 180 

which quantifies the sizes of SV call sets, their intersections, and aggregates of 181 

intersections (21). Assessing Tier 1 SVs in the HG002 benchmark, dysgu showed 182 

the largest number of unique calls (both deletions n=154, and insertions n=815) 183 

followed by manta (n=135 deletions, n=295 insertions). Including indel callers and 184 

analysing all SVs changed the conclusion slightly. In this case, gatk found the most 185 

unique deletions events (n=1928, vs dysgu n=622) and the second highest number 186 

of unique insertion events (n=1610 after dysgu n=1800). 187 

 188 

Recent studies have investigated combining the output of different SV callers to 189 

boost performance (22–24). To gauge the performance of different combinations of 190 

callers we assessed the union of true positive calls (labelled as concordant) and 191 

compare with the sum of false positives (labelled non-concordant) as a proxy for the 192 

false positive rate (Figure 1G, H). The best combination of callers using the All-193 

regions benchmark appeared to be dysgu and gatk which together found 3069 194 

deletions and 4368 insertions absent from other callers. 195 

 196 

We additionally tested the recall of tools against the HG001 deletion call set, 197 

comparing unfiltered variants for all callers. Dysgu demonstrated the highest recall 198 

(93.61%), followed by manta (89.84 %), delly (84.38 %) and lumpy (81.61 %). 199 

 200 

To summarise, using PE data, dysgu was generally the most performant tool 201 

showing a good balance of precision and recall across SV types and size ranges.  202 

   203 
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Performance using long reads 204 

We tested dysgu against the HG002 benchmark using PacBio HiFi reads at 205 

approximately 8× (Figure 2, Tables 3-4, Supplemental_Fig_S2.pdf, 206 

Supplemental_Table_S5.pdf - Supplemental_Table_S8.pdf) and 15× coverage 207 

(Supplemental_Fig_S3.pdf, Supplemental_Table_S9.pdf - 208 

Supplemental_Table_14.pdf), and using Oxford nanopore reads at 13× coverage 209 

(Supplemental_Fig_S4.pdf, Supplemental_Table_S15.pdf - 210 

Supplemental_Table_S20.pdf). Performance was compared against recently 211 

published LR callers nanovar (15), sniffles (25) and svim (26), using reads aligned by 212 

minimap2 (27) (Figures 2, Table 3 - 4), or ngmlr (25) (Supplemental_Fig_S2.pdf, 213 

Supplemental_Table_S5.pdf). Aligning reads using ngmlr tended to give slightly 214 

higher precision among all SV callers although F1 scores were also slightly reduced, 215 

particularly for insertion variants (Supplemental_Table_S5.pdf - 216 

Supplemental_Table_S7.pdf). 217 

 218 

Assessing Tier 1 SVs from the HG002 benchmark, dysgu had the highest recall for 219 

deletions (91.8 %) and insertions (89.4 %) and the highest precision for insertion 220 

calls (95.4 %). Dysgu also had the highest F1 score for deletions (0.937) and 221 

insertions (0.923) but was closely followed by nanovar with F1 scores of 0.922 and 222 

0.898 for deletions and insertions, respectively (Figure 2 and Table 3). 223 

 224 

  TP FP Precision Recall Duplication F1 

  DEL INS DEL INS DEL INS DEL INS DEL INS DEL INS 

dysgu 3869 4868 177 235 0.956 0.954 0.918 0.894 0.015 0.018 0.937 0.923 

nanovar 3740 4643 153 261 0.961 0.947 0.887 0.853 0.029 0.055 0.922 0.898 

svim 3827 4827 509 562 0.883 0.896 0.908 0.887 0.017 0.062 0.895 0.891 

sniffles 3251 4680 470 277 0.874 0.944 0.771 0.860 0.011 0.006 0.819 0.900 

  225 

Table 3. Performance using PacBio Sequel II reads at 8× coverage on HG002 Tier 1 226 

regions. Duplication is defined as the ratio of duplicate true-positive calls to the 227 

number of true-positive calls. TP – true-positive, FP – false-positive. Best scores are 228 

shaded blue. 229 

 230 

Expanding the testing set to all regions and a minimum size of 30 bp, svim showed 231 

the highest recall (0.334 for deletions and 0.403 for insertions) 232 
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(Supplemental_Table_S6.pdf - Supplemental_Table_S7.pdf). Dysgu and nanovar 233 

displayed similar precision scores, but overall dysgu displayed the highest F1 scores 234 

(0.482 for deletions and 0.537 for insertions) (Supplemental_Table_S6.pdf). Svim 235 

showed marginally lower F1 scores (0.475 for deletions and 0.534 for insertions), 236 

although we noticed that svim showed a higher level of duplication. Additionally, for 237 

some callers this problem was more acute when analysing Oxford nanopore reads, 238 

with for example, svim showing a duplication ratio of 0.58 for insertion calls in Tier 1 239 

regions (Supplemental_Figure_S4.pdf, Supplemental_Table_S15.pdf). Among 240 

callers, sniffles and dysgu generally showed the lowest duplication rates, although 241 

dysgu had a consistently higher recall.  242 

 243 
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dysgu 0.932 0.930 0.939 0.929 0.551 0.505 0.438 0.321 0.693 0.654 0.597 0.477 

nanovar 0.939 0.933 0.882 0.730 0.504 0.475 0.443 0.354 0.656 0.629 0.590 0.477 

svim 0.850 0.786 0.835 0.925 0.565 0.519 0.434 0.276 0.679 0.625 0.571 0.425 

sniffles 0.920 0.875 0.636 0.411 0.261 0.362 0.440 0.354 0.407 0.512 0.520 0.380 

In
s
e
r
t
io
n
s
 

dysgu 0.829 0.861 0.946 0.887 0.566 0.589 0.509 0.249 0.672 0.699 0.662 0.389 

nanovar 0.843 0.874 0.887 0.364 0.531 0.569 0.506 0.126 0.651 0.690 0.644 0.188 

svim 0.765 0.759 0.904 0.961 0.585 0.609 0.524 0.194 0.663 0.676 0.664 0.322 

sniffles 0.854 0.864 0.877 0.852 0.452 0.541 0.469 0.182 0.591 0.665 0.611 0.300 

 244 

Table 4. Long-read performance as a function of SV size. PacBio Sequel II reads at 245 

8× coverage were assessed using the HG002 ‘all-regions’ benchmark. Best scores 246 

are shaded blue. 247 

 248 

Analysing the intersection of SVs, we found that most callers seemed to identify 249 

similar sets of SVs indicating that combining SV callers might only lead to small 250 

gains in sensitivity (Figure 2E-H). 251 

Similar to Illumina data, increasing the coverage of PacBio HiFi data increased the 252 

recall of SV callers and F1 scores, but at the expense of reduced precision. At 15× 253 

coverage, dysgu had the highest F1 scores for deletions and insertions for Tier 1, 254 

whilst showing a low level of duplication (Supplemental_Table_S9.pdf). Sensitivity of 255 

