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Abstract 

A unique set of mouse outbred lines has been generated through selective breeding in the 

longest selection experiment ever conducted on mice. Over the course of >140 generations, 

selection on the control line has given rise to two extremely fertile lines (>20 pups per litter 

each), two giant growth lines (one lean, one obese) and one long-distance running line. 

Genomic analysis revealed line-specific patterns of genetic variation among lines and high 

levels of homozygosity within lines as a result of long-term intensive selection, genetic drift 

and isolation. Detection of line-specific patterns of genetic differentiation and structural 

variation revealed multiple candidate genes behind the improvement of the selected traits. We 

conclude that the genomes of these lines are rich in beneficial alleles for the respective selected 

traits and represent an invaluable resource for unraveling the polygenic basis of fertility, 

obesity, muscle growth and endurance fitness. 
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Introduction 

Artificial selection is the selective breeding of organisms by which desired phenotypic traits 

evolve in a population1. Farm animals are the result of this selective breeding process to achieve 

efficient food production. However, artificial selection can also be applied experimentally in 

other species in order to connect genes and other genomic elements to selection response for 

complex traits such as behavior2 and limb elongation3. 

The worldwide longest selection experiment on mice began in the early 1970’s at the former 

Forschungszentrum für Tierproduktion (FZT), nowadays called Leibniz Institute for Farm 

Animal Biology (FBN) located in Dummerstorf, Germany4,5. Starting from a single founder 

line, selection lines for different complex traits were bred with population sizes of 60-100 

breeding pairs per line. An unselected control line from the same founder line was maintained 

over the entire selection period with a larger population size (125-200 breeding pairs)4,5. Over 

the course of >140 generations, selection has shaped the genomes of the Dummerstorf trait-

selected mouse lines, leading to extreme phenotypes that include increased litter size (more than 

double the litter size of the unselected mouse line)6, body mass (approx. 90g body weight at 6 

weeks of age)7 and endurance (up to 3× higher untrained running capacity)8.  

In contrast to most murine models that mainly rely on targeted genetic modifications9,10, the 

Dummerstorf trait-selected mouse lines offer the possibility to elucidate the unpredictable 

genetic background of different complex traits, where multiple genes, regulatory elements and 

pathways act in conjunction to shape the phenotype the lines were selected for. 

Here we describe the selection history of this unique selection experiment, characterize specific 

patterns of genetic variation and identify genes that are likely associated to each selected trait.  
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Materials and Methods 

Selection history of the Dummerstorf trait-selected mouse lines 

The selection experiment started in 1969 (Table 1 and 2, for more detail see Supplementary 

Material) with the establishment of a founder line FZTDU (Forschungszentrum für 

Tierproduktion Dummerstorf)4,5 by systematic crossing of four outbred strains (NMRI orig., 

Han:NMRI, CFW, CF1) and four inbred strains (CBA/Bln, AB/Bln, C57BL/Bln, XVII/Bln). 

From FZTDU five lines were established through selective breeding: two lines were selected 

for increased litter size (DUK and DUC), one for increased body mass (DU6), and one each for 

protein mass (DU6P) and treadmill running endurance (DUhLB) (Table 2, Fig. 1).  

In general, all lines were developed through among-family selection11, whereby litters were 

ranked according to each trait of interest (Table 2) and then parents were chosen at random 

from the highest ranked litters. DUK and DUC were ranked by the total number of pups and by 

the total litter weight. However, for an interim period of 10 generations families were ranked 

only by litter weight. DU6 was selected for growth by ranking litters by the total weight of two 

randomly samples males from each litter at 42 days of age. Whenever possible these males were 

not chosen as sires. Similarly, the protein mass line DU6P was developed according to protein 

mass by combining weight and protein content of the carcass of a single male from each litter 

at 42 days of age. Occasionally protein mass could not be determined (e.g. because of technical 

issues or limited lab capacities), in which case litters were ranked by the combined weight of 

two males, as described for line DU6. Finally, the sire of each litter in line DUhTP was 

submitted to a treadmill test after the mating period and litters got their rank according to 

performance of their sires.  

FZTDU was kept as an unselected control line with 200 breeding pairs, whereas the trait-

selected lines were maintained with 60-100 breeding pairs. However, when animals had to be 

relocated to a new animal housing building in 2011 after 120-165 generations, the number of 

breeding pairs drastically dropped to 55 for FZTDU, ~20 for DUK, DUC, DU6P and DUhLB, 

and to as low as 7 for DU6 (Table 1). This transition could only be accomplished through a 

limited number of embryo transfers, forcing all selection lines to go through a severe population 

bottleneck. A few generations after this transition and only for the lines that continued to be 

selected (DUK, DUC, DU6; see Table 1), family information and individual information was 

combined in a pedigree-based BLUP (Best Linear Unbiased Prediction)12 estimation of 

breeding values. Additionally, phenotyping in the line DU6 was massively extended by taking 
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body weights at day 42 from all progeny, including females. After the implementation of these 

changes selection relied on estimated breeding values with a constraint on inbreeding.         

