
Highlights

Learning Rates Are Not All the Same: The Interpretation of Com-
putational Model Parameters Depends on the Context

Maria K. Eckstein, Sarah L. Master, Liyu Xia, Ronald E. Dahl, Linda
Wilbrecht, Anne G.E. Collins

• Efforts in computational cognitive modeling often assume that Rein-
forcement Learning (RL) modeling parameters will generalize between
studies and models, but this is not well established.

• We empirically investigate whether RL parameters generalize between
three tasks and models, using a large developmental dataset and a
within-participant design.

• We find that RL decision noise/exploration parameters generalize fairly
well, but RL learning rates do not.

• Our data support previous conclusions that decision noise/exploration
decreases during development (ages 8-17), but suggests that claims
about learning rate development cannot be generalized.
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Abstract

Reinforcement Learning (RL) has revolutionized the cognitive and brain
sciences, explaining behavior from simple conditioning to problem solving,
across the life span, and anchored in brain function. However, discrepancies
in results are increasingly apparent between studies, particularly in the de-
velopmental literature. To better understand these, we investigated to which
extent parameters generalize between tasks and models, and capture specific
and uniquely interpretable (neuro)cognitive processes. 291 participants aged
8-30 years completed three learning tasks in a single session, and were fitted
using state-of-the-art RL models. RL decision noise/exploration parame-
ters generalized well between tasks, decreasing between ages 8-17. Learning
rates for negative feedback did not generalize, and learning rates for positive
feedback showed intermediate generalizability, dependent on task similarity.
These findings can explain discrepancies in the existing literature. Future
research therefore needs to carefully consider task characteristics when relat-
ing findings across studies, and develop strategies to computationally model
how context impacts behavior.
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Learning, Development, Generalizability, Interpretability

1. Introduction1

In recent decades, the cognitive neurosciences have made breakthroughs2

in computational modeling, showing that reinforcement learning (RL) mod-3

els can explain foundational aspects of human behavior. RL does not only4

seem to underlie simple cognitive processes such as stimulus-outcome and5

stimulus-response learning [1, 2, 3], but also complex ones, including goal-6

directed, temporally-extended behavior [4, 5], meta-learning [6], and abstract7

problem solving that requires hierarchical thinking [7, 8, 9, 10]. Underlining8

their centrality in the study of human cognition, RL models have been ap-9

plied across the lifespan [11, 12, 13], and in healthy participants as well those10

experiencing psychiatric illnesses [14, 15, 16, 17, 18]. RL models are of partic-11

ular interest because they also capture brain function: A specialized network12

of brain regions, including the basal ganglia and prefrontal cortex, implement13

computations that mirror specific components of RL algorithms, including14

action values and reward prediction errors [19, 20, 21, 22, 23, 24, 25]. In sum,15

explaining behaviors from simple conditioning to complex problem solving,16

adequate for diverse human populations, based on a compelling theoretical17

foundation [26], and with strong ties to brain function, RL has experienced18

a surge in published studies since its inception [27], and emerged as a pow-19

erful and potentially unifying modeling framework for cognitive and neural20

processing.21

Despite their increasing popularity, however, not enough attention has22

been paid to what exactly RL models and model variables (e.g., model pa-23

rameters) measure, and our current assumptions might be imprecise, po-24

tentially slowing further progress. Our recent opinion paper develops this25

argument in depth [28]. In brief, computational modeling condenses be-26

havioral datasets into a model and a small number of free model parameters27

[11, 27, 29, 30, 31, 32]. We as researchers often assume that these models and28

parameters expose mental and/or neural processes, and have the ability to29

dissect them into specific, unique components (e.g., value updating and deci-30

sion making), thereby measuring participants’ inherent characteristics (e.g.,31

individual learning rates). However, we argue in this paper that these as-32

sumptions might be too optimistic and that a careful empirical investigation33

is required to assess their validity.34
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We focus on two major aspects, which are adopted widely in computa-35

tional modeling [28]: generalizability and interpretability. We define a model36

variable (e.g., fitted parameter) as generalizable if it is consistent across uses,37

such that a person would be characterized with the same values independent38

of the specific model or task used to estimate the variable. Generalizability is39

a consequence of the assumption that parameters are intrinsic to participants40

(e.g., a person with a high learning rate) rather than task dependent. We41

further define a model parameter as interpretable if it isolates specific and42

unique elements of cognition, which are often assumed to be implemented in43

separable neural substrates: Decomposing behavior into model parameters44

is seen as a way of carving cognition at its joints.45

Assumptions about generalizability and interpretability are rarely stated46

explicitly, but underlie conclusions across the fields of computational psy-47

chology and neuroscience, and often implicitly guide research efforts. As-48

sumptions of generalizability, for example, inspired many to identify the49

inherent, task-independent settings of parameters in humans (e.g., empiri-50

cal parameter distributions [33]; relationships between negative and positive51

learning rates [34]), to characterize the age development of parameters in a52

task-independent way [11, 12, 13, 35], and to compare parameters between53

studies in review articles [14, 15, 16, 19, 20, 21, 22, 23, 25], meta-analyses54

[24, 36, 37], and discussion sections of empirical papers: When model vari-55

ables are compared between different types of studies, there is an implicit56

assumption of generalization. Relying on interpretability, model variables57

have been expected to be associated with specific neural substrates (e.g.,58

reward prediction errors and dopamine function [38]), to expose the core of59

what differentiates participants with psychiatric conditions from healthy ones60

(e.g., working-memory parameter differences in schizophrenia [39]), and gen-61

erally, to capture processes that are particularly “theoretically meaningful”62

[14].63

However, inconsistencies in empirical results are emerging across the de-64

velopmental [13, 40, 41, 42], clinical [15, 16, 17, 18], cognitive, and neuroscien-65

tific literature [24, 36, 37, 43], potentially suggesting a lack of generalizability66

and/or interpretability, which is also in accordance with different theoreti-67

cal considerations [27, 28, 44, 45, 46, 47]. Nevertheless, the degree to which68

parameters generalize between tasks and are interpretable has not been in-69

vestigated empirically yet (but see [48] for work on parameter reliability).70

This was the goal of the current project. We compared the RL parameters71

fit to the same individuals across different learning tasks in a single study.72
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We used a developmental dataset (291 participants, ages 8-30 years), which73

allowed us to obtain a large spread of individual differences and address74

outstanding discrepancies in the developmental psychology literature [13].75

The three learning tasks varied on several common dimensions, including76

feedback stochasticity, task volatility, and memory demands (Fig. 1B), and77

have previously been used to study RL processes [35, 49, 50]. However, like78

many tasks in the literature, these tasks likely also engaged other cognitive79

processes, such as working memory and reasoning. The within-participant80

design allowed us to test directly whether the same participants showed the81

same parameters across tasks (generalizability), and the combination of mul-82

tiple tasks shed light on which cognitive processes parameters captured in83

each task (interpretability). We extensively compared and validated the RL84

models of each task [27, 30, 51], and previously reported the developmental85

results separately [35, 49, 50].86

We found that the RL parameters that reflect decision noise or exploration87

(inverse decision temperature β, undirected noise ε; for model details, see88

section 4.5) were most consistent within individuals across tasks, suggesting89

that these parameters were most generalizable. Decision noise/exploration90

parameters also showed a consistent developmental pattern across subjects,91

declining from age 8-17. RL learning rate parameters (α+, α−), however,92

were largely inconsistent within individuals across tasks, showing that they93

did not generalize. Capturing different variance, they likely also reflected94

different cognitive processes across tasks. Both of these patterns are con-95

sistent with patterns that have started to emerge in the existing literature96

[13]. Behavioral analyses indicated that task differences, and the associated97

differences in optimal behavior, might underlie these observed parameter dis-98

crepancies. These results suggest that past computational findings are not99

as generalizable as often assumed, and that future research needs to address100

the reasons of the observed discrepancies to move the field forward.101

2. Results102

The next section gives a brief overview of the experimental tasks and103

computational models, before tackling parameter generalizability (section104

2.1) and parameter interpretability (section 2.2). Task details are provided in105

