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Abstract

Clinical tumor sequencing is rapidly becoming a standard component of clinical care, providing

essential information for selecting amongst treatment options and providing prognostic value.

Here we develop a robust and scalable software platform (SBT: Seeing Beyond the Target) that

mines discarded components of clinical sequences to produce estimates of a rich set of omics

features including rDNA and mtDNA copy number, microbial species abundance, and T and B

cell receptor sequences. We validate the accuracy of SBT via comparison to multimodal data

from the TCGA and apply SBT to a tumor panel cohort of 2,920 lung adenocarcinomas to

identify associations of clinical value. We replicated known associations of somatic events in

TP53 with changes in rDNA (p=0.012); as well as diversity of BCR and TCR repertoires with the

biopsy site (p=2.5x10-6, p<10-20). We observed striking differences in EGFR mutant lung cancers

versus wild-type, including higher rDNA copy number and lower immune repertoire diversity.

Integrating clinical outcomes, we identified significant prognostic associations with overall

survival, including SBT estimates of 5S rDNA (p=1.9x10-4, hazard ratio = 1.22) and TCR diversity

(p=2.7x10-3, hazard ratio=1.77). Both novel survival associations replicated in 1,302 breast

carcinoma and 1,651 colorectal cancer tumors. We anticipate that feature estimates derived by

SBT will yield novel biomarker hypotheses and open research opportunities in existing and

emerging clinical tumor sequencing cohorts.
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Introduction

Health care systems and private companies are now routinely sequencing tumors as part of

clinical care in order to identify actionable mutations and improve patient care (DFCI

OncoPanel1, MSK IMPACT2, MGH SNAPSHOT3, Foundation ONE 4, Tempus xT5). To reduce costs,

tumor sequencing platforms only sequence exons from a small number of known cancer

genes1,2. However, capture technologies are imperfect, and a substantial number of off-target

reads are produced across various sequencing technologies6,7. We previously used off-target

reads of clinical tumor sequences to impute genotypes and construct germline research

cohorts8. Here, we extend this work with integrated multiple genomics methods6,9 to develop

“Seeing Beyond the Target” (SBT), a software platform that mines discarded and off-target reads

from existing tumor sequencing projects to produce a rich set of omics features. We show that

SBT can uncover components of the tumor microenvironment that may serve as prognostic

biomarkers.

We performed benchmarking using whole exome and whole transcriptome data to show that

SBT can accurately estimate T and B cell receptor sequence diversity10; microbial, ribosomal11,

and mitochondrial12,13 profiles. We demonstrated the utility of SBT via an analysis of 2,920 LUAD

tumors with panel sequencing from the Dana-Farber Profile cohort1,2 — a prospective collection

of patient biopsies -- replicating 6 published discoveries6,11,12,14–16 that previously required

specifically designed experiments (Table S1). We then leveraged the SBT inferred features to

identify novel prognostic biomarkers, including estimates of 5S rDNA copy number and TCR α
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diversity, which were significantly associated with overall survival across multiple cancer types.

The SBT implementation is highly efficient (Figure S1)17 and freely available, enabling similar

utilization of the growing number of tumor-sequencing cohorts1–5.

Results

SBT is a comprehensive platform able to extract diverse omics features from targeted clinical

tumor sequencing

Here we report the development of SBT, a computational platform able to extract a rich set of

omics features directly from off-target tumor data. First, SBT estimates mtDNA and rDNA copy

numbers estimated using reads mapping to the mtDNA genome and various rDNA repeat

regions. Second, SBT uses ImReP9, our recently developed method to assemble T and B cell

receptor clonotypes from off-target tumor reads. Common features of the immune repertoire

inferred by ImReP include diversity and richness of various chains of BCR and TCR repertoires.

Lastly, SBT uses reads mapped to microbial genomes to estimate microbial load. All features

inferred by SBT are adjusted for off-target coverage. The full list of SBT features is provided in

Table S4.

Overview of datasets

We applied the SBT pipeline to four large-scale cancer sequencing cohorts: lung

adenocarcinoma (LUAD) tumors from the TCGA with whole-exome (WXS) sequencing for 558

and RNA-seq for 490 samples (“TCGA-LUAD”); 2,920 LUAD cancer tumors (1,720 primary
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tumors) sequenced on the OncoPanel1 (“OP-LUAD”) used for discovery; as well as 1,302 primary

breast carcinoma tumors (“OP-BRCA) and 1,651 primary colorectal cancer tumors (“OP-CRC”)

sequenced on the OncoPanel and used for cross-cancer replication. The OncoPanel is a hybrid

capture tumor sequencing platform targeting 200-500 cancer-related genes across three-panel

versions1 (see Methods). The OncoPanel cohorts were prospectively collected as part of

standard clinical care at the Dana-Farber Cancer Institute and consented for research.

Inference of the immune repertoire yields novel associations with somatic drivers

We assayed T and B cell receptor sequences to characterize the immune microenvironment

across patients diagnosed with non-small cell lung cancers. We have previously shown that

ImReP using RNA-Seq can accurately estimate the relative abundance of BCR clonotypes and

can capture a significant portion of the BCR repertoires captured by targeted BCR-Seq and other

methods (Figure S5). Here, we validated the ImReP method for targeted tumor DNA sequencing.