 

Table 1. Summary selection history of the Dummerstorf mouse lines 

 FZTDU DUK DUC DU6 DU6P DUhLB 

Established (year) 1969 1971 1971 1975 1975 1982 

No. Founders (BPs) NR 60 60 80 80 100 

Trait increment -- 2× 2× 3× 2× 3× 

Percentage selected1 -- 25-80 25-80 45-90 45-70 40-100 

Relocation2 at generation 160-164 165 163-164 154-155 154-155 120-121 

No. BPs per generation before relocation 200 60-100 60-100 60-80 60-80 60-100 

No. BPs after relocation (founders) 55 19 24 7 19 22 

No. BPs per generation  (current) 125 60 60 60-120 60 60 

End of selection (at generation) -- Ongoing Ongoing Ongoing 152 141 

No. generations under selection3  -- 182,189 180,187 169,177 152,152 117,117 

WGS at generation(s) 188,195 188,195 186,193 177,185 177,184 143,150 

BPs: breeding pairs. WGS: whole genome sequencing; NR: no records. 

Trait increment: Mean trait expression in the sampled generation compared with trait expression in starting 

generation.  

1Percentage selected = (number of selected/total number of animals per generation)×100 

2Transfer of animals to a new housing building in 2011. 
3Total generations under selection until first and second sampling 

 

Table 2. Selection criteria for Dummerstorf trait-selected mouse lines 

Line-ID Selected Sex Trait 

FZTDU -- Unselected 

DUK Females Number of offspring in first litter and litter weight at birth 

DUC Females Number of offspring in first litter and litter weight at birth 

DU6 Males Body mass at day 42 of age 

DU6P Males Protein amount in carcass at day 42 of age 

DUhLB Males Submaximal untrained running distance in treadmill 

 

Sample collection and whole genome sequencing (WGS) 

All animal procedures were performed in accordance with national and international guidelines 

and approved by the Animal Protection Board of the Institute for Farm Animal Biology. 

Genomic DNA was purified from tail biopsy samples using QIAamp DNA Mini Kit (Qiagen, 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 29, 2021. ; https://doi.org/10.1101/2021.05.28.446207doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.28.446207
http://creativecommons.org/licenses/by/4.0/


6 
 

Hilden, Germany) according to manufacturer’s recommendations. A total of 25 animals per line 

(150 animals in total) were sampled at two different time-points (Table 1). For the first time-

point, females with the lowest kinship coefficient were chosen. Kinship was determined using 

the program INBREED implemented in the software SAS/STAT® (v9.4, SAS Institute Inc., 

USA). For the second time-point, females were chosen at random since the kinship coefficient 

is similar among subjects of the same line. 

Library preparation and sequencing were carried out at the Competence Centre for Genomic 

Analysis (Kiel). Paired-end sequencing libraries were prepared using the TruSeq Nano DNA 

Library Prep kit following the manufacturer’s specifications (Illumina Inc., San Diego, CA, 

USA). Out of the 150 libraries, 60 were sequenced on a HiSeq 4000 platform (Illumina Inc.), 

and 90 samples were sequenced on a NovaSeq 6000 (Illumina Inc.) platform. The target 

coverage was 30× (high coverage set) and 5× (low coverage set), respectively. Read length was 

151 nucleotides. 

Analysis of WGS data 

Adapter removal and quality trimming were done using Trimmomatic v0.3813 for HisSeq reads 

and FASTP v0.19.614 for NovaSeq reads. Read quality, was evaluated before and after 

processing with FastQC v0.11.515. Reads were aligned to the mouse genome build 

GRCm38.p616 from Ensembl version 9317 using the Burrow-Wheeler Aligner software in MEM 

mode (BWA-MEM)18 coupled with SAMtools v1.519 in order to store alignments as BAM files. 

Per sample BAM files were processed sequentially with Picard tools20 by adding read group 

information (AddOrReplaceReadGroups), merging alignments from different read groups 

(MergeSamFiles), and by sorting (SortSam) and marking duplicated (MarkDuplicates) reads. 

