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Inferotemporal cortex (IT) in humans and other primates is topo-
graphically organized, containing multiple hierarchically-organized
areas selective for particular domains, such as faces and scenes.
This organization is commonly viewed in terms of evolved domain-
specific visual mechanisms. Here, we develop an alternative,
domain-general and developmental account of IT cortical organiza-
tion. The account is instantiated as an Interactive Topographic Net-
work (ITN), a form of computational model in which a hierarchy of
model IT areas, subject to connectivity-based constraints, learns
high-level visual representations optimized for multiple domains. We
find that minimizing a wiring cost on spatially organized feedforward
and lateral connections within IT, combined with constraining the
feedforward processing to be strictly excitatory, results in a hierar-
chical, topographic organization. This organization replicates a num-
ber of key properties of primate IT cortex, including the presence of
domain-selective spatial clusters preferentially involved in the repre-
sentation of faces, objects, and scenes, columnar responses across
separate excitatory and inhibitory units, and generic spatial organi-
zation whereby the response correlation of pairs of units falls off with
their distance. We thus argue that domain-selectivity is an emergent
property of a visual system optimized to maximize behavioral perfor-
mance while minimizing wiring costs.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

Inferotemporal cortex | Functional organization | Topography | Neural
network | Development

Inferotemporal cortex (IT) subserves higher-order visual abil-1

ities in primates, including the visual recognition of objects2

and faces. By adulthood in humans, IT cortex, and ventral3

temporal cortex more generally, contains substantial func-4

tional topographic organization, including the presence of5

domain-selective spatial clusters in reliable spatial locations,6

including clusters for faces (1–3), objects (4), buildings and7

scenes (5, 6), and words (7). Similar domain-level topographic8

properties have been found in rhesus macaque monkeys, in-9

cluding multiple regions of clustered face selectivity (8–10).10

Intriguingly, this selectivity is encompassed in a larger scale11

“mosaic” of category-selectivity, in which areas of category-12

selectivity themselves have further columnar clustering within13

them (11–13), pointing to more general principles of organiza-14

tion beyond the domain level. In line with this idea, human15

IT cortex also exhibits larger-scale organization for properties16

such as animacy and real-world size (14, 15), and midlevel17

features characteristic of these properties and domains have18

been shown to account well for patterns of high-level visual19

selectivity (16). How these domain-level and more general20

facets of functional organization arise, how they are related,21

and whether and in what ways they rely on innate specifica-22

tion and/or experience-based developmental processes remain23

contentious.24

Recent work has demonstrated that the neural basis of 25

face recognition depends crucially on experience, given that 26

deprivation of face viewing in juvenile macaque monkeys pre- 27

vents the emergence of face-selective regions (17). Relatedly, 28

the absence of exposure to written forms through reading 29

acquisition precludes the emergence of word-selective regions 30

(18, 19). That there exists clustered neural response selectivity 31

for evolutionarily new visual categories such as written words 32

offers further evidence that the topographic development of 33

the human visual system has a critical experience-dependent 34

component (20, 21). In contrast with a system in which innate 35

mechanisms are determined through natural selection, this 36

experiential plasticity permits the tuning of the visual system 37

based on the most frequent and important visual stimuli that 38

are actually encountered, thereby enabling greater flexibility 39

for ongoing adaptation across the lifespan. 40

There is considerable computational evidence that 41

experience-dependent neural plasticity can account for the 42

response properties of the visual system at the single neuron 43

level. Classic work demonstrated that the statistics of natural 44

images are sufficient for learning V1-like localized edge-tuning 45

within a sparse coding framework (22, 23). More recently, 46

deep convolutional neural networks (DCNNs) trained on im- 47

age classification have been successful in accounting for the 48

tuning of neurons in V1, V2, V4, and IT in a hierarchically 49

consistent manner, where deeper layers of the DCNN map 50
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onto later layers of the anatomical hierarchy (24, 25).51