Using 482 TCGA-LUAD samples sequencing by both RNA-Seq and WXS, we investigated the

portion of the RNA-Seq-based immune repertoire captured by tumor WXS. ImReP using WXS

data was able to capture more than 50% of the TCRB, TCRG, IGK, and IGL RNA-Seq-based

clonotypes with a frequency higher than 10% and a smaller fraction of the repertoire of other

chains (Figure S7). However, due to the decreased number of receptor-derived reads provided

by WXS compared to RNA-Seq (Figure S6), the majority of WXS-based immune repertoire

features were not associated with previously reported RNA-Seq-based measurements of the

immune landscape15 (Figure 2). Features of T cell receptor beta chain estimated by ImRep from

5

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 29, 2021. ; https://doi.org/10.1101/2021.05.28.446240doi: bioRxiv preprint 

https://paperpile.com/c/8ZbBm9/pd0sQ
https://paperpile.com/c/8ZbBm9/pd0sQ
https://paperpile.com/c/8ZbBm9/sghPe
https://doi.org/10.1101/2021.05.28.446240
http://creativecommons.org/licenses/by-nc-nd/4.0/


WXS data were Bonferroni significantly associated with infiltration levels of CD8+ T Cells (TCR β

richness: effect=0.33, p=3.0x10-4). Additionally, features of immunoglobulin kappa chains

estimated by ImReP based on WXS data were significantly associated with RNA-Seq-based

overall BCR richness estimated as the total number of distinct immunoglobulin clonotypes (IG κ

richness: effect=0.49, p=6.6x10-4).

We evaluated changes in the immune repertoire associated with recurrent somatic mutations in

the OP-LUAD cohort (Figure 1). To ensure sufficient power, we restricted to three genes with

highly recurrent mutations in at least 20% of the cohort: EGFR, KRAS, and TP53. We identified

Bonferroni significant associations between somatic mutations in EGFR and BCR richness

defined as the number of distinct clonotypes (effect=-0.099, p=9.1x10-5) and BCR infiltration

measured based on the number of BCR-derived reads (effect=-0.099, p=6.8x10-5), potentially

suggesting the presence of EGFR-specific antibody resistance18. Additionally, we detected novel

associations between somatic mutations in KRAS and measures of the TCR repertoire (TCR γ

richness: effect=0.062, p=3.0x10-3), which have not been previously observed15,16. Overall the

increased sample size of our study enabled the detection of multiple associations between

adaptive immune repertoires features and somatic driver alterations.

We used metastatic OP-LUAD samples biopsied from body sites with extensive immune activity

(e.g. lymph nodes) as a positive control of the immunogenomics features inferred by ImReP. We

observed highly significant associations between clonotype diversity of both BCR and TCR

repertoires with the biopsy site, as has been previously detected using RNA-Seq data14,16. For
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example, we detected the association between TCR α Shannon and lymph vs non-lymph

(effect=0.12, p=2.5x10-6), and IGH Shannon and lymph vs non-lymph (effect=0.26, p-value<10-20)

(Figure 1). Restricting to just the lung biopsied tumors, we additionally observed significant

associations between richness of immunoglobulin heavy chain repertoire and TMB (effect=0.26,

p=9.1x10-3) that were not observed when including tumors from other sites (Figure S3).

Inference of mtDNA abundance yields associations with mutations in KRAS

We next investigated the ability of tumor-only sequencing to estimate mitochondrial DNA

(mtDNA) copy number variation. The involvement of mitochondria in essential functions such as

biosynthesis, signaling, cellular differentiation, apoptosis, and cell growth can play a critical role

in tumorigenesis19,20. WGS provides a unique opportunity for a comprehensive molecular

characterization of mitochondria across a broad range of cancer types21, but remains

cost-prohibitive in clinical cohorts22. Previously, it has been shown that targeted DNA

sequencing data can provide robust mtDNA copy number estimates comparable to one derived

from WGS data11,12.

For each cohort, we remapped DNA reads to the mitochondrial genome with consistent settings

to ensure consistent processing of mitochondrial reads (see Methods). Using the TCGA-LUAD

data, we showed that SBT mtDNA copy number estimates, calculated as a ratio between mtDNA

coverage and average coverage of off-target regions, were correlated with previous estimates

computed as the ratio of mtDNA reads to nuclear DNA reads (Pearson correlation=0.61,
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p-value<10-20) (Figure S2)12, demonstrating consistency with previous work. It was previously

shown that mtDNA abundance can be correlated with somatic mutations in key oncogenes12.

For example, increased mtDNA abundance was determined to be associated with mutations in

TP53 in endometrial cancer12. Here we investigated associations between mtDNA abundance

and somatic mutations in the OP-LUAD cohort. We again restricted to the highly recurrent

putative driver genes EGFR, KRAS, and TP53. We observed a Bonferroni significant negative

association between mtDNA abundance and somatic mutations in KRAS (effect=-0.046,

p=1.3x10-3) (Figure 1). This association with KRAS remained significant after restricting to just

samples biopsied from the lung (effect -0.051, p=6.6x10-3; Figure S3). We additionally observed

nominal associations between mtDNA abundances and sex (Figure 1, Figure S3).

Inference of rDNA abundance recapitulates associations with mutations in TP53

We next investigated the ability of tumor-only sequencing to estimate ribosomal DNA (rDNA).

Human ribosomes are regulators of translation and play an essential role in tumorigenesis23.

Ribosomal defects and perturbation can have a direct effect on tumor progression24. We have

developed an approach with low computational requirements able to effectively leverage

originally mapped reads and extract the candidate rDNA reads which are further carefully

mapped to rDNA complete repeating units (see Methods). After applying this approach here,

we computed rDNA copy number estimates as the ratio between the coverage of reads mapped

to individual rDNA components and average coverage of off-target regions.
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As with mtDNA, we evaluated the association of rDNA abundances with recurrent somatic

mutations in the OP-LUAD cohort. We observed a high correlation between rDNA copy number

estimates of individual rDNA components (e.g. 28S vs 18S: Pearson correlation=0.87,

p-value<10-20; Figure S4), consistent with previous findings11. We confirmed the known

associations of somatic events in TP53 with changes in the rDNA components (5S rDNA:

effect=0.041, p=0.012; 28S rDNA: effect=-0.034, p=0.050)11 (Figure 1), which also replicated in

TCGA-LUAD WXS samples (e.g., 18S rDNA: effect=-0.066, p=5.4x10-3) (Figure 2). In addition, we

observed significant novel associations between mutations in EGFR and changes in the rDNA

components (e.g., 18S rDNA: effect=0.037, p=9.4x10-3) (Figure 2).