Short variant calling and annotation 

SNPs were detected according to GATK’s best practices for germline short variant discovery 

(GATK v 4.0.6.0)21–24. Systematic errors in base quality were corrected using BaseRecalibrator 

and dbSNP25 version 150 for Mus musculus (Ensembl version 9317). For each sample, variants 

were called with HaplotypeCaller and then combined with GenomicsDBImport. Joint 

genotyping was done with GenotypeGVCFs and then only bi-allelic variants (SNPs and 

INDELs) were retained. Filtering was applied separately for SNPs and INDELs. Site-level 

filtering was done following the Variant Quality Score Recalibration (VQSR) procedure. This 

comprised an internal variant set used as truth-training resource, created after stringent site-

level filtering of the bi-allelic variants obtained from joint genotype calling, plus an external 
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pre-filtered training variant set provided by the Mouse Genomes Project (MGP version 526). 

Variants were genotyped as missing if the depth of coverage was either too low (<4), too high 

(3 standard deviations higher than the sample mean depth), or if the genotype quality (GQ) was 

too low (<20). The final set consisted of variants present in at least 15 samples per line (except 

for DU6 that had a lower coverage, so this threshold was lowered to 12 samples). Annotations 

were done using SnpEff v4.3t27 and missense mutations were further evaluated with Ensembl 

Variant Effect Predictor (VEP)28 to obtain their corresponding SIFT scores29 and to predict 

amino acid changes affecting protein function. 

Structural variant calling and annotation 

Processed BAM files used for short variant calling were also used to detect large structural 

variants (SVs). Because of the considerable difference in coverage of the two sequence data 

sets, this was done independently for the high and the low coverage set. Three SV callers (Manta 

v.1.6.030, Whamg v.1.7.031 and Lumpy v.0.2.1332) were applied per line and per coverage set 

yielding six call sets per line.  

Specific filters were applied depending upon the call set. SVs detected by Manta were site-

filtered by excluding SVs with poor mapping quality (MAPQ < 30) or with excessive coverage 

(>3 × the median chromosome depth) that could be due to reads originated from low complexity 

regions. For each sample, only SVs with GQ ≥ 20 and read depth ≥5× were accepted. Whamg 

SV calls with sizes <50bp and >2Mb were filtered out to improve call accuracy. Here too, only 

calls with read depth ≥ 5× were accepted. Calls with GQ < 20 were filtered out. To reduce the 

number of false positive calls, high cross-chromosomal mappings were excluded, as Whamg is 

aware of but does not specifically call translocations. Likewise, SVs in poorly mapped regions 

were also removed. Lumpy SV calls for which supporting evidence (FORMAT/SU field) was 

below 5 (SU<5) were excluded, as well as SV calls with GQ<20. Since both Whamg and Lumpy 

do not have a built-in genotyping module, SV call sets were genotyped with Svtyper v0.7.133 

prior filtering for genotype quality. For each line and coverage set, SVs called by at least two 

SV callers were merged using Survivor v.1.0.734 and kept if they were found in at least 10 

samples. The final set consisted of the union of SVs detected in the high and low coverage read 

sets. We then intersected SV calls among all six mouse lines to obtain SVs private for each line 

(line-specific) and SVs shared among lines. SVs were annotated with VEP v.101.028 focusing 

on variants affecting protein-coding genes with the maximum SV size set to 200 Mb. Functional 

classification was conducted after thorough literature and database search (OrthoDB v1035, 

Uniprot36, NCBI Entrez gene37), plus Gene Ontology enrichment analysis (Shiny GO38, false 
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discovery rate [FDR] < 0.05). To further minimize false positives, SV calls overlapping gaps 

and high coverage regions (>80×) in the reference genome assembly were filtered out.  

Population genetics analysis 

Genetic structure among all 150 samples was assessed using principal component analysis 

(PCA), hierarchical cluster (HC) analysis and genetic admixture. PCA and HC were computed 

using SNPRelate v1.22.039. The ape v5.0 package was used for visualization of HC results40. 

Genetic admixture was estimated with ADMIXTURE v1.3.041 after transforming the VCF file 

into a BED file using PLINK v2.00a2LM42,43. Linkage disequilibrium (LD) was evaluated after 

thinning the main VCF file with vcftools v0.1.1344 retaining sites at least 100Kb apart and then 

calculating r2 within windows of 5Mb using PLINK v2.00a2LM 42,43. Runs of homozygosity 

were estimated using the RoH extension45 in SAMtools/BCFtools v1.519. 