Fig. 1C-E and section 4.4, and computational models and parameter fitting106

in section 4.5, as well as the original publications [35, 49, 50].107
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Figure 1: Overview of the experimental paradigm. (A) Participant sample. Left:
Number of participants in each age group, broken up by sex (self-reported). Age groups
were determined by within-sex age quartiles for participants between 8-17 years. The adult
sample is broken up by recruitment type (“Stud.”: University undergraduates, receiving
course credit for participation. “Adult”: Adults recruited from the community using
the same methods as the developing participants. Right: Number of participants who
participated in the study and whose data were excluded because they failed to reach the
performance criterion in at least one task. (B) Pairwise similarities in task design between
tasks A, B, and C. Similarities between each pair of tasks are shown above the connecting
arrows. Only features are shown that differentiate two tasks from the third. E.g., noting
“Stable set size” on the edge between tasks A and B implies that set size was not stable
in task C. Task A shared more similarities with tasks B and C than they shared with
each other. (C) Procedure of task A (“Butterfly task”). Participants saw one of four
butterflies on each trial and selected one of two flowers in response, via button press on a
game controller. Each butterfly had a stable preference for one flower throughout the task,
but rewards were delivered stochastically (70% for correct responses, 30% for incorrect).
For details, see section 4.4 and the original publication [50]. (D) Procedure of task B
(“Probababilistic switching”). Participants saw two boxes on each trial and selected one
with the goal of finding gold coins. At each point in time, one box was correct and had
a high (75%) probability of delivering a coin, whereas the other was incorrect (0%). At
unpredictable intervals, the correct box switched sides. For details, see section 4.4 and
[49]. (E) Procedure of task C (“Reinforcement learning-working memory”). Participants
saw one stimulus on each trial and selected one of three responses. All correct responses
and no incorrect responses were rewarded. Stimuli were presented in blocks containing 2-5
different stimuli. The number of stimuli in a block is called set size. The task was designed
to disentangle set-size sensitive working memory processes from set-size insensitive RL
processes. For details, see section 4.4 and [35].
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Depending on the task, RL models contained different parameters, re-108

flecting existing differences in the literature. Task A required participants109

to learn the correct associations between each of four stimuli (butterflies)110

and two responses (flowers), through probabilistic feedback (Fig. 1C). The111

best-fitting model contained three free parameters: learning rate from posi-112

tive outcomes α+, inverse decision temperature β, and Forgetting F ; and one113

fixed parameter: learning rate from negative outcomes α− = 0 [50]. Task B114

required participants to adapt to unexpected switches in the action-outcome115

contingencies of a simple bandit task (only one of two boxes contained a116

gold coin at any time), based on semi-probabilistic feedback (Fig. 1D). The117

best-fitting RL model contained four free parameters: α+, α−, β, and choice118

persistence p [49]. Task C required learning of stimulus-response associations119

like task A, but over several task blocks with varying numbers of stimuli,120

and provided deterministic feedback (Fig. 1E). The best model for this task121

combined RL and working-memory processes, containing RL parameters α+122

and α−; working-memory parameters capacity K, Forgetting F , and noise ε;123

and mixture parameter ρ, which determined the relative weights of RL and124

working memory [35, 52].125

To ensure that potential parameter discrepancies in this study were not126

due to a lack of modeling quality, we employed rigorous model fitting, com-127

parison, and validation [27, 29, 30, 51]: For each task, we compared a large128

number of competing models, based on different parameterizations and cog-129

nitive mechanisms, and selected the best one based on quantitative model130

comparison scores, models’ ability to reproduce participants’ behavior in sim-131

ulation, and other criteria of model fit (e.g., interpretability) [44, 45]. We132

also used hierarchical Bayesian methods for model fitting and comparison133

when possible to obtain most accurate parameter estimates [51]. Individual134

publications provide further details [35, 49, 50].135

2.1. Part I: Parameter Generalizability136

To investigate parameter generalizability, we assessed whether partici-137

pants showed similar parameter values across tasks, and whether different138

tasks showed the same parameter age trajectories. These within-participant139

comparisons are crucial to determine whether discrepancies in the previ-140

ous literature were caused by methodological differences (e.g., differences in141

participant samples, testing procedures, modeling quality, research labs), or142

could arise from mere differences in task characteristics and computational143

models, as we hypothesized.144
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2.1.1. Differences in Absolute Parameter Values145

We first asked whether tasks led to different absolute parameter val-146

ues (Fig. 2A), using repeated-measures analyses of variance (ANOVAs).147

When ANOVAs showed significant task effects, we followed up with pair-148

wise, repeated-measures t-tests, using the Bonferroni correction.149

Learning rates α+ and α− occupied largely distinct ranges across tasks:150

Values were very low in tasks C (α+ mean: 0.07, sd: 0.18; α− mean: 0.03, sd:151

0.13), intermediate in task A (α+ mean: 0.22, sd: 0.09; α− was fixed at 0),152

and fairly high in task B (α+ mean: 0.77, sd: 0.11; α− mean: 0.62, sd: 0.14;153

for statistical comparisons, see Table 1). Decision noise was high in task B ( 1
β

154

mean: 0.33, sd: 0.15), but low in tasks A ( 1
β

mean: 0.095, sd: 0.0087) and C155

(ε mean: 0.025, sd: 0.032; statistics in Table 1 ignore ε because its absolute156

values were not comparable to 1
β

due to the different parameterization; see157

section 4.5). Forgetting was significantly higher in task C (mean: 0.19, sd:158

0.17) than A (mean: 0.056, sd: 0.028; task B was best fit without forgetting).159

All ANOVAs revealed significant and large task effects, and all follow-up160

t-tests revealed significant and large pairwise differences (Table 1), showing161

that absolute parameter values differed substantially between tasks. This162

shows that the three tasks produced significantly different estimates of learn-163

ing rate, decision noise/exploration, and forgetting for the same participants164

(Fig. 2B). Interestingly, these parameter differences echoed differences in165

task demands: Learning rates and noise/exploration were highest in task B,166

where frequent switches required quick updating and high levels of explo-167

ration. Similarly, forgetting was highest in task C, which posed the largest168

demands on memory. Using regression models that controlled for age (instead169

of ANOVA) led to similar results (Table D.9).170

2.1.2. Relative Parameter Differences171

However, comparing absolute parameter values between tasks has short-172

comings: It ignores variance between participants, even though between-173

participant variance might be the more meaningful measure because it re-174

flects participants’ relationships to each other. The simplest way to inves-175

tigate whether between-participant variance generalized between tasks is to176

test if individual variance in one task mirrors individual variance in another,177

using Spearman correlation (suppl. Fig. D.8). Indeed, both α+ (suppl. Fig.178

D.8A) and noise/exploration parameters (suppl. Fig. D.8B) were signifi-179

cantly positively correlated between task A and tasks B and C, suggesting180
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Figure 2: Generalizability of absolute parameter values (A-B) and of param-
eter age trajectories / z-scored parameters (C-D) between tasks. (A) Fitted
parameters over participant age (quartile bins), for all three tasks (A: green; B: orange;
C: blue). Parameter values differed significantly between tasks (for statistics, see Table
1). Dots indicate means, error bars specify the confidence level (0-1) for interval estima-
tion of the population mean. (B) Summary of the main results of part (A), visualizing
Table 1. Double-sided arrows are replicated from Fig. 1B and show task similarity. Lines
show test statistics for absolute parameter values. Dotted lines indicate significant task
differences in Bonferroni-corrected pairwise t-tests, which were conducted after observing
significant task effects in corresponding ANOVAs. All t-tests were significant, indicating
that absolute parameter values differed significantly for each pair of tasks. (C) Parame-
ter age trajectories, i.e., within-task z-scored parameters over participant age bins. Age
trajectories can potentially reveal similarities that are obscured by differences in means or
variances when assessing absolute parameter values. (D) Summary of the main results of
part (C), visualizing Table 4. When parameters in two tasks are connected with a full line,
the parameter can be predicted significantly in one task from the other. When parameters
are connected with a dotted line, the prediction is not significant. In contrast to absolute
parameter values, age trajectories were predictive in several cases, especially for tasks with
more similarities (A and B; A and C), compared to tasks with fewer (B and C).
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that variance between participants generalized better than absolute values.181

However, significant correlations were lacking between tasks B and C. This182

suggests that α+ and noise/exploration generalized from and to task A, but183

they did not generalize between tasks B and C, mirroring task similarities184

(Fig. 1B; also see section 2.2.1; Fig. D.9 shows the correlations between185

all pairs of features in the dataset.) Note that noise parameters generalized186

between task A and C despite differences in parameterization (ε vs. 1/β),187

showing robustness in the characterization of choice stochasticity (suppl. Fig.188

D.8B).189

2.1.3. Parameter Age Trajectories190

However, this correlation analysis is limited in its failure to take into191

account age effects, a known source of variance, such that apparent task192

similarities could be driven by a shared dependence on age rather than age-193

independent underlying similarities. To address this, we next analyzed pa-194

rameters’ age trajectories, which allowed us to abstract away potentially195

arbitrary differences (e.g., different parameter means and variances across196

tasks), while conserving potentially meaningful structure in the dataset (i.e.,197

participants’ parameter values relative to each other).198

We obtained age trajectories by z-scoring each parameter within each199

task (Fig. 2C). To test for differences in age trajectories, we used mixed-200

effects regression to predict parameters of all tasks from two age predictors201

(age and squared age) and task (A, B, or C). When this model fit better202

than the corresponding model without task, task characteristics affected age203

trajectories, and we added post-hoc models for each pair of tasks.204

For α−, the task-based regression model showed a significantly better fit,205

revealing significant task differences (Table 2). Indeed, α− showed funda-206

mentally different age trajectories in task B compared to C (in task A, α−207

was fixed): In task B, α− decreased linearly, modulated by a U-shaped cur-208

vature (linear effect of age: β = −0.11, p < 0.001; quadratic: β = 0.003,209

p < 0.001), but in task C, it increased linearly, modulated by an inverse-U210

curvature (linear: β = 0.32, p < 0.001; quadratic: β = −0.07, p < 0.001;211

Fig. 2C). These differences were reflected in the significant interaction terms212

of the grand regression model (Table ??).213

For α+, adding task as a predictor did not improve model fit, suggesting214

that age trajectories did not differ (Table 2). Indeed, age trajectories were215

qualitatively similar between tasks, showing linear increases that tapered off216

with age (linear increase: task A: β = 0.33, p < 0.001; task B: β = 0.052,217
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p < 0.001; task C: β = 0.28, p < 0.001; quadratic modulation: task A:218