Inference of microbial load yields novel associations with mutations in EGFR

There is increasing evidence of the importance of intratumor microbiome across various tumor

types25–27 and tumor type-specific intracellular microbiomes have been described across various

tissue and cancer types28 . We and others have previously demonstrated that reads of microbial

origin often occur in sufficient abundances among human reads to access microbial loads and

composition6,10,22,25. SBT uses reads aligned to the viral, protozoa, and fungi genomes to access

the microbial loads across patients. Comparing the RNA-seq and WXS data, we observed a

significant correlation for the overall microbial load, but not individual loads (Table S2). This may

suggest a distinct ability of these different sequencing protocols to capture individual microbial

components. Applying to the OP-LUAD data, we observed a significant negative association of

microbial loads with somatic mutations in EGFR (e.g., fungal load: effect=-0.034, p=7.8x10-3)

(Figure 1). Similar to our previous analysis in GTEx tissues6, we observed substantial microbial
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loads across tumor biopsy sites (Figure S8) with all loads nominally lower in biopsies from brain

versus non-brain (Figure 1).

SBT features can serve as prognostic biomarkers across cancers

We next sought to identify SBT features associated with overall survival in 1,720 OP-LUAD

primary tumors. We applied Cox proportional-hazard models, with sequencing date taken as the

start point and death (loss to follow-up) taken as the event (censoring) points. Age, sex, tumor

purity, and technical features were included as covariates. Features violating proportional

hazards assumption were removed (see Methods).

The SBT features yielded 9 significant associations (q-value <0.1; Figure 3), with the most

significant associations (q-value <0.05) found for 5S rDNA copy number (q-value=7.6x10-3,

hazard ratio (HR) = 1.22) and TCR α Shannon (q-value=5.2x10-2, HR=1.77). Other significant

associations (q-value <0.1) were observed for viral load, microbial load, protozoa load, TCR α

richness, TCR γ richness, TCR β richness, and T cell β infiltration. Of these associations, 5/9

remained significant (q-value <0.1) and had a consistent effect when tested in OP-LUAD

non-primary tumors (n=1,200 recurrent or metastatic tumors), serving as replication in held-out

samples.

To further replicate the associations observed for LUAD samples, we analyzed two additional

cancer types from the same sequencing cohort: primary breast carcinoma tumors (n=1302) and

primary colorectal cancer tumors (n=1651). Of the 9 significant (q-value<0.1) associations in
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OP-LUAD, 8/9 replicated in breast cancer and 8/9 replicated in colorectal carcinoma (Figure 3).

Notably, we observed highly significant associations in both cohorts with 5S rDNA copy number

(breast: p=2.2x10-7, HR=1.35; colorectal: p=4.6x10-3, HR=1.18) and TCR α Shannon (breast:

p=8.6x10-3, HR=1.58; colorectal: p=7.3x10-3, HR=1.80). Kaplan-Meier curves (which do not

account for covariates) showed a clear separation of median survival time and proportionality

(Figure 4).

Associations between domains of SBT features

To lend further context to the features inferred by SBT from DNA, we turned to the TCGA-LUAD

samples for which the immune landscape had recently been characterized using multiple

molecular techniques15 (Figure 2). 5S rDNA copy number, which we found to be associated with

poor survival (see above), was positively associated with the fraction of lymphocytes in TCGA

data (Figure 2). These results are consistent with previous findings that lymphocyte infiltration

levels are associated with poor survival15 which may be indirectly captured by SBT features.

More broadly, we observed widespread associations between SBT features and TCGA-LUAD

immune features. Bonferroni significant (and negative) associations were observed between

rDNA features and broad tumor instability: including 18S and Homologous Recombination

Deficiency (effect=-0.19, p=6.5x10-5); 28S and Fraction Altered (effect=-0.15, p=3.1x10-4); 28S

and Intratumor Heterogeneity (effect=-0.18, p=3.9x10-5); with similar patterns for 45S.

Bonferroni significant associations were also observed between fungal/microbial load and

increased Lymphocyte counts (p=1.9x10-5) and decreased Macrophage counts (p=2.0x10-4).
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Lastly, Bonferroni significant associations were observed between (WXS) IG κ infiltration and

(RNA) BCR richness; as well as (WXS) TCR richness and (RNA) CD8 T Cell counts. In summary, SBT

applied to WXS captured broad components of tumor instability, infiltration, and TCR/BCR

expansion without the cost of additional sample collection and sequencing.

Discussion

Cancer sequencing studies, like TCGA29, ICGC30, and POG57015,22 have provided unprecedented

functional genomic resources for cancer research. However, sample sizes are small relative to

genetic studies, much of the clinical data are sparse or outdated31, and the patient populations

have limited longitudinal follow-up. Targeted cancer sequencing, an increasingly routine

component of clinical care (e.g. AACR GENIE32), offers reduced costs and rich clinical data

collected across hundreds of thousands of cancer patients but is limited in genomic scope. To

overcome this limitation, we have developed the SBT computational platform, able to extract

multiple omics measurements directly from off-target tumor data. To illustrate the power of

leveraging off-target reads in targeted clinical tumor sequencing we applied SBT to a tumor

panel cohort of 2,920 lung adenocarcinomas, identifying both known and novel associations

with recurrent somatic drivers, as well as prognostic biomarkers for survival that replicated

across multiple cancer types. Previous studies attempting to determine associations of various

omics features with survival outcomes were typically underpowered due to the small sample

size of each cancer type11,16, and recent work detected an association of increased TCR diversity

with a progression-free interval in various cancer types15, but not LUAD.
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It is important to note that there are several shortcomings of using omics features inferred from

targeted tumor sequencing. First, in contrast to RNA-Seq data where cell type composition can

be inferred computationally based on gene expression33, targeted sequencing lacks the

capability to infer the cell-type composition of the sample and adjust for cell type confounding.