Above the single-neuron level, considerable prior work has52

demonstrated that topographic organization in V1 may emerge53

from self-organizing, input-driven mechanisms (26–32) (for54

review, see 33). For example, the pinwheel architecture of spa-55

tially repeating smooth orientation selectivity overlaid with56

global retinotopy has been shown to be well-accounted for57

by Self-Organizing Maps (SOMs) (29, 30, 34). One notable58

application of an SOM to modeling high-level visual cortex by59

Cowell and Cottrell (35) demonstrated stronger topographic60

clustering for faces compared to other object categories (e.g.,61

chairs, shoes), suggesting that the greater topographic cluster-62

ing of faces in IT is due to greater within-category similarity63

among faces compared to these other categories. This work64

provides a strong case for domain-general developmental prin-65

ciples underlying cortical topography in IT, but at least two66

important issues remain unaddressed. First, rather than only67

supporting discrimination of face from non-face categories (as68

in 35), face representations in humans (and likely non-human69

primates, though see (36)) must support the more difficult70

and fine-grained task of individuation; this task requires a71

“spreading transformation” of representations for different face72

identities (37, 38), which could could alter the feature space73

and its topographic mapping, and necessitate a more domain-74

specialized representation than arises in an SOM. And secondly,75

rather than a single face-selective area, IT cortex actually con-76

tains multiple hierarchically-organized face-selective regions77

with preferential inter-connectivity (39). Generally, SOMs are78

not well equipped to explain such hierarchical topographic79

interactions, as they are designed to map a feature space into80

a topographic embedding, but not to transform the feature81

space hierarchically in the way needed to untangle invariant82

visual object representation from the statistics of natural im-83

ages (40). This suggests that SOMs may not be a good model84

of topographic development in cortical networks.85

An alternative approach to studying topographic organi-86

zation involves incorporating distance-dependent constraints87

on neural computation within more general neural network88

models (41–44). Of particular interest is a hierarchical neural89

network developed by Jacobs and Jordan (43) in which error-90

driven learning was augmented with a spatial loss function91

penalizing large weights to a greater degree on longer versus92

shorter connections. This model was shown to develop to-93

pographic organization for ’what’ versus ’where’ information94

when trained with spatially segregated output units for the95

two tasks. Closely related work by Plaut and Behrmann (45)96

demonstrated that a similar spatially-constrained model with97

biased demands on input (e.g., retinotopy) and output (e.g.98

left-lateralized language) could account for the organization of99

domain-specific areas in IT cortex, such as the foveal bias for100

words and faces, leftward lateralization of words, and right-101

ward lateralization of faces (46–48). However, to date, none of102

these structurally-biased neural network models have been ap-103

plied to large-scale sets of naturalistic images, the statistics of104

which are thought to organize high-level visual representations105

in IT cortex (49), and the topography in these models (43, 45)106

has been analyzed at a relatively coarse level. Nonetheless,107

this early work raises the possibility that the application of108

distance-dependent constraints in a modern deep neural ar-109

chitecture trained on natural images might provide a more110

comprehensive account of topographic organization in IT.111

Recently, Lee and colleagues (50) have modeled the topogra- 112

phy of IT cortex with a deep neural network trained on a large 113

set of natural images, using a correlation-based layout that 114

explicitly encouraged units within a layer of the network to be 115

spatially nearer to units with correlated responses, and farther 116

from units with uncorrelated or anti-correlated responses. As 117

a result, the network developed face-selective topography that 118

corresponded well with data from macaque monkeys. However, 119

this approach imposes topographic functional organization on 120

the network based on measured functional responses, rather 121

than deriving it from realistic principles of cortical structure 122

and function, such as constraints on connectivity. Moreover, 123

like the SOM, the approach can explain only within-area to- 124

pographic organization, and not relationships between areas, 125

such as multiple stages of IT cortex and their interactions with 126

upstream and downstream cortical areas. Thus, the question 127

remains whether such basic structural principles can account 128

for the topographic organization of IT. 129

In the current work, we combined the approaches of task- 130

optimized DCNN modeling (49, 50) with flexible connectivity- 131

constrained architectures (43, 45) to develop a hierarchical 132

model of topographic organization in IT cortex. We imple- 133

mented a bias towards local connectivity through minimization 134

of an explicit wiring cost function (43) alongside a task per- 135

formance cost function. Intriguingly, we observed that this 136

pressure on local connectivity was, on its own, insufficient 137

to drive topographic organization in our model. This led 138

us to explore two neurobiological constraints on the sign of 139

connectivity—strictly excitatory feedforward connectivity, and 140

the separation of excitation and inhibition—with the result 141

that both, and particularly excitatory feedforward connectiv- 142

ity, provided a powerful further inductive bias for developing 143

topographic organization when combined with a bias towards 144

local connectivity. 145

Results 146

A connectivity-constrained model of ventral temporal cortex 147

produces hierarchical, domain-selective response topogra- 148

phy. Our Interactive Topographic Network (ITN) framework 149

for modeling high-level visual cortex consists of an encoder 150

that approximates early visual cortex, followed by interactive 151

topography areas that approximate IT cortex (Figure 1A; see 152

Methods for details). We first present the results of simulations 153

of a specific ITN model, in which a ResNet-50 encoder is pre- 154

trained on a large dataset including several categories from the 155

domains of objects, faces, and scenes (each domain matched in 156

total training images). The trained encoder provides input to 157

a 3-area IT with separate posterior (pIT), central (cIT), and 158

anterior (aIT) areas. Each IT area consists of separate banks 159

of excitatory (E) and inhibitory (I) units, and feedforward 160

connectivity between areas is limited to the E units. After 161

training, the model performed well on each domain, reaching 162

a classification accuracy of 86.4% on the face domain, 81.8% 163

on the object domain, and 65.9% on the scene domain (see 164

Supplementary Figure S1). Performance differences across do- 165

mains are unlikely to be an artifact of the specific architecture 166

as they can be seen across a variety of CNNs, reflecting the 167

intrinsic difficulty of each task given the variability within and 168

between categories of each domain for the given image sets. 169

The trained model exhibits domain-level topographic or- 170

ganization that is hierarchically linked across corresponding 171
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Fig. 1. The Interactive Topographic Network produces hierarchical domain-level organization. A. diagram of the Interactive Topographic Network (ITN). An ITN model consists
of three components: an encoder that approximates early visual processing prior to inferotemporal cortex, the interactive topography (IT) areas that approximate inferotemporal
cortex, and the readout mechanism for tasks such as object, scene, and face recognition. The architecture of each component is flexible. For example, a 4-layer simple
convolutional network or a deep 50-layer ResNet can be used as the encoder; whereas the former facilitates end-to-end training along with a temporally-precise IT model, the
latter supports better learning of the features that discriminate among trained categories. In this work, topographic organization is restricted to the IT layers. The figure depicts
the main version of the ITN containing three constraints: a spatial connectivity cost pressuring local connectivity, separation of neurons with excitatory and inhibitory influences,
and the restriction that all between-area connections are sent by the excitatory neurons. The final IT layer projects to the category readout layer containing one localist unit per
learned category, here shown organized into three learned domains. (Note that this organization is merely visual and does not indicate any architectural segregation in the
model. B. Domain selectivity at each level of the IT hierarchy. Selectivity is computed separately for each domain, and then binarized by including all units corresponding to
p < 0.001. Each domain is assigned a color channel in order to plot all selectivities simultaneously. Note that a unit can have zero, one, or two selective domains, but not
three, as indicated in the color legend. C. Detailed investigation of domain-level topography in aIT. Each heatmap plots a metric for each unit in aIT. The first column shows the
mean domain response for each domain, the second column shows domain selectivity, the third column shows the within-domain searchlight decoding accuracy, and the fourth
column shows the mean of weights of a given aIT unit into the readout categories of a given domain.

