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Abstract. The single-cell RNA sequencing (scRNA-seq) has become a revolutionary technology to
detect and characterize distinct cell populations under different biological conditions. Unlike bulk
RNA-seq, the expression of genes from scRNA-seq is highly sparse due to limited sequencing depth
per cell. This is worsened by tossing away a significant portion of reads that cannot be mapped dur-
ing gene quantification. To overcome data sparsity and fully utilize original sequences, we propose
scSimClassify, a reference-free and alignment-free approach to classify cell types with k-mer level fea-
tures derived from raw reads in a scRNA-seq experiment. The major contribution of scSimClassify is
the simhash method compressing k-mers with similar abundance profiles into groups. The compressed
k-mer groups (CKGs) serve as the aggregated k-mer level features for cell type classification. We eval-
uate the performance of CKG features for predicting cell types in four scRNA-seq datasets comparing
four state-of-the-art classification methods as well as two scRNA-seq specific algorithms. Our exper-
iments demonstrate that the CKG features lend themselves to better performance than traditional
gene expression features in scRNA-seq classification accuracy in the majority of cases. Because CKG
features can be efficiently derived from raw reads without a resource-intensive alignment process, sc-
SimClassify offers an efficient alternative to help scientists rapidly classify cell types without relying on
reference sequences. The current version of scSimClassify is implemented in python and can be found
at https://github.com/digi2002/scSimClassify.
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1 Introduction

Cataloging cells is crucial for understanding the organization of cells, disease mechanisms, and even treat-
ment respondences. Single-cell RNA sequencing (scRNA-seq) makes it possible to identify cell subpopulations
by exploring the unique transcriptomic profile of each cell. Clustering is the most popularly used approach
to partition cells based on transcriptome similarity in an unsupervised fashion [1]. However, this requires
well-established knowledge of biomarkers for cell type annotation as well as cell populations. Unfortunately,
such information is often unavailable prior to the scRNA-seq experiments [2]. Therefore, researchers turn to
other machine learning approaches, such as supervised classification, to annotate cells automatically [3].

Recently, Abdelaal et al. [3] benchmarked 22 classification methods for scRNA-seq cell type identification.
All of these classification approaches utilized gene expression profiles of individual cells as classification
features. The study included many conventional classifiers such as support vector machine (SVM) and random
forest (RF) in addition to a few recently developed single cell-specific classifiers including ACTINN [4] and
scPred [5]. The study demonstrated the efficacy of the gene profile-based approach in cell type identification.
In a different study, Arvind Iyer et al. [6] classified cell types by naive Bayes, gradient boosting machine,
and random forest fitted with gene expression profiles to recognize circulating tumor cells (CTCs) of diverse
phenotypes.

However, scRNA-seq data is notorious for its relatively low sequencing depth resulting in highly sparse
gene expression across all cells [7]. To make things worse, read alignment to the reference genome often filters
out many unmapped reads. It is not uncommon that about half of the reads are thrown out prior to the
final analysis [8]. Note that not all unmapped reads are bad reads. Using standard reference genomes may
eliminate reads representing significant variations in a particular subject, cell type, or disease genome. Last
but not least, aligning read to the reference genome to derive a gene-cell count matrix is typically the most
time-consuming step of the process.
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To overcome these limitations, we develop a reference-free approach for cell type classification sidestepping
read mapping step [9]. Specifically, it explores novel features derived from the entirety of the reads. Instead
of using gene expression features derived from scRNA-seq reads, we use k-mers, often referred to as the
genomic words, as features for classification. Intuitively, these genomic words can be extracted from reads in
a scRNA-seq sample. Each of these “words” is associated with its own “frequency” or abundance, which is
defined as the number of times that a k-mer appears in a sample. The change of gene/transcript expression
will correspondingly affect the abundances of k-mers identifying them. Thus k-mers and their abundances can
be used as features for classification due to their strong association with the expression of genes/transcripts.
The advantage here is that k-mers can be easily derived from reads without alignment to references. In the
meantime, the derived k-mer set also captures cell and subject-specific variations that do not fit standard
reference genomes.

The challenge associated with k-mer based features is the huge set of unique k-mers, which can be in
hundreds of millions depending on sequencing depth. However, a large set of features in the size of hundreds
of millions is not a blessing for classification to achieve better accuracy and scalability. We observe that
many k-mers may be expressed very similarly even across samples, such as a group of k-mers unique to
the same gene/transcript. These k-mers are redundant to each other to represent the true k-mer feature
space. Clustering is one of the popular unsupervised approaches to group similar objects [10]. Unfortunately,
they are not feasible to group abundance profiles of k-mers due to the unknown number of clusters as well
as high computational cost when dealing with a large amount of k-mers directly. Various approaches have
been developed in the past in the field of metagenomics classification to reduce the set of k-mer features,
but they are restricted to applications with only case and control experiments. In this case, k-mers that
can significantly differentiate case and control were selected for further classification [11,12]. Unfortunately,
such approach cannot be easily applied as k-mer abundances in scRNA-seq cannot be set up as a two-group
comparison. Often times, cell type classification is a multi-class classification problem with half a dozen or
more cell types in a single experiment.

In this paper, we propose scSimClassify, a reference-free approach for cell type classification. The sc-
SimClassify reduces the original k-mer feature space by partitioning it into subsets of k-mers with similar
abundance profiles across a variety of cell types via an unsupervised approach. This is achieved by repur-
posing simhash [13], an extremely fast and effective algorithm that can automatically detect similar items
within a large set. We evaluate the performance of scSimClassify on scRNA-seq datasets generated from
breast cancer tissues with tumor and immune cell populations, as well as blood samples for studying periph-
eral blood mononuclear cells (PBMCs) in COVID-19 and influenza patients. Our experiments demonstrate
that scSimClassify can accurately identify cell types with the aggregated k-mer profiles (CKG features). We
also find that the top-ranked CKG features are biologically meaningful in consistency with gene expression
features. To the best of our knowledge, scSimClassify is the first reference-free method for multi-class cell
type classification based on k-mer level information. Besides improving general classification accuracy, our
approach also makes it possible to classify cell types with incomplete or even unknown references.