A potential solution is to utilize the reads derived from T and B cell receptors to estimate the

fraction of T and B cells. However such methods need to be carefully validated based on

comprehensive gold standard data. Second, the proposed methods and their accuracy might be

platform-specific and downstream analyses must account for platform-specific biases.

Additionally, it is challenging to accurately capture many omics features due to the variability of

sequencing data quality. For example, it has been recently shown that many reported ribosomal

copy number estimates may be an artifact of sequencing data quality and not reflect real

biological signals34, which may apply to SBT estimates. Finally, methods for various SBT features

remain in active development, and the proposed software platform must be updated to keep up

with best practices. For example, estimating components of the microbiome from off-target

reads is especially difficult, and better methods are continually being developed35.

Additional caveats apply to our analyses of patient survival. The clinical cohort analyzed here is

a heterogeneous population and, while panel sequencing is not uncommon, patients are still

often sequenced due to having an advanced disease or poor response to therapy and may not

be reflective of the broader patient population. Data on the date of diagnosis, stage at

diagnosis, and detailed cancer subtypes (e.g. hormone receptor status for breast tumors) were

generally unavailable and could not be incorporated into the analysis. While the prognostic SBT

13

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 29, 2021. ; https://doi.org/10.1101/2021.05.28.446240doi: bioRxiv preprint 

https://paperpile.com/c/8ZbBm9/n82O
https://paperpile.com/c/8ZbBm9/ZSLL
https://paperpile.com/c/8ZbBm9/TCzF
https://doi.org/10.1101/2021.05.28.446240
http://creativecommons.org/licenses/by-nc-nd/4.0/


features replicated across diverse cancer types and thus likely reflect associations in this

population, they should not be interpreted as causal. In TCGA data, SBT features were

correlated with many diverse measures of the tumor and tumor microenvironment, and in the

clinical data they were associated with multiple key somatic events including EGFR driver status

and TMB. Prognostic SBT features are thus likely to be only surrogates for underlying causal

mechanisms that remain to be identified. We envision that our analysis framework can be used

to efficiently identify putative prognostic features across thousands of patients, which can then

be investigated in detail and validated with richer, multi-modal studies.

Despite these shortcomings, we anticipate SBT will increase the scientific value of many existing

cancer cohorts. To further the ability of other groups to conduct similar research we have

released SBT on the cloud and as a fully free and downloadable software package at

https://github.com/Mangul-Lab-USC/sbt.

Methods

OncoPanel data collection and processing

OncoPanel samples were collected as part of the Dana-Farber Profile prospective tumor

sequencing cohort36. Patients were recruited based on available material and consent and were

not otherwise ascertained for age, sex, stage, or tumor site. All patients provided informed

consent for research (Institutional Review Board (IRB) protocols 11-104 and 17-000) and

secondary analysis of data was approved by the IRB (protocol 19-033). The OncoPanel platform

is a next-generation sequencing assay that targets the exons of 275-447 cancer genes on one of
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three panel versions. Sequences were aligned to the human genome (hg19) using bwa and

processed with the GATK IndelRealigner. Somatic mutations were called using MuTect (v1.1.4)

relative to a de-identified panel of normal samples. The sequencing and variant calling pipeline

was used for clinical reporting to patients and physicians and has previously been validated to

achieve 98% sensitivity and 100% specificity for single nucleotide variants1.

Datasets used for SBT validation

To investigate the accuracy of SBT, we first applied it to a variety of high-quality data sets with

various types of existing tumor and normal sequencing, genotyping, and RNA-sequencing data

(Table S3). This analysis included: 2,920 lung adenocarcinoma cancer tumors sequenced on the

OncoPanel (“OP-LUAD”) and used for discovery, and 2,384 breast carcinoma (only female) and

2,278 colorectal cancer tumors sequenced on the OncoPanel and used for replication. We also

analyzed tumor whole-exome sequencing (WXS) in TCGA: 558 WXS and 490 RNA-seq LUAD

samples (“TCGA-LUAD”). TCGA-LUAD is composed of sequencing data of cancer patients and

controls were downloaded from GDC data portal (https://portal.gdc.cancer.gov/ ). We have

downloaded individuals with matching (482 samples) whole exome (WXS) RNA Sequencing

(RNA-Seq) samples. Data was downloaded as a BAM file with mapped and unmapped reads.

Both WXS and RNA-Seq reads were mapped to hg38 reference using a bwa aligner. Parameters,

input, and output data are shared for publicly available data sets

(https://github.com/Mangul-Lab-USC/sbt_publication). For each data type output, we examined

multiple metrics against an accepted gold standard, which we describe in turn below.
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Preparing input reads for SBT platform

References used to map reads contain multiple non-human references, including HPV, HBV, and

HCV viruses. We have added reads mapped to those references to the unmapped reads

(extended unmapped reads). SBT platform is a natural extension of our previously developed

method (ROP, https://github.com/smangul1/rop), adjusted for the targeted cancer data

including WXS and OncoPanel data able to infer various omics features. The definitions of SBT

features are detailed in Table S4.