β = −0.007, p < 0.001; task B: β = −0.001, p < 0.001; task C: β = −0.006,219

p < 0.001).220

For noise/exploration and Forgetting parameters, age trajectories did not221

differ either (Table 2). For decision noise/exploration, the grand regression222

model revealed a linear decrease and tapering off in older participants that223

was consistent across all tasks (Fig. 2C; Table ??), in accordance with previ-224

ous findings [13]. For Forgetting, the grand model did not reveal consistent225

age effects (Fig. 2C; Table ??).226

In summary, when assessing absolute parameter values (Fig. 2A, 2B), dif-227

ferences in scale obscured existing similarities in age trajectories for noise/exploration228

parameters and α+ (Fig. 2C). For α−, on the other hand, differences existed229

both in terms of scale (Fig. 2A, 2B) and age trajectories (Fig. 2C). As sug-230

gested by the correlation analysis, patterns of generalization differed between231

pairs of tasks, such that more generalization was present between tasks that232

were more similar in terms of task characteristics (A and B; A and C; not B233

and C).234

2.1.4. Predicting Age Trajectories235

So far, we have assessed parameter differences to reveal parameters that236

do not generalize across tasks. However, the absence of differences only pro-237

vides indirect evidence for generalization. We therefore next assessed how238

closely parameters were related, using linear regression to predict partici-239

pants’ parameters in one task from the values of the same parameter in a240

different task. We controlled for age by including age and squared age as241

predictors to ensure that the prediction was driven by parameter similarities242

beyond age.243

For both α+ and noise/exploration parameters, task A predicted tasks B244

and C, and tasks B and C predicted task A, but tasks B and C did not pre-245

dict each other (Table 4; Fig. 2D), confirming that α+ and noise/exploration246

generalized from and to task A, but not between tasks B and C, mirroring247

task similarities (Fig. 1B; also see section 2.2.1). For α−, tasks B and C248

showed a marginally significant negative relationship (Table 4), suggesting249

that predicting α− in one task from the other would lead to inverse predic-250

tions. Indeed, we previously reported a U-shaped trajectory of α− in task251

B with minimum in 13-to-15-year-olds [49], but a consistent increase up to252

early adulthood in task C [50], revealing striking qualitative differences in253

the estimation of α− when using these two tasks. For Forgetting, tasks A254
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Table 1: Statistics of ANOVAs predicting raw parameter values from task (A, B, C). When
an ANOVA showed a significant task effect, post-hoc, Bonferroni-corrected t-tests were
added. * p < .05; ** p < .01, *** p < .001.

Parameter Model Tasks F / t df p sig.
1
β

ANOVA A, B 830 1 p < 0.001 ***

t-test A vs B 25 246 p < 0.001 ***
α+ ANOVA A, B, C 2.018 2 p < 0.001 ***

t-test A vs B 66 246 p < 0.001 ***
t-test A vs C 12 246 p < 0.001 ***
t-test B vs C 51 246 p < 0.001 ***

α− ANOVA B, C 2.357 1 p < 0.001 ***
t-test B vs C 49 246 p < 0.001 ***

Forgetting ANOVA A, C 161 1 p < 0.001 ***
t-test A vs C 49 246 p < 0.001 ***

Table 2: Assessing the existence of age effects on parameter trajectories: Model fits of
regression models predicting parameter age trajectories, comparing the added value of
including (“AIC with task”) versus excluding (“AIC without task”) task as a predictor.
Differences in AIC scores were tested statistically using F-tests. The best (significantly
smaller) AIC scores are highlighted in bold, and their coefficients are shown in Table ??.

Parameter AIC without task AIC with task F(df) p sig.
1
β /ε 2,044 2,054 NA NA –

α+ 2,044 2,042 F (4, 245) = 2.34 p = 0.056 –
α− 1,395 1,373 F (2, 245) = 6.99 p = 0.0011 **
Forgetting 1,406 1,411 NA NA –
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Table 3: Statistical tests on age trajectories: mixed-effects regression models predicting
z-scored parameter values from task (A, B, C), age, and squared age (months). When
the task-less model fitted best, the coefficients of this model are shown, showing shared
age trajectories (Table 2; 1

β /ε, α+, Forgetting). When the age-based model fitted better,

pairwise follow-up models are shown (α−), showing task differences. P-values of follow-up
models were corrected for multiple comparison using the Bonferroni correction. * p < .05;
** p < .01, *** p < .001.

Parameter Tasks Predictor β p (Bonf.) sig.
1
β /ε A, B, C Intercept 1.86 < 0.001 ***

Age (linear) -0.17 0.003 **
Age (quadratic) 0.004 < 0.001 ***

α+ A, B, C Intercept -2.10 < 0.001 ***
Age (linear) 0.20 < 0.001 ***
Age (quadratic) -0.004 < 0.001 ***

α− B, C Task (main effect) 4.15 < 0.001 ***
Task * linear age (interaction) 0.43 < 0.001 ***
Task * quadratic age (interaction) -0.010 < 0.001 ***

Forgetting A, C Intercept 0.37 0.44
Age (linear) -0.034 0.53
Age (quadratic) 0.001 0.63

and C were not predictive of each other (Table 4).255

Importantly, these results (Fig. 2D) differ from the previous patterns256

(Fig. 2C) for Forgetting parameters and α+ in tasks B and C. This shows257

that a lack of difference (Fig. 2C) does not imply successful prediction (Fig.258

2D).259

2.1.5. Summary Part I260

In summary, Part I revealed that (1) different tasks led to different es-261

timates of participants’ exploration ( 1
β
), Forgetting (F ), and learning rates262

(α+, α−), revealing a lack of generalization of absolute parameter values.263

Intriguingly, absolute parameter values were stable within tasks (reflecting264

task demands), but varied within participants. (2) In contrast to absolute265

parameter values, age trajectories of noise/exploration parameters and learn-266

ing rates α+ were qualitatively similar between tasks, suggesting that pa-267

rameter age trajectories generalized better than absolute values. The age268

trajectories of learning rates α−, however, differed fundamentally between269

tasks, highlighting that parameters in the same models can generalize dif-270

ferently. (3) Assessing the parameters with task-consistent age trajectories,271
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noise/exploration decreased until early adulthood, in accordance with the272

literature [13], while learning rates α+ increased. (4) Using between-task273

prediction as the strongest test of generalization, age trajectories of learning274

rates α− and Forgetting were not predictive, and noise/exploration param-275

eters and learning rates α+ could only be predicted between similar tasks,276

suggesting that generalizability was generally weaker than expected, and277

might depend on task similarity.278

2.2. Part II: Parameter Interpretability279

Based on these insights, Part II of our investigations focused on param-280

eter interpretability, i.e., the concept that parameters capture specific and281

unique cognitive processes that are well delineated. We tested parameter in-282

terpretability by investigating the relations between different parameters in283

our dataset, assessing the specificity and distinctiveness of each parameter as284

well as the relations between parameters and observed patterns of behavior.285

2.2.1. The Main Axes of Variation286

To gain an understanding of what information was captured by each287

parameter, we employed a data-driven approach, identifying major axes of288

variance without specifying a priori hypotheses. We used PCA to identify the289

major axes in our dataset (composed of both behavioral features and model290

parameters). We then used these axes (principal components; PCs) to in-291

terpret model parameters. To understand the PCs themselves, we analyzed292

the weights of the behavioral features on each PC (Fig. 3). Detailed infor-293

mation is provided in sections 4.6 (PCA methods), Appendix C (behavioral294

features), and suppl. Fig. D.10 (additional PCA results).295

We first examined PC1, the axis of largest variation (25.1% of explained296

variance; suppl. Fig. D.10A), to understand the main sources of individual297

differences in our dataset. Behaviors that indicated good task participation298

(e.g., high percentage of correct choices) loaded positively on PC1, whereas299

behaviors that indicated that participants were not on task loaded negatively300

(e.g., more missed trials, longer response times; Fig. 3A). PC1 comprised301

measures both in the narrow sense of maximizing task accuracy (e.g., per-302

centage correct choices, measures of task accuracy, win-stay choices), and in303

the wider sense of reflecting task engagement (e.g., number of missed trials,304

response times, response time variability). PC1 therefore captured a range305

of “good performance” indicators, reflecting general task engagement. PC1306
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increased significantly with age, consistent with participants’ increasing per-307