2 Methods

Figure 1 describes an overview of scSimClassify training steps for cell type classification. scSimClassify
takes the real-value k-mer abundance matrix as the input. The matrix is assembled from cells sequenced by
scRNA-seq. Here we define k-mers sharing similar abundance profiles across cells in a training set as similar
k-mers. To reduce the size of the input, simhash-based group generator (simGG) is implemented in three
steps: (1) generate k-mers’ fingerprints, (2) group similar k-mers into a compressed k-mer group (CKG), and
(3) determine CKG abundance matrix. Finally, scSimClassify uses the CKG abundance matrix for cell type
classification. Table 1 includes formal notations that will be used in the following sections.

i the index of a k-mer d the index of a cell

I unique k-mers in a training set I ′ (I ′ ⊂ I) unique informative k-mers in a training set

D cells in a training set ωdi the abundance of k-mer i in cell d

Ri = {ωdi}d∈D
a k-mer abundance vector, representing a k-mer i
with abundances across cells in a training set

Cd = {ωdi}i∈I
a cell d represented with an abundance
vector across k-mers in a training set

g the index of a CKG G a set of CKGs

Table 1: Formal notations in this paper

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 30, 2021. ; https://doi.org/10.1101/2021.05.29.446268doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.29.446268
http://creativecommons.org/licenses/by-nc-nd/4.0/


A Reference-free Approach for Cell Type Classification with scRNA-seq 3

cell 1
cell 2
cell 3
cell 4
cell 5
cell 6
cell 7

cell 1
cell 2
cell 3
cell 4
cell 5
cell 6
cell 7

cell 1
cell 2
cell 3
cell 4
cell 5
cell 6
cell 7

cell 1

cell 2

cell 3
cell 4

cell 5

cell 6

cell 7

…

…

…

…
00110110

10110000

10100000

00110110

00110110

10110000

00110110

10110000

10110000

10100000

00110110

10110000

10010110

10100000

00110110

10100000

10110000

Preprocessing and selecting informative 𝑘-mers

Step one in simGG:
Generating 𝑘-mers’ 𝑛-bit fingerprints

Step three in simGG:
Determining CKGs’ abundances in individual cells

Informative 𝒌-mer abundance matrix

Fingerprints of informative 𝒌-mers

CKG1

𝑘-mers in CKG1

CKG2 CKG3

…

Classifier

Classifying cell types with CKG features

𝑘-mers in CKG2 𝑘-mers in CKG3

(A) 

(B1) 

Original 𝒌-mer abundance matrix

(B2) 

Step two in simGG:
Identifying CKGs based on fingerprints

(B3) 

(C) 

Compressed 𝒌-mer groups (CKGs)

CKG abundance matrix

A 𝑘-mer abundance vector is 
simhashed to an 8-bit fingerprint

Fig. 1: An overview of scSimClassify training steps for cell type classification. (A) The k-mers and their abundances in
individual cells are obtained as the original input. Preprocessing is applied to the original k-mer abundance matrix to
filter out noises and systematic variations. Then, informative k-mers are selected based on their abundance variability.
(B1) In the first step of simGG, k-mer abundance vectors are converted to n-bit fingerprints through simhash (taking
n = 8 as an example). (B2) In the second step of simGG, compressed k-mer groups (CKGs) are identified based
on k-mers’ fingerprints. Each CKG contains a set of k-mers sharing the same fingerprint. (B3) In the third step of
simGG, the abundance of a CKG in a cell is determined by averaging abundances of k-mers following the removal of
abundance outliers in the same group. (C) Finally, a classifier is trained with the cells represented by CKG features.
In this figure, colors of abundance matrices indicate the values of abundances.

2.1 Preprocessing and selection of informative k-mers

The counting of k-mer abundances in scRNA-seq reads of individual cells is carried out using jellyfish [14].
Only the canonical form of a k-mer sequence is kept, i.e., the lexicographical minimum of itself and its reverse
complementary sequence. The original k-mer abundance matrix as shown in Figure 1 (A) is further processed
based on three principles: (1) normalize k-mer abundance within individual cells; (2) filter out k-mers with
sparse expressions across cells in a training set; (3) select informative k-mers with high abundance variations
across cells in a training set.

To allow for a fair comparison across cells with variable sequencing depth, we normalize the original
k-mer abundance of each cell, i.e., Cd(d ∈ D), by the total number of sequenced reads in cell d.
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Often, k-mers with sporadic expression across the cell populations may be unreliable due to sequencing
errors. We define o(Ri) as the occurrence of k-mer i ∈ I, which is the number of nonzero entries in Ri. A
k-mer is removed if it appears in only a small percentage of cells in a training set, i.e., o(Ri) ≤ α |D|. The
default setting for α is 10%.

Note that not all k-mers are equally important for classification purposes. For example, some k-mers from
housekeeping genes may have very consistent abundances across all cells. Such k-mers may not be useful in
differentiating cell types. We assume the abundance vector of an informative k-mer exhibits a high standard
deviation. Let std(Ri) be the standard deviation of k-mer abundance vector Ri(i ∈ I). A k-mer is selected
as an informative k-mer if its std(Ri) is among the top β% in k-mer set I. The default setting for β is 5.
The set of informative k-mers I ′ (I ′ ⊂ I) will be the input of the next step.

2.2 Simhash-based group generator (simGG)

As mentioned in Introduction, k-mers may originate from the same gene/transcript, sharing similar
abundance profiles across cells. Such k-mers can be redundant to represent cells. Therefore, we want to
group similar k-mers into CKGs based on their corresponding abundance vectors across cells in a training
set. However, conventional clustering algorithms are not scalable due to the presence of a huge set of k-mers.
Even k-means clustering can not be applied due to the lack of knowledge on the number of clusters.