SV detection was also assed using the HG001 deletion benchmark (≥ 50 bp in size). 256 
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Using PacBio reads at 5× coverage dysgu showed the highest recall (77.35 %) 257 

compared to other callers (nanovar 75.97, sniffles 70.52, svim 73.73 %). Likewise, 258 

dysgu showed the highest recall using 13× ONT reads (96.41 %) compared to other 259 

callers (nanovar 91.67, sniffles 95.89, svim 95.25 %). 260 

In summary, dysgu demonstrated a high level of performance of LR datasets, with 261 

generally the best balance of precision and recall across SV sizes and categories. 262 

 263 

Combining short and long reads for improved performance 264 

Dysgu supports merging of SVs from different runs using a ‘merge’ command 265 

making it trivial to integrate calls from different sequencing technologies. After 266 

merging, additional tags are added to the output file corresponding to the maximum 267 

and mean probability across samples, with the probability determined by the 268 

machine learning classifier. 269 

We used dysgu to assess different combinations of sequencing technology including 270 

PacBio (8× and 15×), ONT (13×) and Illumina paired-end reads (20× and 40×), by 271 

filtering calls with a maximum model probability ≥ 0.5 for PacBio, or ≥ 0.35 for ONT 272 

combinations (Table 5). Testing against the All-regions benchmark, the addition of 273 

Illumina reads consistently led to performance improvements when combined with 274 

PacBio or ONT, especially for deletion calls (Table 5). The largest increases in recall 275 

were seen from adding 40× Illumina calls, although 20× Illumina calls also led to 276 

noticeable increases. For example, adding 40× Illumina calls to 8× PacBio calls 277 

identified an additional 1010 deletions and 1103 insertions for the All-regions 278 

benchmark, or 141 deletions and 85 insertions for Tier 1 regions. F1 scores 279 

improved for the All-regions benchmark, increasing by 2.77 % for deletions and 2.57 280 

% for insertions. Surprisingly, combining Illumina calls with PacBio 8×, appeared to 281 

be similar in performance to PacBio calls at a higher coverage value 15×.  282 

 283 

 284 

 285 

 286 

 287 

 288 

 289 
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 290 

  TP Precision Recall Duplication F1 

  DEL INS DEL INS DEL INS DEL INS DEL INS 

pb 8x 12132 14207 0.935 0.872 0.325 0.389 0.033 0.040 0.482 0.538 

pb 8x + ill 20x 12996 14882 0.926 0.867 0.348 0.407 0.054 0.050 0.505 0.554 

pb 8x + ill 40x 13465 15342 0.915 0.861 0.360 0.420 0.065 0.055 0.517 0.564 

pb 15x 12814 15156 0.932 0.869 0.343 0.415 0.034 0.042 0.501 0.561 

pb 15x + ill 20x 13400 15626 0.922 0.863 0.358 0.427 0.056 0.052 0.516 0.572 

pb 15x + ill 40x 13778 15955 0.911 0.857 0.369 0.436 0.069 0.056 0.525 0.578 

ont 13x 13568 13506 0.892 0.869 0.363 0.369 0.039 0.034 0.516 0.518 

ont 13x + ill 20x 14608 14825 0.880 0.854 0.391 0.405 0.060 0.112 0.541 0.550 

ont 13x + ill 40x 15141 15585 0.865 0.830 0.405 0.426 0.071 0.137 0.552 0.563 

ont 13x + pb 8x 14876 15717 0.861 0.822 0.398 0.430 0.102 0.161 0.544 0.564 

 291 

Table 5. Performance of combinations of sequencing platforms using the HG002 ‘all-292 

regions’ benchmark. pb – PacBio, ill – Illumina, ont – Oxford Nanopore 293 

Technologies. Best scores are shaded blue. 294 

 295 

However, Tier 1 regions generally did not show increased F1 scores despite 296 

increased recall, which was caused by an inflation of the false-positives rate 297 

(Supplemental_Table_S21.pdf). Additionally, we assessed Tier 1+2 regions which 298 

include more complicated genomic loci than Tier 1. Tier 1+2 regions also showed 299 

improved F1 scores, with 8× PacBio + 40× Illumina F1 scores increasing by 3.0 300 

points for deletions and 1.9 for insertions (Supplemental_Table_S22.pdf). We 301 

speculate that Illumina data may enhance SV calling at complicated genomic regions 302 

that are not trivial to map for LR mappers. Additionally, PE data may help fill-in the 303 

gaps for LR datasets in regions of low or zero coverage. 304 

Combining sequencing technologies for improved SV discovery has not received 305 

much attention, although with the increasing prevalence of LR sequencing, and other 306 

non-standard techniques such as linked-read or HiC, we suggest that this would be 307 

an interesting avenue for future research.  308 

  309 

Runtime 310 

We tested runtime using an Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50GHz Linux 311 

machine with 256 GB of system memory. For Ilumina data, dysgu was the fastest 312 

tool using a single-core, analysing 40× coverage data in 75 mins and using 5.6 GB 313 
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memory (Table 6), which was almost twice as quick as the next fastest tool, delly. 314 

Manta was 4.85 times slower than dysgu to run on a single core, but used the least 315 

memory (0.244), and can also be run in parallel efficiently (data not shown). For 316 

PacBio HiFi reads analysed on a single core, dysgu was the second fastest tool after 317 

svim, analysing 8× coverage sample in 8 mins and using 0.35 GB memory, 318 

compared to 6.6 mins for svim and 0.34 GB memory. ONT reads at 13× coverage 319 

were analysing by dysgu in 59 mins using 0.94 GB memory, which was slower than 320 

the fastest caller svim (32 mins and 0.9 GB memory). 321 

 322 

 323 

Reads Caller Mins Mem (GB) 

Illumina 40X dysgu 75.3 5.58 

  manta 365.1 0.24 

  delly 150.0 6.42 

  lumpy 211.5 12.00 

PacBio 8X dysgu 8.0 0.35 

  nanovar 46.5 19.05 

  svim 6.6 0.34 

  sniffles 20.3 0.71 

ONT 13X dysgu 59.7 0.94 

  nanovar 83.4 17.58 

  svim 32.4 0.90 

  sniffles 64.6 2.01 

 324 

Table 6. Resource requirements of SV callers. Best scores are shaded blue. 325 

 326 

  327 
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Discussion 328 

We developed dysgu to facilitate SV and indel discovery using PE or LR sequencing 329 

platforms in a computationally efficient manner. Dysgu analyses several forms of 330 

evidence to detect events including alignment gaps, discordant reads, read-depth, 331 

soft-clipped and supplementary mappings. For PE data, remapping of anomalous 332 

soft-clipped reads is also utilized to identify additional small SVs. Putative events are 333 

then labelled with a useful probability value using a gradient boosting classifier (28). 334 

Stratifying events by probability has several potential benefits over manually filtering. 335 