Estimation of off-target reads coverage

To account for the total number of reads of the sample and the efficiency of the caption, we

used the per-base depth of the intergenic regions. Intergenic regions are not captured by any

modern targeted sequencing protocols, such as Whole Exome Sequencing (WXS) and OncoPanel

(OP), and can be used as an effective method to estimate background reads depth. Reads

mapped to intergenic regions are extracted from the BAM file using samtools37. Coverage of

intergenic regions is generated using the samtools depth function. The off-target coverage is

computed as the sum of the depth of the intergenic regions divided by the sum of the size of

these regions.

Estimation of rDNA copy number

We downloaded the human 5S repeat region of length 2231 bp (GenBank ID X12811.1), 18S

(GenBank ID X03205.1), and 28S (GenBank ID M11167.1) units composing Ribosomal DNA

complete repeating unit. We refer to those individual references as the rDNA references. A
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straightforward approach is to align original raw reads to the rDNA references. However, this

approach is computationally intractable given the increasing number of reads being generated

by the sequencing protocols. Considering only unmapped reads can be risky due to homology

between rDNA sequence and the human reference genome. For example, it was previously

demonstrated that reads are simultaneously mapped to GL000220.1 scaffold and ribosomal

DNA complete repeating unit. Similarly, reads mapped to 5S repeat regions are also mapped to

1q42 (hg19, chr1:226743523–231781906). We used a comprehensive method to identify

regions of the human genome that are homologous to ribosomal DNA sequences. We simulated

75bp overlapping substring from ribosomal DNA sequences (kmers) and detected regions where

rDNA substring are mapped. Reads mapped to these regions are extracted from the BAM file

using samtools37 and added to the unmapped reads. The extended set of unmapped reads are

mapped to rDNA references using Bowtie2 aligners (v2.3.5.1). Pairing information was

disregarded and reads were aligned in end-to-end mode (–end-to-end). rDNA reads were stored

in a BAM file. Coverage of rDNA regions is generated using the samtools depth function.

Estimation of mtDNA copy number

We downloaded the human mitochondrial genome (NCBI ID NC_012920.1). We extracted reads

from the original BAM files, which are mapped to the mitochondrial genome. Resulted reads

were mapped to mtDNA reference using bowtie2 in end-to-end mode (–end-to-end), similarly

as was done for rDNA copy number estimation.
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Characterization of T and B cell receptor repertoires

We used ImReP (https://github.com/Mangul-Lab-USC/imrep) to extract receptor-derived reads

and assemble T and B cell receptor clonotypes. We run ImReP over the BAM files using the

options “noCast” and “noOverlapStep”.

Estimation of microbial load

We have mapped prepared input reads (See Section Prepare input reads for SBT platform) onto

the collection of viral, fungi, and protozoa reference genomes downloaded from NCBI

(ftp://ftp.ncbi.nih.gov/). We used bwa mem with default settings. Similarly, to ROP

(https://github.com/smangul1/rop) we considered reads mapped with 90% identity. Hits

shorter than 80% of the input read sequence were removed (corresponding to 80bp of the

100bp read).

Feature processing for association analysis

We applied an inverse normal transformation38 to covariates and outcome variables to account

for their typically non-Gaussian distributions. In the OP-LUAD we normalized TMB; and in TCGA,

we normalized all continuous outcomes variables. SBT features were often zero-inflated and

required additional processing (Table S5). For SBT features with portions of zero values >10%,

we created two variables: the first variable was dichotomous, indicating whether the SBT

feature values was zero (set to 0) or non-zero (set to 1); the second variable was computed by

applying the inverse normal transformation to the non-zero values and zero for the rest (this

variable can be interpreted as an interaction between the first variable and the rank normalized
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feature). We discarded SBT features that had less than 30 non-zero values. For SBT features

with portions of zeros < 10%, we applied the inverse normal transformation to all values.

Association analysis

We use a linear regression model (statsmodels Python package) to test for association between

SBT features and other genetic/immune features together with technical covariates. In

OP-LUAD, technical covariates included tumor purity and off-target coverage; in TCGA WXS data,

technical covariates included tumor purity and off-target coverage; in TCGA RNA data, technical

covariates included tumor purity and the number of reads. For SBT features with portions of

zeros <10%, we used a linear regression model with the inverse-normal transformed variable.

For zero-inflated features that were divided into two variables as part of preprocessing (see

above), we evaluated significance using a two-degree of freedom test. We performed two

nested regressions: the first regression included both variables (and technical covariates) and

the second only included the covariates. We then applied a two-degree of freedom likelihood

ratio test to compute the p-value. The effect size to report in figures was determined by the

highest absolute coefficient from the two variables.

Survival analysis

For the survival analysis, we used the date of sequencing as the start date, death as the

end-point (linked to the National Death Index), and censoring on the NDI linkage or clinical loss

to follow-up. Taking sequencing as the start point eliminated potential immortal time bias

(because all patients had to be sequenced to enter the cohort) and was robust to incomplete

19

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 29, 2021. ; https://doi.org/10.1101/2021.05.28.446240doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.28.446240
http://creativecommons.org/licenses/by-nc-nd/4.0/


data, as the majority of patients were first diagnosed at other institutions. However, hazard

ratios should be interpreted relative to this clinical reporting point rather than cancer diagnosis.