In this study, we utilize the locality sensitive hashing (LSH) [15], an approximate algorithm that is
applicable to objects on a large scale, to detect similar k-mers. The underlying idea of LSH is to hash objects
with similar features to similar hash values such that object similarity could be determined by comparing
their corresponding hash values. Here, we adapt the simhash method [13] to group k-mers sharing similar
abundance vectors. Simhash was originally developed to identify documents with similar word vectors in a
large corpus. The simhash method is one of LSH functions that can represent feature vectors of objects in
the continuous space with n-bit fingerprints in a binary form. It has the property that the more similar the
objects are, the smaller the Hamming distance between their fingerprints, and the higher probability that
they share the same fingerprints. Our proposed simhash-based method, named simGG, has the following
steps:

Algorithm 1 Pseudocode of the simhash algorithm

procedure Simhash(Ri) . Simhash k-mer abundance
vector Ri

W ← array of n zeros
for d ∈ D do . Examine each cell

φd ← Hash(d) . Compute n-bit hash
for j = 1 to n do . Iterate through each bit

if jth bit of φd = 1 then
W[j]←W[j] + ωdi

else
W[j]←W[j]− ωdi

end if
end for

end for
for j = 1 to n do . Revisit all bits

if W[j] > 0 then
fingerprint[j]← 1

else
fingerprint[j]← 0

end if
end for

end procedure

Generate k-mers’ n-bit fingerprints .Given a point
in space (in this case, a k-mer abundance vector), the
simhash method generates an n-bit fingerprint by deter-
mining the point’s relative location among n generated
hyperplanes. Each bit of the fingerprint corresponds to
a hyperplane. The bit’s value is set to 1 if the point is
above the corresponding hyperplane; otherwise, it is set
to 0. Two points with the same n-bit fingerprint indicate
that they are very close as none of the n hyperplanes is
able to separate them. Therefore, using more hyperplanes
(larger n) often result in a more accurate similarity esti-
mation for k-mer abundance vectors as space is split into
much smaller regions.

To speed up the performance and avoid storing hyper-
planes, we implement the simhash method as the pseu-
docode given in Algorithm 1 [16]. The steps to map a k-
mer abundance vector Ri (i ∈ I ′) to a n-bit fingerprint
start by initializing a temporary array W with n zeros. Next, the algorithm generates an n-bit hash φd for
each cell d in Ri (i ∈ I ′) with a consistent hashing mechanism md5 [17]. For each bit of φd, it decides to add
or subtract ωdi, the abundance of k-mer i in cell d, to/from W[j] based on whether the j-th bit of φd is one
or zero. After all the cells of Ri(i ∈ I ′) are processed, jth bit in fingerprint is obtained by setting 1 if W[j]
is positive, otherwise setting to 0. Therefore, a k-mer abundance vector Ri(i ∈ I ′) is mapped to [0,2n] n-bit
fingerprint values as shown in Figure 1 (B1) and (B2).

Identify compressed k-mer groups (CKGs) . Based on the property of simhash, two k-mers are con-
sidered similar if the Hamming distance between their corresponding fingerprints is very small. Considering
the large scale of k-mers and similarity identification performance, we use the strictest measure to identify
similar k-mers by checking if Hamming distance is zero or not [18]. Thereby we do not need to compute
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Hamming distances of all pairs of k-mers’ fingerprints. We define a CKG as a group of similar k-mers if they
share exactly the same fingerprint. An example of CKGs is provided in Figure 1 (B3).

To group similar k-mers, a naive clustering method takes O(|I ′|2|D|) time. In comparison, the complexity
of simGG is bounded by O(|I ′| log |I ′|). The algorithm first simhashes informative k-mer abundance vectors
Ri (i ∈ I ′) to n-bit fingerprints with O(|I ′|) time complexity. This is followed by the identification of the
k-mers with the same fingerprints through sorting with O(|I ′| log |I ′|) time complexity. Additionally, both of
the steps in simGG can be executed in parallel computing [19], which may further reduces the running time.

Determine CKGs’ abundances in individual cells . In this step, the pre-built CKGs from a training set
are used to aggregate k-mer abundances into CKGs’ abundances for both training and test sets. In general,
the abundances of k-mers belonging to the same CKG are similar in an individual cell, as shown in Figure
1 (B3). As a result, we can compress those k-mers’ abundances into a single abundance to represent the
expression of a CKG in a cell. Given k-mers belonging to cell d and CKG g, we first filter out the outliers
whose abundances fall outside of two standard deviations from the mean abundance and then average the
abundances of the remaining k-mers as the abundance of CKG g for cell d. We iteratively determine the
abundance of each CKG for each cell such that each of the cells can be characterized by a set of CKG
features. As shown in Figure 1 (A) and (C), the feature size of individual cells is reduced from the original
k-mer size |I| to CKG feature size |G|.
2.3 Classification Algorithms

During the classification process, we adopt a variety of classification algorithms [3,6] to classify cell types
with CKG features. These methods include random forest (RF) [20], gradient boosting machine (GBM) [21],
multilayer perceptron (MLP) [22] and support vector machine (SVM) [23]. The four classifiers are selected to
classify cell types with CKG features as they represent four branches of the general classification algorithms.
RF and GBM are tree-based ensemble methods that randomly consider a subset of features to build the
classifier. The difference between them is that RF builds trees independently, while GBM builds one tree at
a time to correct decision trees that come before it. MLP is a kind of artificial neural networks that considers
all the features to determine the data classes. SVM finds a plane with the maximum margin to separate two
classes of data points. Benchmarking on these classifiers allows us to investigate how different CKG features
perform on each type of the state-of-the-art classifiers.

