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Abstract
Three-dimensional (3D) imaging, such as micro-computed tomography (micro-CT), is
increasingly being used by organismal biologists for precise and comprehensive
anatomical characterization. However, the segmentation of anatomical structures
remains a bottleneck in research, often requiring tedious manual work. Here, we propose
a pipeline for the fully-automated segmentation of anatomical structures in micro-CT
images utilizing state-of-the-art deep learning methods, selecting the ant brain as a test
case. We implemented the U-Net architecture for 2D image segmentation for our
convolutional neural network (CNN), combined with pixel-island detection. For training
and validation of the network, we assembled a dataset of semi-manually segmented
brain images of 94 ant species. The trained network predicted the brain area in ant
images fast and accurately; its performance tested on validation sets showed good
agreement between the prediction and the target, scoring 80% Intersection over Union
(IoU) and 90% Dice Coefficient (F1) accuracy. While manual segmentation usually
takes many hours for each brain, the trained network takes only a few minutes.
Furthermore, our network is generalizable for segmenting the whole neural system in
full-body scans, and works in tests on distantly related and morphologically divergent
insects (e.g., fruit flies). The latter suggest that methods like the one presented here
generally apply across diverse taxa. Our method makes the construction of segmented
maps and the morphological quantification of different species more efficient and
scalable to large datasets, a step toward a big data approach to organismal anatomy.

Introduction 1

Three-dimensional (3D) imaging of animals by x-ray micro-computed tomography 2

(micro-CT) has become popular in morphological biology as a non-destructive method 3

to acquire high-precision data on organismal anatomy [1, 2, 3, 4, 5]. The 4

high-resolution 3D data enables the users to visualize and quantify internal and external 5

structures, forming the basis for a wide range of biological applications. 6

A key challenge for the use of micro-CT lies in the analysis of huge amounts of 7

acquired data. In particular, while 3D images are reconstructed shortly after scanning, 8
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segmentation of the images into specific body parts is often a necessary step for 9

quantification and visualization of particular structures. The most common 10

segmentation method to date is by manual processing, which is extremely 11

time-consuming and compromises reproducibility [6]. This limits the number of samples 12

that can be included in a given study, and thus the scientific applications of 3D 13

scanning. For example, developmental biologists may want to analyze large numbers of 14

experimental treatments and replicates. Or, in comparative biology, we may seek to 15

analyze the evolution of a body part across hundreds or thousands of species. The 16

recent emergence of large databases and coordinated projects to scan many species in 17

specific taxonomic groups offers rich opportunities for new research directions if 18

limitations on segmentation can be overcome. 19

In the medical literature, image segmentation methods have recently become more 20

powerful and efficient due to significant developments in machine learning algorithms. 21

To date, the main focus of automated segmentation methods has been on cells and 22

human organs (e.g., human CT or MRI image segmentation for cancer detection [7, 8]). 23

However, there is broad potential for automated segmentation to accelerate biological 24

research on organisms across the tree of life [9, 10, 11]. 25

New software for biomedical image analysis has steadily progressed during recent 26

years, with the capability for analysis and segmentation of 2D or 3D biological images 27

and the capability to build one’s own data processing pipelines [12]. However, despite 28

the unconstrained accessibility to free general-purpose software tools, the development 29

of specific segmentation algorithms is essential to achieve high accuracy, objectivity, and 30

reproducibility. Recently, deep learning and convolutional neural networks (CNNs) have 31

been successfully applied in numerous image classification and semantic segmentation 32

problems [13, 14]. CNNs have recently become widely used in image processing due to 33

their high performance, the efficiency of GPUs, and the availablity of free software 34

platforms and pre-trained networks [15]. 35

Toolsets and pipelines that use classical statistical methods such as ANTs [16], 36