For example, machine learning classifiers can learn non-linear relationships between 336 

variables, and potentially capture large numbers of interactions between variables 337 

that would be difficult to reproduce through a manual approach. However, machine-338 

learning raises additional challenges such as feature engineering, collation of 339 

appropriate training sets, and assessing how well a model will generalize to new 340 

data. 341 

Dysgu models SV events using a vector of up to 41 features depending on read-342 

type, with each feature designed to quantify different aspects of an SV signature, or 343 

error patterns of the respective read-type. The current list of features is non-344 

exhaustive and can potentially be expanded in future releases to enhance calling 345 

performance.  346 

Features incorporate more obvious signals such as read-support and sequencing 347 

depth, as well as novel patterns such as “soft-clip quality correlation” (PE data only) 348 

and repetitiveness scores (See Methods). To facilitate the calculation of features 349 

which capture sequence-contextual information, we also developed a novel linear-350 

time consensus sequence algorithm, which is used to rapidly collapse reads at each 351 

break site into consensus contigs for further analysis. We trained our classifier using 352 

a large collection of manually labelled SV loci and combined these sites with loci 353 

identified by other SV callers. Manually labelling induces an obvious bias in the 354 

training set, where the correctness is a matter of opinion of the human observer. 355 

However, using a manual approach also allowed us to generate training sets with 356 

high completeness, which was not the case when relying on third party SV callers. 357 

Construction of quality training sets is a perennial challenge in machine learning and 358 

we expect that improving the quality and size of training sets will yield further 359 

performance improvements for SV classification.  360 
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We validated performance using benchmark datasets provided by GIAB (16, 17), 361 

and provide a software library ‘svbench’ to facilitate benchmarking and exploration of 362 

results. Primarily we assessed the HG002 benchmark, analysing in detail high-363 

confidence Tier 1 regions, as well as all genomic regions. At Tier 1 regions we find 364 

that dysgu outperforms existing tools for both PE reads (Table 1) or third generation 365 

long-reads (Table 3,) using the F1 metric for comparisons. Tier 1 regions cover 2.51 366 

Gbps of the genome although more complicated regions and smaller indel SVs (< 50 367 

bp) are absent. Analysis of all genomic regions largely supported the conclusion that 368 

dysgu matches or outperforms existing tools, with dysgu often showing the best F1 369 

scores across read types (Supplemental_Table_S6.pdf, 370 

Supplemental_Table_S7.pdf). Notably, svim showed higher F1 scores than dysgu in 371 

some benchmarks, although this was at the expense of considerably lower precision 372 

values and often increased duplication of true-positives. 373 

Another novel feature of dysgu is that calls from separate sequencing technologies 374 

can be merged using a single command. Particularly, we found that adding calls 375 

made using Illumina data to either PacBio or ONT led to improved recall (Table 5). 376 

However, this appeared to occur mainly outside Tier 1 regions, suggesting Tier 1 377 

regions are an ‘easy-case’ for LR platforms. Nevertheless, for applications that 378 

require higher recall, adding PE data to lower coverage LR data is a cost-effective 379 

approach for SV discovery that dysgu can support.  380 

In conclusion, dysgu is de novo SV caller that outperforms existing tools using PE or 381 

LR datasets. 382 

Dysgu is also computationally efficient to run, being the fasted tool using PE data, or 383 

second fastest using LR data. We provide dysgu as an open-source package for use 384 

in basic and applied research applications. 385 

  386 
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Materials and methods 387 

Overview 388 

Dysgu has been designed to work with aligned reads in BAM or CRAM formats, and 389 

can analyse PE reads with lengths in the range 100 – 250 bp, or single-end LR such 390 

as PacBio Sequel II, or ONT. By default, events with a minimum size of ≥ 30 bp are 391 

reported. Depending on the sequencing platform, dysgu offers pre-set options which 392 

apply recommended settings and a specific machine learning model (e.g. use ‘–393 

mode pe’ or ‘—mode pacbio’ for PE or PacBio settings, respectively). 394 

Dysgu provides a ‘run’ command which will produce a vcf file for a single input file, 395 

which is recommended for PE reads. However, depending on read-type the stages 396 

of the pipeline can differ. For PE reads (and optionally long reads), dysgu first 397 

partitions SV candidate reads into a temporary uncompressed bam file, which is 398 

achieved using the ‘fetch’ command. As this stage is time-consuming, this command 399 

can also be run in a stream during BAM file processing to further save wall runtime. 400 

Dysgu will then apply the ‘call’ command to SV candidate reads and produce an 401 

output. Depending on the length of input reads, the ‘fetch’ command may be 402 

redundant, as for very long reads such as ONT, a large proportion of reads harbour 403 

multiple SV candidates, which effectively leads to the input file being duplicated. 404 

Therefore the ‘fetch’ command is not needed for some LR datasets, and the ‘call’ 405 

command is recommended instead. 406 

 407 

Identifying SV candidate reads 408 

For PE reads, library insert metrics are collected from the input file by scanning the 409 

first 200 x 103 reads. If the ‘fetch’ command is utilized, single reads, or all alignments 410 

from a read-pair, that are deemed to be candidates, are partitioned into a temporary 411 

file. However, if the ‘fetch’ command is not run, then input reads are simply marked 412 

as SV candidates. A read is defined as a candidate if a read is found with either, 413 

map-quality ≥ 20, a soft-clip ≥ 15 bp (PE only), a discordant insert size or read 414 

orientation (PE only), a supplementary mapping, an alignment gap ≥ 30, or a mate 415 

on another chromosome. A discordant insert size is defined as ������ ���� 	416 

������ 
�����  �5. ������ ������. Reads in high coverage regions of the genome 417 

are also not analysed by default, defined as regions with a mean depth ≥ 200 (‘--418 

mode pe’) or ≥ 150 (‘—mode pacbio’ or ‘—mode nanopore’). 419 
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 420 

Genome coverage 421 

Dysgu collects several quality control metrics for use as features in the machine 422 

learning model. Genome coverage is calculated according to (29), except coverage 423 

is binned into 10 bp non-overlapping segments. The genome coverage tracks are 424 

saved in the temp folder during execution. 425 

 426 

Alignment clustering 427 

Reads are initially clustered using an edge-coloured undirected graph �. Nodes in 428 

the graph represent SV-signatures and correspond to events listed in the cigar field 429 

of an alignment, or the properties of a read. SV-signatures are enumerated as either 430 

‘discordant’, ‘split’, ‘deletion’, ‘insertion’ or ‘breakend’, and are associated with a 431 

‘genomic-start’ and ‘genomic-end’ position. ‘Breakend’ types indicate a read that has 432 

a normal mapping orientation and no supplementary mappings, but has a soft-433 

clipped sequence, which potentially corresponds to an unmapped breakpoint. Edges 434 

correspond to either ‘white edges’ that link together all alignments in a template with 435 

the same query name, or ‘black’ edges that are added between nodes that share a 436 

compatible SV signature. 437 

Clustering is split into two phases. Initially, genomic reads are converted into a series 438 

of SV-signatures, with each item corresponding to a separate candidate event. For 439 

example, a deletion identified in the alignment cigar, a discordant read, or a read 440 

with an unmapped soft-clipped are converted into SV-signatures as nodes in �. 441 

The local genomic region is then searched for events with a compatible signature. 442 