3 Experimentation and evaluation

The goal of our experiment was to evaluate scSimClassify for cell type classification using scRNA-seq
data. Here we compared the performance of CKG features and commonly used gene expression features
in the application of cell type classification. We conducted thorough comparisons among numerous general
purpose classifiers (RF, GBM, MLP and SVM) between the two types of features. Benchmarking gene
expression based classification methods to automatically assign cell identities, Abdelaal et al. [3] concluded
that ACTINN [4] and scPred [5] performed well on most datasets as single cell-specific classifiers. Therefore,
we also compared classification performance with ACTINN and scPred based on gene expression features.

3.1 Experiment configuration

Datasets . We identified four datasets (Chuang [24], Karaayvaz [25], PBMC3k [26] and Lee [27]) for evalu-
ation in our experiments. They include two datasets of similar cell types in breast cancer tissues, and two
datasets of peripheral blood mononuclear cells (PBMCs) (Table A.1). They vary in the number of cells, cell
populations, and sequencing protocols.

Both Chuang’s and Karaayvaz’s datasets were sequenced from breast cancer tissues using Smartseq-2
technology where full-length transcripts were sequenced within individual cells. Their associated experiments
aimed at revealing the characteristics of breast cancer subtypes shaped by tumor cells and immune cells in
the microenvironment [24, 25]. The Chuang’s dataset with GEO accession number GSE75688 [24] contains
317 epithelial breast cancer cells, 175 immune cells, and 23 stromal cells. The epithelial breast cancer cells are
further divided into four subpopulations: 73 luminal A subtypes, 25 luminal B subtypes, 130 HER2 subtypes,
and 89 triple-negative breast cancer (TNBC) subtypes. And 175 immune cells can be further classified into
three categories: 83 B cells, 54 T cells, and 38 macrophages. In all, it consists of eight types of cells. The
Karaayvaz’s dataset with GEO accession number GSE118389 [25] contains 1098 cells originated from five
different cell type populations: 868 epithelial breast cancer cells, 94 stromal cells, 64 macrophages, 53 T cells,
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and 19 B cells. Both datasets share five common cell types: epithelial breast cancer cells, stromal cells, B
cells, T cells, and macrophages, making it possible to classify cell types across datasets.

The PBMC3k and Lee’s datasets are human PBMC datasets. They were sequenced by 10x genomics,
which only sequenced the 3’-end of the transcripts and generate a relatively low number of reads. The
scRNAseq data and its gene expression profiles from PBMC3k dataset are freely available from 10X Genomics
[26] with nine identified cell types. This is a well-analyzed dataset with the ground truth cell type assigned by
Seurat clustering protocol [28]. Lee’s study performed scRNA-seq using PBMCs to identify factors associated
with the development of severe COVID-19 infection. We randomly selected three samples from Lee’s dataset
with GEO accession number GSE149689. They were PBMCs from a healthy donor (HD), a patient with
severe influenza (FLU), and a patient with COVID-19. Also, six shared cell types between PBMC3k and
Lee’s dataset made cross-dataset classification possible.

Features . Gene expression data associated with the original scRNA-seq data from each dataset was down-
loaded from the GEO repository or 10X Genomics. We followed QC criteria as used in their original stud-
ies [24, 27] to discard low-expressed or unexpressed genes. We referred to “gene expression features” as GE
in the following sections.

We generate several variations of CKG features as illustrated in Methods with different combinations of
k-mer length, k and simhash fingerprint size, n. The k-mer length is either 16 or 21 [29], while fingerprint
bit size for simhash can be either 16-bit or 32-bit. To investigate whether the reference genome is essential
for the cell type classification, we generated two categories of k-mers as inputs, as listed in Table 2. The first
category (on the left in Table 2) was generated without reference-based selection, containing k-mers derived
from all the reads in scRNA-seq data; The second (on the right in Table 2) contained only k-mers derived
from reads that can be mapped to the reference genome. To obtain mapped reads in Chuang’s dataset, the
scRNA-seq reads were aligned to human genome reference sequences (hg19) using the 2-pass mode of STAR
(default parameters) [30], following the same alignment procedure for gene expression quantification [24]. As
for PBMC3k dataset, we obtained read alignment information from the downloaded BAM file.

Table 2: The nomenclature (id) of CKG feature vari-
ations with different combination of the parameter val-
ues. The variations on the left are reference-free and
take all k-mers to generate CKG features. The varia-
tions on the right only take k-mers that can be mapped
to the reference genome to generate CKG features.

id k n read type id k n read type
allk21n16 21 16 all mappedk21n16 21 16 mapped
allk21n32 21 32 all mappedk21n32 21 32 mapped
allk16n16 16 16 all mappedk16n16 16 16 mapped
allk16n32 16 32 all mappedk16n32 16 32 mapped

Due to different sequencing protocols, the average reads per cell on PBMC3k is around 69,000 reads per
cell in comparison to over 10 million reads per cell in Chuang’s dataset. Therefore we set the k-mer filtering
threshold described in section 2.1 to be α =0.5% to retain sufficient k-mers to generate CKG features in the
PBMC3k dataset, comparing to the default setting of α =10% as in Chuang’s dataset.

Classifier configuration and performance metrics . We applied MLP, RF, GBM, and SVM to classify
cells with each feature set. A grid search to identify optimal hyperparameter combination was performed
for all classifiers. The hyperparameter searching space for RF and GBM was the maximum tree depth
(2/6/10), number of estimators (10/50/100), and a maximum of features to look for best split (“sqrt”/“log”/
“None”). SVM selected parameters from the type of kernel (linear/rbf) and the margin error controller
(0.0001/0.001/0.01). The options for MLP were the number of the hidden layer (1/2) and the dropout rate
(0.4/0.5/0.6). The number of neurons in each layer was the average of neuron numbers of its previous layer
and output layer. RF, GBM and SVM were implemented via the scikit-learn library [31], and the MLP was
implemented in Keras [32]. We run ACTINN and scPred with their defaulting settings after downloading
scripts or installing packages from their respective websites.