Biomedisa [17], and Freesurfer [18] are accessible and accurate for the segmentation of 37

high-resolution images. However, these are either not fully automated and still require 38

an expert user and considerable amounts of time and effort [19], and/or require training 39

examples within the same scan, and/or are not adaptable to diversity and complexity in 40

the target set. On the other hand, accurate and general toolkits and application 41

frameworks that use machine learning techniques such as SlideCam have been 42

successfully used for medical image segmentation as well as computer-aided diagnosis 43

and analysis of images spanning from human brain segmentation to cancer 44

detection [20]. However, to date no toolkit has been designed to recognize homologous 45

parts across a wide diversity of animal species, which would require an appropriate 46

choice of network architecture, fine-tuning of hyperparameters, and the production and 47

curation of substantial, high-quality datasets. When it comes to analyzing such images, 48

segmentation remains a most challenging task, and often manual or semi-automated- 49

segmentation is still the only way. 50

U-Net is a CNN architecture that has shown high accuracy and robustness for 51

biomedical image segmentation [21]. It uses relatively small amounts of training images 52

to achieve precision even for segmentation of areas with unclear borders. The simple 53

architecture of U-Net makes it easy to develop and very fast to train. Once a U-Net is 54

trained, the acceleration of the segmentation is extreme: for example, the segmentation 55

time for one ant brain, which may be up to a whole day’s work if performed manually, is 56

reduced to merely 1-2 minutes by automatic segmentation. 57

In this paper we present an automated pipeline for segmentation of different inner 58

parts of insects in volumetric data, using micro-CT scans, and specifically ant brains 59

across a diverse set of different ant species, as a test case. A basic question for such 60
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studies is how general algorithms can be applied across the tree of life. Can an algorithm 61

trained to recognize a part in one type of organism be used on more distant relatives, or 62

do they break down once applied outside the group for which they were developed? 63

Ants are a well defined clade following a similar overall body plan, but reflect > 100 64

million years of diversification and a large range in ecological, sensory, and behavioral 65

modes [22, 23]. We expect ant brains to have an intermediate level of diversity and thus 66

be a reasonable test case: they will change in size and shape across species, while the 67

general organization and tissue composition should be conserved [24]. As a secondary 68

experiment, we assess whether the ant brain segmenting algorithm we developed can be 69

applied with minimal modification to recognize brains in distantly related insects. 70

Overview of the segmentation pipeline 71

Our micro-CT image segmentation pipeline is composed of multiple modules, as 72

illustrated in Fig 1. 73

• Sample preparation: Before scanning, specimens were stained in iodine for an 74

average of two weeks to enhance tissue contrast in the raw images. 75

• Image acquisition and reconstruction: An X-ray micro-CT image dataset 76

was acquired from 76 species of ants. The acquired images were reconstructed 77

along all three perpendicular directions that comprise a Cartesian system forming 78

a detailed cross-section dataset. 79

• Volume rendering: The reconstructed raw images were used for creating a 3D 80

model for volume rendering, to be used for visual inspection and future 81

morphological studies. 82

• Semi-automated segmentation: Raw images of heads were segmented 83

semi-automatically using the seed-based watershed tool of the Amira software. 84

Labels were assigned to areas of interest, starting with the brain. The databases 85

of both raw and labeled images were pre-processed to enhance their homogeneity 86

and used as training and validation data. 87

• CNN development: An implementation of the U-Net architecture was built for 88

automated segmentation. 89

• Training: 60% of the acquired segmented brain images (46 species) were used for 90

network training; the remaining 40% (30 species) was reserved for testing. 91

• Pixel island detection and post-processing: After segmentation by U-Net, 92

pixel island detection was used to identify the largest continuous areas to remove 93

isolated segments. 94
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Fig 1. Segmentation pipeline overview. (A) Specimens are placed in iodine for
staining for two weeks and then placed in small vials containing 99% ethanol to prevent
them from moving during scanning. (B) The scanner acquires images along all three
axes, and, using a user-defined reference image, automatically reconstructs the whole
volume of the scanned specimen. (C) Volume rendering for future morphological studies
is performed using Amira software. (D) Semi-automated segmentation of the brain
volume of each scan (in orange) using the watershed method in Amira. (E) Schematic
representation of the U-Net architecture used as the core of the pipeline for the
development of a fully automated brain segmentation method. (F) The acquired brain
images are used for training after pre-processing augmentation and manual creation of
masks. (G) The network’s prediction (in yellow) is post-processed for smoothing out
over-predicted areas (in red).