formance (suppl. Fig. B.6B; age effects of subsequent PCs in suppl. Fig.308

D.10; suppl. Table D.8).309

In all three tasks, noise/exploration loaded negatively on PC1 (Fig. 3A),310

showing that elevated decision stochasticity was associated with poorer per-311

formance in all tasks. Forgetting parameters also loaded negatively, support-312

ing a negative role for performance. α+ showed positive loadings in all three313

tasks, suggesting that faster integration of positive feedback was associated314

with better performance. Intriguingly, α− loaded positively in task C, but315

negatively in task B, suggesting that performance increased when partici-316

pants integrated negative feedback faster in task C, but decreased when they317

did the same in task B. This distinction can be interpreted in terms of task318

demands: Negative feedback was diagnostic in task C, but non-diagnostic in319

task B (Fig. 1B), such that repeating choices after negative feedback (“Lose-320

stay” behavior) was hurtful in the former (negative loading on PC1 for task321

C), but can be beneficial in the latter (positive loading on PC1 for task B;322

Fig. 3A).323

Having gained insight into parameters’ roles for task engagement by an-324

alyzing PC1, we next turned to PC2 and PC3. To facilitate their interpreta-325

tion, we flipped the loadings of all PC2 and PC3 features that were negative326

on PC1, to make them intrepretable with respect to task engagement (for327

methodological details, see section 4.6). This pre-processing revealed that328

PC2 and PC3 encoded task contrasts: PC2 contrasted task B to task C329

(loadings on corresponding features were positive / negative / near-zero for330

tasks B / C / A; Fig. 3B). PC3 contrasted task A to both B and C (load-331

ings on corresponding features were positive / negative for task A / tasks332

B and C; Fig. 3C; missed trials and response times did not show task con-333

trasts, suggesting that these features did not differentiate between tasks).334

The ordering of PC2 and PC3 shows that participants’ behavior differed335

more between tasks B and C (PC2: 8.9% explained variance) than between336

B or C and A (PC3: 6.2%; suppl. Fig. D.10), in accordance with descriptive337

task characteristics (Fig. 1B). This shows that after task engagement, the338

main variation in our dataset arose from task differences.339

Intriguingly, noise/exploration parameters, α+, and α− reproduced the340

task contrasts of PC2 and PC3, showing positive or negative loadings based341

on the task in which they were measured (Fig. 3B, 3C). This means that these342

parameters differed sufficiently between tasks to be discriminable (as opposed343

to, e.g., response times and numbers of missed trials, which did not show344
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task contrasts, suggesting that they were not discriminable between tasks).345

Each parameter therefore captured enough task-specific variance to make it346

possible to be identified with the correct task. This degree of differentiability347

would not be expected if parameters captured the same processes in each348

task, in which case they would capture the same variance and not show349

task differences. Taken together, PC2 and PC3 confirmed that each of these350

parameters captured task-unique processes.351

Taken together, the PCA revealed that (1) the main axes of variation in352

the dataset were task engagement (PC1) and task differences (PC2-PC3).353

(2) Noise/exploration, Forgetting, α+, and α− all were related to task en-354

gagement (PC1). Whereas the relation was consistent between tasks for the355

former three, it was task-dependent for α− and mirrored specific task de-356

mands. (3) Noise/exploration, α+, and α− all captured enough task-specific357

variance to be correctly identified with the corresponding task, showing that358

they captured different processes depending on the task (PC2-PC3).359

2.2.2. Parameters and Cognitive Processes360

Whereas the previous analysis revealed that all parameters contained361

task-specific information, it did not specify how much information was task-362

specific and how much was shared. For example, noise/exploration param-363

eters contained enough task-specific information to make it possible to de-364

termine in which task they were measured (PC2-PC3; Fig. 3B, 3C), but365

they also showed similar associations with engagement across tasks (PC1;366

Fig. 3A), similar age trajectories (Fig. 2C), and were mutually predictive367

(Fig. 2D). To quantify these patterns, we need to understand how much of368

each parameter’s variance was unique and how much was shared between369

parameters and between tasks.370

To achieve this, we probed how much of each parameter’s variance was371

explained by other parameters, using regression. We assumed that param-372

eters reflected one or more cognitive processes, such that shared variance373

between parameters would imply overlapping cognitive processes. If param-374

eters reflected similar cognitive processes across tasks, then the same param-375

eter should dominate this analysis (e.g., when using parameters in task A376

to predict 1
β

in task B, task A’s 1
β

should show the largest regression co-377

efficient). However, if parameters captured different processes across tasks,378

this would not be the case (e.g., all parameters of task A might predict379

task B’s 1
β

equally). We used repeated, k-fold cross-validated Ridge regres-380

sion to avoid overfitting, obtaining unbiased out-of-sample estimates of the381
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Figure 3: Identifying the major axes of variation in the dataset. A PCA was con-
ducted on the entire dataset (39 behavioral features and 15 model parameters). The figure
shows the factor loadings of the first three PCs. RL model parameters are highlighted in
purple on the x-axis. Behavioral features are explained in detail in Appendix A and Ap-
pendix B. (A) PC1 captured broadly-defined task engagement, with negative loadings on
features that were negatively associated with performance (e.g., number of missed trials)
and positive loadings on features that were positively associated with performance (e.g.,
percent correct trials). (B-C) PC2 (B) and PC3 (C) captured task contrasts. PC2 loaded
positively on features of task B (orange box) and negatively on features of task C (blue
box). PC3 loaded positively on features of task A (green box) and negatively on features
of tasks B and C. We flipped the loadings of features that were negative on PC1 when
showing PC2 and PC3 to better visualize the task contrasts (section 4.6).
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means and variances of explained variance R2 and regression coefficients w382

(for methods, see section 4.7).383

We first assessed the overall patterns of prediction, and found that all384

significant coefficients highlighted shared variance between tasks A and B or385

tasks A and C, but never between tasks B and C, mirroring our previous386

results (Fig. 2D; section 2.1.2) and patterns of task similarity (Fig. 1B).387

This means that no parameters in tasks B or C played a significant role in388

predicting parameters in the other, while both tasks’ parameters were predic-389

tive (and being predicted by) parameters in task A. This further highlights390

the potential role of task similarity in parameter generalizability.391

We next focused on noise/exploration parameters. Noise/exploration392

parameters in tasks B and C showed significant coefficients when predict-393

ing noise/exploration in task A, but the inverse was not true, such that394

noise/exploration in task A did not show significant coefficients when pre-395

dicting noise/exploration in tasks B or C (Fig. 4A; Table 5). The first396

result shows that noise/exploration parameters captured variance (cognitive397

processes) in task A that they also captured in tasks B and C. The second re-398

sult shows that noise/exploration parameters captured additional cognitive399

processes in tasks B and C that they did not capture in task A. Further-400

more, prediction accuracy increased when combining tasks B and C’s param-401

eters to predict noise/exploration in task A, showing that noise/exploration402

parameters in tasks B and C captured partly non-overlapping aspects of403

noise/exploration in task A (Fig. 4B, left-most set of bars, compare pur-404

ple to orange and blue). This highlights both specificity in terms of which405

cognitive processes were captured by noise/exploration parameters across406

tasks (prediction between similar tasks), and some lack thereof (prediction407

was just one-way; no prediction between dissimilar tasks). Furthermore,408

noise/exploration in task A was predicted by Persistence and α− in task B,409

and by α− and working-memory weight ρ in task C (Fig. 4A; Table 5). This410

shows that some processes that noise/exploration parameters captured in411

task A were captured by different parameters in the other tasks, revealing a412

lack of distinctiveness in noise/exploration parameters.413

We next assessed learning rates. Specificity was evident in that learning414

rate α+ in task A showed a significant regression coefficient when predicting415

learning rates α+ and α− in task C, and learning rate α− in task C showed416

a significant coefficient when predicting learning rate α+ in task A (Fig. 4A;417

Table 5). However, a lack of specificity was evident in task B: When predict-418

ing α+ in task B, no parameter of any task showed a significant coefficient419
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(including α+ in other tasks; Table 5), and it was impossible to predict vari-420

ance in task B’s α+ even when combining all parameters of the other tasks421

(Fig. 4B, “Task B” panel). This reveals that α+ captured fundamentally422

different cognitive processes in task B compared to the other tasks. The case423

was similar for parameter α−, which strikingly was inversely related between424

tasks A and B (Table 5), and impossible to predict in task B from all other425

parameters (Fig. 4B). This shows a lack of specificity, implying that learning426

rates did not reflect a consistent core of cognitive processes across tasks.427

We then turned to the distinctiveness of learning rate parameters. Learn-428

ing rate α+ in task A was predicted indistinctly by all parameters of task B429

(with the notable exception of α+ itself; Fig. 4A; Table 5), suggesting that430

the cognitive processes that α+ captured in task A were captured by an inter-431

play of several parameters in task B. Furthermore, task A’s α+ was predicted432

by task C’s working-memory parameters ρ and K (Fig. 4A; Table 5), suggest-433

ing that α+ captured a conglomerate of RL and working-memory processes434

in task A that was isolated by different sets of parameters in task C [52].435

In support of this interpretation, no variance in task C’s working-memory436

parameters could be explained by any other parameters (Fig. 4B), revealing437

that they captured unique cognitive processes, likely working memory. Task438

C’s RL parameters, on the other hand, could be explained by parameters in439

other tasks (Fig. 4B), suggesting they captured overlapping RL processes.440

2.2.3. Parameters and Behavior441

Faced with mounting evidence for parameter inconsistencies, we lastly442

aimed to uncover whether parameters shared any consistent similarities across443

tasks. The previous sections showed that parameters likely captured differ-444

ent (neuro)cognitive processes across tasks (e.g., different internal character-445

istics of learning and choice). However, computational models are funda-446

mentally models of behavior, so we argued that parameters might capture447

similar behavioral features (e.g., similar tendencies to stay after positive feed-448

back). Even though related, (neuro)cognitive processes and behavioral pat-449

terns should not be equated (Fig. 5). For example, different (neuro)cognitive450

mechanisms (e.g., prefrontal cortical reasoning, basal ganglia value learning,451

hippocampal episodic memory) might underlie the same behavioral pattern452

(e.g., lose-stay behavior) in different tasks, depending on the characteris-453

tics (e.g., stable versus volatile contingencies; deterministic versus stochastic454

feedback).455

To investigate this possibility, we assessed the relationships between model456
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Figure 4: Assessing parameter interpretability by analyzing shared variance.
(A) Parameter variance (cognitive processing) that is shared between tasks. Each arrow
shows a significant regression coefficient when predicting a parameter in one task (e.g.,
α+ in task A) from all parameters of a different tasks (e.g., P , α−, α+, and 1