To evaluate the performance of multi-class classification on imbalanced data, we calculated accuracy, F1
score by the module in the scikit-learn library. Each class provided a weighted contribution to F1 score [31].

3.2 Evaluation of Intra-Dataset cell type classification

In this experiment, we evaluated the scSimClassify’s performance by training and testing subsets of cells
included in the same scRNA-seq data. We named this an Intra-Dataset evaluation. The comparisons were
made by reporting results from the following groups: (a) scSimClassify with general purpose classifier MLP,
RF, GBM and SVM. The features were GE, and 8 variations of CKGs (Table 2). (b) ACTINN, scPred with
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GE feature set. The stratified 5-fold cross-validation was used to select the best hyperparameter combination
for each classifier and feature set in scSimClassify. For all pipelines, five independent repetitions of 5-fold
cross-validation were performed to determine the classification results.

Comparison between GE and CKG features . We used two datasets, the Chuang’s dataset as well
as PBMC3k dataset, to compare the performance of GE and CKE features in their ability for cell type
identification. As reported in Table 3, the overall winner for Chuang’s dataset is CKG feature classified
by MLP, and CKG feature classified by SVM wins the best classification performance on PBMC3k dataset.
All the general purpose classifiers in scSimClassify outperform scRNA-seq specific classifier ACTINN and
scPred trained with gene expression features. For each general classification model, using CKG features quite
consistently improves the overall classification accuracy over GE features. This supports our hypothesis that
k-mer level features without gene annotation are sufficient for cell classification.

Feature Set Accuracy F1 # Features

MLP

GE 0.938± 0.017 0.936± 0.018 11353± 42
allkn16 0.941± 0.023 0.939± 0.026 5323± 488
allk21n32 0.94± 0.025 0.938± 0.027 12939± 204
allk16n16 0.942± 0.023 0.939± 0.026 6213± 564
allk16n32 0.942± 0.025 0.94± 0.026 14191± 218
mappedk21n16 0.935± 0.023 0.933± 0.026 5248± 542
mappedk21n32 0.935± 0.025 0.933± 0.027 12334± 472
mappedk16n16 0.932± 0.023 0.929± 0.025 6117± 544
mappedk16n32 0.934± 0.022 0.932± 0.024 13443± 222

RF

GE 0.916± 0.022 0.906± 0.027 11353± 42
allk21n16 0.916± 0.024 0.906± 0.028 5323± 488
allk21n32 0.926± 0.021 0.92± 0.025 12939± 204
allk16n16 0.895± 0.029 0.881± 0.035 6213± 564
allk16n32 0.921± 0.021 0.914± 0.025 14191± 218
mappedk21n16 0.915± 0.026 0.906± 0.031 5248± 542
mappedk21n32 0.931± 0.016 0.926± 0.02 12334± 472
mappedk16n16 0.892± 0.025 0.877± 0.031 6117± 544
mappedk16n32 0.914± 0.024 0.905± 0.028 13443± 222

GBM

GE 0.925± 0.019 0.92± 0.022 11353± 42
allk21n16 0.911± 0.025 0.906± 0.026 5323± 488
allk21n32 0.923± 0.02 0.917± 0.023 12939± 204
allk16n16 0.915± 0.022 0.91± 0.026 6213± 564
allk16n32 0.922± 0.025 0.918± 0.028 14191± 218
mappedk21n16 0.92± 0.023 0.914± 0.027 5248± 542
mappedk21n32 0.928± 0.017 0.923± 0.02 12334± 472
mappedk16n16 0.918± 0.021 0.912± 0.024 6117± 544
mappedk16n32 0.918± 0.02 0.912± 0.023 13443± 222

SVM

GE 0.94± 0.017 0.938± 0.018 11353± 42
allk21n16 0.94± 0.025 0.937± 0.029 5323± 488
allk21n32 0.931± 0.02 0.928± 0.022 12939± 204
allk16n16 0.938± 0.025 0.934± 0.028 6213± 564
allk16n32 0.936± 0.023 0.933± 0.025 14191± 218
mappedk21n16 0.936± 0.024 0.934± 0.027 5248± 542
mappedk21n32 0.93± 0.021 0.927± 0.024 12334± 472
mappedk16n16 0.937± 0.022 0.933± 0.025 6117± 544
mappedk16n32 0.934± 0.023 0.931± 0.026 13443± 222

ACTINN GE 0.906± 0.024 0.9± 0.026 24613± 228

scPred GE 0.896± 0.025 0.919± 0.024 38913

(a) Chuang’s dataset

Feature Set Accuracy F1 # Features

MLP

GE 0.87± 0.014 0.866± 0.015 16115± 18
allk21n16 0.893± 0.015 0.892± 0.016 6691± 364
allk21n32 0.892± 0.014 0.892± 0.014 8191± 101
allk16n16 0.893± 0.012 0.893± 0.012 6299± 353
allk16n32 0.891± 0.013 0.891± 0.013 7959± 104
mappedk21n16 0.894± 0.013 0.894± 0.013 6645± 372
mappedk21n32 0.89± 0.013 0.89± 0.013 8187± 109
mappedk16n16 0.894± 0.013 0.894± 0.013 6275± 352
mappedk16n32 0.893± 0.012 0.892± 0.012 7938± 117

RF

GE 0.856± 0.016 0.856± 0.016 16115± 18
allk21n16 0.879± 0.01 0.876± 0.01 6691± 364
allk21n32 0.891± 0.013 0.889± 0.014 8191± 101
allk16n16 0.881± 0.012 0.877± 0.013 6299± 353
allk16n32 0.888± 0.012 0.886± 0.012 7959± 104
mappedk21n16 0.883± 0.013 0.879± 0.014 6645± 372
mappedk21n32 0.887± 0.013 0.885± 0.014 8187± 109
mappedk16n16 0.884± 0.011 0.881± 0.012 6275± 352
mappedk16n32 0.888± 0.014 0.886± 0.014 7938± 117