Genetic differentiation and diversity analysis 

The genomes of the trait-selected lines were compared to the neutrally evolving control line 

(FZTDU). For this, genetic differentiation was estimated using the FST index46 in sliding 

window mode (size=50Kb, step=25Kb, min 10 SNPs) using vcftools v0.1.1344. At each 

window, the arithmetic mean of the SNP-specific FST was calculated and then transformed into 

z-scores to represent its departure from the genomic mean. Additionally, all samples of the two 

fertility lines (DUK and DUC) were combined (pseudo-line: FERT) and compared to FZTDU 

as well. Since autosomes and the X-chromosomes have different effective population sizes, the 

X chromosome was standardized individually. In order to identify regions of distinct genetic 

differentiation (RDDs), FST windows appearing simultaneously in the 95th percentile of a given 

contrast and in the bottom 10th percentile of all other contrast were identified. These thresholds 

were chosen after testing multiple combinations of ≥95th percentiles and ≤10th percentiles, 

choosing the combination in which RDDs could be found in all contrasts. Genome-wide 

diversity patterns were assessed by measuring the nucleotide diversity (π)47 in sliding windows 

of 50Kb size (step size = 25Kb) using vcftools v0.1.1344.  

Gene annotation and enrichment analysis 

Genes overlapping RDDs were identified using GenomicRanges48 and Ensembl 93’s17 Mus 

musculus gene set. In order to sort out the most relevant genes for each of the selected traits, 

thorough inspection of functional annotations, literature and SNP effects was conducted. This 

also included testing for enrichment of Gene Ontology Biological Processes (GOBP)49,50 and 

KEGG pathways51–53 using WebGestallt54. A FDR threshold of 10% was used as cutoff for 
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significant enrichment of a term or pathway. Finally, genes in quantitative trait loci (QTLs) 

were identified by finding overlaps with QTL data compiled in the Mouse Genome Database55.  

Data handling, visualization and accessibility 

Data processing and visualizations were done using R56 and the tidyverse package57. Raw 

sequencing data were deposited on the European Nucleotide Archive (accession: 

PRJEB44248). Scripts used to generate the results of this publication are available under 

https://github.com/sosfert/mmu_dummerstorf_wgs.   
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Results and discussion 

Phenotypic impact of selection 

Over the course of more than 140 generations, the selected traits have shown remarkable 

increments in each line (Fig. 1). The span and number of generations makes the present study 

the longest selection experiment ever reported in mice. Relative to the unselected control line 

FZTDU (exposed to genetic drift only), reproductive performance has doubled in DUK and 

DUC (Fig. 1A-B, F-G).  Even though these two trait-selected lines have achieved comparable 

litter sizes at first delivery (>20 offspring)58, their reproductive lifespan differs, with 5.8 and 

2.7 litters in average per lifetime for DUK and DUC, respectively58. A remarkable level of 

divergence has been achieved by the increased body size lines (Fig. 1C-D). DU6 individuals 

have almost tripled their weight compared to FZTDU (Fig. 1H), whereas mice of the protein 

line DU6P not only have become larger and heavier than FZTDU mice, but their level of 

muscularity is also considerably higher (Fig. 1D, 1I). In terms of running distance capacity, 

DUhLB mice can on average cover distances three times as long as those covered by FZTDU 

(Fig. 1J). With the exception of the obese line DU659, each one of the trait-selected mouse lines 

has developed an extreme phenotype without obvious detrimental effects on their general 

health, well-being and longevity.  
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Fig. 1 Phenotypic characteristics of the five trait-selected Dummerstorf mouse lines and 

the unselected control line FZTDU. Representative subjects showing the impressive litter size 

of DUK and DUC (A,B,F,G) and the considerable body size difference at six weeks of age 

between DU6 (C,H) or DU6P (D,H,I) relative to FZTDU. (E) Untrained mice undergoing a 

treadmill running endurance trial and the increased running performance of DUhLB due to 

selection (J). Stars signify differences (p < 0.05) after conducting a t-test between trait-selected 

lines and FZTDU. Sample sizes are indicated below tick labels (x-axis). 
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WGS analysis and short variant detection 

After quality filtering and trimming, >90% of the raw reads were mapped to the genome as 

pairs, with a mean insert size of ~380bp. For samples sequenced at a target coverage of 30×, 

mean genome-wide coverage averaged ~24×, with ~95% of genome territory covered at least 

5×; samples sequenced at a target coverage of 5× averaged ~8× and ~72%, respectively (for a 

summary across all samples see Table 3).  

 

Table 3. Summary metrics WGS data 

 Target Coverage 30× Target Coverage 5× 

Sample size 60 90 

Mean number of reads mapped as pairs 90.72% 93.07% 

Mean insert size 347.73 bp 401.65 bp 

Mean genome-wide coverage 24.08× 7.89× 

Mean genome territory covered ≥ 5× 95.57% 71.82% 

 

The final variant call set contained 5,099,945 SNPs and 896,078 INDELs (425,687 insertions; 

470,391 deletions). The proportion of SNPs and INDELs overlapping dbSNP was 95% and 

55%, respectively. This discrepancy is not necessarily due to a high number of artifacts in the 

INDEL set, but rather by the fact that INDELs are a much less characterized type of genetic 

variant in comparison60. Though considerably fewer variants were found in the trait-selected 

lines when compared with the control line FZTDU (Table 4), the number of SNPs was sufficient 

in all lines to conduct genome-wide selection scans (~ 1 SNP/Kb)61. Moreover, by retaining 

SNPs genotyped in at least 15 samples per line, the sample size required to have enough power 

to detect footprints of selection is sufficient as well61. 