β in task

B). The predicted parameter is shown at the arrow head, predictors at its end. Full lines
indicate positive regression coefficients, and are highlighted in purple when connecting two
identical parameters; dotted lines indicate negative coefficients; non-significant coefficients
are not shown. Table 5 provides the full statistics of the models summarized in this figure.
(B) Variance of each parameter that was also captured by parameters of other models.
Each bar shows the percentage of explained variance (R2) when predicting one parameter
from all parameters of a different task/model, using Ridge regression. Part (A) of this
figure shows the coefficients of these models. The x-axis shows the predicted parameter,
and colors differentiate between predicting tasks. Three models were conducted to predict
each parameter: One combined the parameters of both other tasks (pink), and two kept
them separate (green, orange, blue). Larger amounts of explained variance (e.g., Task A
1
β and α−) suggest more shared processes between predicted and predicting parameters;

the inability to predict variance (e.g., Task B α+; Task C working-memory parameters)
suggests that distinct processes were captured. Bars show mean R2, averaged over k data
folds (k was chosen for each model based on model fit, using repeated cross-validated
Ridge regression; for details, see section 4.7); error bars show standard errors of the mean
across folds. (C) Relations between parameters and behavior. The arrows visualize Ridge
regression models that predict parameters (bottom row) from behavioral features (top row)
within tasks (full statistics in Table 6). Arrows indicate significant regression coefficients,
colors denote tasks, and line types denote the sign of the coefficients, like before. All
significant within-task coefficients are shown. Task-based consistency (similar relations
between behaviors and parameters across tasks) occurs when arrows point from the same
behavioral features to the same parameters in different tasks (i.e., multiple arrows). (D)
Variance of each parameter that was explained by behavioral features; corresponds to the
behavioral Ridge models shown in part (C).
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parameters and behavioral features across tasks. Using regularized Ridge re-457

gression like above, we predicted each model parameter from five selected458

behavioral features (Appendix A, Appendix C) of each of the three tasks459

(15 predictors; for regression methods, see section 4.7). One possible outcome460

of this analysis is “absolute consistency”: parameters might capture the same461

behavioral pattern within and across tasks (e.g., noise/exploration of each462

task might capture task A accuracy). This outcome would be expected if pa-463

rameters captured the same cognitive processes across tasks, and behavioral464

features were a direct reflection of cognitive processes. Another possible out-465

come is “absolute inconsistency” (e.g., in every task, noise/exploration might466

capture different behavioral features). This outcome would suggest that pa-467

rameters captured unrelated cognitive and behavioral features in each task.468

Crucially, a third possible outcome is “task-based consistency”: Parameters469

might capture the same behavioral features, but only within tasks (e.g., in470

each task, learning rates might capture the win-stay behavior of that task,471

but not of other tasks). This outcome would suggest that parameters gen-472

eralized in terms of which behavioral features they reflected, but behavioral473

features—like (neuro)cognitive processes—differed between tasks.474

Focusing on noise/exploration parameters, 1
β

in tasks A and B was pre-475

dicted by task A win-stay behavior, revealing absolute consistency (Table476

6). 1
β

was also predicted by accuracy, win-stay, and lose-stay behavior within477

both tasks A and B, but not across tasks, revealing task-based consistency478

(Fig. 4C; Table 6). For learning rates, α+ in tasks A and B was predicted479

by the corresponding win-stay behavior, and α− in tasks B and C was neg-480

atively predicted by the corresponding lose-stay behavior, and positively by481

the corresponding win-stay behavior (Fig. 4C; Table 6), revealing task-based482

consistency. The consistency of α− is especially noteworthy given the abun-483

dance of discrepancies in previous sections.484

Taken together, noise/exploration parameters, α+, and α− captured simi-485

lar behavioral features across tasks (Fig. 4C), despite differences in cognitive486

processing (Fig. 4A, 4B), captured information (Fig. 3B, 3C), age trajecto-487

ries (Fig. 2C, 2D), and absolute values (Fig. 2A, 2B). Notably, the observed488

discrepancies reflected task characteristics (Fig. 1B, 3A) for both parame-489

ters (Fig. 1B, 3A) and behavior (suppl. Fig. B.6B), suggesting that task490

characteristics shaped behavioral responses and model parameters.491
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Process 1 Process 2 Process 3

Behavior 1 Behavior 2 Behavior 3

Process A Process C

Process B ...

Behavior 1 Behavior 2 Behavior 3

Parameter 1 Parameter 2 Parameter 3

Any learning task

Parameter 1 Parameter 2 Parameter 3

Based on the task

Generalizable and interpretable parameters Context-based parametersA C

Figure 5: What do model parameters measure? (A) View based on generalizability
and interpretability. In this view, which is implicitly taken by much current computational
modeling research, models are fitted in order to reveal individuals’ intrinsic model parame-
ters, which reflect clearly delineated, separable, and meaningful (neuro)cognitive processes,
a concept we call interpretability. Interpretability is evident in that every model parameter
captures a specific cognitive process (bidirectional arrows between each parameter and pro-
cess), and that cognitive processes are separable from each other (no connections between
processes). Task characteristics are treated as irrelevant, a concept we call generalizability,
such that parameters of any learning task (within reason) are expected to capture similar
cognitive processes. (C) Updated view, based on our results, that acknowledges the role
of context (e.g., task characteristics, model parameterization, participant sample) in com-
putational modeling. Which cognitive processes are captured by each model parameter is
influenced by context (green, orange, blue), as shown by distinct connections between pa-
rameters and cognitive processes. Different parameters within the same task can capture
overlapping cognitive processes (not interpretable), and the same parameters can capture
different processes depending on the task (not generalizable). However, parameters likely
capture consistent behavioral features across tasks (thick vertical arrows).
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3. Discussion492

The current study subjected the generalizability and interpretability of493

RL models to a scrutinous empirical investigation, using a developmental494

sample. We found weaker levels of generalizability and interpretability than495

would be expected based on current research practices, such as comparing496

parameters between studies that use different tasks and models [28].497

Interestingly, patterns of generalizability and interpretability varied be-498

tween parameters: Exploration/noise parameters showed considerable gener-499

alizability in the form of correlated variance and age trajectories. The decline500

in exploration/noise we observed between ages 8-17 was also consistent with501

previous studies reviewed in [13]. Interpretability of exploration/noise pa-502

rameters was mixed: Despite evidence for specificity in some cases (overlap503

in parameter variance between some tasks), it was missing in others (lack of504

overlap between other tasks), and crucially, parameters lacked distinctiveness505

(substantial overlap in variance with other parameters).506

Learning rate from negative feedback, on the other hand, showed a sub-507

stantial lack of generalizability: parameters were less consistent within par-508

ticipants than within tasks, and age trajectories differed both quantitatively509

and qualitatively. This result is consistent with discrepancies in learning rate510

parameters across developmental studies [13]. Learning rates from positive511

and negative feedback combined were interpretable to a limited degree (over-512

lap in variance between some tasks). However, interpretability was overshad-513

owed by a lack of specificity (lack of shared core variance) and distinctive-514

ness (fundamental entangling with several other parameters, most notably515

working-memory parameters).516

These within-participant findings are consistent with patterns that are517

emerging from comparisons of studies published by different labs [13]. Our518

within-participant design allowed us to go beyond these between-study find-519

ings by confirming that the same participants can show different parame-520

ters when tested using different tasks. The within-participant consistency of521

noise/exploration parameters strengthens our confidence that these indeed522

decrease with age [13, 53, 54]. The inconsistency of learning rate parameters523

leads to the unexpected, but important conclusion that we cannot measure524

an individual’s “intrinsic learning rate” using RL modeling, and that we525

cannot draw general conclusions about “the development of learning rates”526

that apply to all RL contexts, using current methods.527

Our findings also help us clarify the source of parameter inconsistencies528
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in the previous literature, which could indicate replication problems and529

technical issues: For example, model misspecification [13], lack of model530

comparison and validation [27, 30], inappropriate fitting methods [29, 51],531

and lack of parameter reliability due to suboptimal methods [48] have all532

been suggested as potential sources of inconsistencies. However, our results533

show that discrepancies are expected even with a consistent methodological534

pipeline, and using up-to-date modeling techniques (detailed model compari-535

son, validation, and hierarchical Bayesian model fitting where possible). This536

should encourage the field of computational modeling to study the external537

factors that drive such inconsistencies, and are currently undescribed by RL538

methods, with more rigor.539

3.1. Limitations540

One limitation of our results is that regression analyses might be con-541

taminated by parameter cross-correlations (in sections 2.1.2, 2.1.3, 2.1.4),542

which would reflect modeling limitations (fewer true degrees of freedom than543

model parameters), and not necessarily shared cognitive processes. For ex-544

ample, parameters α and β are mathematically related in the regular RL545

modeling framework [26, 29], and we observed significant correlations be-546

tween parameters within tasks for two of our three tasks (suppl. Fig. D.7).547

This indicates that caution is required when interpreting correlation results.548