GBM

GE 0.879± 0.01 0.874± 0.011 16115± 18
allk21n16 0.887± 0.012 0.885± 0.012 6691± 364
allk21n32 0.893± 0.013 0.892± 0.014 8191± 101
allk16n16 0.887± 0.011 0.884± 0.011 6299± 353
allk16n32 0.891± 0.014 0.889± 0.014 7959± 104
mappedk21n16 0.889± 0.013 0.887± 0.014 6645± 372
mappedk21n32 0.891± 0.014 0.889± 0.015 8187± 109
mappedk16n16 0.889± 0.013 0.888± 0.013 6275± 352
mappedk16n32 0.895± 0.015 0.893± 0.015 7938± 117

SVM

GE 0.888± 0.014 0.885± 0.014 16115± 18
allk21n16 0.895± 0.014 0.894± 0.014 6691± 364
allk21n32 0.905± 0.014 0.904± 0.014 8191± 101
allk16n16 0.894± 0.013 0.894± 0.014 6299± 353
allk16n32 0.905± 0.013 0.904± 0.014 7959± 104
mappedk21n16 0.894± 0.015 0.894± 0.015 6645± 372
mappedk21n32 0.905± 0.014 0.905± 0.014 8187± 109
mappedk16n16 0.897± 0.013 0.896± 0.013 6275± 352
mappedk16n32 0.905± 0.016 0.904± 0.016 7938± 117

ACTINN GE 0.856± 0.014 0.856± 0.015 12477± 28

scPred GE 0.87± 0.018 0.89± 0.017 32738

(b) PBMC3k dataset

Table 3: Comparison of Intra-Dataset cell type classification performance among scSimClassify using GE features
and 8 variations of CKG features (listed in Table 2), as well as ACTINN and scPred with GE features. The mean
and standard deviation are recorded for different evaluation metrics after five repetitions of 5-fold cross-validation.
The best performances in each classifier are highlighted in bold.

Evaluation of CKG feature variations . In this experiment, we also conducted thorough comparisons of
the 8 variations of CKG features to understand the effect of parameters n, k, and read types on the CKG
performance.

CKG feature variations with different values of k. By fixing the size of fingerprints, classifiers, and read
types, 21-mer CKG feature variations represent the same or better performance comparing with 16-mer
CKG feature variations in 10 cases out of 16 comparisons on both datasets. For example, the performance
of allk21n16 is 2.1% better than allk16n16 for RF in accuracy in Chuang’s dataset. It indicates that more
unique k-mers lead to a finer resolution in representing gene diversity. This can ultimately result in better
classification performance.
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CKG feature variations with different values of n. While we fixed k-mer length, classifiers, and read types,
the performances of CKG feature variations grouped by 32-bit fingerprints are better than 16-bit fingerprints
in around two-thirds of 16 comparisons on both datasets. Theoretically, using the 32-bit fingerprints will
generate more random hyperplanes to separate the original k-mer space, thus creating a more precise cat-
egorization of k-mer groups than 16-bit fingerprints. It eventually leads to more descriptive CKG features
and better classification performances.

CKG feature variations with different read types. CKGs derived from k-mers of all reads outperform those
from mapped reads in three-quarters of comparisons on Chuang’s dataset and half of the comparisons on
PBMC3k dataset. This suggests our reference-free approach is able to capture cell type relevant features
for classification without preselecting k-mers from mapped reads. The k-mers from unmapped reads may
contribute to the additional performance gain of our reference-free approach.

Based on the performance comparison of variations of CKG features, we selected allk21n32 as CKG
feature set in the following experiments.

Evaluation of highly variable features . Inferring highly variable features is a common step in current
bioinformatics analysis [33]. To evaluate the necessity of highly variable features in this study, we selected the
top 2000 variable features with default settings of Seurat VST [28] for both GE and CKG (allk21n32) feature
sets. Classification performance on Intra-Datasets with highly variable features is shown in the Appendix
Table A.2. Comparing classification performance based on highly variable features and all features (Table
2,Table A.2), there is no clear winner for cell type classification from both datasets and both feature sets. The
comparison results are classifier-dependent and dataset-dependent. Moreover, inferring a subset of features
may exclude discriminant sources of variation across cells [5] and introduce feature selection parameters.
Therefore we used all the features to classify cell types in this study.

3.3 Evaluation of Inter-Dataset cell type classification

In this experiment, we evaluated if scSimClassify trained with one scRNA-seq dataset may be applied to
classify cell types in the other, which we referred to as Inter-Dataset classification.

We conducted two sets of Inter-Dataset experiments to predict shared cell types, as mentioned in section
3.1. In one experiment, Chuang’s dataset was used as the training data and the trained model was applied
to predict the cell types in Karaayvazr’s dataset. In the other experiment, cell types of three PBMC sets,
which were cells from a COVID-19 patient, a FLU patient, and a healthy donor in Lee’s dataset, were
identified based on the model trained on PBMC3k dataset. To obtain optimal hyperparameters for the
target distribution, we randomly chose 20% and 80% of cells in the targeting sets for validation and testing
respectively. The validation set was used to grid search optimal hyperparameter combination [34]. The GE
and well-performing CKG feature set, allk21n32, suggested by Intra-Dataset, were used for Inter-Dataset
classification.

Table 4: Comparison of Inter-Dataset cell type classifi-
cation performance among scSimClassify using GE and
CKG (allk21n3) feature sets, as well as ACTINN with
GE features. The classification models are trained on
Chuang’s dataset and tested on Karaayvazr’s dataset. The
mean and standard deviation are recorded for different
evaluation metrics after five repetitions. The best perfor-
mance in each classifier is highlighted in bold.

