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Abstract 

We acquired a rapidly preserved human surgical sample from the temporal lobe of the cerebral 
cortex. We stained a 1 mm3 volume with heavy metals, embedded it in resin, cut more than 
5000 slices at ~30 nm and imaged these sections using a high-speed multibeam scanning 
electron microscope. We used computational methods to render the three-dimensional 
structure containing 57,216 cells, hundreds of millions of neurites and 133.7 million synaptic 
connections. The 1.4 petabyte electron microscopy volume, the segmented cells, cell parts, 
blood vessels, myelin, inhibitory and excitatory synapses, and 104 manually proofread cells 
are available to peruse online. Many interesting and unusual features were evident in this 
dataset. Glia outnumbered neurons 2:1 and oligodendrocytes were the most common cell type 
in the volume. Excitatory spiny neurons comprised 69% of the neuronal population, and 
excitatory synapses also were in the majority (76%). The synaptic drive onto spiny neurons 
was biased more strongly toward excitation (70%) than was the case for inhibitory 
interneurons (48%). Despite incompleteness of the automated segmentation caused by split 
and merge errors, we could automatically generate (and then validate) connections between 
most of the excitatory and inhibitory neuron types both within and between layers. In studying 
these neurons we found that deep layer excitatory cell types can be classified into new 
subsets, based on structural and connectivity differences, and that chandelier interneurons 
not only innervate excitatory neuron initial segments as previously described, but also each 
other’s initial segments.  Furthermore, among the thousands of weak connections established 
on each neuron, there exist rarer highly powerful axonal inputs that establish multi-synaptic 
contacts (up to ~20 synapses) with target neurons. Our analysis indicates that these strong 
inputs are specific, and allow small numbers of axons to have an outsized role in the activity 
of some of their postsynaptic partners.   
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Introduction 
While the functions carried out by most of the vital organs in humans are not remarkably 
different when compared to other animals, the human brain clearly separates us from the rest 
of life on the planet. It is a vastly complicated tissue, and to date, little is known about its 
cellular microstructure, and in particular its synaptic circuits. These circuits underlie the 
unparalleled capabilities of the human mind, and when disrupted, likely underlie incurable 
disorders of human brain function. One critical barrier that has prevented detailed knowledge 
of the cells and circuits of the human brain has been the access to high quality human brain 
tissue. Organ biopsies provide valuable information in many human organ systems, but 
biopsies are rarely done in the brain except to examine or excise neoplastic masses, and 
hence, most of them are of little value for the investigation of human brain structure. Moreover, 
for many organ systems, tissue from model organisms are useful for human disease: a mouse 
liver or lung can provide insights into human pathophysiology. The human brain is different. 
We don’t have many good models of cognitive and developmental disorders (although this 
may be changing with genetic manipulation of non-human primates 1). Also, the human brain 
is clearly not the same as a mouse’s brain, and if we go by functional repertoire, humans are 
dramatically different from other primates. We therefore must find ways to explore human brain 
tissue per se. One attempt has been to use brain organoids made from human cells. This is 
certainly a promising field  2–4 but at present they do not approximate brain tissue 
architectonics (e.g., cortical layers are not present) nor do they have circuits that resemble 
those in the human brain. An alternative to organoids is the direct approach: use state-of-the-
art tools to map cells and circuits from human specimens. Human specimens are available, 
owing to neurosurgical interventions for neurological conditions where the cortex is discarded 
or destroyed, because it obstructs access. Human tissue that is a byproduct of neurosurgical 
procedures on patients can be leveraged to understand normal, and perhaps disordered 
human neural circuits. One source of such samples are individuals with drug-resistant 
epilepsy. These patients are sometimes treated by invasive surgical extirpation of the focus 
site determined by EEG 5. The most common type of focal epilepsy occurs in the medial part 
of the temporal lobe, and when these are treated via neurosurgery, it is by unilateral resection 
of medial structures often including the hippocampus. Medial structure access is usually by 
transection through the overlying temporal cortex, and significant volumes of temporal lobe 
(approaching one half a cubic cm) are sometimes removed. The number of patients with drug-
resistant epilepsy is large (in the US, about 750,000 patients) but very few (0.2%) undergo 
epilepsy surgery per year (Natl. Assoc. of Epilepsy Centers, 2014). Nonetheless, 1,500 
patients per year in the US potentially could provide tissue.  

 
Here we describe such a sample, a cubic millimeter in volume, that extends through all 
cortical layers which we imaged at the ultrastructural level with serial high-throughput 
electron microscopy, and analyzed with computational approaches. The acquisition of digital 
human brain tissue at this large scale and this fine resolution, enables not only access to 
neuronal circuitry comprising thousands of neurons and millions of synapses, but such 
volume microscopy also provides a clear view of all the other tissue elements that comprise 
human brain matter including all glial cells, the blood vasculature, and the relations between 
these various cell types. A wide range of questions related to human brain biology are thus 
open to scrutiny from a single sample. Because the dataset is large and incompletely 
scrutinized, to aid in its analysis we are sharing all of the data online.  
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Results 
The sample we analyzed is from an anonymized 45 year old patient with drug-resistant 
epilepsy who had a left hippocampal resection via the anterior temporal lobe at 
Massachusetts General Hospital, Boston, MA. Traditional neuropathology showed that the 
ablated cortex was not abnormal, but the underlying hippocampus was sclerotic with neuron 
loss, as is typical in such epilepsy patients.  
 

 
 
Figure 1. Image acquisition for the human brain sample. A fresh surgical cerebral cortex sample 
was rapidly preserved, then stained, embedded in resin, and sectioned. More than 5000 sequential 
~30 nm sections were collected on tape using an ATUM (upper left panel). Yellow box shows the site 
where the brain sample is cut with the diamond knife and thin sections are collected onto the tape. 
The tape was then cut into strips and imaged in a multibeam scanning electron microscope (mSEM). 
This large machine (see middle panel with person on chair as reference) uses 61 beams that image 
a hexagonal area of about ~10,000 μm2 simultaneously (see upper right). For each thin section, all 
the resulting tiles are then stitched together. One such stitched section is shown (bottom). This section 
is about 4 mm2 in area and was imaged with 4 x 4 nm2 pixels (see image of synapse at lower right). 
Given the necessity of some overlap between the stitched tiles, this single section required the 
collection of more than 300 GB of data.  
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We ran the resected temporal lobe fragment (superficial to the hippocampus) through a 
pipeline of steps. We used rapid immersion fixation for excellent preservation of 
ultrastructure. The tissue was further preserved and stained with osmium and other heavy 
metals using a ROTO staining protocol 6. The sample was then embedded in a resin (epon) 
block and trimmed. Using an automatic tape-collecting ultramicrotome (ATUM; 7 ) we 
sectioned 5,292 sections at a section thickness that averaged 33 nm (range 30-40 nm) and 
imaged with a multibeam scanning electron microscope (Fig. 1). The images were acquired 
with pixels that were 4 x 4 nm2. The raw data size was up to 350 GB per section due to 
necessary overlap at the edges of the tiles, or for the entire set of sections ~2.1 petabytes 
(PB). While the scope was acquiring images, a custom-built workflow manager assessed 
each tile for quality and flagged problems. The total throughput of the image acquisition 
ranged from 125 million (M) pixels per second to 190 M pixels per second. The majority of 
the data was acquired at 190 M pixels per second. The total imaging time for the 1 mm3 
sample was 326 days. 
 
The acquired image data was then re-composed into three-dimensional cellular objects from 
which all the neuronal and glial elements could be itemized. The neurons in the volume and 
the processes of neurons passing through the volume were then rendered and their 
synapses identified to give rise to the connectomic reconstruction. This entire compute-
intensive process consisted of a series of largely automated workflows (Fig. 2, and see 
Methods). The raw acquired image tiles were first stitched together and coarsely aligned by 
using microscope stage coordinates, semi-automated feature correspondences, and image 
patch cross-correlations to relax an elastic triangular mesh of each tile and each section 
(Fig. 2A, left) 8. A fine-scale refining alignment based on optical flow between neighboring 
sections removed remaining drift and jitter from the volume (Fig. 2A, center and right). From 
a total of 247 M tiles (2.1 PB), 196 M tiles containing cortex (1.7 PB) were stitched, aligned, 
and ultimately segmented, creating a unified ~1.4 PB human cerebral cortex image volume. 
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Figure 2: Reconstruction pipeline overview. A: Fine-scale alignment with optical flow. Left: An XZ 
cross-section of the initial coarsely aligned subvolume exhibits drift and jitter. Center:Two adjacent XY 
sections z (green) and z-1 are overlaid to illustrate their misalignment. Image patch-based cross-
correlation computes an XY flow field between them. Red and blue intensities, which indicate the 
respective horizontal and vertical flow components are used to warp one of the sections, improving their 
alignment (relax and warp overlay). Right: XZ view of the same subvolume with flow realignment 
applied. B: Example of sequential segmentation with an FFN. XY cross-sections illustrate the 3D 
segmentation process. Each yellow crosshair indicates the seed location for the next segment. C: FFN 
agglomeration. Left: Site between two adjacent base segments (white box in 2D, black box in 3D below) 
is a candidate agglomeration location. Center: FFN segmentation is seeded from points A and B 
independently. Right: If the resulting A and B segmentations are mutually consistent, the object pair is 
merged (below). D: Synapse detection and classification. Top: XY cross-section of EM image input to 
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synapse detection model (left), and the resulting presynaptic (magenta) and postsynaptic (green) 
prediction masks (right). Bottom: cross-section of EM image (left) and presynaptic (magenta) and 
postsynaptic (green) object segmentation (right) inputs to excitatory versus inhibitory classification 
model. Right: 3D render of a dendrite with predicted incoming excitatory (yellow) and inhibitory (blue) 
synaptic sites. E: Subcompartment prediction and merge error correction (link). Leftmost: a single 
reconstructed object with a merge error where axon and dendrite cross near each other. Left center: 
the object is converted to a reduced skeleton representation (blue). Right center: fields of view around 
a subset of skeleton nodes are input to a subcompartment classification model. Red nodes: predicted 
dendrite; blue nodes: predicted axon. The inconsistency in subcompartment predictions is detected, 
and the agglomeration graph is cut at the location that maximally improves subcompartment 
consistency. Rightmost: the separated axon and dendrite after applying the suggested cut. 
 
Reconstruction of the structure of every cell and process in the aligned volume proceeded via 
Flood-Filling Network (FFN) segmentation and agglomeration (Fig. 2B and C) 9. Multi-
resolution FFN segmentation and oversegmentation consensus produced base segments 
(also known as supervoxels, Fig. 2B) that were then agglomerated via FFN resegmentation 
followed by mutual consistency criteria to produce more complete reconstructed cells (Fig. 
2C). Synaptic connections were added by a pre- and postsynaptic masking model applied to 
EM image blocks (Fig. 2D, top), while the polarity of synapses (excitatory versus inhibitory) 
was predicted by a classification model that considered the EM imagery centered around each 
putative synapse, as well as the local pre- and postsynaptic neuron segment masks and 
whether or not the postsynaptic site was a dendritic spine (Fig. 2D, bottom and right). A 
skeleton ("ball and stick") representation was also automatically generated from the volumetric 
segmentation, and higher-dimensional embeddings were computed for skeleton nodes with 
the help of a self-supervised neural network model. Skeletons were then used for automated 
subcompartment classification, and embeddings for glial type identification. 
 
The agglomerated segmentation was further refined using subcompartment predictions (Fig. 
2E). A classification model predicted axon, dendrite, astrocyte, soma, cilium, and axon initial 
segment classes at skeleton node locations distributed throughout each cell10. Occasional 
agglomeration errors produced merges between nearby objects, such as a passing axon and 
dendrite (Fig. 2E, leftmost). We used subcompartment predictions to distinguish the two 
merged objects (Fig. 2E, center right) and allow an automated cut to separate them (Fig. 2E, 
rightmost). The final data set is provided with two different agglomerations: c2 agglomeration 
favors fewer breaks (and hence longer processes) but with a higher number of incorrect 
mergers and c3 agglomeration that is more coservative and has shorter fragments but fewer 
merge errors (both are available here). 
 
For analysis, the various forms of data have been made available in SQL databases that 
enable specific queries about the neuronal and synaptic circuit data. We wrote software to 
aid in these queries including modifications to Neuroglancer and a new program, CREST.  
 
Cellular and Macroscopic Organization 
We first analyzed the cellular and macroscopic organization of the brain sample (Fig. 3).  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 25, 2021. ; https://doi.org/10.1101/2021.05.29.446289doi: bioRxiv preprint 

https://h01-dot-neuroglancer-demo.appspot.com/#!gs://h01-release/assets/neuroglancer_states/20210601/figs/fig2d.json
https://h01-dot-neuroglancer-demo.appspot.com/#!gs://h01-release/assets/neuroglancer_states/20210601/figs/fig2e.json
https://paperpile.com/c/cizPFg/5JQKs
https://paperpile.com/c/cizPFg/9LS1
http://h01-release-dot-neuroglancer-demo.appspot.com/#lot-of-axon%22%2C%22colorSeed%22:129859219%2C%22name%22:%22c3%20segmentation%22%7D%2C%7B%22type%22:%22annotation%22%2C%22source%22:%22precomputed://gs://h01-release/data/20210601/c3/synapses/precomputed%22%2C%22tab%22:%22source%22%2C%22ignoreNullSegmentFilter%22:false%2C%22shader%22:%22void%20main%28%29%20%7B%5Cn%20%20if%20%28prop_type%28%29%20==%20uint%281%29%29%20%7B%5Cn%20%20%20%20setColor%28vec3%280.%2C0.%2C1.%29%29%3B%5Cn%20%20%7D%20else%20%7B%5Cn%20%20%20%20setColor%28vec3%281.%2C1.%2C0.%29%29%3B%5Cn%20%20%7D%5Cn%20%20%5Cn%20%20setEndpointMarkerBorderWidth%280.0%29%3B%5Cn%20%20setEndpointMarkerSize%284.0%29%3B%5Cn%7D
https://github.com/google/neuroglancer
https://github.com/ashapsoncoe/CREST
https://doi.org/10.1101/2021.05.29.446289
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 

 

Figure 3: Distribution of cells, blood vessels and myelin in the sample. White lines indicate layer 
boundaries based on cell clustering. A: All 49,080 cell bodies of neurons and glia in the sample, colored 
by soma volume. B: Spiny neurons (putatively excitatory), colored by soma volume. C: Interneurons 
(few spines, putatively inhibitory), colored by soma volume. D: Astrocytes mostly tile but in some cases, 
arbors of nearby astrocytes interdigitate. E: Most of the oligodendrocytes in the volume. Note clustering 
along large blood vessels, especially in white matter. F: Cell bodies of microglia and oligodendrocyte 
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precursor cells (OPCs). G: Blood vessels and the nuclei of the 8,136 associated cells (link). Inset shows 
a magnified view of the location of the individual cell types. H: Myelinated axons in the volume, color-
coded by topological orientation. Most axons in white matter run in the perpendicular direction. Thick 
axon bundles run between white matter and cortex in the radial direction. In layer 1, a set of large-
caliber myelinated axons runs tangentially through our slice, parallel to the pia. In layers 3-6 many 
myelinated axons also run in diagonal (tangential/perpendicular) directions. 
 
 

We manually identified all of the cell bodies in the data set (see Supplementary Table 3). 
The cell census included 49,080 neurons and glia (Fig. 3A), and 8.1k blood vessel cells (Fig. 
3G). The number of neurons in this human sample is ~16k/1 mm3, many fold lower than the 
density of neurons in mouse cortex 11,12. Simply by measuring the neuron and glial cell body 
cross-sectional areas colorized by size, the cortical layering was obvious (Fig. 3A). Two 
regions that had a paucity of neurons (white matter at the left edge of the images in Fig. 3) 
and the most superficial layer (at the right edge of Fig. 3A) were populated mainly by glial 
cells whose cell body sizes were smaller than neurons (Fig. 3A, blue). The largest cells (red) 
were mostly in a broad deep infragranular band (i.e., closer to the white matter) and a more 
superficial (supragranular) one. Because the cells were segmented into 3-dimensional 
objects, their appearance plus the ultrastructural features of somata allowed classification of 
the cells into types across layers. The largest cell somata belonged to spiny pyramidal 
neurons. These cells typically possess one large apical dendrite projecting to the most 
superficial layer (Fig. 3B). However, even their somata were distinctly different in size across 
cortical layers. Non-pyramidal neurons were much less spiny, had smaller cell body sizes and 
had a less obvious layer arrangement (Fig. 3C). We sought to find an objective layering 
criterion and used cell soma size and clustering density to group cells into three non-adjacent 
layers and assigned the cells adjacent to these layers to four additional layers (see Methods). 
This approach generated a 6-layered cortex and white matter. The fiducial lines in each panel 
of Fig. 3 are based on these layers (named in Fig. 3A).  

The glial cells also showed differences between layers (Fig. 3D, E and F). The compact and 
complicated arbors of protoplasmic astrocytes are densely tiled in all layers (Fig. 3D), but the 
fibrous astrocytes in the white matter are more elongated than the protoplasmic astrocytes 
that occupy the cortical layers. Astrocytes in layer 1 were somewhat smaller in expanse, in 
line with astrocytes characterized in mouse cortex 13. Layer 1 astrocytes also stand out 
because of higher densities of these cells (see Supplementary Fig. 1A and 5A). Interestingly, 
the astrocyte density divides layer 1 into a superficial and deep region with the upper part of 
layer 1 being most densely populated with astrocytes, while the deeper part of layer 1 and 
layer 2 contain fewer astrocytes compared to upper layer 1 or layers 3-6, and even the white 
matter. Layer 1 is also unusual because it includes small aggregates of astrocytes 
(Supplementary Fig. 1B) where the arbors of neighboring astrocytes extensively intermingle. 
Transcriptomic characterization of astrocytes in the cerebral cortex has previously separated 
layer 1 and 2 from the other layers 14 or separated astrocytes into three cortical layers 15. Layer 
1 includes the primate-specific interlaminar astrocytes 16, however, the aggregates of highly 
overlapping astrocytes we see in layer 1 are not interlaminar astrocytes, as they are lacking 
projections and are further away from the pial surface. We also noted extensive overlap 
between protoplasmic astrocytes in many layers (Supplementary Fig. 1C). This intermingling 
was unexpected since protoplasmic astrocytes (in rodents) are mainly described to have non-
overlapping territories 17–19. Oligodendrocytes had a different distribution. They were most 
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plentiful in the white matter, as expected, given their role in myelin formation. There were also 
long lines of oligodendrocytes that surrounded the larger radially directed blood vessels in the 
white matter. The ultrastructure of this association is shown in Supplementary Fig. 2A-C. We 
noted perivascular oligodendrocytes 20 throughout the volume, with similar distance and 
interaction to blood vessels as microglia and OPCs (further described in Supplementary Fig. 
2D and E). Oligodendrocyte density decreased in more superficial cortical layers, reaching a 
minimum in layer 2 (Fig. 3E and Supplementary Figure 5A). In layer 1 they were slightly 
higher in density, probably related to the horizontally running myelinated axons in this layer 
(see below). Oligodendrocyte precursor cells which have different morphology and function 
than oligodendrocytes were difficult to differentiate by appearance from microglia (see 
Supplementary Fig. 3). Therefore, we used the skeleton node embeddings and a small set 
of manually labeled examples to train a model to classify candidate cells as microglia or OPCs 
(see Embeddings in Methods). The model predicted 2,049 cells to be microglia and 1,395 cells 
to be OPCs, whereas 2,836 cells were deemed ambiguous, often because of merge or split 
errors in the segmentation (see Methods and Supplementary Fig. 25). Fig. 3F shows the 
spatial distribution of the three classes. Unclassified cells tend to be at the sides of the sample 
owing to poorer alignment there and in the white matter, where the appearance of these glial 
cells is somewhat different than in the cortex. The reconstructed blood vessels (22.6 cms in 
total length) also did not show much evidence of layer-specific behavior (Fig. 3G). There was 
clearly a lower density in the white matter, presumably because of the lower energy 
requirements of myelinated axons, as compared to unmyelinated processes 21. Panel Fig. 3G 
also shows the location of 4,604 endothelial cells (~20 per mm of vasculature) lining the vessel 
lumen (green) and a more heterogeneous group of 3,549 pericytes (blue, ~15 per mm of 
vasculature) within the basement membrane but displaced slightly further from the lumen. 
Identification of smooth muscle cells as a type distinct from pericytes was possible in arteries 
and arterioles, however this distinction was not as clear in veins and venules as predicted by 
the expression profiles of these cells 22. We estimated the number of vascular smooth muscle 
cells in the sample to be 574 and that there were 78 fibroblast-like pericytes 22 surrounding 
the smooth muscle cells. In the capillaries, where smooth muscle cells are missing, pericytes 
(total 2339 in the volume) help regulate blood flow 23,24. Perivascular macrophages 25 (total 
396) were identified based on location and large intracellular granules, as well as 128 
perivascular lymphocytes, also located within the basement membrane. The total number of 
pericytes included a group of 25 cells we could not categorize further (see Methods for more 
details about cell type criteria). In addition, 46 circulating white cells (mainly neutrophils) were 
observed in the blood vasculature of the 1 mm3 volume which was not perfused to remove 
blood.   

Although astrocytic end feet touched blood vessels in many locations, their cell bodies were 
usually not abutting the blood vessels, but microglia, OPCs and oligodendrocytes were  
adjacent to the blood vessels. We also noted the capillary-free “Pfeifer spaces” surrounding 
the larger blood vessels 26. Based on the number and positioning/orientation of contractile 
cells, we could separate the larger vessels into arterioles and venules. However, the 
narrowness of the sample prevented us from reconstructing a full blood circuit from artery to 
vein. In the vasculature we found 73 thin bloodless bridges connecting different capillaries 27 
28 29 that were composed of a basement membrane and pericytes but lacking endothelial cells 
(marked red in Fig. 3G, and shown in more detail in Supplementary Fig. 4).  