We use a red-black tree to search for items with a similar ‘genomic end’ position 443 

before checking if the ‘genomic start’ position is also similar. A search depth of 4 is 444 

used to search forwards and backwards in the data structure for other nodes. We 445 

find that using the ‘genomic end’ position permits a shallow search depth as 446 

datapoints are often sparser at the distant ‘genomic end’ position. Edges are not 447 

permitted between ‘deletion’ or ‘insertion’ types, although edges between other types 448 

are allowed. 449 

When searching for other nodes to add ‘black’ edges between, nodes that are closer 450 

in the genome to the query are preferred, so if multiple candidates are found, edges 451 

are only formed between nodes passing a more stringent threshold. SV-signatures 452 
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are checked to make sure that they have a reciprocal overlap of 0.1, and a 453 

separation distance between ‘genomic start’ and ‘genomic end’ positions below a 454 

clustering threshold. For PE reads, the clustering threshold is � ������ 
����� 455 

�5. ������ ������ ��, while for PacBio the threshold is � 35 ��, and ONT � 100 ��. If 456 

another SV-signature is found with a ‘genomic start’ � 35 ��, these nodes pass the 457 

more stringent threshold, and a ‘black’ edge is added to the graph. For single-end 458 

reads or ‘split’ reads, if any of these conditions fail we also check the span position 459 

distance (26) between signatures. Span position distance between signatures ��and 460 

��is defined as ��� � �����   ���  ������ ��	



 where SD is the span distance 461 

between signatures �� �  |���� �	����� �	|

��� ���� �,��� �	
, and PD is the position distance 462 

min �|"� #  "�|, |%� # %�|, &�� ��

�
# �� ��

�
&�. N is a normalization constant which is set 463 

at 100 for PE reads, 600 for PacBio and 900 for ONT reads. For all read types the 464 

SPD threshold used is � � 0.3. For PE reads that do not have a ‘split’ SV signature, 465 

we use a modified formula, only adding ‘black’ edges between nodes if 466 
��

��� ���� �,��� �	
� � and �� � �.  467 

If no edges are found for a PE read, a second phase of clustering is used to try and 468 

find edges between reads that share similar soft-clipped sequences. As pairwise 469 

sequence comparison between neighbouring alignments is computationally costly, 470 

we devised a novel algorithm based on clustering of the minimizer sketch of soft-471 

clipped reads (30). Minimizer sampling involves computing the list of minimum kmers 472 

derived from consecutive windows over a sequence. We use a kmer length of 6 and 473 

a window length of 12. The minimum kmer is selected using a hash function and 474 

computed in linear-time O�n� (31). Additionally, in a modification of the minimizer 475 

sketching algorithm, we compute only the unique set of minimum kmers �� for each 476 

soft-clipped portion of a read. Each kmer in the set �� is associated with a genomic 477 

position that corresponds to the left-most or right-most base in the alignment for left 478 

or right soft-clipped sequences, respectively.  479 

Kmers are added to a hashmap ( with the key given by the kmer hash, and the 480 

value pair corresponding to a set of tuples, of �genomic position, read name�. Kmers 481 

that are > 150 bp from the query genomic position are dynamically removed from the 482 

hashmap during processing. 483 
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For each incoming read, the kmer set �� is first computed, then for each kmer a 484 

corresponding set 3 of reads and genomic positions is obtained by indexing (. The 485 

set 3 consists of a collection of local reads that share the same minimizer kmer as 486 

the query. Entries in 3 are then compared to the current genomic position and if the 487 

separation is < 7 bp, the number of found minimizers � is incremented. Additionally, 488 

the number of minimizers shared between reads with the same name � is counted. 489 

The total minimizer support is defined as ��

�
 �� and a threshold of 	 2 is utilized. 490 

Once the minimizer support threshold is exceeded, found nodes are added to a set 491 

and returned. 492 

Finally, ‘black’ edges are added to the graph between the returned set of nodes and 493 

the query node. Utilizing the minimizer clustering algorithm, pairwise sequence 494 

alignment is avoided, instead sequence matches between two sequences can be 495 

inferred from computing a minimizer sketch and utilizing hashmap queries. 496 

 497 

Event partitioning 498 

Once all alignments have been added into the main graph �, the graph is simplified 499 

to a undirected quotient graph 5 � �6� , %��  whose vertices consists of blocks or 500 

partitions of vertices from the main graph �. The vertices (partitions) 6� are found by 501 

finding connected components in � using ‘black’ edges only. Edges %�  are then 502 

defined between partitions using ‘white’ edge information from �, thus linking 503 

together read templates that map one or more SV. 504 

Connected components in 5 are processed together. These components can be 505 

composed of one or more partitions, harbouring potentially multiple SV events. In the 506 

simplest case, a component will consist of a single partition, which is processed for 507 

one or more SV. Components with a single edge are processed for a single SV only. 508 

For components with multiple edges, each edge is processed for a single SV, and 509 

additionally, each node partition is processed as a single partition if the number of 510 

‘black’ intra-partition edges exceeds the number of ‘white’ out-edges, according to 511 

the main graph �. Thus, all components of 5 are processed as a series of single-512 

edges or single-partitions.  513 

Single-edges in 5 are assumed to represent a single SV, with reads from the 7 514 

partition corresponding to one breaksite and reads from the � partition corresponding 515 

to the other. Single-partition nodes are assumed to map a single SV if a spanning 516 
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alignment is found (e.g., a deletion event in the alignment cigar field). If no-spanning 517 

alignments are found, reads in the single-partition are further clustered using 518 

hierarchical clustering with the Nearest Point Algorithm (32), using the genomic start 519 

and end points of reads in the partition. This step is helps disentangle SVs with large 520 

overlaps and similar reference coordinates. Identified sub-clusters are then 521 

processed for a single SV. 522 

 523 

Consensus sequence generation 524 

We generate consensus sequences at each breakpoint, from which read properties 525 

can be derived, such as repeat score or expanded polymer bases (see SV metrics 526 

section for further details), and to determine soft-clipped sequences for potentially 527 

remapping to the reference genome. We utilize a novel algorithm that borrows 528 

concepts from the positional de Brujin graph (33), and partial order alignment graphs 529 

(POA) (34). In a positional de Brujin graph �, the vertex set 6encodes each 530 

sequence kmer in addition to genomic location, which helps leverage information 531 

provided by the mapper and localizes assembly. Edges % are permitted between 532 

kmers adjacent in the reference genome, which generally leads to a directed acyclic 533 

graph. However, it is possible that some bases do not have a genomic location, such 534 

as insertions within a read, or soft-clipped sequence. In such cases, genomic 535 

location can be inferred, for example using the expected mapping position if the 536 

whole read was aligned without gaps (10). 537 

Partial order alignment graphs (34) are used to perform multiple sequence 538 

alignments, with vertices representing bases, and edges added between 539 

neighbouring bases in a sequence. Additional Sequences can be pairwise-aligned 540 

and incorporated into a POA using dynamic programming, and a consensus can be 541 

extracted by back-tracing through the maximum weighted path (34). 542 

In our algorithm, we also represent vertices as bases and employ back-tracing 543 

through the longest path. However, similar to a positional de Brujin graph, we take 544 

the ordering of the graph from the genomic locations determined by the mapper. 545 