sectors of each layer (see Figure 1B). This result reflects the172

fact that the distance-dependent constraints on feedforward173

connectivity pressured units that have minimal between-area174

distances to learn a similar tuning, which means that each175

layer is roughly overlapping in their respective (separate) 2D176

topography. The topographic organization gets somewhat177

smoother moving from pIT to cIT, most likely because units178

in cIT and aIT (but not pIT) have local feedforward receptive179

fields and thus greater constraint on local cooperation.180

We next scrutinized the topography in aIT, where there181

are very smooth domain-level responses, and where we can di-182

rectly compare responses with those of the recognition readout183

mechanism. We computed mean domain responses, plotted184

in the first column of Figure 1C, and domain selectivity, plot-185

ted in the second column, which demonstrates corresponding186

topographic organization. We confirmed the functional sig-187

nificance of response topography by conducting a searchlight188

analysis inspired by multivariate approaches to analyzing func- 189

tional magnetic resonance imaging (fMRI) data (51). We 190

used searchlights containing the 10% (102) nearest units. The 191

results of this analysis, shown in the third column of Figure 192

1C, revealed topographic organization of information for dis- 193

criminating between categories of each domain that is strongly 194

correlated with the domain selectivity maps for each domain 195

(all ps < 0.0001). 196

To further confirm the functional significance of the topo- 197

graphic organization, we analyzed the spatial organization of 198

readout weights from aIT to the localist category readout layer. 199

We evaluated whether each domain placed more weight in read- 200

ing out from the units for which there was greater selectivity, 201

by calculating the mean domain response weight for each unit, 202

averaged over classes in each domain. This produced a map 203

for each domain, shown in the last column of Figure 1C. We 204

find a large positive correlation between the mean readout 205
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Fig. 2. E and I cells act as functional columns. Selectivity of cIT excitatory (E)
units (left columns), and inhibitory (I) units (middle column) for each domain, and
histograms of response correlations between co-localized E and I units for images
from each domain (right column).