The number of alleles present in all six lines was ~1M, but very few alleles were shared by the 

trait-selected lines only (~3.3K) (Supplementary Fig. 1). The lines DU6P  and DUhLB were 

the most polymorphic of the trait-selected lines, followed by the DU6. The two fertility lines 

(DUK, DUC) were the least polymorphic ones. Each of the trait-selected lines still shared >88% 

of its variants with the control line FZTDU (Table 4), indicating that despite genetic drift, the 

control line preserves most of the alleles that were present when the selective breeding process 

started and that it is a reliable proxy of the original founder population. 
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Table 4. Number of short variants discovered in each line 

Line SNPs % in FZTDU INDELs (Insertions + Deletions) % in FZTDU 

DUK 2,305,349 92.76 389,077 (186,193 + 202,884) 89.46 

DUC 2,615,584 92.76 431,296 (207,084 + 224,212) 90.34 

DU6 2,744,788 93.18 453,449 (218,016 + 235,433) 90.16 

DU6P 2,899,902 91.04 479,457 (230,908 + 248,549) 88.64 

DUhLB 3,196,655 92.26 524,302 (252,965 + 271,337) 89.84 

FZTDU 4,453,865 -- 734,472 (356,672 + 377,800) -- 

 

Almost all SNPs and INDELs (~97%) occurred in non-coding regions (introns: ~56%; 

intergenic: ~41%). This is not an unexpected outcome considering that only ~2% of the genome 

codes for proteins and genetic variation is wide-spread. Inter-genic variants could affect 

regulatory elements of gene expression, as well as transcripts not yet described62, whereas 

intronic variants could affect gene splicing63. 

Based on assessment of variant annotations, a very small number of variants (20,236 SNPs and 

2,387 INDELs) were classified as high-impact and moderate-impact mutations, and could 

interfere with gene transcription or translation. These “impact-variants” were screened for i) 

being private for any trait-selected line (Supplementary Table 1) and ii) the functional 

categories their affected genes belonged to. For the lines DUC, DU6 and DU6P there were 

significantly enriched functions that are coherent with the selected traits, including metabolic 

pathways (DU6), anabolism and regulation of protein synthesis (DU6P) and embryonic 

development (DUC). For both DUK and DUhLB, results were less explicit, with most GO terms 

relating to immunity (Supplementary Data 1).  

 

Runs of homozygosity and linkage disequilibrium 

While for the five trait-selected lines, most of the SNP loci (57.5% - 81.5%) were already fixed 

for either the reference or the alternative allele, in the control line FZTDU alleles were mostly 

(>75%) polymorphic (Supplementary Fig. 2). This disparity was also reflected by the 

distribution of frequencies for the alternative allele, displaying a “U” shape that is much more 

pronounced in the trait-selected lines than in the control line (Supplementary Fig. 3). Genomes 

of mice from the control line FZTDU also had higher nucleotide diversity (Supplementary Fig. 

4 and 5). Accordingly, runs of homozygosity (RoH) covered between ~65% and ~78% (~50% 

as 1-8Mb tracts) of the genome length of the trait-selected lines, but only ~45% (~23% as 1-
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8Mb tracts) of the genome length of FZTDU (Fig. 2A). Analysing RoH shared among 

individuals of a population can aid to detect past selection events64; however, this is applicable 

as long as RoH events are rare in the genome (RoH islands), which is not the case here, where 

RoH are widespread, indicating that the observed degree of homozygosity is the result of a 

combination of multiple evolutionary forces.  

Linkage disequilibrium decay can be classified into three decaying patterns with decreasing 

decay strength; one for the three most homozygous trait-selected lines (DUK, DUC and DU6; 

upper three lines Fig. 2B), a second for the two least homozygous trait-selected lines (DU6P 

and DUhLB; middle two lines Fig. 2B) and a third for the unselected line FZTDU (bottom line 

Fig. 2B). Overall, linkage disequilibrium decay clearly differs between trait-selected lines and 

FZTDU. Such extensive linkage disequilibrium has been previously reported in mountain 

Gorillas, in which the level of inbreeding due to population decline has led to similar linkage 

disequilibrium patterns as the ones found in the trait-selected lines65. 