However, correlations were also present between tasks (suppl. Fig. D.8),549

suggesting that within-model trade-offs were not the only explanation for550

shared variance, and that shared cognitive processes likely also played a role.551

Furthermore, correlations between parameters within models are frequent552

in the existing literature, and do not prevent researchers from interpreting553

parameters—in this sense, the existence of similar correlations in our study554

allows us to address the question of generalizability and interpretability in555

similar circumstances as in the existing literature.556

3.2. Moving Forward557

With this research, we do not intend to undermine RL modeling, but to558

improve its quality. Computational model parameters potentially provide559

highly valuable insights into (neuro)cognitive processing—we just need to560

refrain from assuming that the identified processes are necessarily and inher-561

ently specific, distinct, and “theoretically meaningful” [14] (interpretable).562

Parameters with the same names also do not automatically transfer between563
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tasks or models, and are less interchangeable than we often implicitly as-564

sume [28]. At the same time, the behavioral features that are captured by565

parameters seem to generalize well between tasks.566

In the long term, we need to understand why RL parameters differ be-567

tween tasks. We suggest three potential, not mutually exclusive answers:568

1. Optimality. Variance in RL parameters may reflect how participants569

adapt their behavior to task demands, an explanation proposed by570

[13]. For example, participants might tune learning rates to task char-571

acteristics (e.g., adopting lower learning rates in stable than volatile572

contexts [55]), rather than learning rates reflecting intrinsic “settings”573

(e.g., 10-year-olds having a learning rate of 20%; 16-year-olds of 40%).574

An optimality-based view would also explain why learning rates dif-575

fer between deterministic and stochastic tasks, which require different576

amounts of behavioral change in response to feedback, to reach opti-577

mal performance. Age differences can potentially be explained because578

optimal settings likely differ between ages because they interact with579

different environments, or because different ages might have different580

capacities to shift internal settings when shifting from task to task.581

More research is needed, however, to determine whether parameter op-582

timality can explain all inconsistencies in the literature. For example,583

our finding that participants showed the most optimal parameter val-584

ues in the intermediate age range in task B [49], whereas optimality585

increased monotonously with age in tasks A and C [35, 50], is difficult586

to reconcile with this view.587

2. Modulatory processes. RL Parameters may vary as a function of588

modulatory processes that are not well captured in current RL models.589

Modulatory processes have been described in cognition and neurobiol-590

ogy and likely serve to shift functional outputs (e.g., hunger increasing591

motivation) [56, 57, 58]. Some modulatory processes reflect the inte-592

gration of external contextual information: for example, uncertainty593

affects dopamine neuron firing [59, 60, 61]. In addition, environments594

with different degrees of uncertainty have been shown to elicit different595

learning rates [55]. It is thus possible that neuromodulation by task596

uncertainty could modulate RL processes, reflected in RL parameters.597

In our data, feedback stochasticity and task volatility likely contribute598

to such uncertainty-related modulation. However, other factors like599

task similarity (low versus high), task characteristics (e.g., volatility600
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[55, 49], feedback stochasticity, memory load [35, 52], feedback valence601

and conditioning type [24]), and choice of model parameters (e.g., for-602

getting [35, 50], counter-factual learning [49], negative and positive603

learning rates [34, 62, 63]), also seem to affect RL parameters, but are604

independent of uncertainty. More research is needed to systematically605

investigate the factors the contribute to modulatory processes, and how606

they impact cognition and computation.607

3. RL processes are multifaceted. RL Parameters capture a multi-608

tude of separate processes, whose composition differs across tasks (Fig.609

5B). RL algorithms are framed in the most general way to allow ap-610

plication to a wide range of contexts, including AI, neuroscience, and611

psychology [26, 28]. As behavioral models, their use has spanned be-612

haviors from simple conditioning [1, 38] to complex decision making613

[4, 6, 7, 8, 9, 22, 64], meaning that the same parameters capture cog-614

nitive processes that vary considerably in type and complexity: Pro-615

cesses can include the slow acquisition of implicit preferences [1], long-616

term memory for such preferences [65], quick recognition of contingency617

switches [49, 66], selection of abstract high-level strategies [7, 9, 67],618

meta-learning [6], habitual and goal-directed decision making [5], work-619

ing memory or episodic memory-guided choice [52, 68, 69], and many620

others. This list alone outnumbers the list of typical RL model param-621

eters, suggesting that RL parameters capture different (combinations622

of) cognitive processes depending on the paradigm. Similar arguments623

have also been made for behavioral analyses [70].624

3.3. Conclusion625

Our research has important implications for fields that focus on individ-626

ual differences, including developmental and clinical computational research.627

The current study should be seen as a proof of concept that many contextual628

factors impact computational modeling, and larger studies will be necessary629

to quantify these effects and determine their structure. Other areas of model-630

ing besides the RL framework should be subjected to a similar investigation.631

It is possible, for example, that generalizability differs for sequential sam-632

pling [71, 72], Bayesian inference [49, 73, 74], model-based versus model-free633

RL [48, 75, 76], or other models.634

In sum, our results suggest that relating model parameters to cognitive635

constructs and real-world behavior might require us to carefully account for636

task variables, and environmental variability in general. This ties into the637
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bigger picture of understanding how neurocognitive processes are shared be-638

tween tasks [77], and reflects a larger pattern of realization in psychology639

that we cannot objectively assess an individual’s cognitive processing while640

ignoring subjective context. We have shown that in lab studies, different task641

contexts recruit different system settings within an individual; similarly, real-642

life environment, its changes during development, and past environment [78]643

may also modulate which cognitive processes we recruit. Heightened aware-644

ness and systematic study of contextual variables will therefore be a valuable645

future investment as we work to measure and accommodate diversity in cog-646

nitive processes.647

4. Methods648

4.1. Study Design649

Our sample of 291 participants was balanced between females and males,650

and all ages (8-30 years) were represented equally (Fig. 1A, left). Partici-651

pants completed four computerized tasks, questionnaires, and a saliva sample652

during the 1-2 hour lab visit (see section 4.3). To reduce noise, we excluded653

participants based on task-specific performance criteria (see section 4.2). Due654

to worse performance, more younger than older participants were excluded,655

which is a caveat for the interpretation of age effects (note however that656

these exclusions cannot account for the observed age effects but act against657

them; Fig. 1A). Our tasks—A (“Butterfly task” [50, 79]), B (“Probabilis-658

tic Switching” [66, 49]), and C ( “Reinforcement learning-Working memory”659

[35, 52])—were all classic reinforcement learning tasks: on each trial, partic-660

ipants chose between several actions in an effort to earn rewards, which were661

presented as binary feedback (win/point or lose/no point) after each choice.662

The tasks varied on several common dimensions (Fig. 1B), which have663

been related to discrepancies in behavioral and neurocognitive results in the664

literature [24, 36, 37]. For example, in one task (task C), positive feedback665

was deterministic, such that every correct action led to a positive outcome,666

whereas in the two other tasks (tasks A and B), positive feedback was stochas-667

tic, such that some correct actions led to positive and others to negative668

outcomes. A different set of two tasks (B and C) provided diagnostic pos-669

itive feedback, such that every positive outcome indicated a correct action,670

whereas in the third (A), positive feedback was non-diagnostic, such that671

positive outcomes could indicate both correct and incorrect actions. Two672

tasks (A and C) presented several different stimuli/states for which correct673
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actions had to be learned, whereas the third (B) only presented a single674

one. Overall, task A shared more important similarities with both tasks B675

and C than either of these shared with each other, allowing us to explore676

whether task similarity played a role in parameter generalizability and in-677

terpretability. A comprehensive list of task differences is shown in Fig. 1B,678

and each task is described in more detail in section 4.4. Section Appendix679

B explains the most prominent findings of each task individually, and shows680

several behavioral measures over age.681

4.2. Participant Sample682

4.2.1. Sample Overview683

All procedures were approved by the Committee for the Protection of Hu-684

man Subjects at the University of California, Berkeley. We tested 312 partic-685

ipants: 191 children and adolescents (ages 8-17) and 55 adults (ages 25-30)686

were recruited from the community and completed a battery of computer-687

ized tasks, questionnaires, and saliva samples; 66 university undergraduate688

students (aged 18-50) completed the four tasks as well, but not the question-689

naires or saliva sample. Community participants of all ages were prescreened690

for the absence of present or past psychological and neurological disorders;691

the undergraduate sample indicated the absence of these. Compensation for692

community participants consisted in $25 for the 1-2 hour in-lab portion of693

the experiment and $25 for completing optional take-home saliva samples;694

undergraduate students received course credit for participation in the 1-hour695

study.696

4.2.2. Participant Exclusion697

Two participants from the undergraduate sample were excluded because698

they were older than 30, and 7 were excluded because they failed to indicate699

their age. This led to a sample of 191 community participants under 18, 57700

undergraduate participants between the ages of 18-28, and 55 community701

participants between the ages of 25-30. Of the 191 participants under 18,702

184 completed task B, and 187 completed tasks A and C. Reasons for not703

completing a task included getting tired, running out of time, and technical704

issues. All 57 undergraduate participants completed tasks B and C and705

55 completed task A. All 55 community adults completed tasks B and A,706

and 45 completed task C. Appropriate exclusion criteria were implemented707

separately for each task to exclude participants who failed to pay attention708

and who performed critically worse than the remaining sample (for task A,709
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see [50]; task B [49]; task C [35]). Based on these criteria, 5 participants710