weight and the mean response for each domain (all rs>0.7, all206

ps< 0.0001), further demonstrating the functional significance207

of the response topography.208

Excitatory and inhibitory units operate as functional columns.209

Thus far we have focused on the representations in the E cells,210

both for convenience and clarity, and because it is the E units211

that exclusively project to downstream areas (including the212

category readout units). We next assessed whether the I units213

show a similar topographic organization, and whether it is214

linked with the E cells. The selectivity for E and I cells is215

plotted and correlated in Figure 2. The I cells show similar216

domain-selective topography to the E cells. Moreover, the217

activities of E and I units in the same 2D location have highly218

correlated activities over each domain of images, as well as219

over all images. If we consider a pair of E and I neurons at220

a given location on the 2D sheet to correspond to a cortical221

column, our result is reminiscent of the finding that biological222

neurons in different layers at the same location on the 2D223

flattened cortex have similar response properties (52). In this224

way, E and I units in the model appear to act as functional225

columns.226

Effects of lesions indicate strong yet graded domain-level227

specialization. We next performed a series of “lesion” anal-228

yses in the model in order to compare with neuropsychological229

data on face and object recognition (53–55). First, we per-230

formed focal lesions, as would be experienced by most patients231

with acquired brain damage. To simulate the impairment of232

patients with maximally specific deficits, we centered circular233

focal lesions of various sizes at the center of (smoothed) domain234

selectivity. Performance following each lesion was measured235

separately for each domain.236

The results of this lesion analysis are shown in Figure 3A.237

Focal lesions centered on each domain for two representative238

lesion sizes—using 20% and 30% of the aIT units—are shown239

in Figure 3A. Focal lesions centered on each domain lead to240

an especially severe deficit in recognition for that domain, and241

milder but significant deficits for the other domains as well. 242

For a medium sized lesion of 20% of the units (Figure 3A, 243

right), the deficit is significant for all domains (all ps<0.05), 244

and significantly stronger for recognition of the target domain 245

(all ps<0.05). 246

Are these more general effects of circumscribed lesions 247

on non-preferred domains the result of imperfect (patchy) 248

or non-circular topographic organization of an underlying 249

modular organization? To answer this question, we performed 250

selectivity-ordered lesions, in which units were sorted by their 251

selectivity for a given domain, and selected according to their 252

sorting index, shown in Figure 3B. The effects of damage in 253

this case are similar to those for focal lesions, with greater 254

damage to the domain on which sorting was performed, and 255

smaller deficits to other domains for lesions targeting at least 256

20% of the units. Specifically, for 20% lesions, we found smaller 257

but still significant deficits for both the preferred and non- 258

preferred domains compared to focal lesions. This suggests 259

that some but not all of the damage to the non-preferred 260

domain induced by focal lesions may be due to imperfect or 261

non-circular topographic functional organization. Importantly, 262

these more distributed effects of lesions indicate that the 263

functional organization, while highly specialized, is not strictly 264

modular, at least with respect to one influential definition of 265

modularity (56). Supplementary Figures S3, and S4 provide 266

additional data on the nature of domain specialization in the 267

network. 268

Domain selectivity exists within a broader organization simi- 269

lar to that of primate IT cortex. Previous empirical research has 270

demonstrated that the response correlations between pairs of 271

neurons fall off smoothly with increasing distance between the 272

neurons (data from 57, as plotted in (50), Figure 4A.). This 273

finding has been used to develop a class of topographic neural 274

network models that explicitly fits the spatial layout of units 275

to this relationship (50). We explored whether this relation- 276

ship emerged naturally in our network due to its constrained 277

connectivity, in line with the emergence of domain-selective 278

topography. We thus computed the correlations among pairs 279

of unit activations across images as a function of the distance 280

between the units, focusing on aIT. As shown in Figure 4B, 281

there is, indeed, a smooth decay of response correlations with 282

distance, matching the qualitative trend in the empirical data 283

(50, 57). 284

This result is not simply due to differences between do- 285

mains, as it is also found when examining responses to images 286

within each domain separately (shown for objects in Figure 287

4C). Along with previous results (50), our findings suggest 288

that the domain-level topography may simply be a large-scale 289

manifestation of a more general representational topography in 290

which the information represented by neighboring units is more 291

similar than that represented by more distal units. Impor- 292

tantly, our results go beyond previous ones to also demonstrate 293

that this organization can arise under explicit wiring length 294

and sign-based constraints on connectivity. 295

The generic distance-dependent functional relationship just 296

discussed would suggest that functional organization may be 297

exhibited at finer scales than the domain level. To assess this, 298

we performed a clustering analysis on the readout weights 299

from aIT. We adopted this approach due to the similarity 300

between the readout weights and response topography in aIT 301

(Figure 1C). A given category will achieve its maximal output 302
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Fig. 3. Lesion results in the ITN model. Each plot shows the relative effects of a set of same-sized lesions on recognition performance for each domain, relative to the
performance on the same domain in the undamaged model. Error bars show bootstrapped 95% confidence intervals over trials; thus, the statistical significance of a given
lesion can be assessed by determining whether the confidence interval includes 0. A. Damage from circular focal lesions centered on the peak of smoothed selectivity for each
domain. Left: results for a variety of lesion sizes. Right: a focused analysis of an intermediate lesion size of 20% of the aIT units. B. Damage from selectivity-ordered lesions for
each domain. Left: results for a variety of lesion sizes. Right: a focused analysis of an intermediate lesion size of 20% of the aIT units.

response when the activation pattern in aIT most closely aligns303

with the readout weights. Thus, the readout weights for a304

given category act as a sort of category template to match305

with representations in aIT. Clustering the readout weights306

directly, rather than interpreting a set of activations to natural307

images, enables clustering solutions to be explicitly linked to308

each category. This allows for a concise clustering solution309

containing one element for each category: the readout weights310

projecting from aIT to the identity unit for that category. We311

thus performed k-means clustering on the readout weights of312

all categories separately for each domain using k = 3 clus-313

ters (Figure 4D), finding the centroids of these clusters, and314

visualizing them in the 2D layout of aIT. The centroids and315

cluster category members are shown in Figure 4E. The cluster316

centroids show smooth topographic organization, with each317

cluster having a primary hot-spot of weight, and graded weight318

in other parts of aIT. Visual inspection of the cluster category319

members suggests a striking organization for different classes320

of object categories. This organization is confirmed through321

cluster assignment quantification in Figure 4F. The first two322

clusters represent the vast majority of animate categories, with323

the first cluster representing mostly non-mammalian animate324

categories such as birds and reptiles, and the second cluster325

representing mostly dogs and other mammals such as bears326

and raccoons. Last, the third cluster represents the vast ma-327

jority of inanimate objects such as clocks and various tools.328

Further analysis of the scene and face domain readout weights329

indicated a similar within-domain organization, with scenes330

being clustered by indoors-outdoors and natural-manmade331

dimensions, and faces being clustered by gender and hair color332

dimensions (Supplementary Figures S7, S8).333

Networks can reduce spatial costs and maintain performance334

by increasing topographic organization. The optimization335

problem introduced by Jacobs and Jordan (43) and employed336

in this work (Equation 4) explicitly works to both maximize337

visual recognition performance through a task-based loss term 338

Lt, and to minimize overall wiring cost through a connection- 339

based lost term Lw that scales with the square of connection 340

distance. To what extent does minimizing this wiring cost term 341

compromise performance? To answer this question, we tested 342

multiple ITN models with varying wiring cost penalties λw 343

and measured the resulting wiring cost and task performance. 344

We computed wiring cost in two ways. The first way is by 345

using the Lw term, which takes into account both the length 346

and strength of connections. The second way is inspired by 347

the wiring cost minimization framework (58), which cares only 348

about the presence—rather than the strength—of connections, 349

along with their distance. To compute this wiring cost Lw,u, 350

we sparsified the network to contain only the 1% strongest 351

connections (sparsity=0.99), and took the averaged squared 352

distance of remaining connections (59, see Equation 6); this 353

sparsification introduces minimal performance deficits in the 354

main ITN model (and Figure 5A). The results, shown in Figure 355

5A., demonstrate that increasing the wiring cost penalty λw 356

by an order of magnitude decreased the first spatial cost Lw by 357

roughly an order of magnitude. Precisely, the log-log plot in 358

Figure 5A (left) revealed a power law relationship of the form 359

y = Axm, where m = −1.24 (p < 0.001). The unweighted 360

wiring cost Lw,u similarly decays roughly linearly on the log-log 361

plot up to λw = 0.1, after which Lw,u saturates and then rises 362

for increasing values of λw. Thus, an intermediate value of λw 363

appears sufficient to drive the network towards preferentially 364

local connectivity, and further increasing λw may minimize 365

further the optimization term Lw through other means, such 366

as by further shrinking small long-range weights and reducing 367

participation at the grid boundaries where mean connection 368

lengths are longest (see Figure 5C, top right). In contrast 369

to the wiring costs, the final classification performance was 370

only marginally affected by λw (log-log slope m = −0.0016, 371

p < 0.001, explained variance r2 = 0.582; fit was not sig- 372
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Fig. 4. Generic topographic organization beyond domain-selectivity emerges through task optimization under biologically-plausible constraints on connectivity. A. Distance-
dependent response correlation in macaque IT (reproduced from 50, per CC-BY-NC-ND license). B. Distance-dependent response correlation in the excitatory cells of each
layer, using images from all three domains (objects, faces, scenes). C. Distance-dependent response correlation in aIT using images from the object domain only, highlighting
within-domain generic functional organization. D. Schematic for within-domain readout weight clustering analysis. The readout weights for each category of a given domain (i.e.
objects) are subject to a k-means clustering analysis. k = 3 clusters are used to identify dominant patterns of variation across categories in the information read-out by
downstream localist category units. The output of the analysis is a cluster centroid and set of cluster category members for each of k clusters. E. Results of the within-domain
readout weight clustering analysis. Top row: cluster centroids; bottom row: sample of 16 cluster category members; the dashed box at top-right re-plots the aIT domain-level
selectivity for comparison with the object within-domain topography. F. Attribute quantification of category membership in the readout weight cluster analysis. For each cluster
and attribute, the fraction of total categories with the attribute that are present in the cluster is plotted.