Utilizing this approach gives an approximation of a multiple sequence alignment 546 

between local genomic reads, and makes usage of information given by the mapper, 547 

whilst being simple and efficient to compute. 548 
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Let vertices correspond to a tuple ��� , �, 8, 9� : 6, where �� is the base aligned at 549 

genome position �, � is the genome position, 8 is an offset describing the distance to 550 

the closest aligned base, and 9 is a flag to indicate if the base is part of a left or right 551 

soft-clip (or neither). For left soft-clipped bases 9 � 1, right soft-clipped bases 9 � 2, 552 

whilst 9 � 0 otherwise. Bases that are not aligned to the reference genome may thus 553 

belong to three categories, when 8 ; 0, for insertions 9 � 0, for left soft-clips 9 � 1, 554 

and for right soft-clips 9 � 2.  555 

Edges are added between adjacent bases in a sequence �7� , �����, and vertices are 556 

weighted according to the sum of base qualities for a given node. Graph construction 557 

leads to a directed acyclic graph, that is then topologically sorted in linear time (35). 558 

To read the consensus sequence, the graph is first traversed using breadth-first 559 

search and for each vertex �, the longest path ending at � is determined by choosing 560 

the highest scoring predecessor vertex and adding to the running total. The 561 

consensus sequence is read by back-tracing from the vertex with the highest score, 562 

and recursively selecting the best predecessor node. 563 

The worst-case time complexity for consensus sequence generation is linear with the 564 

number of input sequence bases. This follows, as graph construction, topological 565 

sorting, breadth-first search and back-tracing all have worst case complexities of 566 

<�6  %� time.  567 

 568 

Consensus sequence quality trimming   569 

For the described consensus sequence algorithm, problems can arise at unmapped 570 

bases (e.g. soft-clipped sequences) if the underlying reads have a high indel error 571 

rate. In this situation, indels in unaligned bases cause neighbouring sequences to be 572 

shifted out of sync and can result in collapsing of indel errors in the consensus 573 

sequence. To address this problem, we trim soft-clipped sequences at bases with an 574 

alternative high scoring path. For each node � on the consensus path, with 575 

predecessor 7 and successor = also on the consensus path, a path quality metric is 576 

calculated. >����� is defined as the total weight of all incoming edges to �. The in-edge 577 

quality is defined as  ?�� � ���,�	

�
�
�
, where >��,�	 is the weight of the consensus path 578 

edge �7, ��. Similarly, <����� is defined as the total weight of all outgoing edges from 579 

�. The out-edge quality is defined as  ?��� � ���,�	

�
�
�
, where <��, 	 is the weight of 580 
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��, =�. The path quality metric for � is defined as �� � min�?�� , ?����. Soft-clipped 581 

sequences are trimmed at bases with a path quality metric < 0.5. 582 

The soft clip weight (scw) parameter is defined for subsequent filtering, as the total 583 

base quality of nodes in the soft-clipped portion of the sequence divided by the 584 

length of the soft-clip. 585 

 586 

Re-mapping of contigs 587 

After generating consensus sequences, if an end co-ordinate could not be 588 

determined, an attempt is made to align the soft-clipped sequence to the reference 589 

genome. Soft-clipped sequences are remapped to a window @500 bp from the 590 

anchored breakpoint. We utilize edlib (36) (parameters: mode=”HW”) to find an 591 

approximate location, before refining the alignment using Striped Smith-Watermen 592 

(37) (parameters: match_score=2, mismatch_score=-8, gap_open_penalty=6, 593 

gap_extend_penalty=1) using the scikit-bio library (found online at: http://scikit-594 

bio.org/). For deletion events, if less than 40 % of the soft-clip could be remapped 595 

and the alignment span is < 50bp, the alignment is rejected. For insertion events, if > 596 

20 bp of sequence could not be mapped the alignment is rejected. 597 

If no alignment is identified, dysgu can still call an unanchored insertion event at the 598 

identified break point, however, only events that have support > min_support + 4 and 599 

a soft-clip length ≥ 18 bp. The min_support parameter can be user supplied and 600 

takes a value of 3 for PE data or 2 for LR data. 601 

 602 

Sequence repeat score 603 

Dysgu calculates repetitiveness scores for aligned regions of contigs as well as 604 

reference bases between deletions, and soft-clipped sequences. To calculate this 605 

metric, the sequence of interest is broken into kmers of increasing lengths from 2 – 6 606 

bases. For each kmer of length A, a hashtable is used to record the last seen 607 

position of each kmer. If a kmer is seen more than once, the distance in bases to the 608 

last seen position is retrieved �. The repeat score is then calculated as a mean 609 

according to 
�

�
 B∑ �!

"
D where A is the kmer length, and E and 
 have the form �. ��

�

�, 610 

where � is Euler’s number, F is a decay constant set at 0.25, and � � A for the 611 
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denominator 
, and � � � for E. For perfect tandem repeats �!

"
� 1, whilst 612 

sequencing errors, interspersed patterns or random sequence lead to lower values. 613 

 614 

Base quality score correlation at soft-clipped reads 615 

For short-read input data we calculate a metric referred to as ‘soft-clip quality 616 

correlation’ (SQC), which is aimed at quantifying a sequence-specific error profile we 617 

observed in Illumina data (38). During sequencing, it is though that certain genomic 618 

sequences can promote dephasing, that gives rise to read base-qualities that 619 

correlate with the underlying sequence, and can result in frequent mismatches in 620 

alignments at specific bases (38). In our data, we observed a pattern consistent with 621 

this model but occurring at soft-clipped reads. These sites were frequently identified 622 

adjacent to homopolymer sequences and displayed base-quality scores that 623 

fluctuated with the underlying soft-clipped sequence. These soft-clip sequences 624 

often appeared to contain many errors as neighbouring soft-clipped reads showed 625 

many differences. Finally, these sites also frequently gave rise to false-positive calls 626 

at one-end anchored SV calls. The SQC metric was devised to quantify this 627 

phenomenon and is utilized as a feature in machine learning classification. 628 

For each query read from the putative SV, the quality values of soft-clipped bases 629 

are added to a hashmap G, with the relative genomic position �H� as the key, and a 630 

list I#�$ of base-qualities as values. The relative genomic position is taken as the 631 

position of the base if the whole soft-clipped portion of the read was mapped to the 632 

genome. Once all reads have been added, the ‘local mean’ is calculated as the 633 

absolute difference from the mean of each list �#�$ � JE� #  KJ where E� is each item 634 

in I#�$ and K is the mean of I#�$. The sum of all calculated values of �#�$ is stored in 635 

a variable ���%�� �  ∑ �#�$, and the global mean across all �#�$ is calculated 
 �636 

 ����

�
. Finally, for each list in G, the sum of differences with the global mean is 637 

calculated �&��'�� � ∑JE� #  
J . The SQC metric is calculated as the ratio �?9 �638 

����

�����
 . When the positions of low-quality bases are distributed randomly with 639 

genomic position �?9 values will be close to 1.0. However, when low quality bases 640 

are clustered at certain positions, this results in smaller differences in base qualities 641 

at the local scale, giving smaller ���%�� values and lower �?9 values.  642 

 643 
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Fold change in coverage across SVs 644 

We calculate the fold change in coverage (FCC) across putative SVs according to 645 