Materials and methods 95

Image acquisition 96

In total, we collected one head scan per species from 76 different ant species using a 97

ZEISS Xradia 510 Versa 3D X-ray micro-CT microscope, and ZEISS Scout and Scan 98

Control System software (version 10.7.2936). The scanner settings were determined by 99

the specimen size (e.g., voltage: 30 keV and exposure time: 3-10 s) resulting in 5- to 100

20-hour scans (12 hours on average). With a view to expanding our dataset in order to 101

eventually enhance robustness and suppress overfitting during network training (see 102

below), we used 2D cross-sections of planes along all three directions of our 3D brain 103

scans. To highlight the morphological diversity of the scanned specimens, we also 104

performed 3D reconstruction of the resulting scans with XMReconstructor (version 105

10.7.2936). The output images comprised 1000×1000×1000 px, on average, with 106

resolution down to 1 µm. Exemplary raw images of full-body scans from different ant 107

species are shown in Fig 2. 108
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Fig 2. Exemplary raw images of full-body scans from different ant species.
3D reconstructed micro-CT image of (A) Acromyrmex versicolor and (B) Atta texana
worker specimens, using volume rendering in Amira. (C) 2D micro-CT full body image
of Atta texana specimen. The brain area is the densest, most uniform area in the whole
body, which makes it easy to recognize in most high-quality scans.

Image processing 109

Generation of data for training and validation 110

We processed the data with the Amira software (version 6.0), and semi-automatically 111

segmented the brain areas (on average, 300×400×600 px per brain) using the 112

seed-based watershed method [25] in the volumetric data, as shown in Fig 3. Each 113

semi-automatically segmented 3D brain was dissected into 2D slices on planes along all 114

three directions. To eliminate the empty space of the image and zoom in on the region 115

of interest, the image was cropped and rescaled in to 500×500 px, to show only the 116

brain area and its adjacent muscles and fibers. The texture of the brain is unique within 117

the whole image of the head, which facilitates its identification. However, its borders are 118

much harder to classify, as numerous nerves branch out from the brain connecting it 119

with the rest of the ant’s body; these nerves had to be removed manually, as Amira’s 120

watershed tool typically mistakes them for brain areas. This makes semi-automated 121

segmentation challenging and considerably time-consuming. Eventually, this process 122

resulted in an average of 1000 2D brain images per specimen at an estimated average 123

time cost of 5 hours per specimen. 124
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Fig 3. Example of semi-automated brain image segmentation. The brain area
(in orange) of an Atta texana ant specimen was segmented using the watershed method
in Amira; the image was manually post-processed by smoothing and cropping
over-segmented areas.

Pre-processing and augmentation of data 125

As a pre-processing method, we chose histogram equalization [26] using the imaug 126

library [27] in Python. Since the images were collected from different samples and 127

scans, and their contrast was not optimized during scanning, pixel density equalization 128

improved the network’s performance remarkably. After histogram equalization, the 129

contrast was improved, accentuating the texture of the brain and, thus, making it easier 130

to identify. An exemplary result of data augmentation is shown in Fig 4. 131

Fig 4. Data augmentation. (A) Initial 2D image of a full head scan of an Atta
texana ant specimen. Pre-processing is performed in two steps: (B) The image is
cropped around the brain area, keeping some of the muscles, nerves, and fibers that are
close (or even attached) to the brain. The manual segmentation of the brain is indicated
in blue. (C) Histogram equalization is used for additional augmentation, which
enhances the contrast and projects the inner parts of the brain more clearly.