nificantly better than log-linear regression, m = −0.0028,373

p < 0.001, explained variance r2 = 0.583) and the final top5374

classification performance was unaffected by λw (p > .1; see375

Figure 5B). Last, increasing the wiring cost penalty gradually376

resulted in the emergence of domain-selective areas, along377

with distance-dependent pairwise response correlations (see378

Figure 5C). Thus, models with a large wiring cost penalty379

perform similarly to models with unconstrained connectivity380

but achieve very small wiring cost, through the development381

of topographic functional organization.382

Sign-based constraints are necessary for the development of383

topography. Having established that the main ITN architec-384

ture produces a variety of interesting and empirically grounded385

topographic organizational phenomena, we next performed a386

constraint-removal analysis to determine which constraints—in387

addition to the bias towards local connectivity—are necessary388

for the development of topographic organization. We varied389

three constraints: whether between-area feedforward connec-390

tions were excitatory only, whether the model employed sepa-391

rate E and I unit populations within each area, and whether392

the model contained lateral (recurrent) connections within393

each area. We thus constructed four simplified models, com-394

paring both domain-selective and generic topography with the395

full model used in earlier analyses.396

The first reduced model, shown in the second column of397

Figure 6A, contained a bias towards local connectivity and398

recurrent connections but no sign constraints. This model399

did not develop domain-level topography, and yielded a very400

weak relationship of pairwise unit response correlation with401

distance. This indicates that the sign-based constraints were402

important for the development of topography in the main403

model. We next examined a model without the restriction 404

that feedforward connections be limited to the excitatory neu- 405

rons, but with separate neurons responsible for excitatory and 406

inhibitory influences. Results for this model (Figure 6A, 3rd 407

column) indicate that the E/I separation increased topography 408

compared to the model without sign-based constraints. This 409

model yielded a strong generic topographic organization, but 410

a weaker domain-level topographic organization than the full 411

model. We next examined a model without separate neurons 412

for excitation and inhibition, but with the restriction that feed- 413

forward connections be excitatory. This model yielded strong 414

domain-level and generic topographic organization. Lastly, we 415

constructed a simple feedforward model in which we removed 416

learned lateral connectivity, leaving only layer normalization 417

to mediate within-area interactions. Like the previous model, 418

this model yielded strong topographic organization both at 419

the domain- and generic-levels. 420

We next compared each of these model variants in their 421

accuracy and spatial costs. First, we found that the accuracy 422

of the recurrent models was very similar, with a very small 423

(<1% point) advantage for models in which feedforward con- 424

nectivity was not constrained to be excitatory. In contrast, 425

accuracy for the feedforward model was reduced more sub- 426

stantially (>4% points), pointing to a performance benefit 427

of the recurrent connections. Moreover, we found that, for 428

the same λw across variants, the variants that developed clear 429

domain-level organization had the smallest wiring cost (Figure 430

6B, 2nd panel). The variant without sign-based constraints— 431

that demonstrated the least emergent topography—also had 432

the highest wiring cost, and this was due to increases in feed- 433

forward spatial costs (Figure 6B, 3rd panel). This can be 434

understood in terms of this model requiring more weight over 435
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Fig. 5. Spatial cost, visual performance, and emergent topography as a function of spatial wiring penalty λw . Figures in A-B use 4 randomly initialized model instances per
regularization strength. Error bars around markers show 95% confidence intervals for the plotted metric at a given spatial regularization strength, and black bands show 95%
confidence intervals of the metric for a matched model without a spatial wiring penalty (λw = 0). A. Accuracy analysis. Left: mean top1 accuracy on validation images from all
domains versus versus spatial wiring penalty λw on a log X-axis and linear Y-axis. Right: mean top5 accuracy plotted in the same manner. In both cases, results for the main
model as well as a sparsified version of the model (fraction of s = 0.99 smallest within-IT weights set to 0) are plotted. B. Wiring cost analysis. Left: weighted spatial cost
(Lw) versus spatial wiring penalty λw , plotted on log-X and log-Y axes. Right: unweighted spatial cost following sparsification versus spatial wiring penalty λw , plotted on
log-X and log-Y axes. C. Emergent topographic organization in one model instance of each spatial wiring penalty λw . Top row: domain-selective aIT topography. Bottom row:
generic aIT topography.