From all of this cellular data, we could describe the complete cellular census of this brain 
sample (Supplementary Fig. 5 and Supplementary Table 3). The oligodendrocyte was the 
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most common cell type. 20,139 oligodendrocytes were found in this sample. Glia outnumber 
neurons by 2:1 (32,315 versus 16,087) though this varies by cortical layer (see 
Supplementary Fig. 5A, B). The 8,096 vasculature cells were already described above. The 
most common neurons were spiny cells (10,531 spiny neurons, of which 8,803 had a clear 
pyramidal shape. The spiny cells accounted for 69% of the neurons in the sample). We 
describe one new subclass below. The 31% (n=4,688) non-spiny neurons were classified by 
us as interneurons. There was a subset of neurons that did not easily fit into this binary 
categorization because either their somata were not fully in the volume, or more rarely, they 
appeared anomalous in other ways (868 cells). Other unusual neurons are shown in 
Supplementary Fig. 6.   

Myelin was found throughout the volume (Fig. 3H). Its density was highest in the white matter 
as expected. There were layer-specific differences in myelin density. The layer with the least 
myelin was layer 2. As already described, layer 2 was also the layer with the lowest density of 
oligodendrocytes (see Fig. 3E and Supplementary Fig. 5A). Because we annotated the 
myelin and skeletonized the axons it wrapped, it was possible to render not only the density 
of the myelin, but also its direction. Myelin direction is the basis of the diffusion tensor 
measurements made in the human brain in vivo 30. The myelin in the white matter is running 
primarily orthogonal to the plane of the section and hence appears blue in this direction-color 
plot. Bundles of myelinated axons project radially (green color) between the white matter and 
the cortical layers. In layer 3 the myelin is also running mostly orthogonal to the plane of 
sectioning (blue). In layer 1 myelin is running horizontally within this layer and hence 
orthogonal to the white matter and the radial myelin and colorized red (see also 
Supplementary Fig. 23B).  

Because all the objects in the cortical tissue were annotated by types we could assess the 
volumetric contribution of different types of cells and cell parts to the cortical parenchyma. By 
volume, this brain sample was 40.6% unmyelinated axons, 26.1% dendrites, 16.0% astrocytes 
and other glial cells, 9.6% somata, 7.6% myelinated axons, 0.07% axon initial segments, and 
0.03% cilia (Supplementary Fig. 22). The ratio of dendritic processes to axonal processes 
(4.9:1) is tipped more in favor of unmyelinated axons than the volumetric measurements above 
because individual axons on average occupy less volume than dendrites. In addition to these 
well known categories, we found in the volume a number of UCOs (unidentified cortical 
objects) that accounted for very little volume. These are shown in Supplementary Fig. 7. 

 

Synaptic Connectivity 
The most functionally significant aspect of cortical tissue is the synaptic connectivity that 
allows neurons to send and receive signals to and from other neurons. This wiring diagram is 
likely central to the way human brains store memory and give rise to behavior. The 
segmentation of neurons described above was insufficient to generate a wiring diagram 
because these segmentations did not identify synapses. As described in Fig. 2, we therefore 
used machine learning tools to train automated synapse classifiers to identify the pre- and 
postsynaptic component of each synapse and whether the presynaptic terminal was putatively 
excitatory or inhibitory. Proofreading showed that the number of missed synapses (i.e., false 
negatives) was 12%. Because we found no convincing cases of dendrites, glia, or cell somata 
establishing synapses (i.e., presynaptically) we could eliminate many of the false positives. 
After these corrections, the final false positive rate was 1.5%. Automated classification of each 
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synapse as excitatory or inhibitory was based on the appearance of each individual synapse 
and whether its postsynaptic structure was a dendritic spine or not, as well as the whether the 
presynaptic neuron was an excitatory or inhibitory type, for those neurons where the soma 
was in the volume. This approach classified excitatory and inhibitory synapses correctly 
99.42% and 92.00% of the time, respectively. In total, we found 149.8 M synapses in the 
volume between axons and either: dendrites (99.4%), AIS (0.197%), or somata (0.393%). 
There were: 40.6 M (27.13%) inhibitory and 109.2 M excitatory (72.87%). The density of the 
automatically annotated excitatory synapses was highest in layers 1 and 3 (Fig. 4A). The 
distribution of the inhibitory synapses was different and peaked in layer 1 (Fig. 4B). The 
percentage of excitatory synapses of total E/(E+I) is highest in layer 3 and lowest in layer 1 
(Fig. 4C). A relatively higher density of inhibitory synapses in human cortex layer 1 has been 
reported before 31. Synapse density estimates for different layers are shown in 
Supplementary Fig. 26. 

  

 

Figure 4: Synapses and circuit reconstruction. A: Volumetric density of inhibitory synapses. B: 
Volumetric distribution of excitatory synapses. C: Excitatory-inhibitory balance (E/E+I). Lowest values 
are purple, highest values are yellow. D: Interneuron and E: Pyramidal neuron with synapse locations 
shown in orange for synapses classified as excitatory and blue for synapses classified as inhibitory. 
Note large numbers of I synapses on the pyramidal neuron’s axon initial segment. F: Balance of 
inhibitory and excitatory synapses (E/E+I) onto interneurons (blue) and pyramidal neurons (orange) for 
neurons with cell bodies in different layers. G,H: Excitatory (orange) and inhibitory (blue) synaptic 
connections between neurons with cell bodies in the volume, based on non-proofread, automatically 
extracted cells and synapses; high-resolution online versions are available for both inhibitory and 
excitatory synaptic connections. I: Synaptic network between a set of 104 manually proofread neurons 
and their postsynaptic targets in the volume. Pyramidal cells are shown as orange triangles, 
interneurons as blue circles. Blue circles indicate spiny stellate neurons. J: From the automatically 
segmented connections we identified 96 categories of synapses (all subsequently validated by 
proofreading) and diagrammed the layer location of the synapses (arrowheads) and the layer location 
of the cell somata of the pre- and postsynaptic partners of each category (blue neurons are non-spiny 
and orange are spiny). Chandelier neurons whose axons innervate initial segments are the rightmost 
cells.   
 

Because each identified synapse was associated with a postsynaptic target, it was possible 
to analyze the inhibitory and excitatory drive to every neuron in the volume (see an example 
interneuron and pyramidal neuron in Fig. 4D and E). Inhibitory neurons on average received 
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roughly equal numbers of excitatory and inhibitory synapses (Fig. 4F) and they were 
distributed uniformly along dendrites and the cell somata. Excitatory neurons had relatively 
few synapses on the cell body and proximal (non-spiny) dendritic branches. For excitatory 
neurons, the synapses on the cell body and proximal dendrites were largely inhibitory. In 
contrast, in the spiny dendritic regions there were more excitatory synapses than inhibitory 
and because so much of the dendritic tree was spiny, the total excitatory drive as percent of 
total synapses on pyramidal cells was shifted to more excitation than the input to inhibitory 
neurons. There was also a large number of inhibitory synapses from chandelier interneurons 
on the axonal initial segment to the vast majority of spiny neurons (e.g., Fig. 4E) but not on 
interneurons. One exception, these chandelier axons also innervated the axon initial segment 
of other chandelier interneurons (see Supplementary Fig. 8). In layers 2-6 and the white 
matter, the tendency was the same: Pyramidal cells received a greater proportion of excitatory 
synapses than non-spiny interneurons (Fig. 4F).  

In this volume there were many hundreds of millions of axons originating from sites that were 
outside the volume. More rarely were the presynaptic terminals from axons of neurons in the 
volume. This asymmetry is accounted for by the fact that the majority of axonal input to cells 
originate from neurons outside the volume and most axons of neurons in the volume project 
outside the volume where they establish the majority of their synapses. Nonetheless, among 
the sparse axonal synapses of neurons with somata in the volume, 11,470 (71.3%) were 
synaptically connected to one or more other neurons with somata in the volume. We have 
graphed all of these connections (excitatory input Fig. 4G; inhibitory input Fig. 4H). These 
synapses gave rise to 29,498 in-volume neuron to neuron connections, and comprised 38,191 
synapses. These synapses were mostly on dendrites (36,158, 94.68%), axonal initial 
segments (1065, 2.79%) and axonal input to neuronal somata (968, 2.53%). This neuron 
connectivity circuit data is available at full resolution for both inhibitory and excitatory 
connections.  

To better understand potential modes of information flow in the network, we algorithmically 
traversed the connectome according to its connectivity. Specifically, we chose L4 pyramidal 
neurons as a starting point because this layer is often the target of feed-forward connections 
from other brain regions32 and input to other cortical layers33 and then traversed their 
postsynaptic partners if a threshold criteria was satisfied (see Analysis of information flow 
through network in Methods). We found that the layer 4 pyramidal cells (n = 908) primarily 
connect to cells in layer 3, which in turn connect to cells in layer 2. As this progression iterates 
toward the upper surface of the cortex, connections to cells in deeper layers 6 and 5 also 
become visible (see video online). Because the number of connections being traversed is 
extremely sparse, owing to axonal breaks in the automatic segmentation, and the fact that 
only connections between neurons with somata in the volume are being considered, this 
information flow should not be confused with a neural activity simulation of this cortical slice.  

Our large-scale automated segmentation combined with the development of efficient 
segmentation proofreading tools such as CREST also make possible the reconstruction of 
verified neural networks composed of the outputs of hundreds of neurons to hundreds of 
postsynaptic neurons. To obtain such a network, we proofread 104 neurons, which together 
with their postsynaptic target neurons form a network of 585 neurons, shown in Fig. 4I. In this 
network axonal branches that were broken by split errors and merge errors (more rare) were 
corrected to give the entire arbor of neurons with few branches missing in order to provide the 
connectivity of these neurons to other cells within the volume. Within this network, a small 
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number of neurons form a disproportionately large number of the connections, with the most 
connected neuron, a chandelier cell, synapsing on 70 other neurons in the network. The 
number of postsynaptic neurons within the volume receiving  synapses from a single proofread 
neuron ranged from 0 to 70, with a mean of 5.  Given the number of neuronal elements in 
petascale volumes it is not conceivable to proofread more than a small fraction of the data 
segmented by machine learning. We expect that with improvements both in image data quality 
and advances in AI, future datasets will substantially improve the automatic segmentation, 
however we wondered if we could leverage the large number of connected pairs discovered 
by machine learning to find a substantial fraction of the canonical intracortical circuit. For this 
analysis we used the more conservative c3 agglomeration which minimized merge errors, 
albeit with more axon breaks. This approach meant that we were certainly missing a 
substantial number of axonal connections between neurons in the volume. Nonetheless, we 
analyzed nearly 30,000 connections between neurons with somata in the volume, all identified 
by machine learning. We categorized neurons as excitatory and inhibitory based on the 
presynaptic neuron’s dendrites (smooth or spiny). We identified the layer in which the pre- and 
postsynaptic somata were located and the layer where the synapse(s) that connected them 
were located. Because there were no spiny neurons found in Layer 1, we had 6 layers 
possessing inhibitory cell bodies and 5 layers (layer 2-6) with excitatory cell bodies. We further 
divided the set of inhibitory cells into interneurons that innervated cell somata and dendrites 
and the set of interneurons that innervated axon initial segments, which we presume are 
Chandelier cells 34,35. We drew a circuit diagram based on these connections in which we 
connected neurons based on both the layer of origin of the pre- and postsynaptic cell and the 
layer where a synaptic interconnection was found (Fig. 4J). All told, we found 96 verified 
categories of connections based on spot proofreading. The spot proofreading revealed that at 
least 2/3 of the machine learning (ML)-identified connections were real, although false positive 
rates varied by connection type (Supp. Table 5). Because most of the categorical connections 
were based on multiple examples, even removing the false positive connections had a small 
effect on the final number of connection categories. Moreover the connections based on 
manual proofreading to correct all the axon breaks from 104 randomly chosen neurons (see 
above) revealed only 2 categories of connections that were missed in the machine learning 
data (Supp. Table 6). These results suggest that the automatic segmentation even with a 
conservatve agglomeration that minimizes merge errors at the expense of fewer long axonal 
segments, still could reveal the vast majority of cell-to-cell connectivity categories in this 
cortical slab. The connectivity that was revealed connected the majority of cells within and 
between layers and presents a complex picture of what a full canonical circuit would look like. 
It is important to emphasize that the approach we took does not provide insight into which 
types of connections are most or least common. The most numerous connection found was 
between layer 2 excitatory to layer 2 inhibitory cells (>3000 such connections). This may reflect 
the short distance needed for axons to connect two cells of the same layer.        

 
New morphological subcategories of layer 6 triangular neurons 
The deepest layer of the cerebral cortex has remained poorly studied compared to more 
superficial layers for a number of reasons 36. Among these is the fact that there is a greater 
diversity of cell types in this layer, especially in primates 37. When cell types are classified by 
Golgi stains or dye fills, as is often the case in the cerebral cortex, the data may be too sparse 
to categorize types clearly. This human cortical sample however provides a very large set of 
neurons that reside in each layer and therefore could potentially be used to reveal categories 
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that were previously unnoticed. As a test of this idea we looked at the so-called “triangular” or 
“compass” cells that have long been known to reside in layer 6 but are not well understood 
36,38–40.  These neurons have an apical-going dendrite and are spiny like the more common 
pyramidal neurons. However these cells each have a second large basal dendrite that projects 
in a more tangential direction, unlike typical pyramidal cells that have a skirt of several basal 
dendrites. In layers 5 and 6 we located all the triangular neurons (n = 864, roughly one third 
of the spiny neurons in these layers in our sample; Fig. 5A). The cells we studied all did have 
a large apical-going dendrite, but unlike typical pyramidal cells, they all also had one large 
basal dendrite that was projecting in another direction. For some of these cells the large basal 
dendrite projected directly toward the white matter (green cells, Fig. 5B). The majority 
however, had one large basal dendrite that projected roughly horizontally within the layer. 
Interestingly, the direction these basal dendrites projected was highly constrained. Almost 
equal numbers of these triangular neurons fell into two subcategories: those whose large basal 
dendrite projected roughly orthogonal to the cutting plane, but towards section #1 and those 
whose large basal dendrite also projected orthogonal to the cutting plane, but in the opposite 
direction (towards section #5292) (Fig. 5B; yellow neurons with basal dendrites projecting 
towards section #1 or “reverse-going direction”; and pink neurons whose large basal dendrites 
projected in the opposite or “forward-going direction''; see video online). Two individual 
neurons from these two subgroups are shown in Fig. 5C, D and E. We measured the angle 
of each of the basal dendrites of all the triangular neurons. The angles formed a bimodal 
distribution with peaks for basal dendrites that point along the z-axis in the forward or reverse 
directions (i.e., where 90 degrees means the basal dendrite is pointing in the z-axis towards 
slice 0, 270 degrees means the basal dendrite is pointing in the z-axis towards slice 5292, and 
0 or 180 degrees means the basal dendrite points within the cutting plane; see Fig. 5F, G and 
Supplementary Fig. 21). The fact that the bimodal modes peaked at 60 degrees away from 
the white matter (i.e., away from the inverted radial direction) (Fig. 5G and Supplementary 
Fig. 21F) meant that these two sets of basal dendrites were not parallel to each other. Rather, 
each subgroup had basal dendrites that projected at a more or less constant angle downward, 
toward the white matter. For this reason the forward and reverse going basal dendrites formed 
two sets of parallel basal dendrites that were easily distinguished, one headed forward in the 
z-axis but tipped slightly towards the white matter and one headed in the opposite direction, 
and also tipped slightly toward the white matter but at the mirror symmetrical angle (see, Fig. 
5C, D and E). Notably, there were almost no triangular cells with a large basal dendrite that 
projected tangentially, that is, in directions that were roughly aligned to the plane of section 
(gray cells in Fig. 5G, Supplementary Fig. 21 D,E).  
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Figure 5: Two mirror symmetrical subgroups of deep layer triangular neurons.  A: Location of 
neurons with both one large apical and one large basal dendrite; most are found in layers 5 and 6. B: 
Side view of a selection of these neurons, with apical dendrites pointing either forward in the z-stack 
(magenta) or in the reverse direction (light green) or straight toward the white matter (dark green). 
Notice that many of the magenta or light green neurons project their large basal dendrite at very similar 
angles. C, D, and E: Example of two bipolar pyramidal neurons with basal dendrites pointing in opposite 
directions showing the mirror symmetry in these two subgroups (link). F: The histogram of basal 
dendrite angles (572 cells; light green, magenta and gray cells from G) shows a clear bimodal 
distribution with peaks around 90 and 270 degrees representing the light green and magenta groups 
respectively. G: The polar plot of the data in F shows peaks of the basal dendrite directions at ~ 60 
degrees away from the inverse radial direction. Light green: 257 triangular cells with basal dendrite 
pointing towards section 0; magenta: 247 triangular cells with basal dendrite pointing towards section 
5292; gray: 68 triangular cells with basal dendrite pointing sideways in the cutting plane; dark green: 
281 compass cells with basal dendrite pointing towards the white matter. 11 compass cells excluded 
(basal dendrite pointing away from the white matter).  H: For axons innervating two bipolar pyramidal 
neurons, connections to neurons of the same polarity are overrepresented and connections to neurons 
of opposite polarity are underrepresented (blue dots and 95% confidence intervals; red dots show 
expected values).  I: Statistically significant likelihood that neurons whose large basal dendrite points in 
the same direction are nearer to each other than expected by chance. J, K, L: Anatomical clustering 
among members of the two subgroups.  
 
Looking at the full cell segmentations of each of these 257 reverse-going + 247 forward-going 
triangular neurons with tipped basal dendrites (n=504), several other consistent features were 
notable. First, the apical dendrites were also sometimes tipped so that neurons whose basal 
dendrites projected in opposite directions sometimes looked roughly mirror symmetrical to 
each other (see Fig. 5D). Second, there was an asymmetry to the location of dendritic side 
branches originating from both the proximal parts of the large basal dendrite and the apical 
dendrite. Side branches were far more prevalent on the outer edges of these bent bipolar cells 
than the parts facing inward. For an example, see in Fig. 5C, the dendritic side branches of 
the proximal apical dendrite facing to the left, and the dendritic side branches of the large 
basal dendrite projecting downward. The same is true in mirror symmetry for the cell shown 
in Fig. 5E. This was a general feature of these cells. 
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The different shapes, albeit mirrored, of these two categories of neurons raised the possibility 
that they are functionally distinct as well. Because we had the complete set of axonal inputs 
that made synapses to all of these cells, it was possible to analyze if their synaptic input was 
distinct. We thus analyzed the axonal innervation to 504 neurons with forward- and reverse-
going basal dendrites to see if individual axons that innervated more than one triangular 
neuron showed a tendency to innervate neurons whose basal dendrites projected in the same 
direction. If there were equal numbers of axonal inputs to the forward- and reverse-going 
neurons, then one would expect twice the likelihood of individual axons to innervate one 
forward- and one reverse-going dendrite than 2 forward-going or 2 reverse-going (as is the 
case in flipping a coin twice yielding twice as often one head one tail (HT 50% of the time) 
versus two heads (HH 25% of the time) or two tails (TT 25% of the time). Because the total 
number of axonal inputs to forward- and reverse-going neurons was not equal, the expected 
outcome, assuming a random process, was finding axons that innervated two neurons with 
forward-going basal dendrites (FF) to be 32% (32% of the axons that innervated two neurons 
with large basal dendrites would innervate both forward-going neurons), 49% FR and 19% RR 
(Fig. 5H, red dots). However, the connectivity was significantly skewed for axons to choose 
pairs of neurons with basal dendrites that projected in the same directions: FF (40% versus 
32% expected) or RR (21% versus 19% expected) compared to dendrites pointed in opposite 
directions, FR (39% versus 49% expected) (Fig. 5H, blue dots, p = 3.34 · 10-14). In an attempt 
to understand the origin of this specificity, we divided the axons into excitatory, inhibitory, and 
inhibitory onto the axon initial segment of the triangular cells. The results were equally 
significant for the subset of excitatory axons that innervated the basal dendrite neurons as it 
was for the inhibitory neurons that innervated the dendrites and somata of these cells 
(Supplementary Fig. 24). However, the chandelier interneurons that innervated the axon 
initial segments of more than one of these cells, did not show a significant preference for co-
innervating FF or RR pairs, and in fact, as would be expected in a random model, made most 
of their co-innervation on RF pairs (Supplementary Fig. 24).  These triangular cells' dendritic 
arbors and axon initial segments overlapped in the volume (see Fig. 5B and D). Nonetheless, 
when we rendered the two subgroups of neurons (forward-going or reverse-going) we noticed 
that they were not uniformly distributed in layer 6. Neurons whose large basal dendrites 
pointed in the same direction are nearer to each other than expected by chance (Fig. 5I) and 
the two sets, despite some overlap, appeared clumped (Fig. 5J, K and L). Each clump formed 
a rough radial column approximately 250 μm from the next column of the same subclass. 
Patchiness of axonal projections to layer 6 have been seen with anterograde labeling 
experiments in humans 41. 

 

Axonal Targeting 

Because we could identify all the synapses on a neuron and the identity of the presynaptic 
partner of each (Fig. 6A), we noted that only a small percentage of the axonal inputs to a 
neuron established more than one synapse with that postsynaptic cell (Fig. 6B). For nearly all 
cells, the histogram of the number of synapses per axonal input showed a rapid fall off from 
the prevalent motif where an axon established one synapse with a target cell (> 90%). Two 
synapse contacts occurred uncommonly, however all neurons showed some two synapse 
contacts. Even fewer three synapse contacts were observed and typically four synapse 
connections occurred only 0.001% of the time. One common exception to weak connectivity 
is the chandelier axon input to axon initial segments of pyramidal cells. Their cartridge inputs 
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sometimes give rise to ten or more synapses from a single presynaptic neuron. On dendrites 
however, weak connections are the rule. Nonetheless, we noted exceptional outlier 
connections on dendrites, and more rarely somata where a single axon established eight or 
even twenty synapses with a single target cell (Fig. 6C and D). In the example shown in Fig. 
6C, an axon establishes nineteen excitatory synapses distributed to several dendrites of an 
inhibitory neuron. Another example in which an excitatory neuron in the volume establishes 
nine synapses on an inhibitory postsynaptic neuron is shown in Supplementary Fig. 19. This 
example is notable because of the way in which the synapses are established on both sides 
of an en passant synapse between an axon and a dendrite (see below).  