 

 

Fig. 2 Runs of homozygosity (RoH) and linkage disequilibrium decay in the 

Dummerstorf mouse lines. (A) Per line average extent of homozygosity as a fraction of the 

genome length. RoH of different length range are specified by colours. Error bars show ±1SD. 

(B) Decay of the mean genotype correlations among SNP pairs as close as 0.1Mb and as far 

as 5Mb. 
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Population structure of the Dummerstorf mouse lines 

The genetic relationship among the 150 Dummerstorf mice was assessed by PCA, HC and 

admixture analysis using the 5,099,945 SNPs obtained by variant calling. Samples formed a 

hierarchical group structure that represented each of the Dummerstorf lines and also 

distinguished trait-selected from unselected control animals (Fig. 3A-C). There was no 

admixture present in the trait-selected lines, except for one DUC animal sharing ancestry with 

mice from DU6P (Fig. 3D). FZTDU is represented as an admixture of all the trait-selected lines 

with similarly large contributions of the four older lines and a significantly larger contribution 

of DUhLB. This is expected because this mouse line is the youngest and has had the least 

number of generations that underwent selection (Fig. 3D). 

 

 

Fig. 3 Genetic structure and cluster assignment of 150 mice of the six Dummerstorf mouse 

lines. (A) Scores for principal components 1 and 2 separating individuals into distinctive mouse 

line clusters. (B) Scores for principal components 5 and 6 separating the trait-selected lines 

from the control line FZTDU. (C) Hierarchical clustering analysis. (D) Genetic composition of 
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each mice (indicated by 25 ticks on the x-axis) in terms of the five trait-selected lines. 

Individuals are coloured according to the respective line of origin. 

 

Genetic differentiation of the trait-selected lines 

Mean genome-wide pairwise genetic differentiation among trait-selected lines estimated by FST 

ranged from 0.44 to 0.61 (Fig. 4B).The highest level of differentiation was found between either 

one of the fertility lines and the body mass line DU6 (FST(DUK-DU6) = 0.61 and FST(DUC-DU6) = 

0.59; Fig. 4B), followed by the differentiation between the two fertility lines themselves 

(FST(DUK-DUC) = 0.57; Fig. 4B). Although pairwise genetic differentiation between trait-selected 

lines and the control line was similar in all comparisons (FST ~ 0.3), it was lowest in the pairwise 

comparison between the two most polymorphic lines (FST(DUhLB-FZTDU) = 0.26; Fig. 4B). Such 

strong levels of differentiation occur mainly as a result of reproductive isolation and genetic 

drift66; however, it is expected that a subset of alleles that have arrived to fixation due to 

selection contribute to genetic differentiation as well. The challenge is thus to sort out which 

genomic regions contain such beneficial alleles. 

 

Trait-specific regions of genetic differentiation 

Genome-wide scans were conducted in order to detect genomic regions of consistent genetic 

differentiation between each trait-selected line and FZTDU. The pseudo-line FERT was also 

included, for a total of six FST contrasts. Choosing genomic regions of interest by focusing on 

the most differentiated regions (percentile 95th or 99th of the FST distribution) resulted in the 

detection of multiple loci in every chromosome (Fig. 4A). Because these regions were frequent 

and did not sufficiently depart from the global level of differentiation to be considered genomic 

outliers (i.e. max. zFST: 2.89 - 3.47), a more stringent approach was applied to identify line-

specific regions of high genetic differentiation, while reducing the influence of genetic drift. 

These regions of distinct genetic differentiation (hereafter referred to as RDDs) appeared 

simultaneously in the top 5% FST windows of the target contrast and in the bottom 10% of all 

the remaining contrasts, occurring close to each other in only a subset of chromosomes (Fig. 

5A-C, Fig. 6A-C) and containing multiple genes (Supplementary Data 2-7), some of which 

were related to the selected traits (see below).  
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Fig. 4 Genetic differentiation of the Dummerstorf trait-selected lines. (A) Genome-wide 

scans of genetic differentiation in sliding-window mode (size=50Kb, step=25Kb) contrasting 

each trait-selected line to FZTDU. Each window is the average FST of at least 10 SNPs. (B) 

Pairwise genomic mean FST among all six Dummerstorf lines. (C) FST distribution as z-scores, 

illustrating the departure of each window from the mean genomic level of genetic 

differentiation. Dotted lines indicate the 95th (red) and 99th (blue) percentiles. 
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Line-specific patterns of structural variation 

Despite primarily thought to be deleterious and implicated in disease phenotypes67, large 

chromosomal rearrangements such as deletions, duplications and inversions have an important 

role in local adaptation and divergence of populations68. These structural variants can lead to 

gene expression differences by disrupting genes and altering gene dosage69. Because copy 

number variation often results in notable phenotypic differences it is likely a subject to selection 

during domestication70. For example, genes related to metabolic activity and production traits 

have been shown to be affected by copy number variation during artificial selection of cattle71, 

goats72 and pigs73.  