longer range connections due to the less ordered topography.436

Lastly, in addition to reduced performance, the feedforward437

variant yielded higher between-area spatial costs than the other438

topographically organized variants; these between-area spatial439

costs may be substantially more biologically burdensome than440

within-area spatial costs, since they incorporate between-area441

distances in addition to aligned point-to-point distances. For442

simplicity, and because modeling the complexities of cortical443

between- versus within-area distances was beyond the scope444

of this work, feedforward spatial costs in these models only445

include the aligned point-to-point distances. However, our446

results suggest that the feedforward model would have a diffi-447

cult time reducing such costs, whereas the recurrent variants448

are able to minimize feedforward spatial costs through less449

expensive lateral connections.450

Finally, we assessed the domain-specificity of the final two451

variants through the selectivity-ordered lesion approach used452

earlier (Figure 3). The results for face-selectivity-ordered le-453

sions, shown in Figure 6C, indicate that the networks exhibit454

strong but graded specialization as in the main model, with455

somewhat weaker deficits at the small lesion size of 0.2 indi-456

cating somewhat stronger specialization. However, the rising457

deficits for all domains when lesion size is increased from 0.2458

to 0.3, and from 0.3 to 0.4, strongly suggest that there is a459

partial graded overlap in the representation of domains, rather460

than a truly modular representation.461

Discussion 462

Is IT cortex a collection of independent, possibly hard-wired 463

domain-specific modules, or a more general-purpose, interac- 464

tive, and plastic system? The investigations presented here 465

demonstrate that many of the key findings thought to support 466

a modular view of separable, innately-specified mechanisms for 467

the recognition of different high-level domains (faces, objects, 468

scenes) can be accounted for within a learning-based account 469

operating under generic connectivity constraints (also see 21). 470

By simulating a biologically plausible Interactive Topographic 471

Network (ITN) model of IT without domain-specific innate 472

structure, we found that we can “let the structure emerge” 473

(60, 61). Specifically, we observed that the model developed 474

strongly domain-selective spatial clusters which contain prefer- 475

ential information for each domain, and which, when lesioned, 476

produced largely (but not purely) specific deficits. 477

Beyond domain-level spatially clustered organization, the 478

model exhibited a more generic form of topographic organi- 479

zation, whereby nearby units had more correlated responses 480

over images compared to more distant units, a relationship 481

which has been demonstrated in macaque IT cortex (50, 57). 482

In combination with other modeling work (50) that pressured 483

neurons to obey this relationship as a proxy “wiring” loss 484

to develop face-selective topography, our work suggests that 485

this generic spatial functional relationship appears to both 486

underly domain-level organization and emerge from wiring 487

cost minimization. 488
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Fig. 6. Constraint removal analyses. A. Domain-level and generic topography in layer aIT across models with different constraints implemented. From left to right: "main model"
is the full model with separate excitation and inhibition, excitatory feedforward connections, learned recurrent connectivity, and a bias towards local connectivity; "no sign
constraints" removes both sign-based constraints; "E/I, no EFF" has separate excitation and inhibition but both cell types send feedforward connections to the next layer; "EFF,
no E/I" does not separate excitation and inhibition (one map of units), but feedforward connections are restricted to be excitatory; "EFF, no E/I or recurrence" does not separate
excitation and inhibition, does limit feedforward connections to be excitatory, and does not have recurrent connections besides the layer normalization also implemented in all
of the other models. B. Comparing performance and spatial cost of the main model with the variants shown in A. Left: final classification accuracy of 4 randomly initialized
versions of each architecture. Second: final spatial cost. Third: final feedforward spatial cost, computed as the spatial cost of all between-area (feedforward) connections.
Right: final lateral spatial cost, computed as the spatial cost of all within-area (lateral) connections. C. Domain-level functional specialization of a single model of each variant
measured using face selectivity-ordered lesions. More complete results for these two models can be found in Supplementary Figures S5 and S6.

Importantly, wiring cost and task optimization (i.e., object,489

face, and scene image recognition), by themselves, were not490

sufficient to produce topographic organization: we found that491

two well-known biological details—excitatory-only between-492

area communication, and separate excitatory and inhibitory493

neural populations—could induce topographic organization in494

the context of wiring cost and task optimization. In particular,495

locally-biased excitatory feedforward connectivity provides an496

inductive bias that neighboring units should have positively497

correlated response properties, without specifying how cor-498

related they should be. Since the network is constrained to499

perform multiple tasks, all units cannot be positively correlated500

to reach high performance; the network thus is encouraged501

to learn in a fashion whereby local units learn correlated502

representations and more distant units learn uncorrelated or503

anti-correlated representations, a hallmark of topographic or-504

ganization (50). Additionally, the separation of excitation and505

inhibition contributed to topographic organization, but less506

so than the excitatory restriction on feedforward connectiv-507

ity. We reason that the separation of excitation and inhibition508

serves to enhance topographic organization by inducing greater509

pressure on the lateral connections, since learned inhibitory510

responses must be mediated through lateral connections to511

and from the I cells. As this connectivity is biased to be local,512

it creates a pressure for local communication to be functionally513

smooth so that neurons representing related information can 514

communicate with each other. While sign-based constraints 515

played an important role in the development of topographic 516

organization in this work, future work examining other tasks 517

(62, 63) and architectures (64, 65) that place greater demands 518

on lateral connectivity may find that local connectivity con- 519

straints suffice. 520

Our constraint-removal analysis allowed us to discover a 521

simple model capable of producing many of the hallmarks of 522

topographic organization in the main model. This feedforward 523

variant contained local excitatory feedforward connections and 524

no learned lateral connectivity, with lateral communication 525

restricted to the layer normalization operation. We reason that 526

this model was capable of producing topographic organization 527

in a way similar to the Self-Organizing Map (SOM) (34) and 528

other algorithms applied to early visual cortex topographic 529

organization (26, 28). Each of these algorithms implements 530

a form of local cooperation alongside broader competition. 531

Specifically, in the SOM, global competition is implemented 532

by selecting a winning unit on each trial, and suppressing the 533

responses of all other units, and local cooperation is mediated 534

through Hebbian learning scaled by a Gaussian neighborhood 535

around the winning unit. In ITN models including our feed- 536

forward variant, the local excitatory feedforward connections 537

implement a form of local cooperation, ensuring that neigh- 538
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boring units are positively correlated; the layer normalization539