(39) with minor modifications. We utilize a genomic bin size of 10 bp and analyse 1 646 

kb sequence flanking the left and right breaksites. The fold change in coverage is 647 

calculated as the median coverage of the interior SV region divided by the median of 648 

the flanking sequence. The FCC metric was the most important feature after SV 649 

length for classifying SVs by machine learning, however we considered that this 650 

metric may not be suitable for non-diploid samples, or complex clonal mixtures such 651 

as those encountered during tumour sequencing, as lower allelic fractions only give 652 

rise to small changes in FCC. For this reason, we also provide an additional 653 

machine-learning model for use with non-diploid or complex tumour SV discovery. 654 

 655 

Polymer repeats at breaksites 656 

Dysgu searches for simple repeat patterns with a unit length of 1-6 bp that directly 657 

overlap a break. These sites could arise from the joining of directed repeats (e.g. 658 

deletion event) or by the extension of the polymer at the break (e.g. insertion), or 659 

perhaps a more complex event. The length of the identified repeat sequence and the 660 

stride of the simple repeat are also utilized as features in the machine learning 661 

model. 662 

For each base in the input sequence, a search is initiated for a repeat pattern 663 

starting at that base. Repeat lengths L of between 1-6 bp are tested in increasing 664 

length. To identify a repeat pattern, successive kmers are tested for identity with the 665 

starting kmer, using a step size of L. If a matching kmer is found the count 9 is 666 

incremented. If > 3 non-matching kmers or > 1 successive non-matching kmer is 667 

found the search is stopped. If 9 	 3 when the search is stopped, and the spanning 668 

sequence identified is > 10 bp, the repeat sequence is set aside. Finally, if the repeat 669 

sequence overlaps the breaksite then the SV event is annotated with the breaksite 670 

repeat and stride length. 671 

  672 

SV event metrics 673 

Dysgu annotates each putative SV event with a number of metrics. In Table 7, we list 674 

metrics utilized in the diploid paired-end model by decreasing feature importance. 675 

Abbreviation Long name Description 
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SVLEN SV length The length in base-pairs of the SV 

FCC Fold change in 

coverage 

A measure of the change in sequencing 

coverage across the SV 

SU Support The total evidence in terms of reads supporting 

the SV 

RMS Re-mapping 

score 

The alignment score of the re-mapped soft-

clipped sequence for one-end anchored SVs 

CMP Compressibility The mean compressibility of both consensus 

sequences, defined as the compressed 

sequence length divided by the length of the 

uncompressed sequence. Zlib is used as the 

sequence compressor. 

BCC Bad clip count The number of reads within 500 bp of breaksites 

that do not have a high quality soft-clip. A sliding 

window of 10 bp is used to scan soft-clip 

sequences. If the average base quality of the 

window is > 10, a counter is incremented. If ≥ 15 

windows are found above this threshold, the read 

is deemed to have a high quality soft-clip. 

NEIGH10 Neighbours 

within 10 kb 

The total number of neighbouring break points 

within 10 kb of each end of the SV. 

REPSC Repeat score for 

soft-clipped 

sequences 

The mean repeat score for the soft-clipped 

portion of consensus contigs. See the “Repeat 

score calculation” section for details. 

MCOV Maximum 

sequence 

coverage within 

10 kb 

The maximum sequencing coverage within 10 kb 

of SV breaksites 

SWC Soft-clip weight The average base quality weight of the soft-

clipped portion of consensus contigs. See the 

”Consensus sequence generation” section for 

more details. 

RB Reference bases The total number of reference-aligned bases in 
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consensus sequences 

RAS Reverse soft-clip 

to alignment 

score 

The soft-clipped portion of a consensus contig is 

reverse complemented and aligned to the 

reference-aligned portion of the contig. RAS is 

the score of any alignment found using Striped 

Smith-Waterman using scikit-bio. 

MAPQP Map quality 

primary 

The mean mapping score of primary alignments. 

RR Reference repeat 

score 

For deletion events < 150 bp, the repeat score 

for the deleted reference sequence is calculated. 

See the “Repeat score calculation” section for 

details. 

COV Mean coverage 

within 10 kb 

The mean sequencing coverage within 10 kb of 

both break sites. 

FAS Forward soft-clip 

to alignment 

score 

The soft-clipped portion of a consensus contig is 

aligned to the reference-aligned portion of the 

contig. FAS is the score of any alignment found 

using Striped Smith-Waterman using scikit-bio. 

SQC Soft-clip quality 

correlation 

See the section “Base quality score correlation at 

soft-clipped reads” 

SVTYPE Structural variant 

type 

The major SV category, DEL – deletion, INS – 

insertion, INV – inversion, DUP – duplication, 

TRA – translocation. 

NP Normal pairs The total number of reads with a ‘normal’ 

mapping orientation and spacing determined by 

the mapper 

GC GC % The mean GQ percentage of consensus contigs 

NEXP Number of 

expanded repeat 

bases at break 

See the “Repeat expansion at break sites” 

section 

REP Repeat score of 

aligned bases 

The mean repeat-score of reference-aligned 

sections of consensus contigs. See the “Repeat 

score calculation” section for details.  
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NMP Mean NM score 

or alignments 

Mean edit-distance of primary alignments 

supporting the variant, determined by the mapper 

BND Number of 

break-end reads 

The total number of reads with a breakend 

signature, arising when a PE read is mapped in a 

normal orientation with no supplementary 

mappings, but also has a soft-clipped sequence 

MAS Maximum 

alignment score 

Maximum alignment score of supplementary 

reads supporting the variant 

STRIDE - The unit size in bp of the polymer extension 

sequence at the break site 

MS Minus strand The total number of reads found on the minus 

strand 

NMB - Mean edit distance excluding gaps >= 30bp 

OL Overlap The overlap in bp of query alignments from each 

breaksite 

RED Re-map edit 

distance 

The edit distance of the re-mapped soft-clip 

sequence 

PS Plus strand The total number of reads found on the plus 

strand 

NEIGH Neighbours The number of other putative breakpoints within 

1 bp of the current SV 

WR Within-read 

support 

The number of reads with an alignment gap 

supporting the SV 

RPOLY Reference 

polymer 

Number of polymer bases identified in the 

reference-aligned portion of consensus contigs 

CIPOS95 Confidence-

interval 

The confidence-interval around the POS 

breaksite 

MAPQS Map-quality 

supplementary 

The mean mapping quality of supplementary 

alignments 

SC Soft-clips Number of reads with soft-clips supporting the 

variant 

SR Split-reads Number of split-reads supporting the variant 

BE Block edge Categorical variable indicating if the component 
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of the quotient graph from which the call was 

made, had an edge 

NDC Number of 

double clips 

The number of reads that had left and right soft-

clips 

STL Short template 

length 

The number of reads that displayed an insert 

size blow the 0.05 % percentile. 