 

 

Figure 6: Unusually powerful synaptic connections. A: We assayed all innervation to each neuron 
in the volume. Left panel, a pyramidal cell showing the sites of its incoming synapses (red balls). Right 
panel shows all the axons that give rise to the incoming synapses. B: The vast majority of the 5600 
axons innervating this pyramidal cell establish one synapse with it, with a small number of axons that 
provide two to four. C: Occasionally a very large number of synapses exist between an axon and a 
dendrite, as here where an axon (cyan) provides 19 synapses to three dendrites of an inhibitory neuron 
(red) in layer 2- see inset. Yellow balls show sites of all incoming synapses. D: Histogram shows that 
most inputs to this cell are weak and the powerful axon is an outlier. E-H: Despite their rarity, in such 
big data there are many strong connections between excitatory and inhibitory neurons. E: For example, 
in this case an excitatory axon (green) forms 8 synapses onto a spiny dendrite of an excitatory neuron 
(purple). As often was the case, one of these connections is en passant and the rest of the synapses 
appeared to require directed growth of the axon to contact this same dendrite. F An excitatory axon 
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(blue) forms 8 synapses onto a smooth dendrite of an inhibitory neuron (green) again with one en 
passant connection and the rest apparently requiring directed growth. G: An inhibitory axon (red) 
forming 18 synapses on the apical dendrite of a spiny pyramidal excitatory neuron (yellow). H: An 
inhibitory axon (yellow) forming 13 synapses onto the smooth dendrite (purple) of another inhibitory 
neuron, including one en passant contact.  I: A log normal plot showing incidence of axons establishing 
between 1 and 20 synapses to individual postsynaptic target cells (red line). This incidence far exceeds 
a model where these same axons establish the same number of synapses but are slightly displaced in 
space (blue line, see Methods). For all connection strengths greater than 3 synapses, axons show more 
multiple synapses than expected by chance. For example there were 94-fold more axonal connections 
with 8 synapses to one target cell than expected if axons establish the same number of synapses on 
nearby dendrites in a random way. 
 
Such outlier connections were not restricted to excitatory input to inhibitory dendrites (see also 
Fig. 6F). Excitatory axons also occasionally formed strong (multisynaptic) connections onto 
spiny (excitatory) postsynaptic neurons (Fig. 6E). In addition, inhibitory axons made such 
outlier powerful connections onto the shafts of excitatory neurons (Fig. 6G) and onto the 
dendrites of inhibitory neurons (Fig. 6H). Thus both excitatory and inhibitory neurons establish 
unusually strong connections with both excitatory and inhibitory postsynaptic cells, albeit 
rarely. Importantly, these strong connections appeared to be a property of the particular pre- 
and postsynaptic pair: most of the synapses established by the axons that formed outlier 
connections were typical one-synapse connections (on other neurons) and most of the input 
to the postsynaptic cells that received these powerful inputs were typical one-synapse weak 
connections (from other axons). Despite the overall rarity of strong connections, we found that 
28% of the 2659 neurons that were well innervated in the volume (i.e., that had at least 3000 
axonal inputs onto their dendrites) had at least one input that had 7 or more synapses, raising 
the possibility that rare powerful axonal inputs are a general characteristic of neuronal 
innervation in the human cerebral cortex. 

Many of these powerful connections shared a common morphological configuration. In some 
cases the axon co-fasciculated with the dendrite to remain in close contact for tens of microns, 
allowing it to establish many en passant synapses with the same target cell (e.g., Fig. 6G). 
More commonly however, the axon did not appear to have a special affinity for growing along 
the dendrite and approached the dendrite, as was typical of axons that made one synapse 
connections, by forming a synapse at the site of intersection without deviating its trajectory 
before or after the synapse. Remarkably, in addition to a synapse at the closest point of 
intersection, these axons sent terminal branches to the same target cell, usually both before 
and after the intersection. Because many of these axon fragments left the volume without 
reaching a soma, it was not possible in most cases to decide which side of the intersection 
was actually “before” or “after”. Nonetheless, the behavior of the axon was the same on both 
sides: the axon potentially sprouted “up” to establish synapses on the dendrite, and on the 
other side it potentially sprouted terminal branches “down” to establish additional synapses 
with the same target cell (see Fig. 6E, F and H and Supplementary Fig. 19). All of these 
cases, and many of the thousands strong connections not shown, were suggestive of 
intentionality, meaning that some pre-postsynaptic pairs had a reason to be far more strongly 
connected than was typical. The alternative possibility is that, given the thousands of axonal 
inputs to each of thousands of target cells, outlier results are simply part of the long tail of a 
distribution. These powerful connections may also be more common than we found given that 
axon breaks in the automatic segmentation likely had a disproportionately greater likelihood 
of reducing the number of connections as the length and number of synapses produced by an 
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axon increased. We thus sought a conservative model to simulate the number of axons with 
powerful connections, based on the actual trajectories of axons and dendrites and the 
observed properties of axonal branches. The model allowed every simulated axon to form the 
same number of synapses as it did in the actual data, but now on any of the dendritic branches 
that came within its vicinity, to match the reach of the actual axons. We were interested to see 
how often an axon would establish one or more synapses with a single target cell. The results 
shown in Fig. 6I, indicate that this random model of synaptic partnering is inconsistent with 
the incidence of strongly paired neurons that we found in H01 (p < 10-10). This tendency for 
axons to establish more synapses with certain target cells than expected by chance was found 
to about the same degree when we analyzed just inhibitory or just excitatory axons. Thus, 
amongst a large number of exceedingly weak connections, human cerebral cortex neurons 
receive a small subset of inputs with approximately an order of magnitude more power.           

 

Discussion 
The central tenet of connectomics is capturing both big and small scales: reconstructing 
individual synaptic connections in volumes large enough to encompass neural circuits 42. Our 
aim in this work was to study the structure of the human cerebral cortex at nanometer-scale 
resolution within a ~millimeter-scale volume that permitted seeing all of the cortical layers and 
some white matter. To observe intracortical connections between six layers of cortex, it was 
necessary to image a volume encompassing its full thickness, which in humans (including this 
sample) averages 2.5 mm from the top of layer 1 to the bottom of layer 6 43. Given that the 
axons of neurons may travel over one hundred microns before making their first synapses 44, 
the other two dimensions of the imaged volume must be wide enough and deep enough to 
trace intracortical network connections. We found that a full cortical thickness volume 
equivalent to a cubic millimeter provided us with sufficient tissue. The nanometer scale is 
required to identify individual synapses and distinguish tightly-packed axonal and dendritic 
processes from one another 45. This big and small requirement necessitated the acquisition of 
trillions of voxels, and hence more than a petabyte of digital image data. This petascale 
dataset offers the opportunity to look at the same volume of brain tissue at supracellular, 
cellular, and subcellular levels and to study the relationships between and among large 
numbers of neurons, glia, and vasculature. Most importantly perhaps it gives a glimpse into 
the enormous complexity of the synaptic relationships between many neurons in a slab of 
human association cerebral cortex.  

This “digital tissue” 46 is a ~660,000-fold scale up of an earlier saturated reconstruction from a 
small region of mouse cortex, published in 2015 47. Although this scaleup was difficult, it was 
not hundreds of thousands of times more difficult and took about the same amount of time as 
the previous data set (~4 years). This means that many of the technical hurdles with imaging 
and computer-based analysis have improved dramatically over the past few years. This 
improvement was in large part due to two noteworthy advances: fast imaging owing to 
multibeam scanning electron microscopy 48 and the profound effect of AI on image processing 
and analysis 9. The rapid improvements over the past few years 49–58 argues that analyzing 
volumes that are even three orders of magnitude larger, such as an exascale whole mouse 
brain connectome, will likely be in reach within a decade 59. 

Studying human brain samples has special challenges. Fortunately, the quality of the H01 
brain sample was comparable to cardiac perfused rodent samples used in the past. This 
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strongly suggests that rapid immersion of fresh tissue in fixative is a viable alternative to 
perfusion and should be especially useful in human connectomic studies going forward. More 
problematic is that fresh samples from completely normal individuals are unlikely to ever be 
available via this neurosurgical route. Although this patient’s temporal lobe did not show 
obvious signs of abnormality, as stated by the neuropathologist, it is possible that long term 
epilepsy had some more subtle effects on the connectivity or structure of the cortical tissue. 
Moreover, it is likely that an epilepsy patient such as the one who supplied this sample was 
treated (albeit with limited success, hence the surgery) with pharmacological agents that could 
affect brain structure. Importantly however, the neurosurgical specimen that we obtained was 
not part of the pathological process per se, it was removed only because it was “in the way” – 
that is, the surgical procedure could not be done without its removal. Given that patients with 
successful outcomes after surgery have normal brain function, it is assumed that the 
procedure pinpointed the abnormality, and the remaining brain is functioning normally. The 
normal functioning brain would presumably include the incidentally resected tissue. However, 
only by comparing samples obtained from patients with different underlying disorders may we 
eventually learn whether this sample is normal. There were some oddities in this tissue that 
we found, but at present, we cannot decide if they are pathological or just unusual. These 
include a number of extremely large spines and axon varicosities filled with unusual material 
(see Supplementary Fig. 7). 

Another challenge with human brain tissue from the association cortex is that it is probably the 
location of circuits that were established as a consequence of experience. If memories are 
stored in this part of the human brain, then it is unlikely that another brain will be similar, in the 
way that, for example, multiple C. elegans nematode brains are stereotyped.60 But even in 
isogenic worms, 40% of the neuron to neuron connectivity was different between specimens. 
Given the far greater variability in human experience, behavior, memory and genetics, and the 
fact that humans and other vertebrates have pools of identified neurons classes rather than 
individual identified neuron types, it will no doubt be challenging to compare neural circuits 
between brains. This challenge also presents an opportunity: to uncover the physical 
instantiation of learned information. Even if the circuits differ in their particulars, it is possible 
that a metalogic for memory can be uncovered by looking at enough data, maybe in the future 
field of “engramics” 61,62. To be sure, approaches to the profound questions of uncovering the 
meaning in neural circuit connectivity data are in their infancy, but it would seem to us that 
perhaps the best stimulus for making progress will be an abundance of actual data -- this 
petascale dataset is a start. 

However, we have come to realize that big data raises big problems that do not have ready 
answers. Although segmentation is improving rapidly, the automatically reconstructed circuits 
are far from perfect. The tension between split errors and merge errors means that depending 
on the aim, one may prefer segmentations that provide fewer split errors or fewer merge errors 
(we share online two agglomerations that are both these alternatives, c2 and c3). In this 
sample we used higher level semantic annotations to remove some merge errors, such as 
trimming astrocytes or axons that were merged to dendritic trees. These higher-level machine 
learning approaches are likely to be profoundly useful as they become perfected in the years 
to come. At the current level of automated accuracy, it is impractical to manually correct all 
segmentation errors in a volume as large as H01. However, when we scrutinized the 
segmentation errors in this data, they were almost always secondary to flaws in the image 
acquisition, such as staining artifacts at a critical site, alignment difficulties due to variations in 
the thickness, or distortions of the sections that were picked up onto tape. We suspect that 
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improved methods of tissue sectioning and staining may help to reduce the number of errors 
in the future.  

One power of connectomic study of large data is that rare events, which might be too 
uncommon to find in a small sample, are manifest in the larger data size. It has long been 
recognized that dendritic trees allow neurons to collect information from, as shown in this 
study, many thousands of different neurons. Because the overwhelming majority of these 
connections are weak (~ 99.9% with 1, or at most 4 synapses), it has been assumed that 
neural processing must occur by integration via spatial and temporal summation of a number 
of weak inputs that happen to be active at roughly the same time. We found however that 
amongst the very large population of weak axonal connections, there are a few inputs that are 
outliers forming ten or even twenty synapses on the dendrites of a postsynaptic neuron. By 
virtue of their common origin, these multiple release sites assure that one input will 
synchronously activate a target cell, perhaps strongly enough to be suprathreshold (if 
excitatory) or able to block activity (if inhibitory). In a much smaller volume of proofread mouse 
somatosensory cortex we previously saw axons that made as many as up to five synapses on 
the same dendrite that also did not appear to be a chance occurrence47, perhaps implying that 
sparse powerful inputs may be a general feature of mammalian brains.   

A number of years ago, neuropsychologists 63 made the case that motor learning occurs in 
three stages: cognitive, associative, and autonomous. The point being that early on a motor 
task is hard to do, and takes much cognitive effort, however eventually it occurs with little 
thought (e.g., learning to use the brake pedal when seeing a red light as a beginner driver, 
versus the automatic and almost unconscious braking by an experienced driver). Clearly the 
human brain can reach a decision much more quickly once a task is completely learned. How 
might that occur? One possibility is to strengthen a pathway so it is less reliant on summation 
from many sources, as might occur if one input becomes capable of activating a target cell on 
its own. Interestingly, this is the maturational strategy in the final limb of the motor system 64,65. 
In young animals (probably including humans) neuromuscular junctions are innervated by 
many weak motor axons, at which point it is likely that multiple axons need to be activated 
synchronously to cause reliable muscle fiber twitching. Over time, many of these inputs are 
eliminated and the remaining axon compensates by adding more synaptic release sites 66. 
The remaining input is strong enough to dependably activate the muscle fiber given the high 
quantal content of twenty or more release sites. Such strengthening also occurs in the CNS, 
such as the strong excitatory input of one climbing fiber on an inhibitory postsynaptic neuron, 
the Purkinje cell. This multisynaptic release also emerges after a set of weaker climbing fiber 
inputs are eliminated and the remaining axon adds many synapses 67. Is it possible that the 
association cortex permits some inputs to become autonomous drivers of activity by the 
addition of synapses? If so, such connectivity should be even less common in younger human 
brains.           

The presumption has long been that human neuroscience must utilize approaches that are 
both less direct, and more poorly resolved than those that can be brought to bear on 
questions in animal models. In particular, it has been assumed that while it might be possible 
to get complete wiring diagrams and structural cell type analysis of all cells in the cerebral 
cortex of a rodent, or in the CNS of a fruit fly or a worm, a similar feat would be impossible in 
a human. However, should the technical barriers with human specimens be overcome, would 
it not be more relevant to do these same kinds of analyses in human specimens? Would it 
not be especially significant to do this in specimens from humans afflicted with psychiatric or 
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developmental disorders? The petascale data presented here supports the idea that fine-
scale connectomics is a viable path for learning about the human brain.  
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Statistics 

For the analysis of spatial clustering of cells in Figure 5, Fisher’s Exact Test was used to 
establish whether equal-color neighbours were occurring significantly more often than by 
chance (p = 0.00745, n = 504). For the analysis of forward and reverse facing  connectivity in 
Figure 5, the Chi-Squared Test was used to compare observed and expected frequencies of 
forward-forward, forward-reverse and reverse-reverse linked pairs of forward and reverse 
going neurons (p = 3.34·10-14, n = 1180). For the analysis of connectivity strengths in Figure 
6, the Chi-Squared Test was used to compare observed and expected frequencies of axons’ 
strongest connections (p < 10-10, n = 79,816,870), but plotted as percentages for clarity. 
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Methods 
Sample acquisition and preparation 
A 45 year old woman with a history of simple and complex partial seizures with occasional 
generalization, refractory to medical management, underwent surgical ablation of an epileptic 
focus in her left medial temporal lobe. During the procedure medial temporal lobe tissue 
containing the epileptic focus, as well as unaffected cortical tissue from the left anterior 
temporal lobe was removed. A pathological assessment of the excised medial temporal lobe 
sample showed hippocampal sclerosis, and marked neuronal loss from CA1 and less severe 
neuronal loss from DG, CA2 and CA3, but no significant pathologic changes were noted in the 
anterior temporal lobe sample that we reconstructed. The anterior temporal lobe sample when 
excised was 2.5 cm by 0.8 cm in its longest and perpendicular axes, forming an irregular oval 
shape that included the full thickness of the human cerebral cortex (see Supplementary Fig. 
11). Immediately after excision, Matthew P. Frosch, M.D., Ph.D., a neuropathologist, fixed the 
sample by immersion in cold 2.5% paraformaldehyde / 2.5% glutaraldehyde in 0.1 M Sodium 
Cacodylate Buffer, pH 7.4 (Electron Microscopy Sciences, #15949) 68) and maintained the 
sample in fixative overnight. The sample was then washed in 0.1 M Sodium Cacodylate and 
2 mM CaCl2 buffer, trimmed manually and divided into 300 micrometer-thick sub-samples by 
Vibratome (Leica VT1000S), each then stained with reduced osmium tetroxide-
thiocarbohydrazide (TCH)-osmium 6, washed in ddH2O, stained with en-bloc 2% uranyl 
acetate overnight at 4°C, dehydrated with 20%, 50%, 70%, 80%, and then 100% ethanol, 
washed twice in propylene oxide (PO), immersed in a 50:50 mixture of PO and 812 Epon resin 
(EMbed-812, Electron Microscopy Sciences, #14121) overnight, followed by a 30:70 PO Epon 
mixture immersion overnight and then 100% Epon immersion overnight. The infiltrated tissue 
sample was cured at 60°C for 48 hours. 

 

Sample sectioning 
The second Vibratome section down from the original sample surface was selected for 
electron microscopy imaging. The resin block was trimmed using a 3 mm UltraTrim diamond 
knife (Diatome, USA) and ultramicrotome (UC6, Leica, Germany) to a rectangular area of 
4584 x 1975 micrometers, oriented so that it included all cortical layers from layer 1 down to 
superficial white matter. 30-40 nm thick serial sections were cut with several 4 mm wide Ultra 
45 or Ultra 35 diamond knives using the automated tape collection ultramicrotome (ATUM) 
system as described in 47 at a cutting speed of 0.3 mm/s and collected onto carbon-coated 
Kapton tape. After 1639 serial sections had been cut, the cutting process became unstable, 
with sections intermittently breaking into two or more pieces (see Supplementary Table 1 for 
per-section details), resulting in cutting being paused after 1695 sections so that the knife 
could be replaced, as blunting of the knife during the cutting process has been observed to 
result in unstable cutting 47. Upon resuming the cutting, due to the replaced knife being 
significantly non-parallel to the face of the block, sections were initially composed of one part 
of the face of the block (termed ‘reentry’ sections), and gradually became ‘full’ sections after 
thirty further sections had been cut. We estimate that we lost no more than the equivalent of 
three 30 nm sections in this reentry region. The subsequent alignment process in the reentry 
region is described below. After a further 66 sections had been cut, cutting remained unstable, 
as indicated sections which alternated between being thicker and thinner than the desired 30 
nm thickness. Cutting was paused and the block rotated 180 degrees, with cutting resumed 
at 33 nm per section. This resulted in a second series of ‘reentry’ sections of 62 sections 
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duration, after which cutting remained stable for a further 3193 sections, giving a total of 5053 
consecutive sections cut and collected onto tape. The tape was manually inspected for 
evidence of failure to cut a section followed by a ‘double-thickness’ section of 60 or 66 nm 
thickness and found that 5.8% of sections were ‘double-thickness’, as listed in 
Supplementary Table 1. These sections are deliberately duplicated in the digital aligned 
stack to maintain a realistic size of the digital dataset, resulting in 5292 layers in the digital 
stack. 

 

Estimation of tissue compression introduced during ultrathin sectioning 
Comparing electron microscopic images of full ultrathin sections with known pixel resolution 
to photographs of the trimmed tissue sample in the resin block before sectioning allowed us 
to estimate the compression factor of ultrathin sections with respect to the embedded block 
which occurred during sectioning and tape collection. Compression in the direction parallel to 
the knife edge was negligible (0.997) whereas there was a large compression perpendicular 
to the knife edge (0.72). This means that sections in the electron microscopic stack are 
compressed by 27.96% with respect to the tissue in the resin block, but only along the longer 
axis of the section. The corrected true pixel size in the published aligned image stack is thus 
estimated as 11.1 nm x 8 nm or 5.55 nm x 4 nm in the full-resolution images. This analysis 
only estimates size changes between embedded tissue and the EM image stack. It excludes 
any size changes that may have occurred between the tissue in vivo and the processed, resin-
embedded sample. 

 

Wafer fabrication and mapping 

The tape holding the sections was cut into strips containing between nine and fifteen sections 
each and attached via strips of 25.4 mm double-sided carbon tape (Ted Pella, USA) onto 
either round or square silicon wafers (University Wafers, USA) of either a 4 inch diameter or 
a 90 mm x 80 mm area, respectively. Each wafer held nine strips of tape, and between 110 
(round wafer) and 135 (square wafer) sections. To enhance the signal from cell membranes, 
each wafer was first plasma-treated for 30 seconds (operating pressure of 6 x 10-1 mb, plasma 
current of 10 mA) to increase its hydrophilicity and then immediately stained with 4% uranyl 
acetate for three minutes, rinsed with ddH2O for thirty seconds three times, air-dried, stained 
with 3% lead citrate for three minutes, rinsed and air-dried as before, stored overnight under 
vacuum and mounted on a metal wafer holder with fiduciaries to target high-resolution imaging 
by the multibeam scanning electron microscope (mSEM). As previously described 7, we 
mapped the position of each section on the wafer, relative to fiducial marks on the stage by 
using a reflected light microscope to produce a low-resolution (3.57 μm / pixel) optical image 
of each wafer mounted on the wafer holder, which identified the position of each section 
relative to the wafer holder fiduciaries. These positions were sent to the electron microscope 
to guide the stage automatically to each section.  Several whole sections were imaged by low-
resolution SEM (220 nm / pixel, secondary emission, FEI Magellan microscope), within which 
cortical layers and a perpendicular axis of apical dendrites and axonal bundles were observed 
(see Supplementary Fig. 9 for a representative example). A six-sided polygonal region of 
interest (ROI) was defined to follow this axis, using distances from the corners of the section 
as indicated in Supplementary Fig. 9. This ROI was superimposed onto each section in the 
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optical image of each wafer using the Zen software package (Zeiss), to target high resolution 
imaging in the mSEM.   