under the age of 18 were excluded from task B, 10 from task A, and none711

from task C. One community adult participant was excluded from task A,712

but no adult undergraduates or community participants were excluded from713

tasks B or C.714

Because this study related the results across all three tasks, we only715

included participants who were not excluded in any task, leading to a final716

sample of 143 participants under the age of 18 (male: 77; female: 66), 51717

undergraduate participants (male: 17; female: 34), and 53 adults from the718

community (male: 25; female: 28), for a total of 247 participants (male: 119;719

female: 128). We entirely excluded the fourth task of our study from the720

current analysis, which was modeled after a rodent task and used in humans721

for the first time [80], because the applied performance criterion led to the722

exclusion of the majority of our developmental sample. We split participants723

into quantiles based on age, which were calculated separately within each724

sex.725

4.3. Testing Procedure726

After entering the testing room, participants under 18 years and their727

guardians provided informed assent and permission; participants over 18728

provided informed consent. Guardians and participants over 18 filled out729

a demographic form. Participants were led into a quiet testing room in view730

of their guardians, where they used a video game controller to complete731

four computerized tasks. The first task was called “4-choice” and assessed732

reversal learning in an environment with 4 different choice options, with a733

duration of approximately 5 minutes (designed after [80]). This task was734

excluded from the current analysis (see section 4.2.2). The second task was735

C (“Reinforcement learning-Working memory”) and took about 25 minutes736

to complete [52, 35]. After the second task, participants between the ages of737

8-17 provided a saliva sample (for details, see [35]) and took a snack break (5-738

10 minutes). After that, participants completed task A (“Butterfly task”),739

which took about 15 minutes [79, 50], and task B (“Probabilistic Switch-740

ing”), which took about 10 minutes to complete [49]. At the conclusion of741

the tasks, participants between 11 and 18 completed the Pubertal Develop-742

ment Scale (PDS [81]) and were measured in height and weight. Participants743

were then compensated with $25 Amazon gift cards. The PDS questionnaire744

and saliva samples were administered to investigate the role of pubertal mat-745

uration on learning and decision making. Pubertal analyses are not the focus746
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of the current study and will be or have reported elsewhere [35, 49, 50]. For747

methodological details, refer to [35]. The entire lab visit took 60-120 minutes,748

depending on the participant.749

4.4. Task Design750

4.4.1. Task A (“Butterfly task”)751

The goal of task A was to collect as many points as possible, by guessing752

correctly which of two flowers was associated with each of four butterflies.753

Correct guesses were rewarded with 70% probability, and incorrect guesses754

with 30%. The task contained 120 trials (30 for each butterfly) that were755

split into 4 equal-sized blocks, and took between 10-20 minutes to complete.756

More detailed information about methods and results can be found in [50].757

4.4.2. Task B (“Probabilistic Switching”)758

The goal of task B was to collect golden coins, which were hidden in two759

green boxes. The task could be in one of two states: “Left box is correct”760

or “Right box is correct”. In the former, selecting the left box led to reward761

in 75% of trials, while selecting the right box never led to a reward (0%).762

Several times throughout the task, task contingencies changed unpredictably763

and without notice (after participants had reached a performance criterion764

indicating they had learned the current state), and the task switched states.765

Participants completed 120 trials of this task (2-9 reversals), which took ap-766

proximately 5-15 minutes. For more information and additional task details,767

refer to [49].768

4.4.3. Task C (“Reinforcement Learning-Working Memory”)769

The goal of task C was to collect as many points as possible by pressing770

the correct key for each stimulus. Pressing the correct key deterministically771

led to reward, and the correct key for a stimulus never changed. Stimuli772

appeared in blocks that varied in the number of different stimuli, with set773

sizes ranging from 2-5. In each block, each stimulus was presented 12-14774

times, for a total of 13 * set size trials per block. Three blocks were presented775

for set sizes 2-3, and 2 blocks were presented for set sizes 4-5, for a total of 10776

blocks. The task took between 15-25 minutes to complete. For more details,777

as well as a full analysis of this dataset, refer to [35].778
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4.5. Computational Models779

For all tasks, we used RL theory to model how participants adapted their
behavior in order to maximize reward. RL models assume that agents learn
a policy π(a|s) that determines (probabilistically) which action a to take in
each state s of the world [26]. Here and in most cognitive RL models, this
policy is based on action values Q(a|s), i.e., the values of each action a in each
state s. Agents learn action values by observing the reward outcomes, rt, of
their actions at each time step t. Learning consists in updating existing action
values Qt(a|s) using the “reward prediction error”, the difference between the
expected reward Qt(a|s) and the actual reward rt:

Qt+1(a|s) = Qt(a|s) + α(rt −Qt(a|s))

How much a learner weighs past action value estimates compared to new out-780

comes is determined by parameter α, the learning rate. Small learning rates781

favor past experience and lead to stable learning over long time horizons,782

while large learning rates favor new outcomes and allow for faster and more783

flexible changes, focusing on shorter time horizons. With enough time and784

in a stable environment, the RL updating scheme guarantees that value es-785

timates will reflect the environment’s true reward probabilities, and thereby786

allow for optimal long-term choices [26].787

In order to choose actions, most cognitive RL models use a (noisy) “soft-
max” function to translate action values Q(a|s) into policies p(a|s):

p(ai|s) =
exp(β Q(ai|s))∑

aj∈A exp(β Q(aj|s))

A refers to the set of all available actions (tasks A and B have 2 actions,788

task C has 3), and ai and aj to individual actions within the set. How789

deterministically versus noisily this translation is executed is determined by790

exploration parameters β, also called inverse decision temperature, and/or791

ε, the decision noise (see below). Small decision temperatures 1
β

favor the792

selection of the highest-valued actions, enabling exploitation, whereas large793

decision temperatures select actions of low and high values more evenly,794

enabling exploration. Parameter ε adds undirected noise to action selection,795

selecting random action with a small probability ε on each trial.796

Besides α, β, and noise, cognitive RL models often include additional797

parameters to better fit empirical behavior in humans or animals. Com-798

mon choices include Forgetting—a consistent decay of action values back to799
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baseline—, and Persistence—the tendency to repeat the same action inde-800

pendent of outcomes, a parameter also known as sticky choice or perseverance801

[63]. In addition, cognitive models often differentiate learning from positive802

versus negative rewards, splitting learning rate α into two separate param-803

eters α+ and α−, which are applied to only positive and only negative out-804

comes, respectively [34, 40, 82, 83, 84, 85, 86, 87, 88]. The next paragraphs805

introduce these parameters in detail.806

In task A, the best fitting model included a forgetting mechanism, which
was implemented as a decay in Q-values applied to all action values of the
three stimuli (butterflies) that were not shown on the current trial:

Qt+1(a|s) = (1− f) ∗Qt+1(a|s) + f ∗ 0.5.

The free parameter 0 < f < 1 reflects individuals’ tendencies to forget.807

In task B, free parameter P captured choice persistence, which biased
choices on the subsequent trial toward staying (P > 0) or switching (P < 0).
P modifies action values Q(a|s) into Q′(a|s), as follows:

Q′t(a|s) = Qt(a|s) + P ⇐⇒ at = at−1

Q′t(a|s) = Qt(a|s) ⇐⇒ at 6= at−1

In addition, the model of task B included counter-factual learning parameters
αC+ and αC−, which added counter-factual updates based on the inverse
outcome and affected the non-chosen action. For example, after receiving
a positive outcome (r = 1) for choosing left (a), counter-factual updating
would lead to an “imaginary” negative outcome (r̄ = 0) for choosing right
(ā).

Qt+1(ā|s) = Qt(ā|s) + αC+(r̄ −Qt(ā|s)) ⇐⇒ r = 1

Qt+1(ā|s) = Qt(ā|s) + αC−(r̄ −Qt(ā|s)) ⇐⇒ r = 0

ā indicates the non-chosen action, and r̄ indicates the inverse of the received808

outcome, r̄ = 1 − r. The best model fits were achieved with αC+ = α+ and809

αC− = α−, so counter-factual learning rates are not reported in this paper.810

In tasks A and B, positive and negative learning rates are differentiated
in the following way:

Qt+1(a|s) = Qt(a|s) + α+(rt −Qt(a|s)) ⇐⇒ rt = 1

Qt+1(a|s) = Qt(a|s) + α−(rt −Qt(a|s)) ⇐⇒ rt = 0
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In the best model for task A, only α+ was a free parameter, while α− was811

fixed to 0. In task C, α− was a function of α+, such that α− = b∗α+, where b812

is the neglect bias parameter that determines how much negative feedback is813

neglected compared to positive feedback. Throughout the paper, we report814

α− = b ∗ α+ for task C.815

In addition to an RL module, the model of task C included a working-
memory module with perfect recall of recent outcomes, but subject to forget-
ting and capacity limitations. Perfect recall was modeled as an RL process
with learning rate αWM+ = 1 that operated on working-memory weights
W (a|s) rather than action values. On trials with positive outcomes (r = 1),
the model reduces to:

Wt+1(a|s) = rt

On trials with negative outcomes (r = 0), multiplying αWM+ = 1 with the
neglect bias b leads to potentially less-than perfect memory:

Wt+1(a|s) = Wt(a|s) + b ∗ (rt −Wt(a|s))