 676 

Table 7. Overview of the features used in machine learning classification. 677 

 678 

Classifier training 679 

To train a machine learning classifier for the different read-types (PE, PacBio and 680 

ONT) we constructed several ‘gold-sets’. Gold-sets consisted of manually curated 681 

SV loci or SV loci found using other calling software. Primarily, gold-sets were based 682 

on the well-studied HG001 sample (Female, Western European ancestry). However, 683 

for PacBio data, gold-sets were also derived from the HG005 sample (Male, Chinese 684 

ancestry). The read data utilized in constructing the gold-sets are listed in Table 8. 685 

 686 

  687 

Sample Read type Alignment 

information 

Coverage Source 

HG001 PacBio 

Sequel II 

11kb library 

GRCh37 

minimap2 

GRCh37 ngmlr 

5-6 SRA accession 

SRR9001772 

HG001 ONT GRCh37 

minimap2 

13 SRA accession 

SRR10965087 

HG001 Illumina 148 

bp x2 HiSeq 

2500 

GRCh37 bwa 

mem 

40 

20 

ftp://ftp-trace.ncbi.nlm.nih.gov/ 

giab/ftp/data/NA12878/ 

NIST_NA12878_HG001_HiSeq_300x/ 

RMNISTHS_30xdownsample.bam 

HG001 PacBio CCS GRCh37 

minimap2 

24 
ftp://ftp-trace.ncbi.nlm.nih.gov/ 

giab/ftp/data/NA12878/ 

NA12878_PacBio_MtSinai/ 

merged_ec_output_primary.bam 
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HG005 PacBio 

Sequel II 

11kb library 

GRCh38 

minimap2 

5-6 SRA accession 

SRR9001776 

 688 

Table 8. Overview of datasets used in model training. 689 

 690 

The overall strategy was to quantify dysgu performance on smaller subsets of data, 691 

and then combine these smaller benchmarks into a larger set for training. We 692 

employed this strategy as it meant that manual curation of smaller subsets was more 693 

feasible (as opposed to annotating events genome wide), and also multiple methods 694 

for annotating true-positive calls could be integrated into the training set e.g. relying 695 

on manual curation, labelling using a third party SV caller, or utilizing previously 696 

publish call sets, or utilizing different DNA mappers. 697 

Firstly, we constructed a gold-set based on PacBio Sequel II reads. Nanovar was run 698 

on HG001 minimap2-aligned reads and insertion calls from chr1 and chr10 in the 699 

size range 30-500 bp were added to the set (n=1808). The choice of chromosome to 700 

utilize was arbitrary. We also utilized a previously published list of deletion and 701 

insertion calls made using pbsv (n=27662) on PacBio CCS data at around 30× 702 

coverage (downloaded from GIAB ftp://ftp-703 

trace.ncbi.nlm.nih.gov/giab/ftp/data/ChineseTrio/analysis/PacBio_pbsv_05212019/H704 

G005_GRCh38.pbsv.vcf.gz). 705 

Next we added a collection of manually curated SV loci that were identified by 706 

visually inspecting calls made by dysgu using the Integrative Genomics Viewer (IGV) 707 

(40). Multiple read-types were assessed, simultaneously viewing alignments of 708 

PacBio Sequel II, PacBio CCS and ONT reads. If the SV showed support in more 709 

than one technology the SV loci was labelled as true. If a call made by dysgu was 710 

plausible, but showed strong evidence of being below the minimum size threshold < 711 

30 bp, then the call was labelled as false. All deletion and insertion calls for chr1, 10 712 

and 11 for HG001 minimap2-aligned reads were manually labelled in this way 713 

(n=2973). Additionally, large insertion calls (“large-INS”) made by dysgu (≥ 500 bp, 714 

whole genome) using HG001 minimap2 and ngmlr aligned reads were also 715 

assessed (n=1661). Calls made by dysgu were then compared to these smaller 716 
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benchmark sets separately and labelled as true or false using SVBench (available 717 

online at https://github.com/kcleal/svbench). 718 

These smaller benchmarks were then concatenated before training a gradient 719 

boosting classifier using the lightgbm package (28) (boosting type ”dart”). Features 720 

were first selected using recursive feature-selection with cross-validation using scikit-721 

learn (41). Hyperparameters were tuned using grid search with cross-validation 722 

using Stratified K-fold (n=5) (41). The learning-rate, max-bin, max-depth, n-723 

estimators and number-of-leaves were optimized in this way, whilst other parameters 724 

were left as default. 725 

Events labelled using the PacBio classifier with probability ≥ 0.5 were then leveraged 726 

to help construct additional gold-sets for PE and ONT read-types. For the PE gold-727 

set, deletion and insertion loci identified using the PacBio model were taken as true-728 

positive loci (chromosomes 1, 2, 10, 11, 12, n=8258). Additionally, the “large-INS” 729 

set derived from PacBio reads was utilized. Finally, events called by dysgu using PE 730 

reads (HG001, bwa mem) were manually curated, corresponding to deletions 731 

(n=5984 true) from chromosomes 1 – 5 and 10 – 22, plus insertions (n=2250 true) 732 

from chromosomes 1-14. The choices of chromosomes were arbitrary.  733 

For the ONT gold-set, we utilized deletion and insertion loci identified using the 734 

PacBio model (probability ≥ 0.5, whole genome n=25072 true). To this we used 735 

regions identified by Nanovar (n=23581 true), and the “large-INS” manually curated 736 

set. Additionally, we added manually curated dysgu calls from ONT data from chr1 737 

and chr10 (n=4265).  738 

 739 

Benchmark datasets 740 

For the HG002 benchmark, variants were downloaded from GIAB 741 

ftp://ftptrace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/analysis/NIST_SVs_Inte742 

gration_v0.6. For HG001, variants were downloaded from GIAB ftp://ftp-743 

trace.ncbi.nlm.nih.gov/giab/ftp/technical/svclassify_Manuscript/Supplementary_Infor744 

mation/Personalis_1000_Genomes_deduplicated_deletions.bed. 745 

 746 

Benchmarking SV calls using svbench 747 

We developed a python software library “svbench” to facilitate rapid benchmarking of 748 

SV datasets, as well as to facilitate exploration and comparison of SV calls as an 749 
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aide during software development. Svbench performs a similar role to other 750 

benchmarking programs such as truvari from GIAB (16), although as data structures 751 

can be held in memory and explored interactively, significant speedups can be 752 

obtained for benchmarking which can be helpful during software development and 753 

analysis. 754 

Svbench also optionally adds a weighting to input SVs that can be used to break ties 755 

between multiple query and reference SVs. The weighting or “strata” can be 756 

specified during loading of SVs, and usually takes the value of a quality metric set by 757 

the caller, or if this is absent, the variant support in terms of read evidence. 758 

Stratifying SV calls in this way is also necessary to generate a precision-recall curve. 759 

Another difference between svbench and truvari, is that svbench can optionally 760 

classify duplicate true-positive calls, which can arise when one reference SV in the 761 

sample gives rise to multiple calls in the output. There are several ways to classify 762 

duplicates, such as labelling all duplicates as false-positives, true-positives, or 763 

ignoring them from precision calculation. By default, svbench utilizes the latter 764 

option. Although this can lead to optimistic precision and F1 scores, we consider this 765 

approach often leads to a clearer understanding of the underlying performance of an 766 