 

EM image acquisition 

To speed imaging, a wafer attached to the stage was mounted in the multibeam scanning 
electron microscope (mSEM; Zeiss), the stage was automatically sent to each section, and 
the scope’s software calculated the local stage movements to image each section. Each 
section was imaged by scanning 61 overlapping rectangular regions with 61 electron beams 
simultaneously 48, producing 61 image tiles, each 3128 x 2724 pixels, comprising one 
multibeam field of view (mFOV) that had a length of 108 μm 48 (Fig. 1). Once one mFoV had 
been acquired, the mSEM stage moved to an adjacent site within the section to acquire 
another mFoV. Each image ROI required approximately 700 overlapping mFoVs to image the 
entire ROI at 4 nm per pixel resolution, with a tile overlap (within mFoV) of 10% and a between-
mFoV overlap of between 3% and 10% (see Supplementary Table 1 for all per-section 
imaging metrics). Each ROI was imaged with a landing energy of 1.5 kV with each scanning 
beam at 576 pA, and a dwell time of either 200, 400 or 800 ns per pixel. The data was imaged 
using secondary electron emission. Typically sections were imaged with a 200 ns dwell time, 
but if small structures such as the outline of synaptic vesicles, or thin processes could not be 
seen clearly, then the section would be reimaged at a higher dwell time. At a dwell time of 200 
ns and stage settling-time of 0.6 s, acquisition of one ROI takes approximately thirty minutes. 
Brightness and contrast for each ROI were set to maximize the dynamic range of the images 
acquired, by maximizing the spread of the histogram of image grey levels without clipping its 
tails. Prior to imaging each ROI, the mSEM was programmed to determine the optimal focus 
distance and stigmation settings at 12 or more ‘focus support points’ (FSPs) within the section. 
If this procedure failed at more than 25% of the FSPs, then the ROI was not acquired, and the 
procedure was restarted with new FSPs added and failed FSPs removed or moved to other 
locations. Once this procedure had succeeded at 75% or more FSPs, Delaunay triangulation 
was used to interpolate a topological map of the ROI, to guide the autofocus of the mSEM 
during the imaging of the ROI.  

 
 
EM image quality checks 

After each ROI had been acquired, a suite of custom MATLAB scripts 
(https://github.com/lichtman-lab/mSEM_workflow_manager) was used for further quality 
checks. A previously described measurement of image quality 7 was plotted for each mFOV 
in the section, highlighting areas within the section of relatively lower image quality, which 
enabled the identification of out of focus areas, so that affected ROIs could be reacquired with 
additional FSPs. A correlation measure between tiles that should overlap with one another, 
both within-mFOV and between-mFOV, allowed the identification of any ‘gaps’ in the imaged 
ROI. The tops of tiles were automatically checked for evidence of either insufficient mSEM 
stage settling time (manifesting as a ‘sawtooth’ appearance), or charging (manifesting as 
compression of the image). Degrees of mFoV rotation and completeness of image tiles or 
metadata files were  also recorded. If any of these tests indicated errors in image acquisition, 
that would impact on subsequent image stitching, alignment and segmentation, then the 
section in question was reacquired. Per section quality check results are listed in 
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Supplementary Table 1. In total, 5053 consecutive ROIs and 1830 TB of raw imaging data 
was acquired.  

 

Image Alignment, Stitching and Rendering 

Stitching and alignment presented particular challenges due to the large section area; the 
fragmentation of some sequences of consecutive sections at coincident fracture boundaries; 
and reentry periods where, due to sample tilt during sectioning, some sections interfaced with 
several adjacent sections rather than single ones. These issues were addressed by the 
techniques described below. The large size of the dataset, also a challenge, was addressed 
by parallelizing each step over image tiles or regions of the volume, as appropriate. The overall 
approach was similar to Saalfeld et al. 8. 
 

Stitching. To stitch imagery within sections, we obtained point correspondences between 
overlapping tiles, then optimized tile position estimates to minimize the correspondences' sum 
of squared errors. We found correspondences by first matching whole tiles around positions 
suggested by stage position data (or by preliminary, partial stitch solutions in the case of some 
sections with poor stage position data and low cross-tile overlap), then matching patches 
around locations suggested by these whole tile matches. We used CLAHE-enhanced imagery 
subsampled to 8 nm resolution, patches of 400 x 400 nm, the normalized correlation coefficient 
as a match measure, and subpixel estimation of correlation peaks. To obtain well distributed 
correspondences, we attempted matches at successive locations generated by Halton 
sequences, stopping when finding a desired number of patches per pair, or an excessive rate 
of match failure. We found that the relative position of tiles within the 61-beam field of view 
varied during acquisition (perhaps due to variations in section surface height) so we solved 
translation of each field's tiles individually, interpolating from adjacent fields in cases of 
insufficient correspondences (e.g., in low texture regions such as blood vessels). When 
stitching together whole fields, we found that these could not always be adequately aligned by 
translations or other affine transforms, perhaps because of deformation of the tissue during 
image acquisition. After solving for an optimal translation of each field, we modeled each with 
a triangular elastic mesh and adjusted mesh vertices to further reduce correspondence errors, 
formulating the problem as a sparse nonlinear system and solving it with the conjugate 
gradient method. 

 

Alignment correspondences. To align sections, we first matched coarse and fine structural 
features between different sections, then used those to guide searches for patch matches. We 
sought matches between all pairs of sections up to three sections apart or, within reentry 
periods where more widely separated sections could still be physically proximate due to cutting 
angle, up to 200 nm apart. Where consecutive sections were fragmented at coincident 
boundaries, we also obtained matches to widely separated sections in order to adequately 
constrain those fragments. Features and matches were obtained from section renderings 
generated from the previous steps stitching solutions, with CLAHE enhancement. We 
detected coarse features using the OpenCV SimpleBlobDetector69 on imagery subsampled to 
2-micron resolution, typically obtaining features at blood vessels and some cell nuclei. We 
detected fine features using a Google proprietary scale-invariant keypoint detector 
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comparable to SIFT 70 on 64 nm imagery. In both cases, we used a SIFT-like feature descriptor 
to characterize the neighborhood around each feature, and compared those descriptors to 
identify putative feature pairs. With coarse features, we used RANSAC 71 to find a global affine 
aligning each pair of sections, constraining affines to ones with plausible rotation, scale and 
skew. However, with fine features, the density of features together with the size and 
deformation of sections made RANSAC insufficiently selective, so in that case we used 
JLinkage 72, a multi-model variant of RANSAC, to perform a similar function, finding a series 
of affines each valid in some local region. Next, we performed patch matching at both coarse 
and fine resolutions. At 8 micron intervals, and in 64 nm resolution renderings, we matched 6 
x 6 micron patches in 64 x 64 micron neighborhoods to obtain coarse patch matches, using a 
distance-weighted average of neighboring fine feature matches to locate each search 
neighborhood. We then repeated this at 1.2 micron intervals in 32 nm renderings, matching 
2.4 x 2.4 micron patches in 16 x 16 micron neighborhoods to obtain fine patch matches, using 
coarse patch matches to locate neighborhoods. In regions where feature or patch matches 
could not be found between a pair of sections, but were found between those and other nearby 
sections, we cascaded transforms to get the needed neighborhood location estimates. Finally, 
we filtered each set of patch matches for spatial coherence, discarding any that differed 
significantly from transforms fit to neighboring matches. 
 
Alignment transforms. Fixing the position of one central section, we used a random subset 
of patch match correspondences to estimate similarity transforms for all other sections, 
optimizing both correspondence errors and a regularization term maintaining scale near unity. 
Then, modeling each section as transformed by its similarity transform with an elastic mesh, 
we adjusted mesh vertices to reduce correspondence errors. We performed this step first with 
coarse meshes and sparsely sampled correspondences, followed by progressively finer ones 
and larger fractions of available correspondences, to a finest mesh resolution of 8 microns 
vertex spacing. In later steps of this process, we subdivided the volume into progressively 
smaller, overlapping segments of contiguous sections and solved these independently, while 
keeping their boundary sections fixed, reducing alignment problems to a tractable size. The 
final step repeated the penultimate one, while using staggered segment boundaries to improve 
continuity.  
 
Rendering. We classified each whole tile as to whether it primarily depicted tissue as opposed 
to resin or tape. For most sections, this classification was done by a random forest classifier 
trained on manually labeled tiles characterized by statistics of intensity and spatial frequency. 
For some sections within reentry periods, tile classification was done by measuring the entropy 
of the spatial frequency spectrum of ORB keypoints 73, selecting tiles where that measure 
exceeded a threshold, and classifying as tissue the morphological closure of the largest 
connected component of such tiles. Finally, for selected sections throughout the volume, 
tissue tiles were identified manually by drawing section-bounding polygons. Classification 
results were used to exclude non-tissue tiles from the volume. 
 

We rendered a 3D volume of the aligned tissue tiles with each triangle of elastic mesh 
determining an affine transform of pixels within that triangle. We used CLAHE enhancement 
and bicubic interpolation. Where multiple tiles had content for one pixel, we selected the tile 
with the closest center. In general, each tissue section provided content for one or two layers 
of the volume, depending on the estimated thickness of that section. However, within reentry 
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periods, where the change in cutting angle resulted in some sections filling their volume layers 
incompletely, we completed those layers by copying in voxel values from adjacent layers. This 
replication was limited to copying voxels identified as tissue, to ones identified as not tissue 
(i.e., resin or tape). 
 
Fine-scale alignment with optical flow. In order to address remaining misalignment (such 
as systematic drift and section jitter), we used the section-to-section optical flow regularized 
with an elastic mesh to realign the complete dataset, with the results of elastic alignment as 
its initial state. We computed an optical flow field between every section and its two 
predecessors using cross-correlation. The flow vector was estimated by identifying the peak 
of the correlation image computed between 160 x 160 pixel patches extracted from the same 
XY position in the two sections. The patch centers were distributed over a regular grid with 40 
pixel spacing. In addition to the flow vector, we recorded the ratio of the peak height, and the 
minimum correlation image intensity within a 5 pixel radius region around it ("sharpness"). If 
more than one peak was detected in the correlation image, we also recorded the "height ratio" 
of the two largest peaks. The flow field estimation procedure was performed over data at 8 x 
8, 16 x 16, 32 x 32, 64 x 64, 128 x 128, and 256 x 256 nm2 pixel size, computed with area-
averaging. 
 
At every downsampling level, we filtered the flow field for “local consistency” by invalidating 
entries with: height ratio lower than 1.6, sharpness lower than 1.6, absolute flow magnitude 
larger than 40 pixels, or an absolute deviation from the 3 x 3 window median of more than 10 
pixels. We then upsampled all flows to the highest resolution, and attempted to replace invalid 
flow entries with values of a lower resolution flow field at the same XY location, with preference 
given to estimates obtained at higher resolutions. The reconciled flow field was then filtered 
once more for local consistency as described above. The reconciled flow field might still 
contain invalid entries, either due to consistency filtering, or failure to find a valid value in the 
lower resolution flow fields. 
 
We modeled every section as a spring-mass system of Hookean springs 74, with nodes of the 
springs positioned at the grid used for flow estimation, and nearest neighbor and next nearest 
neighbor nodes within every section connected together. Sections were optimized 
sequentially. Valid flow vectors were used to connect the optimized section with two previous 
sections with 0-length springs with a spring constant 10x lower than the in-plane springs 8. We 
treated this system as a set of damped harmonic oscillators at critical damping, and integrated 
it in time with the velocity Verlet scheme 75 until the maximum velocity magnitude for all nodes 
fell below a threshold value of 0.01. Optimization proceeded simultaneously towards lower 
and higher z coordinates, starting with z = 1900 as the anchor section. 
 

In this procedure, significant imaging artifacts or missing sections can cause mesh distortions 
which propagate through the stack. To avoid this problem, we manually reviewed 
downsampled versions of all sections in the dataset, and decided to mark 287 single sections 
as invalid (i.e., both preceding and following sections were valid), as well as 96 sections within 
contiguously invalid blocks of two or more (up to nine) consecutive sections. The invalid 
sections were not included in the optimization, and instead the flow field was computed 
between the valid sections directly preceding and following the invalid block. Invalid sections 
were then optimized separately in a second pass, at which point all valid sections were held 
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fixed. A representative example of a corrected region of misalignment is shown in 
Supplementary Fig. 12. 
 

Semantic segmentation 

 
Valid tissue detection. We used a simple heuristic filter to detect "out of bounds" (OOB) 
regions of the dataset which did not contain neural tissue. First, we computed a high-pass 
filtered version of the imagery as Ihp = I + min3x3(255 - I), where I is the pixel intensity of the 
CLAHE-normalized data downsampled to a pixel size of 64 x 64 nm2 and min3x3 is the minimum 
function, applied convolutionally with a kernel size of 3 x 3 pixels. We then downsampled Ihp 

to 320 x 320 nm2 pixel size, filtered the results with a 10 x 10 pixel uniform filter, and binarized 
the results at a threshold of 230. To form the final OOB mask, we computed the in-plane 
connected components of the binary mask, and removed any components smaller than 10,000 
pixels. 
 
Voxel-wise classification. We trained four convolutional networks to perform four separate 
semantic segmentation (i.e., voxel-wise multi-class prediction) tasks: 1) tissue classification, 
2) neurite type classification, 3) myeloid body detection, and 4) data irregularity detection. The 
tissue classification model operated on the aligned data at 64 x 64 x 66 nm3 voxel size, but all 
the other models used the aligned data at 32 x 32 x 33 nm3 voxel size. The architecture of the 
networks, training hyperparameters, and class balancing were the same as in Januszewski et 
al. 9, with all networks having a 65 x 65 x 65 voxel field of view (FOV) at their operating 
resolution. The tissue classification model was trained with random 3D rotation augmentation 
in addition to the reflection and axis permutation augmentations used for the other models. 
 
The tissue classification model classified every voxel as neuropil, nucleus, myelin, blood 
vessel, or fissure - see Supplementary Fig. 13 for a representative example. "Fissures" 
denoted unusual cylindrical-shaped regions of the dataset in which it was impossible to 
distinguish individual neurites. We hypothesize that these regions originated from physical 
damage during tissue resection. The dataset contains five distinct fissure regions, two of which 
penetrate the whole stack, while the remaining three are more superficial. To speed up 
annotation, the myelin class included both the myelin sheath and the axon it wrapped, unlike 
prior work 9. Ground truth annotations were collected by manual mask painting in a web-based 
tool ("Armitage"). 17,361,918 voxels were annotated as neuropil, 2,731,823 as nucleus, 
2,702,242 as blood vessels, 1,529,997 as myelin, and 25,678,685 as fissure. 
 
The neurite classification model classified every voxel as axon, dendrite or glia. Ground truth 
data was created by selecting neurite fragments in a partially agglomerated neuron (instance) 
segmentation of the dataset. The neurites were then skeletonized, and the nodes of the 
skeletons served as the FOV centers for the training examples of the network. In total, we 
manually identified 887 axon fragments (298,250 points), 71 dendrite fragments (307,339 
points), and 75 glia fragments (810,480 points). 
 
The myeloid body classification model performed voxel-wise binary classification. Ground 
truth data was created by manually annotating segments in the base neuron (instance) 
segmentation of the complete dataset as myeloid (2,001) and not myeloid (2,662). All voxels 
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belonging to the manually selected segments were used as FOV centers for training the 
classifier (myeloid: 6,696,491, not myeloid: 5,743,067,192). 
 
The data irregularity model classified every voxel as regular or irregular. Irregular voxels were 
deemed to be those corresponding to acquisition artifacts, such as dust, knife marks, or 
partially missing sections. Ground truth for this model was collected through manual 
annotation, using a procedure similar to that used for the tissue classification model. 
15,541,762 voxels were manually annotated as regular, and 13,396,821 as irregular. 

Neuron and glial segmentation 
The dataset was segmented with Flood-Filling Networks (FFNs), with scale- and seed-order 
over segmentation consensus 9. We trained three separate FFN models, operating on 32 x 32 
x 33 nm3, 16x 16 x 33 nm3 and 8 x 8 x 33 nm3 data. The 16 x 16 x 33 nm3 and 8 x 8 x 33 nm3 
models used an FFN model architecture identical to that in Januszewski et al. 9:  Eight residual 
modules, an FOV size of 33 x 33 x 17 voxels and an 8 pixel step size in-plane and 4 pixel step 
size in the axial direction. The lowest resolution 32 x 32 x 33 nm3 model used a slightly 
modified architecture: twelve residual modules, an FOV size of 33 x 33 x 33 voxels, and an 8 
pixel step size in both in-plane and axial directions. The models were trained with 375 Mvx 
(32 nm), 1,285 Mvx (16 nm) and 6,142 Mvx (8 nm) of ground truth data created by human 
annotators through de novo voxel-wise painting or correction of automatically generated 
candidate segmentations 76. 
 
Segmentation proceeded in two stages. First, we created a "base segmentation" that was 
optimized to minimize the frequency of merge errors. Then, we applied a multi-step 
agglomeration procedure to reduce split errors, while keeping the rate of false mergers at an 
acceptable level.  
 
Base segmentation. The base segmentation was created by first segmenting the EM imagery 
downsampled to 32 x 32 x 33 nm3 and 16 x 16 x 33 nm3 voxel size with FFN models trained 
for these respective resolutions. Segmentation results for both forward and reverse seed 
ordering were combined with an over segmentation consensus procedure that produced a 
new segmentation with smaller segments formed so that all voxels contained in a consensus 
segment belonged to exactly one segment in both the forward and reverse input 
segmentations 9. We then removed any objects smaller than 100,000 voxels from the 32 nm 
segmentation and upsampled it to 8 x 8 x 33 nm3, and segmented the empty areas with the 8 
nm FFN model. Finally, we computed the over segmentation consensus between the 
segmentations from all three resolutions to build the overall base segmentation. 
 
During FFN inference, we used FOV “movement restriction” in areas where the magnitude of 
optical flow (see ‘Fine-scale alignment with optical flow’) exceeded 8 pixels (at 32 nm), 6 pixels 
(at 16 nm), or 4 pixels (at 8 nm). The FFNs were also prevented from creating seeds in voxels 
where the mean intensity of the EM images within a 7 x 7 in-plane window centered at the 
voxel was lower than: 100 for the 32 nm model, 80 for the 16 nm model, and 130 within a 14 
x 14 window for the 8 nm model. This procedure prevented segments from being initiated 
within myelin, lipofuscin, or other electron-dense structures. 
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We also excluded ("masked") various regions in the dataset and prevented the FFN from 
performing inference in FOVs centered in these areas. Masked areas included: 1) 135 largest 
segments created by binarizing the "blood vessel" and "fissure" predictions of the tissue 
classifier and computing their connected components, 2) regions in which optical flow 
alignment mesh nodes connected to springs whose relative horizontal or vertical compression 
or extension exceeded 20% after optimization, and 3) regions in which more than two sections 
(not necessarily in consecutive order) were missing (as determined by the OOB mask) within 
a 17-section window centered at the FFN FOV. 
 

Agglomeration 

Pairwise resegmentation. We used FFN resegmentation to agglomerate objects from the 
base segmentation as described in Januszewski et al. 9. Briefly, we evaluated segment pairs 
(A, B) selected due to their spatial proximity, and performed FFN inference within a small 
subvolume centered on the pair of original segments, creating temporary segments A* and B* 
in the process. These were then used to compute: the recovered voxel fractions (fAA, fAB, fBA, 
and fBB, where fAB is the fraction of B found in A*, and so on), the Jaccard index JAB between 
A* and B*, and the number of voxels contained in A* or B* that had been ‘deleted’ (i.e., during 
inference their value in the predicted object mask fell from > 0.8 to < 0.5) during one of the 
runs (dA, dB). Criteria based on these scores were used to include some segment pairs as 
edges in the agglomeration graph, as outlined in Supplementary Table 2. A subset of 
segment pairs for which an artifact was detected by the data irregularity detection model within 
five sections of the pair center point were reevaluated with the voxels classified as irregular 
replaced by those from the preceding section (type "artifact" in Supplementary Table 2). 
 
Endpoint resegmentation. Since pairwise resegmentation can fail to connect segments 
which are heavily fragmented or separated by more than a few unsegmented (background) 
voxels, we also skeletonized the base segmentation with TEASAR 77 and identified all skeleton 
nodes of degree 1 ("endpoints"). For each base segment A, and for all its endpoints we then 
ran FFN inference within a subvolume centered at each endpoint, seeding from locations 
originally covered by A, and generating a new segment Q.  When Q covered at least 60% of 
the voxels of segments A and B within the corresponding subvolume, we considered (A, B) as 
a candidate agglomeration graph edge. The candidate edge was accepted if there was 
another candidate edge (B, A), i.e. generated from an endpoint of segment B. 
 
Ensembling. In addition to evaluating agglomerations for selected segment pairs and 
endpoints, we also computed agglomeration candidates based on ensembling multiple base 
segmentations. Specifically, we segmented the complete dataset with twenty snapshots of the 
FFN network weights saved during training. This resulted in twenty segmentations, which we 
compared to the base segmentation by computing the number of voxels covered by both a 
base segment A and a segment A' from an alternative segmentation. A' was considered to 
"match" A if the number of overlapping voxels exceeded either 10,000, or 1,000 voxels when 
they corresponded to at least 50% of all voxels of A. When an alternative segment A' matched 
two segments A and B from the base segmentation which were also spatially proximal (i.e. we 
could compute a decision point for it, as used in FFN agglomeration described above), we 
generated a candidate edge (A, B) for the agglomeration graph. An edge was accepted if it 
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was generated by a sufficiently large fraction of the alternative segmentations (see 
Supplementary Table 2). 
 