operation then implements a global competition by attempting540

to convert the distribution of pre-activations to a standard541

normal distribution, which leads to sparser activity follow-542

ing rectification (the degree of which can be controlled by543

each unit’s bias term), and ensures that units represent dif-544

ferent aspects of the feature space. Thus, layer normalization545

implements both competition and interactivity that, when546

combined with the local representational cooperation induced547

by local excitatory feedforward connections, leads to a smooth548

topographic organization whereby the unit feature tuning is549

systematically more similar for nearby units than for farther550

units. In recurrent ITN models, the learned lateral connec-551

tions can adapt this competition and interactivity, allowing552

for increased performance (Figure 5).553

Despite some conceptual similarities, there are several ad-554

vantages to variants of the ITN architecture relative to SOMs555

and other previous topographic mapping algorithms. The first556

is that ITNs are naturally hierarchical, allowing for multiple557

interacting levels of topographically organized representations,558

rather than assuming a single feature space to be arranged in559

a single topographic map. This allows them to explain the560

presence of multiple domain-selective regions arranged in a561

stream from earlier to later parts of IT (1, 3, 66, 67). Second,562

and relatedly, the connectivity constraints of the ITN can563

be incorporated into generic task-optimized neural networks,564

without requiring separate Hebbian updates to topographi-565

cally organize the feature space following development of the566

feature space as in the SOM. Lastly, the ITN framework is567

extremely flexible, allowing for future research to examine dif-568

ferent encoders, different IT architectures and topologies, and569

different task training environments and readout mechanisms.570

This makes the ITN an attractive approach for future research571

examining topographic organization in the visual system.572

One limitation of our current work is that it only addresses573

the topographic organization of high-level representations,574

since the connectivity constraints were not applied within the575

convolutional layers of the encoder network that was used to576

model early and mid-level vision. In deep learning architec-577

tures, convolutions are a crucial aspect of achieving good task578

performance, whereas local connectivity suffers from a relative579

lack of inductive bias, thereby requiring more parameters and580

longer training time to learn similar features at different visual581

field locations. However, this is a particular challenge for the582

ITN framework that also points to a critical limitation of con-583

volutional architectures as a model of the brain. Attempting584

to model topographic organization in convolutional layers over585

both retinotopic location and stimulus features—well known586

organizing principles of early visual cortex—would necessitate587

that each channel have potentially different connections with588

other channels across different retinotopic positions, violating589

the convolution. In the brain, feature tuning is not actually590

uniform across the visual field (68). Thus, relaxing the convolu-591

tion assumption has merits for advancing visual computational592

neuroscience, and would enable more detailed connectivity-593

based topographic modeling of early and mid-level visual areas,594

an important line of work that deserves future attention. Fully595

connected visual “Transformer” layers using multiplicative596

attentional interactions (69, 70) may prove to be a promising597

architecture in which to examine topographic organization598

using the ITN framework, as these architectures have recently599

been shown to reach high performance without convolutions. 600

The work presented here makes important progress in mod- 601

eling, both quantitatively and qualitatively, the factors un- 602

derlying visual cortical development throughout the visual 603

hierarchy. Here, we focused on constraints local to the IT 604

circuit. However, a currently unexplored question in our frame- 605

work is why and how regions emerge in consistent locations 606

across individuals of a given primate species (3, 17, 46, 71, 72). 607

We hypothesize that modeling long-range connectivity-based 608

constraints with regions external to IT (e.g., 44, 45) (see also 609

73), along with adapting the ITN architecture to contain two 610

hemispheres, will give rise to reliable localization of model 611

cortical areas based on their connectivity with upstream and 612

downstream areas. In particular, the retinotopic organization 613

of upstream early visual cortical areas is thought to encourage 614

foveally-biased cortex to support face representations, and 615

peripherally-biased cortex to support scene representations 616

(45, 74). Moreover, innate connectivity biases with down- 617

stream nonvisual areas is thought to play a further role in 618

shaping the global organization of domain-selective areas in 619

IT (45, 75–79). These biases, such as left-hemispheric lan- 620

guage biases, and other more fine-grained patterning of con- 621

nections with domain-selective downstream areas (i.e., socially- 622

responsive areas for faces, memory areas for scenes, motor 623

areas for manipulable objects) should be explored in future 624

work to better understand IT organization both within and 625

between hemispheres. Based on previous work (43–45), we 626

fully expect graded connectivity to bias the resulting locations 627

of domain-selective regions. However, based on the results 628

here, we argue that such long-range connectivity is not a nec- 629

essary condition for topographic domain-selectivity; rather, 630

the pressure for low wiring cost solutions to hierarchical visual 631

computation within IT appears to be sufficient to drive such 632

organization. 633

Materials and Methods 634

The Interactive Topographic Network. Here, we introduce the Inter- 635

active Topographic Network (ITN), a framework for computational 636

modeling of high-level visual cortex, under specific biological con- 637

straints and in the service of specific task demands. ITN operates 638

according to a set of principles which build upon previous work (45), 639

and can be divided into two components: an encoder that approx- 640

imates early visual cortex, and interactive topography (IT) layers 641

that approximate inferotemporal cortex. The goal of the encoder is 642

to extract general visual features which describe the visual world 643

along dimensions that support a broad range of downstream readout 644

tasks. However, our main modeling focus is on IT, which consists 645

of a series of pairs of recurrent layers that are subject to biological 646

constraints. For computational simplicity, such constraints are not 647

modeled in the encoder, although future work that incorporated 648

similar constraints could be used to model topographic organization 649

throughout the visual hierarchy. 650

Encoder architecture and training. We used a ResNet-50 (80) encoder 651

to allow the ITN to extract deep and predictive features of the 652

trained inputs. The encoder is pre-trained on equal sized subsets 653

of faces, objects, and scenes from the VGGFace2 (81), ImageNet 654

(82), and Places365 (83) datasets, respectively, matched in terms 655

of total training images. We reused the same subsets of faces and 656

objects as in (84), and an additional scene domain was constructed 657

to match the other two domains in total images. An initial learning 658

rate of 0.01 was used, and this learning rate was decayed 5 times 659

by a factor of 10 upon plateau of the validation error; after the 5th 660

learning rate decay, the next validation error plateau determined 661

the end of training. Stochastic gradient descent with momentum 662
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(ρ = 0.9) and l2 weight decay (λ = 0.0001) was used, with batch663