For testing, we use a multivariate Cox proportional hazards model (lifelines Python package),

controlling for age at sequencing (stratified into three equal groups), sex, biopsy site type

(primary/non-primary), line of treatment, and tumor purity. We furthermore controlled for

technical covariates: sequencing panel version and off-target coverage. For any covariate that

violated the proportional hazards assumption at p<0.05/N (where N is the number of

covariates), we stratified over the respective covariate. Any SBT features that violated the

proportional hazards test were dropped. For each dataset, we applied a false discovery rate

(FDR) correction to correct for multiple testing.
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Figures

Figure 1. Association of SBT features with clinical factors and somatic mutations in the OP-LUAD

cohort. Covariates are average off-target coverage, panel version, and tumor purity. Significant

results are indicated with stars. Colors red and blue represent positive and negative association

effect directions, respectively.
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Figure 2. Association of SBT features with clinical factors and measurements from the immune

landscape15 for TCGA-LUAD WXS samples. Covariates are the average off-target coverage and

tumor purity. Significant results are indicated with stars. SBT features with no significant results

are removed. Colors red and blue represent positive and negative association effect directions,

respectively.
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Figure 3. Hazard ratio from significant associations of SBT features with the survival time

obtained from the Cox proportional-hazard model applied over the OP-LUAD cohort (n=1,720

primary tumors and 1,200 nonprimary tumors) and used for discovery, and breast carcinoma

(only female, 1,302 primary tumors) and colorectal cancer tumors (n=1,651 primary tumors)

sequenced on the OncoPanel and used for cross-cancer replication.
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Figure 4. Kaplan-Meier survival plots displaying the top and bottom 10% values of 5S rDNA copy

number and zero and non-zero values of TCR Shannon of primary tumors: a) 5S rDNA copy

number (OP-LUAD primary); b) 5S rDNA copy number (OP-BRCA primary); c) 5S rDNA copy

number (OP-CRC primary); d) TCR α Shannon (OP-LUAD primary); and e) TCR α Shannon

(OP-BRCA primary).
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Supplementary Tables

Table S1. Summary of replicated results from previous studies.

# Summary of replicated results Citation

1 We observed highly significant associations between clonotype diversity of

both BCR and TCR repertoires with the biopsy site, as has been previously

detected using RNA-Seq data14,16.

14,16

2 Using the TCGA-LUAD data, we showed that SBT mtDNA copy number

estimates, calculated as a ratio between mtDNA coverage and average

coverage of off-target regions, were correlated with previous estimates

computed as the ratio of mtDNA reads to nuclear DNA reads (Pearson

correlation=0.61, p-value<10-20) (Figure S2)12, demonstrating consistency

with previous work.

12

3 We observed a high correlation between rDNA copy number estimates of

individual rDNA components (e.g. 28S vs 18S: Pearson correlation=0.87,

p-value<10-20) in the OP-LUAD cohort (Figure S4), consistent with previous

findings11.

11

4 We confirmed the known associations of somatic events in TP53 with

changes in the rDNA components (5S rDNA: effect=0.041, p=0.012; 28S

11
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rDNA: effect=-0.034, p=0.050)11 (Figure 1), which also replicated in

TCGA-LUAD WXS samples (e.g., 18S rDNA: effect=-0.066, p=5.4x10-3) (Figure

2).

5 5S rDNA copy number, which we found to be associated with poor survival

(see above), was positively associated with the fraction of lymphocytes in

TCGA data (Figure 2). These results are consistent with previous findings

that lymphocyte infiltration levels are associated with poor survival15 which

may be indirectly captured by SBT features.

15

6 Similar to our previous analysis in GTEx tissues6, we observed substantial

microbial load across various human tissues over the OP-LUAD cohort

(Figure S8) with all loads nominally lower in biopsies from brain versus

non-brain (Figure 1).

6
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Table S2. Pearson correlation of the microbial loads of RNA-Seq and WXS samples (n=482) from

the TCGA-LUAD cohort.

load Pearson correlation p-value

fungal 0.0028 0.95

protozoa -0.025 0.58

viral 0.074 0.10

microbial 0.29 < 10-20
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Table S3. Overview of high-quality data sets. The number of samples in each dataset is

presented (“n”). We documented the types of cancer each data contains (“Cancer Type”). We

recorded the types of the sequencing technology used for samples in each study (“Tumor”). We

documented whether samples from the study were sequenced by RNA-Seq (“RNA”).

Abbreviations: WXS: Whole-Exome sequencing; OP: Oncopanel-sequencing; LUAD: Lung

adenocarcinoma; BRCA: Breast carcinoma; CRC: Colorectal cancer.

Data Source Cancer Type Tumor RNA

OP-LUAD Lung adenocarcinoma

OncoPanel (n=1,720

primary and

1,200 non-primary tumors)

-

OP-BRCA Breast carcinoma
OncoPanel (n=1,302

primary tumors)
-

OP-CRC Colorectal cancer
OncoPanel (n=1,651

primary tumors)
-

TCGA-LUAD Lung adenocarcinoma WXS (n=558) RNA-Seq (n=490)
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Table S4. Definition of SBT features.

Type Feature How it is measured

mtDNA
mtDNA copy

number

Measured based on reads covering mtDNA genome adjusted

for off-target coverage

rDNA

5S rDNA copy

number

Measured based on reads covering 5S rDNA region adjusted

for off-target coverage

18S rDNA copy

number

Measured based on reads covering 18S rDNA region adjusted

for off-target coverage

28S rDNA copy

number

Measured based on reads covering 28S rDNA genome

adjusted for off-target coverage

microbiome

fungal load
Measured based on number of reads mapped to fungal

genomes adjusted for off-target coverage

microbial load
Measured based on number of reads mapped to microbial

genomes adjusted for off-target coverage

protozoa load
Measured based on number of reads mapped to protozoan

genomes adjusted for off-target coverage

viral load
Measured based on number of reads mapped to viral

genomes adjusted for off-target coverage
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Immune