We used the tissue classification model to determine the dominant type for every base 
segment (supervoxel). Segments for which the fissure class was dominant, as well as those 
created by the 8 nm FFN model for which myelin was dominant, were excluded from all stages 
of agglomeration. Segments with a dominant myelin classification were excluded from 
agglomeration stages involving the 8 nm FFN model, regardless of the origin of the segment. 
We also converted the predictions of the myeloid classification model into individual instances 
by computing the connected components of the binary predictions. We excluded from 
agglomeration all base segments that: overlapped with at least 1,000 voxels of a myeloid 
segment, were no larger than 1,000,000 voxels, and 90% of their voxels overlapped with a 
myeloid segment. 
 
Wherever further processing required establishing a total order within the agglomeration 
graph, edges were sorted in descending order of max (fAB, fBA) within the stage from which 
they originated, and stages were ordered as listed in Supplementary Table 2. The 
agglomeration graph resulting from the preceding steps, as well as merging segments 
completely contained within other segments, had 1.7B edges. We denoted the agglomerated 
segmentation 20201123b. An earlier version of the agglomeration graph which did not include 
stages of type "ensemble" and "artifact" as listed in Supplementary Table 2, or myeloid 
segment filtering as described above, was denoted "20200916" and used for some of the 
analysis requiring lower false merge rates. 

Soma and fragment type separation 

In order to create a database of cell bodies within the volume, we first binarized the "nuclei" 
predictions of the tissue type classifier, and computed the connected components of the 
resulting binary mask, forming an instance segmentation of the putative nuclei. These 
instances were then reviewed by human annotators in order of descending volume in a web-
based visualization tool showing 3D meshes and 2D cross sections of the segmentation and 
EM data ("Neuroglancer"). Annotators classified nuclei segments as correct, incorrect, or 
merged. In the “merged” case, point markers were placed to indicate the approximate centers 
of the individual nuclei. In addition, we manually painted masks for all somas on every 128th 
section at a downsampled (512 x 512 nm2) resolution. These annotations were then converted 
to points, and reconciled to build a set of 48,682 cell body center locations. Finally, we 
identified large segments near the z-boundaries of the volume that were initial regions of axons 
or dendrites whose cell bodies were not contained within the volume itself. Specifically, we 
reviewed all segments not previously annotated as a cell body and having a cross section of 
at least 1,000 pixels at 32 x 32 nm2 pixel size at z = 250 and z = 5100 (close to the boundary, 
but also far enough from the boundary such that at least some large fragments were likely to 
continue deeper within the volume). Neurites which could be identified as likely having their 
soma outside of the EM volume (based on spatial orientation and branching pattern) were 
converted to a point annotation located at the centroid of its cross-section at z = 250 or 5100. 
These points were added to the cell body center annotations, bringing the total number of 
annotations to 53,395. 
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We then computationally filtered the agglomeration graph to enforce that segments 
corresponding to distinct annotated cell body points remain in separate components. 
Specifically, when computing connected components we scanned the list of edges sorted in 
descending order of the agglomeration scores, adding them sequentially to a disjoint-set data 
structure, and discarding any edges which would cause the annotated objects to be merged 
together. 0.6 M edges were removed as a result of this enforced soma separation procedure.  
 
We also associated every segment with a per-class (axon, dendrite, glia) voxel count 
according to the predictions of the neurite type classification model, excluding any voxels 
identified as nuclei by the tissue type model. The voxel counts were updated to reflect the 
merge decisions between the segments as the agglomeration graph was processed. 
Wherever an edge would merge two objects containing at least 100,000 voxels each, and 80% 
of one were classified as glia and 80% of the other as non-glia, the edge was removed from 
the agglomeration graph. During this process we maintained two sets of connected 
components and their voxelwise classifications -- one containing all the edges in the 
agglomeration graph, and the other containing all edges with the exception of those involving 
a segment previously identified as containing a cell body. The second set of connected 
components was necessary to track the connected components of neurites specifically, as the 
segments containing the soma often also contained parts of its dendritic branches and the 
axon, and as such could not be associated with an axon/dendrite type. We applied the same 
splitting rule (100,000 voxels, 80% of the same type) between axons and dendrites using the 
neurite-specific set of connected components. 3.7 M edges were removed due to this neurite 
type separation procedure. 
 
We acknowledge that the resulting set of cell somata still contains some merge errors. In 
comparison to the manually annotated cell somata, which were completed afterwards, we 
found that in the C3 version of the automatic segmentation there are 1345 segments which 
contain more than one cell body, with a total of 2936 manually annotated cell bodies in those 
segments (504 of which are neurons). Frequently this includes small glial satellite cell bodies 
merged with a larger neuronal cell body, and sets of smaller glial cells next to blood vessels. 
1100 manually annotated cell bodies could not be assigned to a C3 segment because they 
did not overlap with any C3 segment. 
 
 
Skeletonization of segments 
We preprocessed the voxel segmentation data to remove any small holes or “island” segments 
that were completely contained within a surrounding segment. We computed these relabelings 
at 32 x 32 x 33 nm resolution on blocks of 256 x 256 x 256 voxels with overlap of 128 voxels 
in each dimension. First, we computed connected components on all background labeled 
voxels within the block and assigned each background component a new unique object ID. 
Next, we determined the set 𝔼𝔼 of all “exterior” objects, i.e. those that touched a face of the 
block. Finally, we built a 6-connected region adjacency graph (RAG) between all object labels, 
and found all object pairs A, B for which all paths from A to 𝔼𝔼 in the RAG passed through a 
single “surrounding" object B. The surrounding objects B correspond to the articulation points 
of the RAG. Relabeling the voxels of each A with the ID of the corresponding B fills all holes 
and islands that are completely surrounded within the block, including in cases where there 
are multiple A’s per B. 
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We then skeletonized the voxel segmentation via automated block-wise TEASAR 77, based 
on the Kimimaro implementation 78. Kimimaro supports running with non-overlapping blocks 
via special handling of the block faces, but we found that running with overlapping blocks 
yielded smoother block transitions. We skeletonized at 32 x 32 x 33 nm resolution on blocks 
of 512 x 512 x 512 voxels with overlap of 128 voxels in each dimension and invalidation scale 
3.0, and then clipped the skeletons back in overlapping regions. This yielded a set of 
unconnected skeleton fragments for each segment ID. 
 
To reconnect fragments, we then iterated through all fragment endpoints and connected each 
endpoint to the nearest skeleton node within the set of other fragments for the same segment 
ID, provided the distance was within 1.5 μm. To avoid excess / spurious reconnections, the 
candidate connections were ordered from shortest distance to longest, and the set of still-
unconnected fragments for the same segment ID was updated at each iteration. Skeletons 
were then eroded back from endpoints by 100 nm, and sparsified to approximately 300 nm 
node spacing while retaining all branch points and endpoints. 
 
Finally, we made two types of skeleton corrections in order to bias skeleton connectivity to 
properly reflect the segment agglomeration graph. First, we cut skeleton edges that jumped 
between widely separated parts of the base segment agglomeration graph (> 3 hops away). 
This can occur when two branches of the same cell happen to pass close to each other, or 
when two dendritic spines from the same shaft touch, resulting in a skeleton edge that 
erroneously connects parts that are spatially adjacent, but are cytoplasmically discontiguous 
(a “self-merge error”). One weakness in the > 3 hops criterion occurs in areas where image 
irregularities result in many small base segments; to address this we also kept skeleton edges 
that connected parts of the agglomeration graph > 3 hops away if the agglomeration graph 
was confirmed to have a path connecting them via the set of base segment IDs that impinge 
on a field of view surrounding the skeleton edge. 
 
Second, we aggressively reconnected pairs of skeleton fragments (maximum reconnect 
distance 10 μm) if their nodes overlapped the same base segment. This largely fixed 
disconnections remaining after the standard reconnection procedure (see above), particularly 
in large objects such as somas where the block overlap was insufficient to ensure smooth 
block transitions. It also fixed most disconnections introduced by the self-merge error cutting 
procedure. We considered base segments in descending order by the number of distinct 
skeleton fragments that each base segment overlapped. As above, we sorted candidate 
connections from the shortest distance to longest and recomputed the still disconnected set 
of fragments at each iteration. In this case, only nodes that overlapped the same base 
segment were considered for reconnection, but we did not require that reconnection initiate 
from endpoints as above. For the skeletonization of volume 20201123c2 (see below), self-
merge cutting removed 9,813,220 skeleton edges, while aggressive base segment 
reconnection added 4,519,438 edges in the final skeletons. For volume 20200916c3 (see 
below), self-merge cutting removed 7,500,074 edges and reconnection added 3,291,662. 
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Cellular subcompartment classification and merge error correction 

 
Subcompartment classification. We trained deep networks to classify the cellular 
subcompartment or cell type for a subset of skeleton nodes (20% uniformly sampled) following 
the approach of Li et al. 10. The model architecture was a ResNet-18 79 with all convolutions 
extended to 3D and inputs of 129 x 129 x 129 voxels at 32 x 32 x 33 nm resolution centered 
on each skeleton node. The three input channels comprised 1) CLAHE normalized EM 
masked by the segmentation, 2) a pre-synapse mask, and 3) a post-synapse mask (see 
‘Synaptic site detection’). The model outputs were probabilities for four classes: axon, 
dendrite, astrocyte, or soma, and models were trained via stochastic gradient descent with 
batch size 64 for up to 1.5 M steps. The number of unique training examples were 262,395 
axon; 1,151,175 dendrite; 1,392,702 astrocyte; and 39,444 soma. For training we class-
balanced the examples by upsampling axon, astrocyte, and soma classes to match the 
number of dendrite examples. In later experiments, two additional classes were added: cilium 
and axon initial segment (AIS), and the number of training examples were 257,713 axon; 
1,151,175 dendrite; 1,392,702 astrocyte; 40,072 soma; 577 cilium; and 4,682 AIS. We 
upsampled axon, dendrite, and soma to match the number of astrocyte examples, and 
upsampled cilium and AIS to 10% of the other class counts. 
 
Merge error correction. We built on the approach of Li et al. 10 to use subcompartment 
predictions to fix segmentation errors based on the observation that while FFN base segments 
are largely free of merge errors, occasionally in FFN agglomeration two base segments with 
inconsistent classes (e.g. axon versus dendrite) are erroneously merged. In brief, merge error 
correction consists of 1) soma removal, 2) branch consistency calculation, and 3) cut 
candidate scoring and thresholding. Prior to processing, the agglomeration graph for each 
object was modified to remove cycles by breaking an arbitrary edge of each cycle. We also 
simplified on Li et al. 10 by considering only the highest probability predicted class label for 
each node, rather than working with predicted class probabilities per node. 
 
First, for the subset of objects that included somas, we detected the soma and removed it so 
that the remaining detached branches could be considered independently. For each 
agglomerated object, we identified the base segment with the largest number of soma 
predicted nodes and considered this a true soma if the number of soma nodes exceeded four. 
We then iteratively considered adjacent base segments in the agglomeration graph, and 
added them to the soma cluster if they also had more than four soma predictions. The resulting 
soma cluster generally contained the majority of the soma, as well as most proximal dendritic 
and axonal branches. These soma base segments were then removed from the agglomeration 
graph, and each remaining disconnected branch subgraph was considered independently. 
 
For each remaining object we took the predominant predicted node class as the proposed 
object class, and assigned a weighted consistency score as the total number of nodes with 
that class prediction. Finally, we considered every edge in the agglomeration graph as a cut 
candidate, and computed the consistency scores of the two new objects that would result from 
the proposed cut. For a cut to be accepted, the sum of the two new scores had to exceed the 
original object score by at least five. We found it helpful to increase this threshold to 15 in 
cases where the predominant class of the leaving object was dendrite or soma, due to an 
occasional tendency of the prediction model to cluster these predictions at the ends of 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 25, 2021. ; https://doi.org/10.1101/2021.05.29.446289doi: bioRxiv preprint 

https://paperpile.com/c/cizPFg/9LS1
https://paperpile.com/c/cizPFg/9aoz1
https://paperpile.com/c/cizPFg/9LS1
https://paperpile.com/c/cizPFg/9LS1
https://doi.org/10.1101/2021.05.29.446289
http://creativecommons.org/licenses/by-nc-nd/4.0/


37 

branches. In this case, the leaving object was defined as the side of the cut further from the 
soma, or else the side further from an arbitrary base segment if no soma was detected. We 
also found it helpful to prevent the removal of large axon components if the cut score 
improvement was only marginal, so we added a criterion that when the leaving object class 
was axon the number of leaving axon classified nodes divided by the leaving cut score could 
not exceed 6.0. 

We combined 2.9 M suggested consistency cuts computed from the 4-class (axon, dendrite, 
astrocyte, soma) predictions on agglomeration 20201123b, along with 3.7 M partially 
redundant suggested cuts from the “Soma and fragment type separation” procedure above, 
for a total of 6.0 M distinct cuts. Applying these cuts to 20201123b resulted in segmentation 
20201123c2. Applying the same set of cuts to 20200916 resulted in segmentation 
20200916c3. Because we removed somas first to avoid spurious suggested cuts at the soma 
/ branch interface, we did not fix any agglomeration errors involving the soma cluster of base 
segments, although methods to address this were proposed for songbird data 10. We did not 
distinguish between myelinated and unmyelinated axons in the subcompartment predictions, 
however that information can be useful in biological analyses and is available from the myelin 
mask described in “Semantic segmentation” above. Therefore we post-processed the 
subcompartment predictions for any skeleton component that entered the myelin sheath for 
more than approximately 3 μm consecutively by incrementing their predicted node class labels 
by 1000. 

 
Subcompartment rendering. To produce a volumetric rendering of the subcompartment 
classification, we first ran topology-preserving erosion on all segments at 64 x 64 x 66 nm 
resolution. We then computed marker watersheds within each segment, with seed positions 
at each subcompartment classified node, and assigned voxels within each watershed to the 
corresponding subcompartment. Because the subcompartment axon class label conflicted 
with the conventional volumetric background label (0), we incremented the rendered 
subcompartment classes by 100. 
 
Spine detection. We trained a separate network to detect dendritic spine subcompartments, 
using the same configuration as described for “Subcompartment classification” above. For 
spine detection, the training data consisted of 33,753 positive examples from pyramidal cell 
dendritic spines, and a total of 2,628,949 negative examples, comprising 1,976,109 examples 
from axon, soma, or astrocyte; 578,439 from pyramidal dendrite shafts; and 74,401 from non-
spiny dendrites. To detect spines, we ran this network on all skeleton endpoint nodes (leaf 
nodes with exactly 1 impinging edge) for segments with at least 5 dendrite labeled nodes in 
the 20200916c3 subcompartment classification. 

Embeddings 

We trained a ResNet-18 79 with all convolutions extended to 3D an input field of view of 129 x 
129 x 129 voxels at 32 x 32 x 33 nm resolution to produce embeddings for volume locations 
centered at skeleton nodes. The only input channel was the CLAHE-normalized EM masked 
by the segmentation. Specifically, the input channel only contained the EM values where the 
segmentation matched the neuron id, all other values were set to 0. The model output was a 
32 dimensional vector. The network was trained following the SimCLR framework 80 using 
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contrast and brightness augmentations as well as shifts of the field of view. We used a batch 
size of 256 pairs and trained the network for 300k steps. 
 
After prediction, we sampled ~130k skeleton nodes from segments with more than 150 
skeleton nodes for dimensionality reduction. From each segment we sampled embeddings 
from 2% of the skeleton nodes. We next fit a UMAP 81 on the sampled embeddings and applied 
it to all embeddings.  
 
We used these embeddings to distinguish microglia and oligodendrocyte precursor cells 
(OPCs) in the dataset. First, we identified a number of microglia and OPCs manually by their 
shape and ultrastructural features (36 microglia, 21 OPCs). Then, we trained a linear classifier 
to label local embeddings as either belonging to microglia (N=29,536) or OPC (N=25,035). 
We tested the model’s performance by training on randomly selected 75% of the cells and 
testing on the remaining ones. The model achieved a mean accuracy of 0.89 (100 sampling 
rounds). We inferred cell labels for 6,280 cells identified as either microglia or OPC by 
averaging the probabilities of the local classifications and thresholding at 0.6 for each class. 
This left 1,058 cells unclassified. Additionally, we excluded 1,778 cells due to large false 
mergers as identified in the embedding space. In total, our model identified 2,049 microglia, 
1,395 OPCs and left out 2,836 cells.  
 
 
Manual cell body labeling and classification 
To enable efficient manual labeling of all cell bodies (and nuclei of blood vessel cells), VAST 
76 was extended so that image data could be streamed in on demand from the Google 
Brainmaps server, and functionality was added to let users quickly jump between specific 
sections at large intervals while showing intermediate sections during the transitions. 
Inspection of the EM images at different resolutions showed that the lowest resolution at which 
cell bodies could be reliably identified in XY sections was mip level 4 (128 nm per pixel). Since 
the smallest cells in the dataset have a cell body around 6 micrometers in diameter, we chose 
a Z-stepping of 128 sections (4.2 micrometers) to minimize the number of sections that needed 
to be painted and at the same time to minimize the chances of missing small cell bodies. 

The manual labeling was done in VAST using a screen pen tablet (Wacom Cintiq 13HD, 
Wacom Inc.). The initial labeling was done cell-by-cell in the following way: Starting from 
specific XY sections, any unlabeled cell body cross-section which was spotted (nucleus 
visible) was given a new label ID. It was then painted in that section and also in all other 
multiple-of-128 sections in which its nucleus was visible, and beyond to capture the whole cell 
body, scrolling forward and backward through the stack in 128-section steps. This ensured 
that each cell body painted received exactly one ID and was not erroneously recounted in a 
different section. 

Once the whole dataset was traversed in this way and no unpainted cell bodies were spotted 
easily, the tissue sample was visually scanned for any unlabeled cell bodies in a systematic 
way. A XY grid was overlaid over the complete dataset and each grid cell was systematically 
visually traversed in Z (Supplementary Fig. 10 A, B). Any unpainted cell body was added to 
the list. Each verified grid cell was marked. This should ensure that almost all cell bodies were 
found. If there are any missing cells, they are likely small glia which only show up in a single 
painted section or may in rare cases fall between painted sections. 
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Once all cell bodies were identified and listed in VAST, we classified them manually as 
neurons or glia of different types based on their appearance in the EM sections and their 3D 
shape. Criteria used from EM images included cell body and nucleus size, cell body outline, 
cytoplasm shading, and appearance of the endoplasmic reticulum. For glial cells, the 
appearance in the EM section is sufficient to identify astrocytes and oligodendrocytes reliably. 
We did not attempt to manually separate microglia and oligodendrocyte precursor cells, which 
have only subtle differences in their arborization and ultrastructural features. For neurons, it 
was necessary to verify/correct their classification by displaying their 3D models in 
Neuroglancer (Supplementary Fig. 10 C). 

 

Manual labeling of blood vessels and their nuclei 
As for cell bodies, XY cross-sections of blood vessels were initially manually painted in VAST 
at mip 4 (128 nm per pixel), every 128th section. Different label IDs were used for different 
parts of the blood vessel network in such a way that individual labels (segments) do not contain 
branching (linear pieces of the network; new color introduced at branch points). To ensure that 
no branches were missed, each segment was initially tagged as ‘unfinished’. The tag was only 
removed once inspection of the segment showed that all branches coming off of it were also 
labeled. Additional inspection of regions devoid of capillary labels and comparison to 
automatic blood vessel identification revealed some missing blood vessels, in particular large 
arteries, which were disconnected from the local capillary network. These were added to the 
segmentation. In a second step the blood vessel labels were augmented by adding 
intermediate sections semi-automatically to get to every 64th section in Z, followed by manual 
correction and specific labeling of thin blood vessel branches at even higher resolution. 

Based on the linear blood vessel segments, nuclei of blood vessel cells were identified and 
painted in VAST at mip 3, every 32nd section. Blood vessel cell bodies have more complex 
shapes than their nuclei, making nucleus labeling a good alternative to enumerate and locate 
these cells. Blood vessel cells were first classified as endothelial cells and pericytes, followed 
by sub-classification of pericytes into further cell types based on location with respect to the 
blood vessel lumen and basement membrane, as well as their appearance in EM. Circulating 
immune cells were located inside the blood vessel lumen. Perivascular lymphocytes appear 
similar to circulating lymphocytes but reside within the basement membrane. Perivascular 
macrophages were defined by their location in the outer layer of basement membrane and 
abundance of large granules. The difficulty in distinguishing fibroblast-like pericytes from 
perivascular macrophages resulted in a small group of cells being marked as undecided. 
Fibroblast-like pericytes were defined by the location surrounding smooth muscle cells and 
lack of large granules. Smooth muscle cells were separated from pericytes based on their 
location and slightly larger cytoplasm.  

 

3D rendering of cells  
Projection images (Fig. 3) were rendered directly from volumetric (voxel) data in Matlab (The 
Mathworks Inc.) using VAST and the Matlab script VastTools. The method produces parallel 
projection images and uses a simple simulation of light occlusion to generate shading. Other 
images of cells were either generated from Neuroglancer directly, or were rendered in 3dsMax 
(Autodesk Inc.) using 3D meshes generated from voxel data through VAST and Matlab (The 
Mathworks Inc.). 
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Synapse identification 

Synaptic site detection. To identify synaptic sites, we trained a classifier based on the UNet 
architecture described in Çiçek et al 82 to label three classes: background, pre-synaptic, and 
postsynaptic (see Supplementary Fig. 14 for representative example). The model used the 
same three-down/three-up architecture as described in the paper, with initial dimensionality of 
32, and a multiplicative factor of 2 for each down and up stage.  
 
Ground truth labels were generated by having trained annotators volumetrically label each 
pre- and postsynaptic site on both sides of the both sides of the synaptic cleft, for each Z slice 
where the synaptic density was visible. Six regions of interest were selected (one from each 
cortical layer) of size [600, 600, 3300] voxels at a resolution of 8 x 8 x 33 nm. The ROI shape 
was chosen to both allow annotators to observe the entire XY FoV on a single screen to 
minimize missed annotations, while capturing as much variation in neuropil as possible in Z. 
Only chemical synapses were labeled, with particular care taken to ensure that any synaptic 
sites that were nearly parallel with the cutting plane were also labeled. In total 6434 synaptic 
sites were annotated from 3217 unique synapses across the six ROIs. 
 