Feature set Accuracy F1 # Features

MLP
GE 0.69± 0.045 0.69± 0.045 11381
allk21n32 0.764± 0.039 0.764± 0.039 12958

RF
GE 0.803± 0.007 0.803± 0.007 11381
allk21n32 0.828± 0.003 0.828± 0.003 12958

GBM
GE 0.842± 0.005 0.842± 0.005 11381
allk21n32 0.828± 0.002 0.828± 0.002 12958

SVM
GE 0.692± 0.007 0.692± 0.007 11381
allk21n32 0.872± 0.003 0.872± 0.003 12958

ACTINN GE 0.838± 0.028 0.852± 0.023 17061± 36

Table 4 represents the performance of Inter-Dataset classification between Chuang’s dataset and Karaay-
vazr’s dataset with averaged results over 5 repetitions. Overall, SVM using CKGs(allk21n32) shows the
highest accuracy for detecting cell types, followed by GBM and ACTINN with GE features. Again the CKG
features show competitive performance to GE features in almost all metrics. For MLP, RF and GBM, the
CKG feature set (allk21n32) consistently outperforms GE features in all metrics. The scPred method failed
to identify cells in this task even tuning the default parameters. Here Inter-Dataset experiment shows a more
pronounced performance gain using CKG features over GE features when compared to the performance on
Intra-Dataset experiment of the same configuration.
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For PBMC Inter-Dataset classification (Figure 2), there is no winner feature set based on the results from
three samples in Lee’s dataset. However, for RF, using CKG features consistently improves the accuracy in
comparison to using GE features. As for GBM, CKG features show relatively equivalent performance to GE
features. As for MLP and SVM, CKG features outperform GE features in FLU sample.
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Fig. 2: Comparison of CKG features (allk21n32) and
GE features for Inter-Dataset PBMC classification.
Each point in the scatter plot shows the accuracy us-
ing CKGs vs using GE. Three PBMC samples in Lee’s
dataset are used. Each cell in the sample is classified
by four classifiers.

3.4 Feature interpretation

In this section, we tried to identify the biological origin of important CKG features and assessed whether
they were biologically meaningful.

A CKG was formed by k-mers sharing similar abundance profiles across cells. These k-mers might be
from the same gene, genes sharing significant sequence similarity (such as gene families), or even co-regulated
genes. Here we defined that a CKG as a single-gene CKG if more than 90% of k-mers in it can be mapped
to one and only one gene. For those CKGs from genes with shared subsequences or potential co-regulated
genes, we defined them as multi-gene CKGs if at least 45% of k-mers in them can be mapped to each gene.
Except for single-gene and multi-gene CKGs, we categorized the remaining CKGs in the CKG feature sets as
unannotated CKGs. To identify the annotation for a CKG, we ran a blast search to determine each k-mers’
gene association against protein-coding reference transcriptome (hg19).

We generated CKG feature sets (allk21n32) from Chuang’s and PBMC3k datasets respectively to inves-
tigate CKG annotation distribution. Ranking CKG feature importance by trained tree-based models (RF,
GBM), we analyzed annotation distributions of top N of the most important CKGs in the feature sets by
changing the value of N (Figure 3, Figure A.1). Setting N as the number of CKGs in a feature set (the
last stacked bar in Figure 3), it shows that 67% of CKGs are single-gene CKGs, 5% of them are multi-gene
CKGs among feature set generated from Chuang’s dataset, while the corresponding proportions for PBMC3k
dataset are 80.7% and 7.1%. It supports that simGG is capable of statistically grouping k-mers from a gene
or multiple genes. Most of the genes associated with multi-gene CKGs come from the same gene families
sharing subsequences. As expected, the proportion of single-gene CKG increased while decreasing N and
selecting a relatively small set of the most important CKG features. However, there still exist multi-gene
and unannotated CKGs even when N is as small as 50. This indicates that both multi-gene and unannotated
CKGs carry differentiate information for cell type classification.

We next analyzed the common genes shared within CKGs’ gene annotation and GE. Here we focused on
exploring features with a significant contribution to the classification. The top 10 most important GE and
CKG features were derived from tree-based models used in Intra-Dataset experiments. From five repetitions
of 5-fold cross-validation on Intra-Dataset, we obtained 25 sets of classification models. For the top 10 most
important GE features, its gene set consists of unique genes over 250 genes. For the top 10 most important
CKGs (allk21n32), the gene set consists of unique genes over gene annotations of 250 CKGs.

Given a large proportion of common genes associated with the top 10 most important features in GE
and CKGs derived from both RF and GBM (Table 5), we have the following observations. First, a large
proportion of these genes are marker genes for each cell type classification task. For Chuang’s dataset,
numerous genes, such as PPP1R1B [35], FABP7 [36] and ERBB2 [37], were reported by prior literature
showing close associations with breast cancers [35–39]. For PBMC3k dataset, a set of common genes (CCL5,
CD14, CD3D, CD79A, CFD, CST3, GNLY, LST1, LYZ, NKG7, S100A4, S100A8, S100A9, TCL1A) were
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(a) Chuang’s dataset (b) PBMC3k dataset

Fig. 3: Distributions of three categories of CKGs in terms of their association with known gene annotation among
top N of the most important CKGs derived from RF models. The CKG feature sets (allk21n32) are generated by
Chuang’s dataset (a) and PBMC3k dataset (b) respectively. The last stacked bar shows the category distribution of
the whole CKG feature set.