U-Net structure 132

We chose the U-Net architecture because it has been the most successful CNN for CT 133

image segmentation to date. The U-Net is not a conventional CNN architecture, in the 134

sense that it extends the contracting path of a typical CNN by a symmetrical expansive 135

path [21]. For optimal efficiency, our code uses the open source GPU-TensorFlow 136

library [28] and the TensorFlow U-Net implementation, as described in Akeret et 137

al. [29], utilizing Jupyter notebook and Python. Our network consists of a five-fold 138

repetition of two 3×3 convolutions followed by a rectifier linear unit (ReLU) and a 2×2 139

max pooling. Starting with 64 features, each layer doubles their number resulting in 140
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1024 features before starting the expansive path which consists of two 3×3 convolutions 141

followed by ReLU and 2×2 up-convolutions. The number of features is halved with each 142

up-convolution but the result is concatenated with the features from the matching 143

contraction layer. Finally, 1×1 convolution is applied to map each feature to our number 144

of classes, i.e., two. In total, the architecture consists of 23 convolutional layers. The 145

batch size used was 1∼4, the stride was 1, and zero padding was used for the max pool. 146

Training 147

To assess the effect of various parameters on the performance and the processing time, 148

different batch sizes, numbers of initial features, epochs, and iterations were tested. We 149

randomly selected 60% of data (46 species) for training and used the rest (30 species) 150

for testing. The optimal parameter values were chosen on grounds of low computational 151

cost and high classification accuracy for training data. We trained the network by 152

optimizing the binary cross-entropy function with L2 regularization using stochastic 153

gradient descent with the momentum of 0.8. The initial weights were selected by using 154

a Gaussian distribution, in agreement with Ronneberger et al. [21]. Batch 155

normalization was added in the first 3 layers to avoid overfitting as well as to accelerate 156

training [30]. Finally, we added dropout in the first 3 layers equal to 0.5 also to avoid 157

overfitting. We trained our network for 10 epochs, with mini-batch 32 on a 520×520 158

pixel image, costing 120 hours in our workstation using a GeForce GTX TITAN Xp and 159

a GeForce GTX 1080 graphics cards. 160

Post-processing 161

We post-processed our network’s prediction by using pixel island identification and 162

isolation [31]. After predicting the brain area along all three planes, the biggest pixel 163

island was chosen as the brain area. This process boosted by almost 10% on average our 164

prediction success rate of both the Jaccard Index (IoU) and Dice Coefficient (F1 score) 165

[32]. 166

Results 167

Segmentation of ant brains 168

First, we applied our method to our primary taxonomy group of choice, i.e., ants, and 169

trained our network to segment the brain areas in micro-CT scans from different ant 170

species. Our processed data of 38,000 520×520 pixel images from 46 species were used 171

for training and validation (randomly split into 80% for training and 20% for validation) 172

and the remaining 20,000 520×520 pixel images from 30 species were used for testing. 173

As shown in Table 1, both IoU and F1 scores were steadily increased as we added more 174

2D images from planes along the same x-y directions of different species, and even more 175

so after we included reconstructed 2D images from planes along all three directions of 176

our 3D brain scans. To estimate the generalized performance of our network, we 177

calculated the true positive rate (TPR) values and false positive rate (FPR) values of 178

our images by changing the discrimination threshold of our network [33], shown in Fig 5. 179

All values are close to 1 for both training and testing sets while the false positive rate 180

(FPR) values remain less than 0.4 for most cases, indicating that our network predicted 181

the brain region and its border accurately but without over-predicting. Results for test 182

and training images are similar, suggesting good generalization capabilities for 183

optimized hyperparameters of our network. 184
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Accuracy scores
Number of images of training set IoU F1

3,500 - xy plane 50% 62%
10,000 - xy plane 63% 71%

38,000 - along all three directions - no post-processing 72% 80%
38,000 - along all three directions - after post-processing 80% 90%

Table 1. Performance evaluation of our proposed pipeline. Both performance
descriptors studied (IoU and F1 scores) increase steadily with increasing number of
images and post-processing.

Fig 5. Network performance evaluation. High TPR and low FPR values for
training (circles) and testing data (crosses) indicate the network’s high generalizability.
Different colors correspond to brain images from different species.