IG κ and λ

infiltration

Measured based on number of IGκ- and IGλ-derived reads

adjusted for off-target coverage

BCR infiltration
Measured based on number of IG-derived (including both

light and heavy chains) reads adjusted for off-target coverage

IGH infiltration
Measured based on number of IGH-derived reads adjusted for

off-target coverage

IG κ infiltration
Measured based on number of IGκ-derived reads adjusted for

off-target coverage

IG λ infiltration
Measured based on number of IGλ-derived reads adjusted for

off-target coverage

T cell infiltration
Measured based on number of TCR-derived reads adjusted for

off-target coverage

T cell α infiltration
Measured based on number of TCRα-derived reads adjusted

for off-target coverage

T cell β infiltration
Measured based on number of TCRβ-derived reads adjusted

for off-target coverage

T cell δ infiltration
Measured based on number of TCRδ-derived reads adjusted

for off-target coverage
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T cell γ infiltration
Measured based on number of TCRγ-derived reads adjusted

for off-target coverage

IG κ and λ richness
Measured based on number of distinct  IGκ and IGλ

clonotypes adjusted for off-target coverage

BCR richness

Measured based on the number of distinct  IG (including both

light and heavy chains)  clonotypes adjusted for off-target

coverage

IGH richness
Measured based on the number of distinct  IGH clonotypes

adjusted for off-target coverage

IG κ richness
Measured based on the number of distinct  IGκ clonotypes

adjusted for off-target coverage

IG λ richness
Measured based on the number of distinct  IGλ clonotypes

adjusted for off-target coverage

TCR richness
Measured based on the number of distinct  TCR clonotypes

adjusted for off-target coverage

TCR α richness
Measured based on the number of distinct  TCRα clonotypes

adjusted for off-target coverage

TCR β richness
Measured based on the number of distinct  TCRβ clonotypes

adjusted for off-target coverage
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TCR δ richness
Measured based on the number of distinct  TCRδ clonotypes

adjusted for off-target coverage

TCR γ richness
Measured based on the number of distinct  TCRγ clonotypes

adjusted for off-target coverage

IGH Shannon

Measured based on the number of distinct  IGH clonotypes

and their relative abundances.

𝑆ℎ𝑎𝑛𝑛𝑜𝑛 𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 =  −
𝑖=1

𝑛

∑
𝑥𝑖

𝑁 𝑙𝑛(
𝑥

𝑖

𝑁 ),  𝑥
𝑖

≠ 0;  𝑁 =
𝑖=1

𝑛

∑ 𝑥
𝑖

IG κ Shannon

Measured based on the number of distinct  IGκ clonotypes

and their relative abundances.

𝑆ℎ𝑎𝑛𝑛𝑜𝑛 𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 =  −
𝑖=1

𝑛

∑
𝑥𝑖

𝑁 𝑙𝑛(
𝑥

𝑖

𝑁 ),  𝑥
𝑖

≠ 0;  𝑁 =
𝑖=1

𝑛

∑ 𝑥
𝑖

IG λ Shannon

Measured based on the number of distinct  IGλ clonotypes

and their relative abundances.

𝑆ℎ𝑎𝑛𝑛𝑜𝑛 𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 =  −
𝑖=1

𝑛

∑
𝑥𝑖

𝑁 𝑙𝑛(
𝑥

𝑖

𝑁 ),  𝑥
𝑖

≠ 0;  𝑁 =
𝑖=1

𝑛

∑ 𝑥
𝑖

TCR α Shannon

Measured based on the number of distinct  TCRα clonotypes

and their relative abundances.

𝑆ℎ𝑎𝑛𝑛𝑜𝑛 𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 =  −
𝑖=1

𝑛

∑
𝑥𝑖

𝑁 𝑙𝑛(
𝑥

𝑖

𝑁 ),  𝑥
𝑖

≠ 0;  𝑁 =
𝑖=1

𝑛

∑ 𝑥
𝑖

TCR β Shannon Measured based on the number of distinct  TCRβ clonotypes
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and their relative abundances.

𝑆ℎ𝑎𝑛𝑛𝑜𝑛 𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 =  −
𝑖=1

𝑛

∑
𝑥𝑖

𝑁 𝑙𝑛(
𝑥

𝑖

𝑁 ),  𝑥
𝑖

≠ 0;  𝑁 =
𝑖=1

𝑛

∑ 𝑥
𝑖

TCR δ Shannon

Measured based on the number of distinct  TCRδ clonotypes

and their relative abundances.

𝑆ℎ𝑎𝑛𝑛𝑜𝑛 𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 =  −
𝑖=1

𝑛

∑
𝑥𝑖

𝑁 𝑙𝑛(
𝑥

𝑖

𝑁 ),  𝑥
𝑖

≠ 0;  𝑁 =
𝑖=1

𝑛

∑ 𝑥
𝑖

TCR γ Shannon

Measured based on the number of distinct  TCRγ clonotypes

and their relative abundances.

𝑆ℎ𝑎𝑛𝑛𝑜𝑛 𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 =  −
𝑖=1

𝑛

∑
𝑥𝑖

𝑁 𝑙𝑛(
𝑥

𝑖

𝑁 ),  𝑥
𝑖

≠ 0;  𝑁 =
𝑖=1

𝑛

∑ 𝑥
𝑖

Table S5. Portion of zero values in the SBT features.