SV caller. For example, if duplicates are labelled as false-positives then a caller that 767 

identifies the correct genomic loci but has a high duplication rate is penalized, while 768 

a caller that identified incorrect loci but also has a low duplication rate could end up 769 

with a similar overall precision and F1 score. Furthermore, removing duplicates 770 

bioinformatically, might be less of a challenge than removing genuine false positives, 771 

by for example filtering SVs with low weight but found nearby other SVs. 772 

Conceptually, svbench loads input files (vcf, bed, bedpe or csv format) into a 773 

‘CallSet’ object. Internally, SV records are held in a pandas dataframe (42), which 774 

support a rich set of data wrangling capabilities, making common data operations 775 

straightforward such as filtering, splitting, combining, grouping, and plotting 776 

precision-recall curves. 777 

To compare one dataset with another i.e. a benchmark dataset with a query dataset, 778 

both sets of SV loci are loaded into an svbench CallSet object. The benchmark 779 

dataset is then prepared by adding intervals (add_intervals function) around each 780 

breaksite, adding one interval for each start and end coordinate. Intervals are held in 781 

a nested containment list using the ncls library (43). Utilizing an interval at both start 782 

and end sites, rather than a single interval, means translocations can be naturally 783 
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compared, and for large SVs, nesting of small SV intervals within larger SVs is 784 

avoided which can reduce the search space when comparing records. 785 

Query SVs are then checked against prepared intervals. If a benchmark record 786 

overlaps both the start and end of a query SV, and the percent size similarity, 787 

reciprocal overlap and svtype match criteria, then the records are considered to 788 

match. Percent size is defined as 
�() �$�*+���,$�*+�����	

��� �$�*+���,$�*+�����	
 . Query and benchmark records 789 

that pass provided thresholds are then clustered on an undirected graph �, using the 790 

network library (44). 791 

Edges �7, �� : � are added to the graph between benchmark vertices 7 and query 792 

vertices � with the edge weight given by the “strata”, or weight property of the query 793 

event, which is parsed during loading of the data. If a query vertex � matches 794 

multiple benchmark vertices 7, then the chosen benchmark call 7 is determined by 795 

the closest absolute genomic distance between 7 and �, defined as J�������+,- #796 

�����,+.|  J�����+,- # ���,+.J.  Once all query records have been added to the 797 

graph, connected components are then processed. If a benchmark vertex has 798 

multiple edges, a highest scoring edge is selected as the true-positive call, whilst 799 

other query vertices are labelled as duplicates. If duplicate classification is permitted 800 

then precision scores are calculated as ���9���H� � �,�+ #�$����+$

������/�#��%��+$
. If duplicate 801 

classification is turned off then duplicates are treated as false positives. Recall is 802 

assessed as ��9�LL � �,�+ #�$����+$

�,�+ #�$����+$ �.��$+ �+&����+$
 and F1 score is calculated as 803 

M1 � 2. #,+%�$��� .,+%���

#,+%�$����,+%���
.   804 

We utilized svbench to assess performance of dysgu compared to other SV callers. 805 

For benchmarking calls against the HG002 benchmark (16), we filtered query calls 806 

by a minimum size of 30 bp (whole genome benchmark), or 50 bp (Tier 1 807 

benchmark). We utilized a reference interval size of 1000 bp, and a percent size 808 

similarity threshold of 15 %. Deletion and insertion calls were analysed separately, 809 

filtering both query and reference calls by svtype before comparison. Additionally, 810 

only query calls on the ‘normal’ chromosomes were analysed N9O�1. . 9O�PQ. To 811 

match the definition of the GIAB benchmark, we converted DUP calls < 500 bp to 812 

insertions. 813 
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SV callers were applied to datasets using default settings. Version numbers for 814 

tested callers were as follows: dysgu v1.1.4, gatk v4.1.2.0, strelka v2.9.2, manta 815 

v1.6.0, svim v1.3.1, sniffles v1.0.12, nanovar v1.3.2, delly v0.8.5. SV calls were also 816 

filtered by removing calls without a ‘PASS’ in the filter field (if applicable). The ‘strata’ 817 

metric utilized for each of the SV callers was as follows: lumpy – “SU”, delly – 818 

“QUAL”, dysgu – “PROB”, manta – “QUAL”, strelka – “QUAL”, gatk – “QUAL”, 819 

nanovar – “QUAL”, sniffles – “RE”, svim – “SUPPORT”. Events with a minimum 820 

support < 2 were filtered out.  821 

 822 

Abbreviations 823 

SV structural variant, PE paired-end, LR long-read, DEL deletion, DUP duplication, 824 

INV inversion, INS insertion, TRA translocation, ONT Oxford Nanopore 825 

Technologies, GIAB Genome In A Bottle consortium, SRA Sequencing read Archive, 826 

POA partial order alignment. 827 

 828 

Data availability 829 

Dysgu is released as free and open source under the Massachusetts Institute of 830 

Technology (MIT) licence. Source code and distributions can be downloaded at 831 

https://github.com/kcleal/dysgu. Data used to train the classifier is available online at 832 

https://zenodo.org/record/4761527. Svbench is also released under the MIT license 833 

and can be found at https://github.com/kcleal/svbench. Analysis scripts used to 834 

reproduce results found in this paper can be found under 835 

https://github.com/kcleal/svbench. Illumina sequencing data for Ashkenazim HG002 836 

(16) sample was downloaded from GIAB (ftp://ftp-837 

trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG002_NA24385_son/NIST_Hi838 

Seq_HG002_Homogeneity-10953946/HG002Run01-839 

11419412/HG002run1_S1.bam). Two lanes of PacBio data were downloaded from 840 

SRA (https://www.ncbi.nlm.nih.gov/sra) under accessions SRR10188368 and 841 

SRR10188369. ONT data were downloaded from SRA under accession 842 

SRR11537600. 843 

 844 
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Figure legends 994 
 995 
Figure 1. Performance of dysgu using 20× PE reads. Dysgu was compared to SV 996 
callers manta, delly and lumpy, and indel callers strelka and gatk, using the HG002 997 
benchmark. Precision-recall curves are shown for all genomic regions (A, B), as well 998 
as high-confidence Tier 1 regions (C, D). The secondary y-axis indicates duplicate 999 
true-positives (TP) as a fraction of true-positive calls. Intersections and aggregates of 1000 
intersections of SV calls for the all-regions benchmark are displayed using an upset 1001 
plot (E, F). To investigate combinations of SV callers, the union of true-positives 1002 
between callers (labelled concordant), was plotted against the sum of false-positives 1003 
(labelled non concordant) (G, H). The 5 and 10 % non-concordance (NC) is also 1004 
illustrated as a solid or dashed line, respectively. 1005 
 1006 
 1007 
Figure 2. Performance of dysgu using PacBio reads. Precision-recall curves are 1008 
shown for all genomic regions (A, B), as well as high-confidence Tier 1 regions (C, 1009 
D). Analysis of SV intersections and aggregates of intersections for the all-regions 1010 
benchmark are displayed using an upset plot (E, F). The combinations of SV callers 1011 
was assessed by plotting the union of true-positives (labelled concordant), against 1012 
the sum of false-positives (labelled non concordant) (G, H). The 5 and 10 % non-1013 
concordance (NC) are shown as a solid or dashed line, respectively. 1014 
 1015 
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