Finally, a post-processing step also boosted the performance of our network, yielding 185

even more satisfactory results. Example results of our network’s performance on 186

validation and testing data are shown in Fig 6, demonstrating a predicted area in good 187

agreement with the ground truth; our automated segmentation pipeline achieves an 188

approximate maximum of 80% IoU and 90% F1 score. Prediction times were in the 189

order of only a few minutes, significantly lower than for the semi-automated 190

segmentation commonly used to this day. 191
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Fig 6. Pipeline performance calculated both for validation (top row) and
testing (bottom row) sets. (A, D) Raw images of head of Atta texana ant and
Carebara atoma specimens, cropped along the x-y axes. The manually segmented brain
areas are indicated in blue. (B, E) Network predictions before post-processing (in
yellow). Areas in yellow dotted circles are pixel islands not connected to the brain area
that were overpredicted. (C, F) Predictions after post-processing (in red). The borders
of the predicted areas show good agreement with the manual segmentation in both sets.
Note that in overlapping manually and automatically segmented areas in B, C, E, and
F, colors appear green or purple.

3D volume rendering 192

After segmenting the 2D slices, the 3D brain volume was readily computed by loading 193

the stack of images in Amira or ITK-snap. Thus, using a 2D network allowed us to 194

maintain high accuracy, performing 3D segmentation in a faster and easier to train way. 195

An exemplary predicted brain area is shown in Fig 7; 3D volume was reconstructed 196

from the 2D predicted images with Amira software. The switch from 2D to 3D is 197

straightforward, giving the user of our pipeline the ability to adapt it to their own 198

dataset circumventing the complications of using an actual 3D CNN. 199
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Fig 7. 3D volume of ant brain reconstructed from 2D predicted images
using the Amira software. 3D reconstructed brain prediction of Atta texana ant.

Generalization to other neural systems and other insects 200

The U-Net step appears to be largely driven by textures, with the pixel island detection 201

step used to isolate the brain. Even though our customized U-Net was designed with 202

the segmentation of ant brains, it was also successfully applied for the segmentation of 203

neural tissue in other parts of ants and works on distantly related species. Our network 204

was able to predict the whole neural system in full-body scans of ants, as shown in 205

Fig 8, being able to predict the same texture as the brain in different ganglia in the 206

thorax (called mesosoma in ants). 207

Fig 8. Prediction of ganglia in the thorax. As the tissue texture in the image is
similar with that of the brain, the network accurately predicts other areas of nervous
tissue in the organism. The pixel island detection step isolates the brain, but without
this step neural tissue can be isolated.

Our network also gave good prediction for the brain area in scans of various different 208

distantly related insect species. We used our pre-trained (on ant-brains) network to 209
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segment the brain areas of micro-CT scans of model organisms such as flies (Drosophila) 210

and honey bees (Apis mellifera), as well as closely related insects such as praying 211

mantises (Leptomantella) and termites. Since its prediction capability relies mainly on 212

identifying the texture of the brain area, which does not differ significantly among 213

different insect species, our pre-trained network was able to perform satisfactorily 214

without further adaptation on the data. Exemplary results are shown in Fig 9 for 215

(A-B) wasp and (C-D) praying mantis brain prediction, respectively: remarkably, our 216

network was successful in segmenting the brains of different insects without any 217

prediction accuracy losses (when compared to predictions for ants), indicating its 218

flexibility and its lack of necessity for training on each specific distinct species. 219

Fig 9. Application of pipeline for other insect species. The brain textures of
various insect species can be very similar with those of ants, facilitating the prediction
by the network even without pre-training on specific insect brain scans. (A) Raw image
of wasp head and (B) its prediction without post-processing, indicating satisfactory
identification of the borders of the brain area. (C) 2D image of praying mantis head and
(D) the prediction of its brain area without post-processing. Even though the network
over-predicts some small pixel islands, it excludes from its prediction areas of the
muscles, fibers and cuticle.