Training examples were balanced between positive examples centered on the synapse, and 
negative examples corresponding to locations where there were no pre- or post- annotations 
within the FoV. During training, we performed data augmentation, including permutations of X 
and Y, and reflections along X, Y, and/or Z. The input FoV was [403,403,42] voxels centered 
around the example points, corresponding to an output size of [191,191,14]. Due to the 
network's large memory requirement, a batch size of 2 was used, with batch normalization 
applied during training. Due to the relative sparsity of synaptic annotations compared to the 
total number of voxels in the volume, positive pre-/post- annotations were weighted 2x 
compared to background classifications in the loss calculation. The network was trained to 51 
M steps at a learning rate of 10-5 using asynchronous stochastic gradient descent, using 32 
NVIDIA V100 workers. 
 
Prediction filtering and connectome assembly. After generating predictions from the 
synapse detection model across the entire h01 sample, a unique identifier was assigned to 
each pre- and post-synaptic site by running connected components, resulting in 1.9 B unique 
synaptic sites. While this site count is much larger than the number of expected sites from a 
sample of this size, we had intentionally biased the network towards capturing more true 
positive sites at the expense of potential false positives by weighting the positive examples 2x 
during training. To correct the false positives as a result of the bias, a multi-stage filtering 
pipeline was applied to ensure site predictions were potentially valid synapses. 
 
First, we discarded synaptic sites that contained less than 30 voxels.  We further discarded 
sites that were in non-neuropil “OOB” regions (as classified by the mask described in “Valid 
tissue detection”).  
 
Because the synaptic predictions were volumetric in nature and did not take the neurite 
segmentation into account, it was possible for a synaptic site prediction to span more than one 
neuropil segment, causing multiple true synaptic sites to be merged into one predicted site 
after applying connected components. This failure case was particularly relevant to cases 
where a single pre or postsynaptic partner made synapses with multiple pre or postsynaptic 
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partners, such as a single spine revealing multiple synaptic inputs. To correct for this, we first 
masked the volumetric labels associated with each site by the segmentation to remove any 
synaptic labels that exceeded neuropil boundaries, then applied a one voxel 2D erosion to 
correct for anisotropy. Connected components were then applied to the result. In the case of 
two or more components, each component was considered a new, unique synaptic site if its 
volume was greater than 20% of the original prediction's volume. Any components that did not 
meet this criteria had their voxels assigned to the closest valid component. Finally, any voxels 
spanning cell walls that were masked out by the segmentation were joined and assigned to 
the closest resulting split site. 
  
After splitting, two additional filtering steps were applied. Each post-split site was required to 
have a minimum voxel size of 100. Next, sites were required to be in areas classified as 
neuropil, filtering out any sites that were within blood vessels, tears, myelin, or missing data; 
a site was considered valid if 20% or more of its voxels resided in areas classified as neuropil. 
Finally each synaptic site was assigned an associated neurite supervoxel based on the neurite 
segmentation volume (the supervoxel with the largest overlap with the synaptic site mask was 
selected). If the site mask did not overlap with any supervoxels (potential out of bounds or cell-
wall-only), the site was dropped. 
 
After all synaptic sites were identified, split, and filtered, individual sites were paired into 
synapses. For each site, a local search was performed for any adjacent site within 800 nm. If 
one or more complimentary sites were identified (e.g. one or more post-sites for a given pre-) 
and were associated with two unique supervoxels, the closest site was selected as the partner 
and considered a true synapse.  Note that because the process is applied to both pre- and 
post-sites individually, this pairing process can identify polyadic synapses where one site is 
partnered to two or more complementary sites. 
 
Because of errors in the original volumetric predictions, the model may correctly identify a 
synapse, but incorrectly swap pre- and postsynaptic sites. To correct these instances, a final 
conservative reorientation step was applied using the subcompartment fragment 
classifications produced for all neurites. For each site associated with a single synapse, the 
nearest skeleton node was identified based on shortest-path distance through the associated 
neurite and the node's class is identified (see section ‘Cellular subcompartment classification 
and merge error correction’ for fragment categories). If no nearby skeleton node was identified 
within a radius of 5.3 μm from the synaptic site, the closest skeleton node was assigned based 
on Euclidean distance (ignoring the segmentation). The identified class was then used to 
generate a vote to correct ("flip") the orientation of the synapse. For each site, a set of votes 
were collected: 
1. If an outgoing synapse originates on an axon, the outgoing vote is "no flip". 
2. If an outgoing synapse does not originate on an axon, the outgoing vote is "flip". 
3. If an incoming synapse is not onto an axon, the outgoing vote is "no flip". 
4. If an incoming synapse is onto an axon, the incoming vote is "flip". 
5. If either an outgoing or incoming synapse is onto an astrocyte, no vote occurs. 
6. If the nearest skeleton node has no compartment class,  no vote occurs. 
7. If there is no nearby skeleton node,  no vote occurs. 
8. If there is no skeleton for the neurite,  no vote occurs. 
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Once all votes were generated for a site, votes were applied based on a consensus measure: 
1. If both votes agree to flip or to keep the original orientation, the corresponding 
correction was applied. 
2. If only one vote is present (flip/no flip) the corresponding action is applied. 
3. If two votes were generated but they conflict, no correction was applied. 
4. If no votes occur, no correction was applied. 
 
Correction of synapse over-splitting. Following the processes described above, 
190,576,758 individual synapses were identified, although many duplicate synaptic 
predictions existed at the same individual synaptic site, artificially inflating the number of 
identified synapses. To correct this, a procedure was applied to consider each pair of 
synapses sharing the same pre- and postsynaptic associated agglomeration ID and decide 
whether that pair represented one synapse (should be merged together) or two distinct 
synapses (should be kept apart), as follows. For each pair, the distance between the centroids 
of each member of the synaptic pair was calculated. If this distance was less than 750 nm, the 
pair was merged together. If the distance was greater than 1050 nm, the pair was kept 
separate. If the distance was in between, then on the pre- and postsynaptic sides of the pair 
the distance along the skeleton of the pre- or postsynaptic partner between the skeleton nodes 
closest to each of the two synapses was calculated, and divided by the distance between the 
two synapses. The greater of these two (pre- and post-) skeleton distances was then used in 
a logistic regression model (train_synapse_merger_upper_and_lower_thresholds.py) to 
predict whether the pair should be kept separate or merged together. The overall accuracy of 
this approach was AUC=0.875. Training data (001_pr_axons.zip) was generated by randomly 
selecting 117 axons making 10 or more synapses and assessing for each pair of synapses 
being made onto the same postsynaptic partner, whether they should be merged together or 
not, using our tool, CREST (see ‘Measurement of synapse prediction errors’, below). After 
application of the model 
(get_syn_pairs_with_skel_dists_and_apply_merge_model_parallel.py), the number of 
predicted synapses fell to 166,216,068. Filtering these synapses to only include those where 
the presynaptic site was an axon and the postsynaptic site was either a dendrite, soma or 
axon initial segment, resulted in 133,704,943 synapses. 

Excitatory versus inhibitory synapse classification 
To determine whether a synapse was excitatory or inhibitory, we trained a two-class ResNet-
50 classifier with an input FoV of [100,100,24], whose input was two-channels: the image data 
normalized to be centered around zero ((uint8 data - 128) / 33), and a weighted mask of the 
segments associated with the synapse (pre_weight = 0.95, post_weight = -0.95, background 
= 0). The center position of each training example was the geometric mean of the pre- and 
post-masks and included an augmentation that was randomly offset up to +/- [17, 17, 4] voxels 
in each direction (in order to encourage translation invariance). Additional augmentations of 
random XY permutations, XY reflections, and 2D rotations around the Z axis were also 
applied. 
 

Ground truth used to train the classifier was generated by manually proofreading 47 cells (22 
excitatory and 22 inhibitory, classified by a single human expert based on morphology) for all 
outgoing axonal synapses, under the assumption that all outgoing synapses from a single cell 
were of a common type. Any outgoing synapses that were not originating from axons were 
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discarded, along with any outgoing synapses that were originating from axon fragments 
containing a merger. This resulted in a total of 2143 excitatory and 2080 inhibitory synapses 
for training. Since the locations of synapses were determined by the connectome assembly 
pipeline, no negative examples were generated or used. The model was trained for 733k steps 
using a batch size of 16 and a learning rate of 2.5·10-4. 
  
Given that each dendritic spine is thought to generally correspond to one excitatory synapse 
83, a subsequent correction step was applied to synapses occurring on spines. We assigned 
synapses as excitatory if their post-synaptic segment contained a spine-positive skeleton node 
within 1 μm (see “Spine detection” above), potentially overriding the type determined by the 
classifier. In addition, any outgoing synapses that originated from a known excitatory or 
inhibitory cell type - pyramidal and interneuron, respectively - was corrected to the 
corresponding type. 
 
To assess the performance of the classifier, 2,129 verified synaptic connections identified as 
arising from excitatory or inhibitory neurons (see section 'Analysis of manual and ML-
generated neuronal networks’, below) were compared to their predicted E or I status 
(measure_e_vs_i_accuracy.py). Excitatory and inhibitory synapses were correctly classified 
99.25% and 89.68% of the time, respectively, with an AUC score of 0.948. Performance was 
broadly similar across the six cortical layers (Supp. Table 7). Counts of excitatory and 
inhibitory synaptic inputs to all neurons were then generated (get_neuron_e_to_i_ratios.py). 
 
Measurement of synapse prediction errors 

To assess our ability to identify synapses arising from axons, where the postsynaptic target 
structure is either a dendrite, soma or axon initial segment, we made a random selection of 
50 synapse-forming axons from across the volume (see 
50_random_pure_and_majority_axons_FP_and_FN.csv), and verified each predicted 
synapse. We also searched for synapses that the model failed to predict by examining each 
bouton or swelling along the axon. The overall false negative rate was 12% and the overall 
false discovery rate was 1.5%. 

 
Correction of segmentation errors by computer-assisted proofreading 

Since the automatic agglomeration produces neurons and glia that are prone to having split- 
and merge-errors, we sought a method of correcting these errors efficiently, to facilitate certain 
analyses that would require 100% correct connectomic data. To this end, we created a simple 
Python-based tool with a GUI, which makes use of the Neuroglancer Python API and other 
Python packages to allow the correction of segmentation data, verification and classification 
of synapses, and structured exploration of the synaptic network of a dataset, called CREST 
(Connectome Reconstruction and Exploration Simple Tool; CREST_v1.0.py).  

For this purpose, a biological object is considered ‘correct’ once all of the base segments that 
are part of it in the dataset are identified, and no base segments that are not part of it are 
considered to be part of it. CREST starts with the base segments that have been automatically 
agglomerated together as part of a single biological object and presents them to the user. The 
user can then correct split errors by adding on agglomerated segments (which results in all of 
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the base segments that make up that agglomerated segment being added on), or removing 
base segments that do not belong to that biological object (correcting mergers).  

Because CREST treats the single biological object as a graph of connected base segments, 
correction of mergers is very efficient, as when the user removes a single base segment, all 
base segments connected to the main part (the part which contains the cell body) via that 
base segment will be removed at the same time. In the cases where the user wishes to correct 
structures without cell bodies (such as axonal and dendritic fragments), they may specify 
which part of that structure is to be considered as the ‘cell body part’ for the purposes of merger 
correction.  

The structures corrected (e.g. neurons) are often highly-branching and complex objects and it 
can therefore be challenging for the user to keep track of which branches they have corrected. 
To address this, CREST introduces two features to aid the proofreader. Firstly, the user may 
specify any number of custom types of Neuroglancer ‘point annotations’, via the GUI, which 
can be placed at the end of a completed branch, where the ‘type’ of point can be used to 
record the reason that the branch could not be extended further. The second feature, which 
builds more on the Neuroglancer Python API, allows the user to mark a base segment and all 
base segments on the other side of that base segment with respect to the cell body in a certain 
color. This serves two purposes - firstly to act as a visual aid to the proofreader that a part of 
a branch is complete (as it is in color - incomplete parts are grey by default). Secondly, the 
specific color indicates a specific ‘cell structure type’ (e.g. axon, dendrite, cilia), which is saved 
in a simple JSON  state that also includes the complete set of base segments, point 
annotations and underlying base segment graph, and can be reloaded in CREST for further 
proofreading.  

An example of a complex cell, which contacts 70 postsynaptic partners which also have cell 
bodies in the volume, completed by CREST in Neuroglancer, is shown in Supplementary Fig. 
15. Following training in use of CREST and neurobiology, four proofreaders were able to 
complete 104 randomly-selected neurons (where the center-point of the cell body of each 
neuron fell between 23 and 30 micrometers in the z axis from the start of the block), which, 
along with their un-proofread postsynaptic target neurons, form the basis of the network 
displayed in Fig. 4I. 

 

Analysis of manual and ML-generated neuronal networks 
 

Base segments of 104 proofread neurons whose ‘cell structure type’ had been marked as 
axonal during the proofreading process with CREST (see ‘Correction of segmentation errors 
by computer-assisted proofreading’) were identified, and synapses whose presynaptic 
associated base segments were present within this group were identified as the outgoing 
synapses of the proofread neurons. These synapses were used to identify the postsynaptic 
partner neurons with cell bodies in the volume, whether proofread or not 
(get_edge_list_for_pr_cells_and_unproofread_targets.py), forming the network plotted in Fig. 
4I (edge_list_to_graph.py).  

For the ML-generated network, all connections between segments where both the pre- and 
post-synaptic segments had been identified as neurons, the presynaptic structure had been 
identified as an axon and the postsynaptic structure had been identified as either dendrite, 
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soma or axon initial segment, were identified and form the ML-generated network 
(edge_list_to_graph.py). Because individual connections can erroneously be automatically 
identified between neurons due to merge errors in the agglomeration or, less commonly, false 
positive synapse predictions, we sought to measure the false positive rate of each connection 
type, where one connection type is a combination of a pre and postsynaptic neuron type, and 
a neuron’s type, for this purpose, is determined by the combination of its cortical layer 
membership and whether it is excitatory or inhibitory. For example, a layer 2 excitatory neuron 
forming synapses on a layer 3 inhibitory neuron would be considered one connection type. 
We made a random selection of connections of each possible connection type 
(get_subset_of_connections_to_check.py) and created a simple neuroglancer-based python 
program to manually verify each synapse forming each connection 
(proofread_connections.py), where an individual synaptic connection between two neurons 
was considered to be verified if (a) the synapse itself was real and (b) the connection did not 
arise as a result of merge errors in the agglomeration on either the pre or postsynaptic side. 
An individual connection (which is defined as all of the synapses formed between two 
individual neurons), was considered to be verified if at least one of the individual synapses 
that formed it was verified. Summaries of ML-generated connection type counts and their false 
positive rates (Supp. Table 5), as well as manually-generated connection types (Supp. Table 
6) were then generated (get_connection_type_accuracy_summary_table.py). 

 

Identification of cortical layers 

For the purposes of analysis, we wished to divide the cortex into layers, each of which would 
run perpendicularly to the pial-white matter axis. However, we sought a method that would 
achieve this objectively, without any prior assumptions about the numbers of these layers, or 
their locations along the pial-white matter axis. We approached this problem in two parts - 
firstly the identification of clusters of neurons, and secondly, the fitting of boundaries to these 
clusters. 

Identification of neuronal clusters. The clustering algorithm HDBSCAN 84 was used to 
identify clusters of neurons based on the distance of the neurons from one another in the x 
and y axes (we found that including the distance in z made no difference to the result), as well 
as the ‘distance’ (i.e. difference) in neuronal soma volume. HDBSCAN has two tunable 
parameters - the minimum number of points that a cluster must possess to be considered as 
a cluster (min_cluster_size), and min_samples, which determines how ‘conservative’ the 
clustering is. To set the value of min_samples, we first estimated a probability density function 
for the neurons, given their positions in x, y and soma size using a Gaussian kernel. For each 
neuron we then found the mutual reachability distance between it and each neighbor kth-
closest or higher, where the mutual reachability distance between between it (a) and one of 
its neighbors (b) is the maximum of (1) the distance from a to its kth-nearest neighbor (its ‘core 
distance’), (2) the core distance of b and (3) the distance from a to b. We then calculated the 
mean mutual reachability distance for each neuron at that value of k, and calculated the 
correlation between the mean mutual reachability distance and estimated probability density 
for all neurons. The value of k that produced the greatest correlation between these two 
measures of neuronal density was selected as the value of min_samples for the HDBSCAN 
algorithm. HDBSCAN was then run, gradually increasing the value of min_cluster_size until 
multiple ‘acceptable’ clusters were identified. Because we sought large clusters running 
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perpendicular to the pial-white matter axis, a cluster was considered ‘acceptable’ if it contained 
neurons at both the upper and lower edges of the dataset (perpendicular to the pial-white 
matter axis) and at least 50 neurons in total. This approach identified three clusters. Outlier 
points were removed from clusters by using a random sample consensus (RANSAC) 
regressor to fit a second order polynomial through the center of each cluster. For each cluster, 
the maximum residual threshold such that the resulting curve was still convex was chosen 
(get_cluster_bounds.py). 

 

Fitting boundaries to neuronal clusters. After generating three clusters of neurons, it was 
possible to fit bounds to the upper and lower edges of each cluster. A concave hull was fit to 
each cluster, by fitting a Delaunay triangulation to the set of points and then only adding 
triangles of points to the resulting concave hull if the circumference of said triangle is below a 
given ɑ hyperparameter. Because of the varying density of points in the three clusters, the 
alpha hyperparameter was tuned to best generate a hull for each cluster of points. Additionally, 
where there still remained points that extended far out from the central mass of each cluster, 
by choosing an appropriate ɑ value these points were not included in the hull and thus 
classified as outliers. 

With the concave hull of each cluster fitted, the edge points of each concave hull were isolated 
by only selecting endpoints of edges that were part of one triangle and not two (any edge 
within the concave hull would be part of two triangles). These edge points were then split into 
two sets separated by the original central second order polynomial that was fit to each cluster. 
This method generated two sets of points for each cluster, one corresponding to the upper 
edge of the cluster and one to the lower edge of the cluster. 

Experiments were then conducted to see what curve could best be used to fit the boundary 
points of the clusters. Arcs of circles were found to be an excellent solution 
(get_cluster_bounds.py). For each cluster, a circular arc was fit through the center. Let the 
center of this circle be A.  Circular arcs were then fit to the top and bottom edge points of the 
cluster with fixed center point equal to A. Thus each cluster was bounded by arcs of two 
concentric circles (see Supplementary Fig. 16). These six boundaries (circle cortical layer 
bounds.json), two for each of the three clusters, divided the cortex into seven regions, 
corresponding to classical descriptions of layers 1 through 6 and white matter. These 
boundaries were then used to classify all cells in the dataset into a cortical layer according to 
what bounds the cell was in between (classify_layers_all_segments.py). 

 

Measurement of synapse densities 

To estimate the distribution of excitatory and inhibitory synapses across XY, the entire dataset 
was divided into cubes 10 micrometers on each side, and the numbers of each type of 
synapses counted in each cube. Only 133,440,987 synapses where the presynaptic structure 
had been identified as an axon and the postsynaptic structure had been identified as either 
dendrite, soma, or axon initial segment, were considered. The density of E synapses, density 
of I synapses, and percentage of synapses that are E, was then calculated for each cube, and 
the values in cubes were then averaged across z (excluding cubes where the total number of 
synapses within them was zero, to avoid large regions of no data impacting the results) and 
plotted as heatmaps (plot_synapse_density_and_ei_ratio.py). 
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Measurement of layer 5 and 6 triangular cell basal dendrite angles 

During manual classification of all neurons, spiny neurons with a distinct bipolar shape, one 
apical and one prominent basal dendrite, were tagged. Of these, we selected only cells in 
cortical layer 5 and 6 (estimated radial cortical depth > 1750 micrometers). This yielded a set 
of 845 neurons for this analysis. For each of these cells, further analysis was done at low 
resolution (mip 7, every 128th section) in Matlab (The Mathworks, Inc.). We used the manually 
labeled cell body to extract the Google segment (C3 agglomeration) which overlaps with it 
maximally (gseg), assuming that that segment corresponds to the analyzed cell. We then 
computed the bounding box of gseg and used connected components analysis to identify the 
main connected region of the object while discarding any disconnected parts. Next, we dilated 
the manual cell body mask by three pixels and subtracted it from gseg to disconnect all 
branches coming off of the cell body, followed by a second connected components analysis 
to individualize the branches. Next, we computed center-of-mass coordinates (centroids) of 
the manual cell body mask and of the two largest branches (by volume), assuming that one of 
them is the apical and the other the basal dendrite (the axon has a much smaller caliber and 
would have a much smaller volume that the two big dendrites of these neurons). Centroids 
which did not end up on the gseg segment were moved to the closest voxel which was part of 
gseg (minimal Euclidean distance). 
 
Which of the two largest dendrites is the apical dendrite was decided by computing the inner 
product between the vector from the cell body center to the dendrite centroid and an estimated 
apical direction. The dendrite running closer to the apical direction was assumed to be the 
apical dendrite. Cases in which the two dendrites could not be extracted in this automatic way 
were removed from the list, leaving 816 cells for further analysis. 
 
For the next step we computed a topological field to be able to define ‘radial’ and ‘tangential’ 
directions at different locations in the tissue. This was done in 2D (XY) only, assuming that the 
directional variability across sections is minimal. First, we manually fit a grid of tangential and 
radial lines to 2D projection images of different extracted properties of the sample (cell bodies, 
excitatory cells, and myelin) by using VAST’s skeleton functions (see Supplementary Fig. 
21A). We then used Matlab’s function scatteredInterpolant to generate interpolated vector 
fields from these lines (Supplementary Fig. 21B and C). These topological fields were also 
used to define radial and tangential directions in the myelin image in Fig. 3H. 
 