GBM

ABRACL AGR3 CASC3 CD3D CD3G CD53 CHI3L1 COX6 CTTN CWC25
ERBB2 ESR1 FABP7 HLA-DRA HSPB8 LRMP MIEN1 MRPL45 MSL1 MT-ND2
NDUFC2 NF1 PI15 PLEKHA5 PPP1CB PPP1R14C PPP1R1B PSMB3 RAB3D RGS13
RPL23 S100A11 SLC30A8 TCEAL1 TRBC2

RF
CASC3 CD3D CTTN ERBB2 ESR1 FXYD3 HLA-DRA KRT19 MIEN1 MRPL45
MS4A MSL1 ORMDL3 PI15 PLEKHA5 PPP1R14C PPP1R1B PSMB3 RPL23 SOX11

(a) Chuang’s dataset

GBM
AIF1 CCL5 CD14 CD3D CD74 CD79A CD79B CFD COTL1 CST3 CST7
FCER1G FCN1 FTH1 FTL GABARAP GNLY GPX1 GZMA HLA-DRA LGALS LGALS2
LST1 LYZ NKG7 RPS14 RPS6 S100A4 S100A8 S100A9 TCL1A TYMP TYROBP

RF AIF1 B2M CD74 FCGR3A FTL HLA-DRA LYZ NKG7 S100A9 TYROBP

(b) PBMC3k dataset

Table 5: Common genes identified as the top 10 most important genes selected from GE features and associated
with the top 10 most important CKG features (allk21n32) in Intra-Dataset experiments under RF and GBM. The
overlaps of common genes between RF and GBM are highlighted in bold.

identified as marker genes by Seurat scRNA-seq analysis pipeline [28]. Secondly, the vast majority of common
genes, as highlighted in bold, are shared by both RF and GBM classification models. This suggests that
common genes from CKG gene annotations and GE can be consistently derived from tree-based models.

4 Discussion and Conclusion

This paper presents a reference-free classification method for cell type identification in scRNA-seq data.
Our method leverages k-mer level features from the entirety of the reads for cell type classification without
requiring the alignment of reads. This enables the utilization of full sequencing reads especially when the
reference genome is unavailable or when the subject genome is highly mutated.

Our experiments on four datasets demonstrate that our proposed CKG features serve as competitive
features to gene expression features for cell type classification, which are exhibited across a variety of classi-
fication models. This suggests that CKG features can be an effective alternative to gene expression features
for cell type identification and can potentially be used in replacement of gene expression features.

In this study, we attempt to interpret CKGs using the k-mers associated with genes. We find that our
method naturally groups k-mers originated from the same gene together. This allows us to annotate CKG
features with known genes to assess their biological significance. The significant overlap of gene annotations
of top-ranked CKG features with top-ranked genes from GE indicates our method is biologically meaningful.
While we demonstrate that CKGs without specific gene annotations are also discriminative for cell types,
their potential biological association with mutations and intergenic elements deserves further investigation
in future work.
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Our future work will focus on three directions: (1) We plan to expand the current evaluation to include
more scRNA-seq datasets for validation and benchmarking; (2) We will continue our effort in the biological
interpretation of CKG features; (3) We will further optimize configuration parameters such as exploring even
larger fingerprint size n to see if the performance gain will continue to improve or will plateau at a certain
point.
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A Appendix

A.1 Supplementary Tables

Data No. of cells No. of cell types Description Reference

Chuang dataseta,b 515 8 (5) Breast cancer [24]

Karaayvaz datasetb 1098 5 Breast cancer [25]

PBMC3k dataseta,b 2638 9 (6) PBMC [26]

COVID-19 patientb (Lee dataset) 3386 6 PBMC [27]

FLU patientb (Lee dataset) 1286 6 PBMC [27]

Healthy donorb (Lee dataset) 3952 6 PBMC [27]
a used for Intra-Dataset evaluation; b used for Inter-Dataset evaluation

Table A.1: Overview of the datasets used during this study

Feature Set Accuracy F1 # Features

MLP
GE 0.936± 0.02 0.933± 0.023 2000
allk21n32 0.943± 0.021 0.942± 0.022 2000

RF
GE 0.927± 0.02 0.921± 0.023 2000
allk21n32 0.933± 0.021 0.93± 0.023 2000

GBM
GE 0.922± 0.021 0.917± 0.024 2000
allk21n32 0.924± 0.02 0.92± 0.024 2000

SVM
GE 0.94± 0.02 0.938± 0.022 2000
allk21n32 0.944± 0.018 0.943± 0.019 2000

(a) Chuang’s dataset

Feature Set Accuracy F1 # Features

MLP
GE 0.884± 0.008 0.884± 0.008 2000
allk21n32 0.885± 0.011 0.884± 0.011 2000

RF
GE 0.875± 0.011 0.87± 0.012 2000
allk21n32 0.88± 0.012 0.876± 0.013 2000

GBM
gene 0.891± 0.014 0.889± 0.014 2000
allk21n32 0.888± 0.012 0.887± 0.012 2000

SVM
GE 0.887± 0.013 0.887± 0.013 2000
allk21n32 0.897± 0.013 0.897± 0.013 2000

(b) PBMC3k dataset

Table A.2: Comparison of Intra-Dataset cell type classification performance among scSimClassify using GE and
CKG (allk21n32) features. Top 2000 highly variable features are selected for training the models. The mean and
standard deviation are recorded for different evaluation metrics after five repetitions of 5-fold cross-validation. The
best performances in each classifier are highlighted in bold. CKG (allk21n32) features perform better than GE features
for cell type classification in a majority of cases.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 30, 2021. ; https://doi.org/10.1101/2021.05.29.446268doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.29.446268
http://creativecommons.org/licenses/by-nc-nd/4.0/


A Reference-free Approach for Cell Type Classification with scRNA-seq 13

A.2 Supplementary Figure

(a) Chuang dataset, RF (b) PBMC3k dataset, RF

(c) Chuang dataset, GBM (d) PBMC3k dataset, GBM

Fig.A.1: Distributions of three categories of CKGs in terms of their association with known gene annotation among
top N of the most important CKGs derived from RF and GBM models. The CKG feature sets (allk21n32) are
generated by Chuang’s dataset (a)(c) and PBMC3k dataset (b)(d) respectively. The last stacked bar shows category
distribution of the whole CKG feature set. (The dataset and classifiers are shown below each bar plot).
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