After calling and filtering, only duplications, deletions and inversions remained in the final SV 

data set. Insertions did not occur in enough samples to be included in the analysis. SVs were 

predominantly located in non-coding regions (98%) where they could affect gene expression. 

Also, SVs were more abundant in the trait-selected lines (5,195 - 6,856 SVs) than in the control 

line (4,521 SVs) implying that large genomic rearrangements could contribute to the 

development of the selected traits. In order to associate SVs to each selected trait, line-specific 

SVs overlapping protein coding genes were identified and characterized in greater detail 

(Supplementary Data 8). The total number of these line-specific SVs ranged from 9 (FZTDU) 

to 36 (DUC), comprising mostly deletions and inversions (Table 5). Most SVs were 

polymorphic and large length differences were observed between polymorphic and fixed SVs 

(Supplementary Table 3). Fixed line-specific deletions were detected in all lines, whereas 

duplications were found only in DU6P, and inversions only in DUC, DU6P and DUhLB 

(Supplementary Table 4). 

The number of genes affected by fixed line-specific SVs varied from 1 (DUC, DU6P, FZTDU) 

to 5 (DUK), but went up to more than a thousand for genes affected by large polymorphic 

inversions (Supplementary Table 5). These genes were classified in functional groups based on 

the biological processes they are associated with (Supplementary Table 6). The most gene-rich 

functional groups are the ones associated with sensory perception, predominantly olfaction 

(found in the fertility lines DUK and DUC), followed by “cell cycle and nucleic acid 

transcription and translation” (in DUC), and “metabolism and energy conversion” (DUC, 

DU6P). 
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Table 5. Summary of structural variants detected in all mice lines 

  Total  Line-specific-genic  

  DEL DUP INV Total  DEL DUP INV Total 

DUK  4,633 32 530 5,195  11 2 7 20 

DUC  5,560 48 1,248 6,856  10 2 24 36 

DU6  5,025 27 551 5,603  11 0 7 18 

DU6P  4,339 23 2,091 6,453  9 1 14 24 

DUhLB  4,614 20 1,508 6,142  10 1 9 20 

FZTDU  3,902 14 605 4,521  4 0 5 9 

 

 

Genes associated with fertility 

Genes detected in RDDs for DUK were enriched for “phospholipase D signalling pathway” 

(Supplementary Table 3). In granulomas cells, phospholipase D activity is stimulated by GnRH, 

thereby inducing or inhibiting cell differentiation depending on the maturation state of the 

ovarian follicle74.  Other genes encode for proteins involved in the ovarian development and 

maintenance of the primordial follicle reserve (Tsc175, Trp6376), in the vascularization of the 

placenta (Atoh877) and facilitate maternal supplied lipids and dietary fat digestion in neonatal 

mice (Cel78,79). Furthermore, DUK shares a fecundity associated region (Sftpb, Usp39, 

Tmem150, Rnf181, Vamp5, Vamp8, Cgcx, Mat2a) with Qsi5 mice80, an inbred mouse line 

known for its increased litter size, and candidate genes associated with birth rate and male 

fertility in humans (Ntm81) and litter size in cattle, goats and pigs (Dio382–84). Interestingly, 

analysis of private SVs detected a 317bp deletion affecting Olfr279 (Supplementary Data 8). 

This gene has been associated to mouse male sub-fertility85 and more generally, olfactory 

receptors could regulate fertilization86,87. 

Significantly enriched terms for DUC included “intracellular steroid hormone receptor 

signalling pathway”, involving progesterone receptor (Pgr), an established reproductive gene, 

which carries a missense mutation that is fixed in and specific for DUC (Supplementary Fig. 

6). In line with the increased progesterone levels in DUC females88, the progesterone receptor 

gene in DUC harbors a missense SNP mutation with high genetic differentiation (FST ~ 0.93). 

The amino acid substitution is predicted to compromise the protein’s biochemical properties 

(SIFT score = 0.04). Interestingly, a Neanderthal missense mutation in Pgr associated with 

increased fertility was recently reported to segregate in human populations89. Further candidates 
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in DUC control ovarian follicle development, uterine growth, and endometrial angiogenesis 

during pregnancy (Yap190, Rxfp191,92). In the context of preparation of the endometrium for 

implantation and pregnancy and progesterone signalling, the gene Rrm292 was identified by the 

structural variation of the DUC genome. 