SBT feature OP-LUAD OP-CRC OP-BRCA TCGA-RNA-Seq TCGA-WXS

mtDNA copy number 0.0% 0.1% 0.0% - 0.0%

5S rDNA copy number 0.0% 0.0% 0.0% - 0.0%

18S rDNA copy number 1.5% 1.1% 1.3% - 0.0%

28S rDNA copy number 0.1% 0.2% 0.0% - 0.0%

45S rDNA copy number 0.0% 0.1% 0.0% - 0.0%

fungal load 0.0% 0.0% 0.0% 0.0% 0.0%

microbial load 0.0% 0.0% 0.0% 0.0% 0.0%

protozoa load 0.0% 0.1% 0.0% 0.0% 97.0%

viral load 0.0% 0.0% 0.0% 0.0% 0.0%

IG κ and λ infiltration 82.6% 91.6% 87.6% 2.0% 83.9%
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IG κ and λ richness 82.6% 91.6% 87.6% 2.0% 83.9%

BCR infiltration 78.7% 87.7% 83.4% 0.8% 81.0%

IGH infiltration 89.8% 93.6% 91.1% 1.2% 96.2%

IG κ infiltration 99.8% 100.0% 99.8% 2.2% 87.6%

IG λ infiltration 82.7% 91.6% 87.6% 2.2% 95.3%

T cell infiltration 39.9% 46.3% 32.9% 0.0% 33.3%

T cell α infiltration 39.9% 46.5% 32.9% 0.0% 53.0%

T cell β infiltration 62.7% 67.5% 57.5% 15.9% 59.1%

T cell δ infiltration 99.6% 99.6% 99.1% 12.9% 97.3%

T cell γ infiltration 65.1% 76.8% 66.1% 78.6% 93.9%

BCR richness 78.7% 87.7% 83.4% 0.8% 81.0%

IGH richness 89.8% 93.6% 91.1% 1.2% 96.2%

IG κ richness 99.8% 100.0% 99.8% 2.2% 87.6%

IG λ richness 82.7% 91.6% 87.6% 2.2% 95.3%

TCR richness 39.9% 46.3% 32.9% 0.0% 33.3%

TCR α richness 39.9% 46.5% 32.9% 0.0% 53.0%

TCR β richness 62.7% 67.5% 57.5% 15.9% 59.1%

TCR δ richness 99.6% 99.6% 99.1% 12.9% 97.3%

TCR γ richness 65.1% 76.8% 66.1% 78.6% 93.9%

IGH Shannon 96.5% 98.4% 97.2% 2.2% 99.5%

IG κ Shannon 100.0% 100.0% 100.0% 2.2% 98.2%

IG λ Shannon 92.5% 97.9% 95.8% 2.4% 99.8%

TCR α Shannon 47.9% 56.4% 41.2% 0.0% 79.6%

TCR β Shannon 91.6% 93.6% 86.5% 31.0% 86.9%

TCR δ Shannon 100.0% 100.0% 99.9% 29.0% 99.8%

TCR γ Shannon 76.6% 89.3% 80.7% 94.3% 99.8%
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Supplementary Figures

Figure S1. Barplot depicting (a) the maximum amount of RAM and b) the CPU time for running

SBT and BWA methods. For each method, we report the mean value across 20 randomly

selected samples from the OP-LUAD  cohort.
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Figure S2. Correlation of WXS-based (TCGA LUAD) mtDNA dosage estimates obtained by SBT

and by Resnik et al. 11,12 (Pearson correlation=0.61, p-value < 10-20).

Figure S3. Association of SBT features with clinical factors and somatic mutations for (a) 1,352

LUAD samples biopsied from the LUNG and (b) 798 LUAD samples biopsied from non-LUNG

sites, both datasets from the OP-LUAD cohort. Covariates are average off-target coverage,

panel version, and tumor purity. Significant results are indicated with stars. Colors red and blue

represent positive and negative association effect directions, respectively.
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Figure S4. Correlation of rRNA copy number estimates across 2,920 samples from the OP-LUAD

cohort: (a) Correlation of 18S-based (y-axis) and 5S-based rRNA copy number estimates (x-axis)

(r=0.68, p-value<10-20); (b) Correlation of 28S-based (y-axis) and 5S-based rRNA copy number

estimates (x-axis) (r=0.65, p-value<10-20); (c) Correlation of 28S-based (y-axis) and 18S-based

rRNA copy number estimates (x-axis) (r=0.87, p-value<10-20).
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Figure S5. Association of SBT features with clinical factors and measurements from the immune

landscape15 for TCGA-LUAD RNA-Seq samples. Covariates are the number of reads and tumor

purity. Significant results are indicated with stars. Colors red and blue represent positive and

negative association effect directions, respectively. We confirmed that SBT features inferred

from RNA-seq were associated with immune landscape features (which were largely also

inferred from RNA-seq in previous work). Given a large number of associations, we focused on

broad patterns that were significant after the Bonferroni correction. Nearly all ImRep features

were associated with increased measures of BCR/TCR expansion, T-Cells, B-Cells, Plasma Cells,

and Lymphocyte infiltration; and associated with decreased measures of Macrophages,

Dendritic Cells, Monocytes, and Proliferation (all Bonferroni p<0.05). In addition, IG features
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were broadly associated with mutation/neoantigen load; and TCR-related features were

negatively associated with Neutrophil counts and proliferation.

Figure S6. Comparison of receptor-derived reads provided by WXS and RNA-Seq (n=482) from

TCGA-LUAD samples. a) Number of TCR/IG-derived reads per 1 million original RNA-Seq reads.

b) Number of TCR/IG-derived reads per 1 million original WXS reads.
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Figure S7. An area chart shows the proportion of the total (a) IGH, (b) IGL, (c) IGK, (d) TCRB, and

(e) TCRG repertoire captured by ImRep on TCGA-LUAD depending on the minimum

RNA-seq-confirmed clonotypes frequency considered. The x-axis corresponds to

RNA-seq-confirmed clonotypes frequency Z. The y-axis corresponds to the fraction of assembled

TCRB repertoire with clonotype abundances greater than Z. The total repertoire was defined as

the sum of the RNA-seq-confirmed clonotypes abundances. Results on TCRA and TCRD were not

presented, as few TCRA/TCRD-derived reads were detected from WXS samples.
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Figure S8. Comparison of (a) fungi load, (b) microbial load, (c) protozoa load, and (d) viral load

across tissues of 2,150 samples from the OP-LUAD cohort. The distributions were compared

using the Dunn-Bonferroni test, and all distributions are not statistically different (p-value>0.05).
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