Discussion 220

To bring morphology fully into the big data era, we need automated methods to retrieve 221

biological meaning from large volumes of images. The proposed automated pipeline is a 222

step in that direction, presenting considerable advantages over other standard 223

methodologies. First of all, automated segmentation is achievable within a few minutes 224

for each specimen, producing faster and more accurate results than semi-automated or 225

manual segmentation. A noteworthy additional advantage is that once algorithms have 226
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been trained, advanced expertise in morphology is not required, while manual and 227

semi-automated segmentation usually require advanced knowledge [34]. In fact, during 228

testing our network often outperformed even experienced users and compensated for 229

their oversights or misjudgments, predicting correctly brain areas that were accidentally 230

missed out during manual segmentation. 231

The two approaches in our method, U-Net and pixel-island detection, represent two 232

complementary steps which suggest a path forward for automated segmentation of 233

structures in complex organisms. U-Net was efficient at retrieving tissue with similar 234

properties in the image, but in our implementation did not make use of shape and 235

position. Thus, we found it retrieved all the structures of neural tissue across the body, 236

even though it was trained on the brain alone. The brain was then isolated with the 237

pixel-island detection, which isolated the largest structure in the head. In general, we 238

expect a combination of tissue-level identification followed by other methods that make 239

use of size and spatial organization to be a powerful combination that should generalize 240

to a wide range of anatomical tissues and parts. 241

During testing with other insect species, we used both high and low 242

resolution/quality images acquired from different laboratory and synchrotron-based 243

micro-CT scanners. Our results showed that our segmentation pipeline can perform 244

without losing its accuracy to predict the brain area across highly divergent arthropod 245

species and across scanning methods. Finally, the prediction performance of 246

low-resolution images indicates that there is a threshold in the image resolution below 247

which our network is not performing well. Our network’s generalizability is high and it 248

can be widely used not only for head but also for whole-body scans of ants and other 249

insects. More importantly, it shows that a similar approach could be used to build a 250

suite of trained networks that can segment anatomy across a wide variety of organisms. 251

Last, it should be noted that both automated classification and segmentation tasks 252

typically require big datasets for training and validation, which can be a challenge for 253

researchers to produce for any given application. Since no publicly available dataset of 254

micro-CT images of ant brains existed for our case study, we created a new, extensive 255

dataset across a wide variety of ant species. Since neural anatomy across insects share 256

features that make them targets for segmentation, our dataset can act as a starting 257

point for the development of an even bigger library of micro-CT images of insects, and 258

work as a pre-training dataset for future CNNs [35]. 259

Conclusion 260

In this paper, we introduced a U-Net based CNN for the fully-automated segmentation 261

of micro-CT images of insects. We also present an extensive dataset of manually 262

segmented brain images that can be used to pre-train other networks of interest. Our 263

trained network predicted the brain area in ant images fast and with high accuracy. 264

Further, our network was able to generalize and predict the whole neural system in 265

full-body scans, as well as to predict ganglion areas that were missed by manual 266

segmentation. After training, the network’s performance was tested on training and 267

validation data showing good agreement between prediction and mask scoring 90% F1 268

and 80% IoU. Our pipeline allows successful segmentation in only a few minutes instead 269

of hours which are typically required for manual segmentation. 270

One of the most important features of the framework described here is that it can be 271

applicable to other anatomical features. Preliminary results on other organs have shown 272

that it can be easily tuned and trained to predict muscles as well as the cuticle of the 273

insect bodies. Specific attention was paid so that the application of the pre-trained 274

network is straightforward and user-friendly, which we aspire will enable the community 275

to adopt it as a valuable resource. 276
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The development of large-scale 3D datasets across phylogenetically diverse taxa (e.g., 277

overt [36]) opens up new vistas for comparative research. Likewise, developmental 278

biologists may want to use high-throughput scanning to image hundreds or thousands of 279

specimens as part of an experiment. However, just as DNA sequence data needs 280

bioinformatic algorithms to process massive datasets, large scale image collections 281

require algorithms to digest and extract biologically meaningful data. Algorithms such 282

as this one offer a way forward for powering a "big data" approach to organismal 283

morphology. 284
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