The fertility lines DUK and DUC have been bred according to the same criteria, share the same 

evolutionary history, and both have been able to more than double the number of pups per litter 

since the beginning of selection. Despite these commonalities, improved fertility is achieved 

via different physiological pathways in each line88. For example, females from both fertility 

lines have an increased ovulation rate, but only DUK exhibits follicles containing multiple 

oocytes; DUC on the other hand shows an increased progesterone level compared to DUK and 

FZTDU88. The scarce number of RDDs in the combined FERT population also illustrates this 

discrepancy. Candidate RDD and line-specific SV overlapping genes in both fertility lines 

likely affect the reproductive process on multiple levels such as ovarian physiology, 

placentation, sex steroid signaling and milk composition.  
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Fig. 5 Genes mapped to regions of distinct genetic differentiation (RDD) for fertility 

lines. (A-C) Genomic overview of RDDs for each of the fertility lines (DUK, DUC) and the 

joint pseudo-line (FERT). (D) FST distribution of RDDs, demonstrating the gap in FST 

between the target lines and the rest. 
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Genes associated with body size and endurance 

Two of the Dummerstorf trait-selected mouse lines have increased their body weight in 

response to selection. The “giant” DU6 line (selected for body mass at 6 weeks of age) exhibits 

an obese phenotype7 while the protein-mass line DU6P (selected for protein mass in the carcass) 

is lean and muscular93. In line with the obese phenotype, DU6 candidate genes overlapping 

RDDs regulate energy metabolism and food intake (Hcrt94) and are linked to feed efficiency 

and body composition in other species (Atp1195, Wdr2796). On the other hand, DU6 mice also 

exhibit larger bones59 and the analysis of SVs detected Smad5, a modulator of bone formation97, 

to be partially overlapped by a heterozygous deletion and a heterozygous inversion. Candidate 

genes in the RDDs for DU6P conform with growth-related major quantitative trait loci found 

in sheep and are known to influence stature and body size in cattle, pigs and human (Plag198,99, 

Chchd798–100, Impad1101). In line with this, an SV (deletion) was found overlapping Fam92a, a 

gene that is involved in limb development102. Further candidates for lean body mass are the 

RDD overlapping genes Piezo1 (myotube formation103,104) and Cdh13 (control of lipid content 

in developing adipocytes105–107). 

Finally, genes specific for the endurance line DUhLB participate in lipid metabolism (these 

animals manifest faster mobilization of lipids during exercise). Only two DUhLB genes 

(Aldh3a1 and Aldh3a2, the later containing 3 missense SNPs (Supplementary Fig. 7C)) caused 

the significant enrichment of the “Histidine metabolism” and “beta-Alanine metabolism” 

pathways. The “marathon mice” DUhLB have developed a striking metabolic phenotype 

characterized by accelerated browning of subcutaneous fat and altered mitochondrial 

biogenesis in response to selection for high treadmill performance108. Likewise, detected RDD 

candidate genes are involved in the development of brown adipocytes (Srsf6109), removal of 

toxic waste products from lipid metabolism (Aldh3a2110), fatty acids mobilization, 

mitochondria content, and cristae complexity (Il15r111) and in the regulation of glycolysis 

associated to obesity and weight gain (Pfkfb3112,113). Moreover, SV analysis detected a ~2.8Kb 

inversion in Atp5j whose overexpression has been shown to counteract exercise-induced cardiac 

hypertrophy in  mice114. 
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Fig. 6 Genes mapped to regions of distinct genetic differentiation for the body mass lines 

(DU6 and DU6P) and the treadmill running endurance line (DUhLB). (A-C) Genomic 

overview of RDDs for DUhLB, DU6 and DU6P, respectively. (D) FST distribution of RDDs, 

demonstrating the gap in FST between the target lines and the rest. 
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Conclusions 

The Dummerstorf trait-selected mouse lines have evolved in isolation through selective 

breeding and genetic drift, resulting in extensive long runs of homozygosity and ubiquitous 

regions of high genetic differentiation. Distinguishing between both evolutionary forces is a 

challenging task, which will require further research, but by focusing on regions of distinct 

genetic differentiation with respect to a control line that represents the founder population of 

this selection experiment, we were able to identify genes with important functions associated 

to the selected traits 

Over the span of this selection experiment, traits have improved continuously and have not 

decayed despite the dramatic loss of genetic diversity within lines. This implies that many of 

the alleles that contribute to trait improvement have arrived to fixation and that these lines are 

highly enriched for such alleles. Therefore, a deeper understanding of the genomes of the trait-

selected Dummerstorf mouse lines will provide valuable insights into the genetic basis of 

important polygenic traits and constitutes an unprecedented scientific resource for geneticists, 

physiologists and the wider biomedical research community. 
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