To compute the angles at which the basal dendrites run through the tissue with respect to 
radial, tangential and perpendicular directions, we used the vectors between the cell body 
centroid and the basal dendrite centroid (basal dendrite vector). Coordinates were scaled to 
nanometers for correct geometry. We computed polar coordinates of the basal dendrite vector 
relative to the inverted radial direction at the cell body location (taken from the vector field 
described above). We name the angle between the inverted radial vector and the basal 
dendrite vector the radial coordinate ‘rho’ (distance of point from center in Figure 5G), and the 
angle of the basal dendrite vector around the inverted radial vector the angular coordinate 
‘theta’. Basal dendrites with rho below 45º point in a mostly radial direction towards the white 
matter (dark green dots in Figure 5G). Basal dendrites with rho between 45º-90º and theta 
between 0º-45º, 135º-225º, or 315º-360º point roughly along the sectioning plane and parallel 
to the pia (tangential direction; gray points in Figure 5G). Basal dendrites with rho between 
45º-90º and theta between 45º-135º point in a mostly perpendicular direction towards section 
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0 in the stack (light green dots in Figure 5G) and basal dendrites with rho between 45º-90º 
and theta between 225º-315º point in a mostly perpendicular direction towards section 5292 
in the stack (magenta dots in Figure 5G).  
For statistical analysis of clustering of cells with basal dendrites pointing towards section 0 
and towards section 5292 we selected cells with a basal dendrite pointing towards section 0 
as described above (light green, 257 cells) and cells with a basal dendrite pointing towards 
section 5292 (magenta, 247 cells).  
 
For each of these 504 cells, we found the nearest neighbor and compared their colors, yielding 
four groups (145 light green-light green, 109 light green-magenta, 112 magenta-light green 
and 138 magenta-magenta). We performed Fisher’s exact test on these numbers and found 
that equal-color neighbors were occurring significantly more often than chance (p = 0.00745) 
which we verified by shuffling the colors across cells followed by the same test (p = 0.476, 
n.s.). 
 
 
Analysis of axon partners of layer 5 and 6 triangular cell basal dendrites 

Axonal inputs onto the largest basal dendrites of layer 5 and 6 triangular cells (see 
‘Measurement of layer 6 pyramidal neuron basal dendrite angles’), were identified as follows. 
First, the skeletons with classified nodes (see ‘Cellular subcompartment classification and 
merge error correction’) of the layer 5 and 6 triangular cells were converted into graphs. The 
nodes corresponding to the cell’s soma were automatically identified and removed, creating 
several disconnected connected components corresponding to the axonal and dendritic 
branches of the neuron (get_separate_components_of_neurons.py). A point was placed 
within the thickest basal dendrite of each neuron and the disconnected skeleton branch with 
the skeleton node closest to this was identified as the thickest basal dendrite branch. The 
accuracy of this process was assessed by manually measuring, for 20 ‘forward basal dendrite’ 
and ‘reverse basal dendrite’ neurons, the number of dendritic branches wrongly identified as 
being part of the largest basal dendrite (90% of both ‘forward’ and ‘reverse’ neurons did not 
have any wrongly-identified branches), as well as the average number of sub-branches arising 
from the largest basal dendrite which were not identified as part of it, which was 1.9 for 
‘forward’ neurons and 1.3 for ‘reverse’ neurons (Supplementary Table 4).  All incoming 
synapses to that neuron were then downloaded, and those that were located within 3000 nm 
of at least one of the thickest basal dendrite branch skeleton were identified as synaptic inputs 
to the thickest basal dendrite branch, and of the the axons making these synapses, those 
where 100% of their classified skeleton nodes were of the type ‘axon’, were recorded as 
axonal inputs to the thickest basal dendrite branch 
(get_partners_for_basal_dendrites_parallel.py). 

Having identified the axonal inputs to the thickest basal dendrite (and its subsequent 
branches), we decided to focus on those axons (n=1180) which made one synapse each on 
the thickest basal dendrite of two different layer 5/6 triangular cells, both of which would either 
be in the group of ‘forward-going’ triangular cells or ‘reverse-going’ triangular cells (see ‘New 
morphological subcategories of layer 6 triangular neurons’). We calculated the proportion of 
axons that fell into one of three groups; those that targeted two forward basal dendrites, those 
that targeted two reverse basal dendrites, and those that targeted one of each. For these three 
proportions we also calculated 95% confidence intervals,85 shown as blue bars in Fig. 5G. We 
observed that ‘forward’ basal dendrites receive more synapses than reverse basal dendrites, 
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and have more skeleton nodes (Supplementary Fig. 20), suggesting that axons have a 
greater probability of randomly forming synapses onto ‘forward’ basal dendrites than ‘reverse’. 
Therefore, to take this into account, we decided to calculate expected proportions (or FF, RR 
and FR) under a null model whereby each axon selects two basal dendrite partners randomly, 
but with the probability of choosing either a forward or reverse basal dendrite determined by 
the total number of synapses being made onto these two types of basal dendrite, resulting in 
the point estimates shown as red dots in Fig. 5G. From these estimated proportions, we were 
able to calculate expected frequencies under the null model, and these were compared to the 
observed frequencies by a chi-squared test, which resulted in a p-value of 3.34·10-14, with the 
same approach used for excitatory (n=808, p = 1.60·10-7) and inhibitory (n=372, p = 9.89·10-

6) subsets of these axons (Supplementary Fig. 24). This analysis excluded those axons 
making a synapse on any axon initial segment (AIS), whose interactions with layer 5/6 
triangular cells were analysed separately in exactly the same way, except that axons targeting 
more than two triangular cells were included, and two triangular cell partners randomly 
selected from each axon’s set of postsynaptic targets (n=174, p = 0.319; 
basal_dendrite_analysis.py). 

 

Analysis of axonal selectivity 

To simulate the expected frequencies of different connection strengths in the dataset for 
comparison to the observed frequencies (Fig. 6) we took the four-part approach described 
below; firstly, identifying for each synapse the point at which it attached to the shaft of its 
parent axon, secondly, measuring the distances between either ‘en passant’ or ‘terminal 
bouton’ synapses to the axonal shaft and estimating the distributions of these distances, 
thirdly, using these estimated distributions to simulate the random formation of synapses 
arising from the axonal shaft, and finally, using these simulated random synapses to estimate 
the expected frequencies of different connection strengths across the dataset as a whole. 

 

Identification of distinct axonal skeleton components. To facilitate the analysis of the 
connectivity of individual axons, methods were developed to identify separate components of 
the skeletons of axons, in particular distinguishing the ‘shaft’ of the axon from its terminal 
bouton stalks, and based on this, distinguishing synapses that are intrinsic to the shaft (en 
passant synapses) from those that arise from the shaft on terminal bouton stalks (see 
Supplementary Fig. 17 for a representative example). To achieve this we first attempted to 
identify the skeleton node where each synapse connected to the shaft (hereafter ‘root node’), 
whether or not that synapse was on a stalk or an en passant synapse.  To do this, we first 
used CREST to manually mark the root nodes of several synapses. We then trained a simple 
model which for each synapse, (1) identifies the longest path from the skeleton node closest 
to the synapse to any ‘end node’ in the skeleton, (2) considers each node on this longest path 
in order, starting from the synapse-associated node, and decides whether it is the ‘root node’ 
of that synapse, based on whether the two longest paths arising from that candidate root 
node’s immediate neighbour nodes to end nodes in the skeleton (and not including current or 
previously-considered root node candidates, or the synapse-associated node) each exceed 
specified minimum lengths. Once a root node candidate is identified which meets these 
criteria, the search is terminated and that candidate is designated the root node of that 
synapse. If a specified number of  candidate root nodes are rejected, then no root node is 
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assigned to that synapse at that stage. All paths between ‘end’ nodes which pass through the 
root nodes, but not through synapse nodes or nodes on the paths between synapse nodes 
and their individual root nodes, are identified, and designated as ‘shaft’ nodes. For synapses 
without identified root nodes at this stage, their root node is set to the closest shaft node. Any 
branches shorter than a certain specified length that do not contain synapses are removed. 
The model therefore has four tunable parameters; the number of candidate root nodes that 
will be considered for each synapse, the lengths that the longest and second-longest paths 
arising from each candidate root note much exceed to be accepted as a root node, and the 
minimum length for a non-synapse containing side-branch to be kept ( 
train_skeleton_pruner.py, prune_a_batch_of_skeletons_ig_parallel.py). This process 
identifies root nodes with an accuracy of 94.4% and distinguishes shaft nodes from non-shaft 
nodes with an accuracy of 94.3%. Once this process is complete, the distance from each 
synapse-associated node to its root node is used in a simple logistic regression model to 
classify that synapse as either an ‘en-passant’ synapse or a ‘terminal bouton’ synapse (AUC 
= 0.968). 

 

Estimation of distributions of distances from synapse to axonal shaft. For many 
connectomic analyses, it is desirable to compare observed results to the range of results that 
might have occurred given some null model. One approach to this for analyses concerning 
the targeting preferences of axons, is to simulate which postsynaptic partners any given axon 
might have been expected to target if it were making its outgoing synapses according to a 
process that is in some sense ‘random’. However, for any such random simulation / null model 
to be biologically plausible, it must be constrained in some way by real features observed in 
the data. To create a biologically plausible model under which an axon might make random 
outgoing synapses, we first examined the range of distances between  synapses and the 
axonal shafts from which they arose, plotting the range of differences for ‘en passant’ 
synapses and ‘terminal bouton’ synapses separately. We observed that ‘en passant’ and 
‘terminal bouton’ synapses are on average made 270 nm and 1500 nm from the axonal shaft 
respectively, with both distributions having long-right-hand tails. We were able to fit probability 
density functions (PDFs) to each of these datasets (see Supplementary Fig.18 and 
fit_distribution_to_synapse_distances.py).  

 

Simulation of random connectivity of an individual axon. We then devised a method of 
simulating random connectivity for a single axon as follows. First, the axon is moved 
(translated) by a user-specified distance in the x, y and z axes, or not at all. For each ‘en 
passant’ synapse, a random point along the shaft of the axon is chosen (the ‘root point’ of this 
simulated synapse), a distance for the simulated synapse to occur from the randomly-select 
root point is chosen according to the PDF of distances described above for ‘en-passant’ 
synapses, and then a random angle is chosen to determine the direction from the shaft that 
the simulated synapse will be made from, constrained to a plane that is perpendicular to the 
shaft skeleton at that root point. For each terminal bouton stalk synapse, the same process is 
used to generate a simulated synapse location around the shaft, except that the PDF of 
distances for terminal bouton stalk synapses is used instead, and the simulated synapse 
location may project from the root point in any direction in 3D space around it. Once a 
simulated synapse location has been selected, it the segment ID at that point lies on the 
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surface of a segment which is included in a user-supplied list of ‘acceptable post-synaptic 
partners’ (typically dendrites), then it is accepted as a simulated synaptic connection. This 
process is repeated to simulate that axon’s connectivity an arbitrary number of times that is 
specified by the user. An alternative, more ‘constrained’ version (as opposed to the 
‘unconstrained’ version described above) of this method of simulation has also been devised, 
whereby the simulated synapses arise from the actual root points of their real counterparts 
(sample_points_around_neurites.py). We verified for both ‘constrained’ and ‘unconstrained 
versions for a random subset of axons that the distribution of the sampled points for each 
individual axon followed the targeted distribution of synapse distances shown in 
Supplementary Fig.18. The distribution of distances for the simulated synapses was a close 
match to the empirically measured one. 

 

Analysis of axonal selectivity. CREST was used to identify multisynaptic connections 
between neurons (i.e. strong connections). To establish whether the numbers of strong 
connections we observed in the data were likely have arisen by random chance, we first 
randomly selected 10,000 axons of each ‘strongest connection strength type’, where, for 
example, an axon whose strongest post-synaptic connection was formed of three synapses 
would have a ‘strongest connection strength type’ of 3. Where there were less than 10,000 
axons in a certain connection strength type, we selected all axons of that type. Furthermore, 
we only selected axons which did not make any synapses on axon initial segments of neurons, 
and which only have ‘axon’ classified nodes in their skeletons (hereafter ‘pure axons’, see 
get_sample_of_axodendritic_only_axons_organised_by_strength.py). This resulted in a 
selection of 53,695 axons. We  then used the ‘unconstrained’ version of the null model 
described above with a random 15 micron displacement in the x and y axes (‘Simulation of 
random connectivity of an individual axon’), for each axon simulating the same number of ‘en 
passant’ and ‘terminal bouton stalk’ synapses as are found on the axon, to simulate the 
postsynaptic targets of that axon, to estimate its strongest connection strength under the null 
model. To prevent axons being moved to within the somas of other cells, we rejected any 
randomly-selected 15 micron XY displacement location that fell within 25 microns of the centre 
of a cell body, resulting in 9,190 of the 53,695 axons having their partners randomly simulated. 
Following the simulation, we manually checked all axons making a high number (>=6) of 
simulated connections onto a single postsynaptic partner for any artifactual causes of such 
strong connections, and excluded one axon from the subsequent analysis. Each group of 
simulated axons (where one group is all axons with a certain combination of 
inhibitory/excitatory and a certain strongest partner strength) could then contribute simulated 
outcomes proportional to the overall occurrence of that group of axons in the dataset as a 
whole, allowing us to calculate expected frequencies of each type for all ‘pure axons’ and 
compare these to the observed frequencies with the chi-squared test 
(connection_strengths_analysis.py). 

 

Analysis of information flow through network   

An animation of information flow in the automatically-generated network was generated in 
Python by stepping through discrete time points based on the following preset rules: 1) only 
pyramidal cells and interneurons with somata inside the volume were considered; 2) when a 
pyramidal neuron was activated, it added +1 per synapse to the inputs of all its postsynaptic 
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partners; 3) when an interneuron was activated, it added -1 per synapse to the inputs of all its 
postsynaptic partners; 4) when the summation of all the input synapses to a neuron was larger 
than 0, it would be activated at the next time step and last for one time step. At the beginning 
of the process, all the pyramidal cells in cortical layer 4 were set to active. The activated 
neurons are shown as bright green (pyramidal) or bright red (interneurons) circles. Neurons 
receiving negative net inputs at the current time step are colored blue. Each time step is 
subdivided into multiple frames for visualization purposes, with the neurons receiving the 
largest absolute net inputs changing their color first followed by the ones receiving smaller net 
positive or negative inputs. The output edges of all the activated neurons were marked as 
colored straight lines (green for pyramidal and red for interneurons). 
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Supplementary Figure 1: Minimal distance between astrocytes in cortical layers. (A) The Y and 
X coordinates for all 5474 astrocytes in the volume colored by the minimal distance to the next astrocyte. 
Red marking shows the approximate location of examples highlighted in B and C. (B) Example of six 
astrocytes in layer 1 (left panel shows four of the six cell bodies in the same EM section) resulting in 
cell aggregate with intermingling arbors, as shown in the 3D rendering (link). (C) Example of two 
astrocytes in layer 5 with closely connected cell bodies and overlapping territories (link).  
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Supplementary Figure 2: Affinity of oligodendrocytes for blood vessels. (A) Oligodendrocyte cell 
bodies (randomly colored) cluster at large blood vessels in white matter. In turn, around the blood vessel 
there is a region of lower oligodendrocyte density. EM image cross-sections in XY (B) and YZ directions 
(C) reveal that oligodendrocytes (blue) cluster above and below the large blood vessel (orange), but 
not at the sides. This suggests, at least in white matter, a mechanical reason for their location rather 
than a metabolic one (possibly related to tissue anisotropy; most myelinated axons in the area run along 
the Z axis). (D) Minimal distance between different cell types and blood vessels is shown in the x-axis 
(micrometers) and number of cells in the y-axis of the histogram. Astrocytes and neurons show similar 
distance to the blood vessels, while a large portion of oligodendrocytes and microglia/OPC’s are within 
a 5mu distance to blood vessels. (E) Cross-section of an example showing a perivascular 
oligodendrocyte. Single arrow shows a location where the oligodendrocyte membrane touches the 
basement membrane, double arrow shows a close-by location where the oligodendrocyte is separated 
from the basement membrane by a thin layer of astrocytic endfeet. 
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Supplementary Figure 3: Cell type examples from our dataset. Example cross-sections of an 
astrocyte with empty-looking cytoplasm and typical feathered outline; an oligodendrocyte with gray 
cytoplasm, and a pyramidal neuron with visible apical dendrite (black arrow) and axon initial segment 
(white arrow). Lower right shows two examples each of microglia and oligodendrocyte precursor cells 
(OPCs) as 3D-rendered models. 
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Supplementary Figure 4: Thin bridges between blood vessels. (A) Among the segmented blood 
vessels we identified 73 thin bridges without blood vessel lumen, consisting solely of basement 
membrane and pericyte soma. Here only the thin bridges are shown, seen in red in Fig. 3G. These 
bridges were rare in white matter and layer 6. Two examples were investigated in detail, location shown 
in square boxes. (B) The thin bridge is approximately 10 μm and connects two closely located capillaries 
(link). Pericyte cell body is colored blue and the basement membrane is gray. The pericyte nucleus and 
large portion of soma is located in one of the capillaries. The pericyte projects through the bridge, which 
is only partly covered by basement membrane, and into the neighboring capillary interacting with the 
endothelial cell. (C) Shows a thin bridge approximately 40 μm long between two capillaries (link). The 
pericyte projection in the thin bridge is mostly covered by the basement membrane, however several 
pericyte protrusions and gaps in the basement membrane were observed.  
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Supplementary Figure 5: Cell densities per type and layer. (A) shows densities of cell bodies of 
different types per cubic millimeter in our sample, separate for each layer. These values are corrected 
for the estimated 28% mechanical compression in the cutting direction. The numbers for this plot are 
listed in Supplementary Table 8. (B) Shows the relative abundance of excitatory versus inhibitory 
neuron cell bodies (top) and neurons versus glia (bottom), for the layers in A. (C) For this analysis, 
layers were approximated by using a circular distance measure from a center point at (800, 2650) which 
approximates the curvature in the tissue. (D) To get cell body densities the number of cell bodies of 
each type has to be divided by the volume of tissue they are found in. Only the volume in which cell 
body labeling was fully saturated was used (see Supplementary Fig. 10), and individual tiles were 
associated with one layer each. (E) shows the XYZ locations of the cell bodies included in this analysis 
and their layer assignment in color. Note that towards layer 1 the upper layers are cut in deeper sections; 
this was taken into account for the volume estimation. 
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Supplementary Figure 6: Examples of unusual cells. (A) Shows a neuron with clear pyramidal shape 
which is almost devoid of spines. (B) Shows a neuron with interneuron morphology but many spine-like 
protrusions on its dendrites. (C) Shows a rare interneuron which extends horizontally (tangentially) 
through our data set. This cell can be seen in situ in Fig. 3C in the middle of layer 3. (D) and (E) Show 
an example of a ‘dark’ cell in the tissue which has pyramidal cell morphology. Most dark cells were 
found towards the upper edge of our sample, in layers 4-6. (F) This neuron has two separate axons 
emerging from the soma (white arrows). Both make outgoing synapses in the volume (white boxes), 
shown below in (G). (H) Shows a neuron with an unusual dendritic tree (cell body displaced to the side). 
(I) Shows a cross-section of an astrocyte cell body with two nuclei (separate in 3D). We found 34 cells 
with two clearly separate nuclei in the tissue, most of which were astrocytes. 
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Supplementary Figure 7: Unusual and unidentified cortical objects. (A) Whorled axon that makes 
inhibitory synapses on cell soma and dendritic shafts in L5, L6 (link). (B) Soma of interneuron engulfed 
by the dendritic process of another interneuron (link). (C) Unidentified object filled with fibrous substance 
(link). (D) Whorls of loosely coiled myelin (link). (E) Egg shaped object with no associated processes 
(link). (F) Myelinated oval object. (G) Greyish object. (H) Interacting climbing dendrites link (I) 
Myelinated dendritic trunk in grey matter (link). (J) Myelinated dendritic trunk in white matter (link). (K) 
Swollen dendritic spine containing 150 intramembranous objects (segmented manually; link). (L) 
Unidentified object filled with small spherical objects (link). (M) Myelinated axon filled with unidentified 
substance (link). (N) Myelinated object filled with small debris (link). (O) Compartmentalized fibrous 
object (link). (P) Whorls within the soma surrounding a cell nucleus (link). (Q) Random lying whorled 
substance (link). (R) Conjoint whorls (link). (S) Synapse wrapped by astrocytic processes (link). (T) 
Myelinated object with multiple membranous rings (link). 
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Supplementary Figure 8: Chandelier cells. (A) Two chandelier cells, ChC-1 and ChC-2. (B) Incoming 
and outgoing synapses on both ChC-1 and ChC-2 chandelier cells. The arrows indicate the 
characteristic cartridges made by chandelier cell axons. (C) Incoming inhibitory synapse on AIS of ChC-
1 made by the axon of ChC-2 (link). (D) Close-up of the ChC-ChC AIS synapse shown in panel C. 
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Supplementary Figure 9: Low-resolution electron microscopy overview of a representative 
section. Region of interest (ROI) is indicated by a yellow polygon. Blue arrows and corresponding 
percentages indicate the minimum distance (expressed as a proportion of that edge of the section, 
including any resin) between the corner of the section at the foot of the arrow, and the point of the ROI 
at its head. 
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Supplementary Figure 10: Manual cell body labeling and classification. (A) Systematic search for 
all cell bodies in the tissue was done in VAST by using an overlaid grid (image layer). Each block which 
was surveyed was marked by a red dot (separate segmentation layer). The area of red dots shows 
where very close to 100% of all cell bodies should be labeled. (B) Shows the resolution at which manual 
cell body labeling in VAST was done (mip 4, every 128th section) and the approximate accuracy of 
manual labels. (C) Cell body classification. VAST (left) is linked to Matlab via its API and vasttools.m. 
A Matlab script is running in the background which polls for SPACE key presses in VAST. Once the 
user presses the SPACE key, Matlab remote-controls VAST to advance to the next segment in the list 
and moves the 2D view in VAST to that location. At the same time it queries the corresponding ID in 
the automated segmentation and opens a Neuroglancer 3D view of the same cell in a browser window. 
The user can then inspect the cell in 2D and 3D and make a decision for classification. The classification 
key is added to the name of the cell segment in the VAST ‘Segment Colors’ list as a list of tags in square 
brackets. Specific tags can be added by clicking the buttons in VASTs configurable ‘Control Buttons’ 
window. The names list can later be exported together with other metadata and used for analysis. 
(See an interactive view of all annotated cells.) 
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Supplementary Figure 11: Tissue sample. (A) The human brain vibratome section in its resin block, 
stained, embedded and ready for trimming and sectioning. This vibratome section was taken from a 
larger brain biopsy sample of the human temporal cortex (B) which was approximately 2 x 1 cm in size. 
(C) The fixed sample before vibratoming. 
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Supplementary Figure 12. Optical flow field correction. XZ section of a part of the dataset exhibiting 
drift and some misalignments before (left) and after optical flow field correction (right). Scale bar 2 μm. 
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Supplementary Figure 13. Semantic segmentation predictions. A: tissue types detected by the 
semantic segmentation model. (a) Blood vessel (b) Nucleus (c) Myelin (d) Neuropil (e) Fissure (f) 
Myeloid bodies within a dendritic branch. Scale bar is 1 μm. B: predicted masks indicating cell nuclei 
(yellow), blood vessels (red), tissue fissure artefact (green), myelin (light gray), other neuropil (dark 
blue). White frame indicates the region shown in A. 
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Supplementary Figure 14. Synapse prediction. Left: Typical example of a chemical synapse, 
showing vesicles in the axon, dark post-synaptic density at the cleft, and a lack of vesicles in the 
receiving dendrite. Right: voxel-wise annotations denoting presynaptic site (blue) and postsynaptic site 
(orange). Other voxels are assumed to be background. 
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Supplementary Figure 15. Neuron proofreading interface in Neuroglancer with CREST. A fully 
proofread neuron is shown, with added dendritic and axonal base segments indicated in yellow and 
green, respectively. The base segment containing the soma is indicated in blue. White dots are point 
annotations added to indicate the ends of branches. Numbers of classified and unclassified base 
segments are displayed in a count near the bottom of the screen. 
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Supplementary Figure 16. Clusters of neurons with fitted upper and lower bounds. Blue lines: 
fitted layer bounds. Points: individual neurons defining a cluster, colored by cluster membership. 
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Supplementary Figure 17. Identification of shaft, synapse and terminal bouton stalk components 
of axonal skeletons. Upper panels: Segmentation views of axons.  
Lower panels: Skeleton views of axons. Right panels: axon with three 'en-passant' synapses. Left 
panels: axon with two terminal bouton synapses and one 'en passant' synapse. Blue dots: synapse-
associated skeleton nodes. White dots: shaft skeleton nodes. Yellow dots: skeleton nodes connecting 
synapse nodes to the shaft. 
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Supplementary Figure 18. Distribution of synapse distances from axonal shaft. Blue columns 
indicate distribution of observed distances and the black curve indicates the fitted probability density 
function. Upper panel: distribution of distances from synapse location to closest point on shaft for ‘en 
passant’ (‘shaft-type’) synapses, with fitted scaled, shifted lognormal distribution (shape: 0.577, 
location: 2.42, scale: 338, see 
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.lognorm.html for details). Lower panel: 
Distribution of distances from synapse location to ‘root point’ on shaft for ‘terminal bouton stalk’’ (‘stalk-
type’) synapses, with fitted scaled, shifted chi-sq distribution (df: 7.43, location: 369, scale: 254, see 
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.chi2.html for details). 
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Supplementary Figure 19. Excitatory cell making multiple synapses on inhibitory cell dendrite. 
E: excitatory cell. I: inhibitory cell. Numbered arrows: individual synapses. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 25, 2021. ; https://doi.org/10.1101/2021.05.29.446289doi: bioRxiv preprint 