Working-memory weightsW (a|s) were transformed into action policies pWM(a|s)
in a similar way as RL weights Q(a|s) were transformed into action proba-
bilities pRL(a|s), using a softmax transform combined with undirected noise:

p(ai|s) = (1− ε) ∗ exp(β Q(ai|s))∑
aj∈a exp(β Q(aj|s))

+ ε ∗ 1

|a|

|a| = 3 is the number of available actions and 1
|a| is the uniform policy over816

these actions; ε is the undirected noise parameter.817

Forgetting was implemented as a decay in working-memory weightsW (a|s)
(but not RL Q-values):

Wt+1(a|s)t+1 = (1− f) ∗Wt(a|s)t + f ∗ 1

3

Capacity limitations of working memory were modeled as an adjustment in
the weight w of pWM(a|s) compared to pRL(a|s) in the final calculation of
action probabilities p(a|s):

w = ρ ∗ (min(1,
K

ns
))

p(a|s) = w ∗ pWM(a|s) + (1− w) ∗ pRL(a|s)
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The free parameter ρ is the individual weight of working memory compared818

to RL, ns indicates a block’s stimulus set size, and K captures individual819

differences in working-memory capacity.820

We fitted a separate RL model to each task, using state-of-the-art meth-821

ods for model construction, fitting, and validation [30, 27]. Models for tasks822

A and B were fitted using hierarchical Bayesian methods with Markov-Chain823

Monte-Carlos sampling, which is an improved method compared to maximum824

likelihood that leads to better parameter recovery, amongst other advantages825

[89, 90, 91]. The model for task C was fitted using classic non-hierarchical826

maximum-likelihood because model parameter K is discrete, which renders827

hierarchical sampling less tractable. In all cases, we verified that the model828

parameters were recoverable by the selected model-fitting procedure, and829

that the models were identifiable. Details of model-fitting procedures are830

provided in the original publications [35, 49, 50].831

For additional details on any of these models, as well as detailed model832

comparison and validation, the reader is referred to the original publications833

(task A: [50]; task B: [49]; task C: [35]).834

4.6. Principal Component Analysis (PCA)835

The PCA in section 2.2.1 included 15 model parameters (α+ and noise/exploration836

in each task; Forgetting and α− in two tasks; Persistence in task B; four837

working-memory parameters in task C; see section 4.5) and 39 model-free838

features, including simple behavioral features (e.g., overall performance, re-839

action times, tendency to switch), results of behavioral regression models840

(e.g., effect of stimulus delay on accuracy), and the model parameters of an841

alternative Bayesian inference model in task B. All behavioral features, in-842

cluding their development over age, are described in detail in Appendix C843

and suppl. Fig. B.6B. For simplicity, section 2.2.1 focused on the first three844

PCs only; the weights, explained variance, and age trajectories of remaining845

PCs are shown in suppl. Fig. D.10.846

PCA is a statistical tool that decomposes the variance of a dataset into847

so-called “principal components” (PCs). PCs are linear combinations of a848

dataset’s original features (e.g., response times, accuracy, learning rates),849

and explain the same variance in the dataset as the original features. The850

advantage of PCs is that they are orthogonal to each other and therefore851

capture independent aspects of the data. In addition, subsequent PCs ex-852

plain subsequently less variance, such that selecting just the top PCs of a853

dataset retains the bulk of the variance and the ability to reconstruct the854
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dataset up to random noise. When using this approach, it is important to855

understand which concept each PC captures. So-called factor loadings, the856

original features’ weights on each PC, can provide this information.857

PCA performs a change of basis : Instead of describing the dataset using858

the original features (in our case, 54 behaviors and model parameters), it cre-859

ates new features, PCs, that are linear combinations of the original features860

and capture the same variance, but are orthogonal to each other. PCs are861

created by eigendecomposition of the covariance matrix of the dataset: the862

eigenvector with the largest eigenvalue shows the direction in the dataset in863

which most variance occurs, and represents the first PC. Eigenvectors with864

subsequently smaller eigenvalues form subsequent PCs. PCA is related to865

Factor analysis, and often used for dimensionality reduction. In this case,866

only a small number of PCs is retained whereas the majority is discarded, in867

an effort to retain most variance with a reduced number of features.868

We highlight the most central behavioral features here; more detail is pro-869

vided in Appendix A and Appendix C. Response to feedback was assessed870

using features “Win-stay” (percentage of trials in which a rewarded choice871

was repeated), and “Lose-stay” (percentage of trials in which a non-rewarded872

choice was repeated). For task B, we additionally included “Win-lose-stay”873

tendencies, which is the proportion of trials in which participants stay after a874

winning trial that is followed by a losing trial. This is an important measure875

for this task because the optimal strategy required staying after single losses.876

We also included behavioral persistence measures in all tasks. In tasks877

A and C, these included a measure of action repetition (percentage of trials878

in which the previous key was pressed again, irrespective of the stimulus879

and feedback) and choice repetition (percentage of trials in which the action880

was repeated that was previously selected for the same stimulus, irrespective881

of feedback). In task B, both measures were identical because every trial882

presents the same stimulus.883

We further included task-specific measures of performance. In task A,884

these were: the average accuracy for the first three presentations of each885

stimulus, reflecting early learning speed; and the asymptote, intercept, and886

slope of the learning progress in a regression model predicting performance887

(for details about these measures, see [50]. In task B, task-specific mea-888

sures of performance included the number of reversals (because reversals889

were performance-based); and the average number of trials to reach criterion890

after a switch. In tasks A and C, we also included a model-independent891

measure of forgetting. In task A, this was the effect of delay on performance892
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in the regression model mentioned above. In task C, this was the effect of893

delay in a similar regression model, which also included set size, the number894

of previous correct choices, and the number of previous incorrect choices,895

whose effects were also included. Lastly for task C, we included the slope896

of accuracy and response times over set sizes, as measures of the effect of897

set size on performance. For task B, we also included the difference between898

early (first third of trials) and late (last third) performance as a measure of899

learning. To avoid biases in the PCA toward any specific task, we included900

equal numbers of behavioral features for each task.901

To facilitate the interpretation of PC2 and PC3, we normalized the load-902

ings (PCA weights) of each feature (behavioral and model parameter) with903

respect to PC1, flipping the loadings of all features in PC2 and PC3 that904

loaded negatively on PC1. This step ensured that the directions of factor905

loadings on PC2 and PC3 were interpretable in the same way for all features,906

irrespective of their role for task performance, and revealed the encoding of907

task contrasts.908

4.7. Ridge Regression909

In sections 2.2.2 and 2.2.3, we use regularized, cross-validated Ridge re-910

gression to determine whether parameters captured overlapping variance,911

which would point to an overlap in cognitive processes. We used Ridge re-912

gression to avoid problems that would be caused by overfitting when using913

regular regression models. Ridge regression regularizes regression weight pa-914

rameters w based on their L2-norm. Regular regression identifies a vector915

of regression weights w that minimize the linear least squares ||y − wX||22.916

Here, ||a||22 =
√∑

ai∈x a
2
i is the L2-norm of a vector a, vector y represents917

the outcome variable (in our case, a vector of parameters, one fitted to each918

participant), matrix X represents the predictor variables (in our case, either919

several behavioral features for each participant [2.2.2], or several parame-920

ters fitted to each participant 2.2.3]), and vector w represents the weights921

assigned to each feature in X (in our case, the weight assigned to each pre-922

dicting behavioral pattern or each predicting parameter).923

When datasets are small compared to the number of predictors in a re-924

gression model, exploding regression weights w can lead to overfitting. Ridge925

regression avoids this issue by not only minimizing the linear least squares926

like regular regression, but also the L2 norm of weights w, i.e., by minimizing927

||y−wX||22+α∗||w||22. Parameter α is a hyper-parameter of Ridge regression,928
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which needs to be chosen by the experimenter. To avoid bias in the selection929

of α, we employed repeated cross-validated grid search. At each iteration of930

this procedure, we split the dataset into a predetermined number s ∈ [2, 3,931

..., 8] of equal-sized folds, and then fitted a Ridge regression to each fold, us-932

ing values of α ∈ [0, 10, 30, 50, 100, 300, ..., 10,000, 100,000, 1,000,000]. For933

each s, we determined the best value of α based on cross-validation between934

folds, using the amount of explained variance, R2, as the selection criterion.935

To avoid biases based on the random assignment of participants into folds,936

we repeated this procedure n = 100 times for each value of α. To avoid biases937

due to the number of folds, the entire process was repeated for each s, and938

the final value of s was selected based on R2. We used the python package939

“scikit learn” [92] to implement the procedure.940

We conducted three models per parameter to determine the relations be-941

tween parameters: predicting each parameter from all the parameters of each942

of the other two tasks (2 models); and predicting each parameter from all943

parameters of both other tasks combined (1 model; Fig. 4A). We conducted944

the same three models per parameter to determine the relations between pa-945

rameters and behaviors, predicting each parameter from behavioral features946

of the other tasks (Fig. 4A). In addition, we conducted a fourth model for947

behaviors, predicting each parameter from the behaviors of all three tasks948

combined, to assess the contributions of all behaviors to each parameter (Fig.949

4C). Meta-parameters s and α were allowed to differ (and differed) between950

models. The final values of R2 (Fig. 4B and 4D) and the final regression951

weights w (Fig. 4A and 4C; Table 6) were determined by refitting the winning952

model.953
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