https://h01-dot-neuroglancer-demo.appspot.com/#!gs://h01-release/assets/neuroglancer_states/20210601/figs/figS19.json
https://doi.org/10.1101/2021.05.29.446289
http://creativecommons.org/licenses/by-nc-nd/4.0/


79 

     
 

 
 
Supplementary Figure 20. Difference in number of classified skeleton nodes in ‘forward’ and 
‘reverse’ layer 6 pyramidal neuron basal dendrites. ‘Reverse’ basal dendrites (upper panel) have 
less mass as measured by number of classified skeleton nodes (mean: 2514) than ‘forward’ basal 
dendrites (lower panel, mean: 4437). Skeleton nodes are classified as described in ‘Cellular 
subcompartment classification and merge error correction’. 
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Supplementary Figure 21: Layer 5/6 triangular (or compass) cells. (A) Estimation of tissue topology 
by fitting a grid of tangential and radial lines to 2D projection images of different extracted properties of 
the sample in VAST. (B), (C) Interpolated vector fields from these lines. (D)-(F) Basal dendrite directions 
around the local radial direction with respect to the topology field, as polar plot (D) and histograms of 
angular (E) and radial (F) coordinate.  
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Supplementary Figure 22: Volume occupancy by layer. All objects in the C3 segmentation were 
classified into seven classes based on the classification of their skeletons. The resulting voxel data was 
sampled at 2048 x 2048 x 2112 nm per pixel (mip 8) and masked by a manually generated tissue mask 
to remove all voxels outside the segmented volume. (A) Overall statistics of the volume percentage of 
different classes in the complete segmented volume. 36.82% of the voxels within the tissue were 
unlabeled and are excluded from the analysis. Unlabeled regions include: blood vessels, myelin 
sheaths, regions of fissures or other image defects, and extracellular space. (B) Since tissue statistics 
vary by cortical layer, we split the volume into regions based on the circular layer estimates (see 
Supplementary  Fig. 16) and analyzed volume occupancy separately per layer. See Supplementary 
Table 9 for the data values. 
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Supplementary Figure 23: Myelinated axons from skeletonization. Statistics about the myelinated 
axons were extracted from skeletonization. (A) Maximum projection view of the myelinated axon 
calibers (excluding myelin sheath). The colors were mapped linearly to the axon calibers, with the blue 
end corresponding to 0 and red end corresponding to a caliber of 1 micron. (B) The angular distribution 
of the myelinated axons by layer in the perpendicular-tangential plane defined in Fig. 3H. The vertical 
axes of the polar plots correspond to the perpendicular direction (perpendicular to the sectioning plane) 
and the horizontal axes correspond to the tangential direction (tangential to the pia). Only axons with 
an angle larger than 45 degrees away from the radial direction were counted. 
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Supplementary Figure 24: Basal dendrite type pair preferences of basal dendrite-targeting 
axons. (A) Axon initial segment (AIS) targeting inhibitory axons (p = 0.319, n = 174). (B) Largest basal 
dendrite (non-AIS) targeting inhibitory axons (p = 9.89 · 10-6, n=372). (C) Largest basal dendrite (non-
AIS) targeting excitatory axons (p = 1.60 · 10-7, n=808). Red dots indicate expected proportions, blue 
bars indicate 95% confidence intervals around observed proportions, P-values are calculated using the 
Chi-Squared Test to compare expected and observed counts. 
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Supplementary Figure 25: Classifying Microglia (MGCs) vs. Oligodendrocyte Precursor Cells 
(OPCs) by using linear embeddings. (A), (B): Two-dimensional views of three-dimensional UMAP 
space derived from the 32-dimensional embedding space. Ground-truth examples used for training a 
linear classifier shown in darker color. ‘Unclassified’ cells could not be reliably classified as either 
microglia or OPC. (C): Pie chart shows that more than half of the 6731 candidate cells could be 
classified by this method. 
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Supplementary Figure 26: Excitatory and inhibitory synapses in different layers. (A): Densities of 
excitatory and inhibitory synapses in different layers. The values of this plot can be found in 
Supplementary Table 10. (B): E/I balance of synapse numbers in different layers. This analysis includes 
all automatically detected synapses within a region of 0.65 mm3 of the dataset, using the layer 
boundaries and volumetric tissue mask used for estimating cell densities (Supplementary Figure 5). 
This statistics is based on 116.92 million synapses, of which 86.08 million were classified as excitatory 
(73.6%) and 30.84 million as inhibitory (26.4%). The average number of synapses is 0.1789 per μm3 in 
the analyzed volume.  
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Supplementary Tables 
 
Supplementary Table 1. Imaging metrics 
 
See h01_imaging_metrics.csv 
 
 
Supplementary Table 2. Agglomeration graph edge selection criteria by agglomeration 
stage. 
 

Stage  FFN 
model 

Type Criterion Candidate pairs 
evaluated 

Edges added to 
agglomeration graph 

1 32 nm standard relaxed 5.9B 17.7M 

2 16 nm standard relaxed 25B 228.5M 

3 32 nm artifact relaxed 3.9B 9.3M 

4 32 nm ensemble ≥ 14 N/A 189.3M 

5 16 nm  ensemble ≥ 15 N/A 635.1M 

6 16 nm  artifact strict, endpoint 8.4B 4.2M 

7 8 nm standard strict, geometric 44B 45.3M 

8 8 nm ensemble  ≥ 18 N/A 130.5M 

9  8 nm artifact strict, geometric, 
endpoint 

7.9B 9.9M 

10 16 nm  endpoint ≥ 40k voxels, 
geometric 

3.3B 15.2M 

11  8 nm  endpoint ≥ 16k voxels, 
geometric 

3.3B 9.2M 

 
The criteria are: 
strict = ((dA ≤ 0.02 ∨ dB ≤ 0.02) ∧ (f** ≥ 0.6 ∧ JAB ≥ 0.8)), relaxed = strict ∨ (f** ≥ 0.9 ∧ JAB ≥ 0.9). 
Ensemble criteria refer to the number of alternative segmentations contributing a given (A, B) 
Candidate edge. Endpoint size criteria refer to object sizes in the base segmentation. The 
endpoint criterion excluded all segment pairs for which skeleton endpoints for both segments 
in the pair were not present within a 500 nm of the pair center. Geometric criteria excluded 
points for which y < 181053 + (276044 - 181053) * ((x - 104865) / (204645 - 104865)) (white 
matter, only applied when the 8 nm FFN model was used), (x - (328769 + (z - 1919) / (5251 - 
1919) * (343919 - 328769))2 + (y - (75082 + (z - 1919) / (5251 - 1919) * (65206 - 75082))2 >= 
37452 (fissure), or (x - (338167 + (z - 1904) / (5286 - 1904) * (339636 - 338167))2 + (y - (138052 
+ (z - 1904) / (5286 - 1904) * (142197 - 138052))2 >= 17592 (fissure). 
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Supplementary Table 3. Manual counts of all cells in H01, Phase 1 & 2 

Pyramidal Cells [P]   8803 

Spiny Cells [E]   1535 

Spiny Stellate [S]   193 

Interneurons [I]   4688 

Unclassified Neurons [N]   868 

    

Astrocytes [A]   5474 

Oligodendrocytes [O]   20139 

Microglia / OPC [G]   6536 

C-shaped MG/OPC [C]   166 

    

Unclassified Cells [U]   678 

    

All Excitatory Neurons   10531 

All Inhibitory Neurons   4688 

All Neurons   16087 

All Glia   32315 

    

Blood Vessel Cells in DB cells   285 

    

BV Endothelial Cells   4604 

BV Pericytes   3549 

BV Circulating Immune   46 

    

All DB Cells w/o BV   49080 

All ES BV cells   8136 

    

All Cells   57216 

    

    

E / (E+I)   0.692 

I / (E+I)   0.308 
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Supplementary Table 4. Basal dendrite branch identification performance 

c3 agglo id 

Non basal 
dendrite 
branches 

Missed basal 
subbranches 

Merged other 
dendritic 
branches type 

3471636002 0 2 0 forward 

3615003279 0 2 0 forward 

3643825567 0 2 0 forward 

3731387788 0 3 0 forward 

3760649583 0 1 0 forward 

3788376389 0 0 1 forward 

3921319354 0 0 0 forward 

4094470869 0 3 0 forward 

4108605032 0 3 0 forward 

4137383546 0 0 0 forward 

4153430089 0 0 0 forward 

4153575683 0 1 0 forward 

4166601250 0 1 0 forward 

4181682668 1 0 1 forward 

4197686564 0 2 0 forward 

4239562349 1 1 0 forward 

4268471425 0 1 0 forward 

4314128561 0 11 0 forward 

4328569728 0 3 0 forward 

4370590371 0 2 0 forward 

74723961142 0 2 0 reverse 

69937843003 0 1 0 reverse 

66659289981 1 1 0 reverse 

41990870225 0 0 0 reverse 

4017955951 0 1 1 reverse 

40107153015 0 3 0 reverse 

39889012592 0 2 0 reverse 

39845561424 0 2 0 reverse 
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39787112893 0 0 0 reverse 

39642140346 1 0 0 reverse 

39540618731 0 1 1 reverse 

39467381060 0 0 0 reverse 

39278268244 0 0 0 reverse 

39234714289 0 3 0 reverse 

39205833204 0 2 0 reverse 

34187104880 0 3 0 reverse 

34170313704 0 2 1 reverse 

34099761320 0 1 0 reverse 

34083028439 0 2 0 reverse 

34027121250 0 0 0 reverse 

     

     

     

Mean missed subbranches    

Forward 1.9    

Reverse 1.3    
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Supplementary Table 5. Summary of Machine Learning-identified connections 

  L1 L2 L3 L4 L5 L6 
  E I E I E I E I E I E I 

 
 

L1 

E 0t 0t 0t 0t 0t 0t 0t 0t 0t 0t 0t 0t 

I 0t 7t  
7c  
71%  
L1 

31t  
19c  
36%  
L1 

6t  
5c  
40%  
L1 

16t  
12c  
66%  
L1 

1t  
1c 
100% 
L1 

0t 0t 0t 0t 0t 0t 

 
 
 
 
 

L2 

E 0t 24t  
17c 
35%  
L2 

3487t 
23c  
52%  
L2 

3784t 
22c  
77%  
L2 

1887t 
24c  
75%  
L3 

1550t 
28c 
100% 
L3 

111t 
19c 
94%  
L3 

31t  
26c 
100% 
L4 

77t  
23c 
82% 
L3 

10t  
7c 
100% 
L5 

2t  
2c  
50%  
L4 

1t  
1c 
100% 
L6 

I 0t 7t  
6c  
83%  
L1 

907t  
22c  
63%  
L2 

323t  
36c  
72%  
L2 

334t  
20c  
85%  
L3 

150t 
22c 
86%  
L3 

9t  
8c  
62%  
L3 

1t  
1c 
100% 
L3 

7t  
7c 85% 
L2 

0t 3t  
3c  
66%  
L2 

0t 

 
 
 
 

L3 

E 0t 0t 559t  
23c  
39%  
L3 

228t  
18c  
72%  
L3 

2427t 
33c  
54%  
L3 

1615t 
41c 
87%  
L3 

447t 
30c 
66%  
L3 

311t  
25c 
96%  
L4 

117t 
25c 
80% 
L3 

38t 
21c 
100% 
L5 

23t  
17c 
88%  
L3 

0t 

I 0t 0t 326t  
17c  
82%  
L2 

78t  
22c  
72%  
L2 

1329t 
37c  
81%  
L3 

274t 
48c 
72%  
L3 

188t 
24c 
83%  
L4 

33t  
19c 
78%  
L4 

33t  
18c 
77% 
L3 

0t 5t  
5c 
100% 
L4 

0t 

 
 
 
 

L4 

E 0t 0t 35t  
21c  
4%  
L3 

5t  
5c  
0% 

623t  
21c  
42%  
L4 

175t 
22c 
59%  
L4 

1322t 
25c 
64%  
L4 

1272t 
33c 
84%  
L4 

348t 
20c 
75% 
L5 

316t 
24c 
95% 
L5 

40t  
22c 
63%  
L5 

0t 

I 0t 0t 15t  
15c 
100%  
L3 

1t  
1c  
100%  
L2 

177t  
22c  
90%  
L3 

33t  
21c 
80%  
L3 

528t 
28c 
82%  
L4 

65t  
19c 
57%  
L4 

39t  
18c 
38% 
L5 

7t  
6c 
50% 
L5 

0t 0t 

 
 
 
 

L5 

E 0t 0t 27t  
27c  
0% 

3t  
3c  
0% 

57t  
24c  
8%  
L4 

17t  
10c 
40%  
L4 

151t 
17c 
23%  
L5 

113t  
25c 
56%  
L5 

548t 
31c 
58% 
L5 

458t 
41c 
82% 
L5 

173t 31c 
58%  
L5 

24t 
11c 
81% 
L6 

I 0t 0t 4t  
4c  
0% 

1t  
1c  
0% 

7t  
2c  
100%  
L4 

2t  
2c  
50%  
L4 

135t 
16c 
100% 
L4 

20t  
17c 
82%  
L4 

308t 
39c 
82% 
L5 

47t 
25c 
80% 
L5 

58t  
24c 
83%  
L5 

0t 

 
 
 
 
 

L6 

E 0t 0t 0t 0t 0t 0t 2t  
2c 
100% 
L5 

0t 87t  
23c 
13% 
L5 

16t 
12c 
41% 
L6 

368t 24c 
25%  
L6 

33t 
19c 
31% 
L6 

I 0t 0t 0t 0t 0t 0t 0t 0t 20t  
11c 
90% 
L5 

2t  
2c 
100% 
L6 

45t  
18c 
83%  
L6 

4t  
4c 
75% 
L6 

Pre- and post-synaptic cell type (E or I) and Layer (L) are indicated in row and column headings, 
respectively. Each cell contains the total number of connections (t), number manually checked (c), the 
percentage of those checked that are valid, and the most common layer for the connection to occur in 
(L), for that connection type. 
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Supplementary Table 6. Summary of manually-identified connections 

 

   Post-synaptic 

   L1 L2 L3 L4 L5 L6 

   E I E I E I E I E I E I 

 
 
 
 
 
 
 
 
 

Pre-synaptic  

 
L1 

E 0 0 0 0 0 0 0 0 0 0 0 0 

I 0 0 0 0 0 0 0 0 0 0 0 0 

 
L2 

E 0 0 45 60 18 3 1 0 0 0 0 0 

I 0 0 27 8 6 1 0 0 0 0 0 0 

 
L3 

E 0 0 0 0 9 20 7 6 0 1 1 0 

I 0 0 18 2 76 11 7 1 1 0 0 0 

 
L4 

E 0 0 0 0 18 7 27 27 3 4 0 0 

I 0 0 0 0 0 0 0 1 0 0 0 0 

 
L5 

E 0 0 0 0 0 0 0 0 15 13 3 0 

I 0 0 2 1 9 1 24 3 18 3 8 0 

 
L6 

E 0 0 0 0 0 0 0 0 0 0 1 0 

I 0 0 0 0 0 0 0 0 0 0 0 0 

 

Rows indicate pre-synaptic neuron types and columns indicate post-synaptic neuron types. L 
numbers indicate layer membership of cell and E and I indicate excitatory and inhibitory cell 
types, respectively. Counts indicate numbers of connections between the pre-synaptic type 
indicated by the row and the post-synaptic type indicated by the column, where one connection 
consists of all of the synapses between two individual neurons 
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Supplementary Table 7. Excitatory and inhibitory synapse classification accuracy 

 

Cortical Layer Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 

AUC score 0.9 0.950 0.937 0.987 0.970 0.984 

Number of E 
synapses 

3 99 386 311 277 46 

Percent E 
synapses correct 

100 97 100 100 99 100 

Number of I 
synapses 

35 164 342 226 176 64 

Percent I 
synapses correct 

80 92 87 97 94 96 

Number of 
synapses total 

38 263 728 537 453 110 

  

Columns indicate cortical layers in which synapses were formed. E and I refer to excitatory 
and inhibitory, respectively. 
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Supplementary Table 8. Estimated number of cells per cubic millimeter for different 
layers 

 

 Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 White Matter 

Spiny Neurons 36.05 21194 8628.3 19724 10072 7678.4 2189.6 

Interneurons 5299.3 11522 4980.8 5184.2 2905.8 1220.4 679.52 

Unclassified Neurons 144.2 624.51 226.4 678.22 463.25 254.25 616.6 

Astrocytes 12293 3567.5 4427.4 4589.6 3986.7 3496 4089.7 

Oligodendrocytes 5641.8 3942.2 8540.3 14131 16880 24141 61471 

Microglia/OPCs 6326.7 6510.5 6490.1 6001.8 5790.6 6038.5 8053.6 

Unknown 198.27 234.19 176.09 761.83 1052.8 978.87 478.18 

  

These are the values of the plot shown in Supplementary Figure 5A. 
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Supplementary Table 9. Estimated volume occupancy percentages for different layers 

 

 Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 White Matter 

Axon 41.6515 40.4082 44.3686 43.5128 43.0305 40.5566 28.3573 

Dendrite 31.5978 33.2242 28.5824 23.6832 24.4849 25.786 16.7716 

Astrocyte 23.3594 15.664 14.9801 15.7906 14.5567 14.73 16.2967 

Soma 2.3623 9.7743 9.8245 12.2161 12.1522 10.8323 6.4454 

Cilium 0.0068 0.0498 0.0308 0.0561 0.0433 0.0269 0.0135 

AIS 0.02 0.0706 0.0861 0.0979 0.0908 0.0874 0.0299 

Myelinated 
Axon 1.0022 0.8088 2.1276 4.6433 5.6416 7.9809 32.0855 

  

These are the values of the plot shown in Supplementary Figure 22B. 

  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 25, 2021. ; https://doi.org/10.1101/2021.05.29.446289doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.29.446289
http://creativecommons.org/licenses/by-nc-nd/4.0/


95 

Supplementary Table 10. Estimated synapse densities for different layers 

  

 Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 White Matter 

Excitatory 
synapses per μm3 0.1817 0.15596 0.18654 0.12195 0.1179 0.074138 0.024861 

Inhibitory 
synapses per μm3 0.11062 0.063762 0.054729 0.037229 0.034986 0.026043 0.0095933 

 

These are the values of the plot shown in Supplementary Figure 26A. 
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