size of 256 on a single GPU.664

Recurrent neural network formulation of IT. Our model of IT extends665

the standard discrete-time Recurrent Neural Network (RNN) for-666

mulation common in computational neuroscience (e.g., 85). We667

begin with the continuous-time dynamics of units in an RNN layer,668

where x(a) is the vector of pre-activation activities in area a of IT,669

r(a) is the vector of post-activation activities in area a, b(a) is the670

vector of baseline activities in area a, τ is the scalar neuronal time671

constant, and W (a,b) is the matrix of weights from area a to area b:672

τ
dx

(a)
t

dt
= −x

(a)
t +W (a,a)r

(a)
t +W (a−1,a)r

(a−1)
t + b(a) [1]

where the activation function r
(a)
t = [x(a)

t ]+ is positive rectification,673

also called a Rectified Linear Unit (ReLU). Applying the Euler674

method to integrate this first-order ordinary differential equation,675

with time step size ∆t, and substituting α = ∆t
τ
, yields the discrete676

time update:677

x
(a)
t = (1− α)x(a)

t−1 + α

(
W (a,a)r

(a)
t−1 +W (a−1,a)r

(a−1)
t−1 + b(a)

)
[2]

Note that this formulation differs from the standard machine678

learning implementation of RNNs, which can be derived as a special679

case where ∆t = τ or α = 1, in which the time constant is set such680

that the previous activity of a neuron decays exactly to zero in the681

time between updates, such that it can be set to 0 in the update682

equation.683

When training models with separate excitatory and inhibitory684

units, we noted that training could be extremely unstable and685

required some mechanism for achieving stability. To this end, we686

adopted layer normalization (86), without the trainable scaling687

parameter that is sometimes used (see 86, for more details). Where688

µ(x) is the mean of x, and σ(x) is the standard deviation of x, and b689

is the learned bias term (moved outside of the layer normalization),690

the layer-normalized activities are given as:691

zt =
xt − µ(xt)
σ(xt)

+ b

rt = [zt]+
Incorporating layer normalization into our update equation yields692

the final update equation:693

x
(a)
t = (1− α)z(a)

t−1 + α

(
W (a,a)r

(a)
t−1 +W (a−1,a)r

(a−1)
t−1

)
[3]

Extending the standard RNN framework with biological constraints.694

Here, we outline the major biological constraints implemented in695

this work.696

Spatial organization. An essential aspect of an ITN model is that697

each IT layer has a spatial organization. We chose to model layers as698

square grids, with each layer of the hierarchy of equal size (typically,699

a grid size length of 32, corresponding to a layer of 1024 units). We700

normalize the coordinates to lie in the range [0,1]. Each unit thus701

has a unique (x, y) coordinate which will be used to determine the702

distance-dependent network topology. In general, the specific choices703

about map spatial arrangement are not critical to the predictions704

of the model, but they can potentially be manipulated in certain705

ways in the service of other theoretical goals.706

Spatial connectivity costs. We impose distance-dependent con-707

straints on connectivity through a cost on longer connections708

throughout training. This basic formulation of the loss was in-709

troduced by (43) as a way to induce spatially organized task special-710

ization, and was shown to do so in a simple neural network model711

trained on small-scale tasks. To our knowledge, no other research712

has examined this loss in modern deep learning architectures trained713

on natural images. We use a simple modification of the original loss714

function, using the squared Euclidean distance (Di,j)2 = ||ri−rj ||22715

(in place of (Di,j)10 = ||ri − rj ||10
10 distance (43)). By using the716

squared distance, we penalize longer connections disproportionally717

compared to shorter connections. The spatial loss on connections 718

between areas a and b, L(a,b)
w , is given by: 719

L(a,b)
w =

∑
i,j

(
D(a,b)
ij

)2 (
W

(a,b)
ij

)2

1 +
(
W

(a,b)
ij

)2 [4]

The total spatial loss is the sum of the area-to-area spatial losses 720

Lw =
∑

a,b
L(a,b)
w , and is added to the task-based loss as L = 721

Lt + λwLw, on which gradient descent is performed. 722

Connection noise. To approximate axon-specific variability in in- 723

stantaneous firing rate (87), We apply multiplicative noise on the 724

individual connections between neurons which is uniform over dis- 725

tance and layers. In practice, we find that connection noise helps 726

to regularize the activations in the network, encouraging a more 727

distributed representation. Noise is sampled independently from 728

a Gaussian distribution N centered at 0 with variance σ2 at each 729

time step of each trial, and is squashed by a sigmoidal function 730

S(x) = 2
1+e−x , ensuring that the sign of each weight is not changed 731

and each magnitude does not change by more than 100%. Thus, 732

the noisy weight matrix W (a,b)
n from area a to area b on a given 733

trial and time step is: 734

W
(a,b)
n = S (N (0, σ)) ∗W (a,b) [5]

Sign-based restrictions on neuronal connectivity. As has been dis- 735

cussed in prior computational work (85), standard neural networks 736

gloss over a key detail of neuronal morphology—that single neurons 737

obey Dale’s Law, whereby all of their outgoing connections are either 738

excitatory or inhibitory (ignoring modulatory neurons and other 739

special, rare cases). We employ this principle within our framework 740

by replacing the single sheet of unconstrained neurons with parallel 741

sheets of excitatory (E) and inhibitory (I) neurons. We follow the 742

method of (85) to enforce the sign of connectivity in our neuronal 743

populations. The second sign-based restriction we implement is 744

that between-area interactions are carried out predominantly by 745

excitatory pyramidal neurons. Thus, we restrict between-area feed- 746

forward connectivity to originate from the excitatory neurons only. 747

Both E and I neurons receive feedforward inputs. 748

Task demands. Task-driven computational models learn represen- 749

tations that better account for neural responses in visual cortex 750

than models which are designed by hand (24, 25, 49). More recent 751

work has shown that a supervised version of task-driven learning is 752

not essential, with semi-supervised contrastive learning algorithms 753

performing very close to the supervised state-of-the-art in neural 754

prediction (88). For simplicity and as a first step, we use supervised 755

learning: Given a set of categories, the network is tasked with 756

classifying images into one of these categories. The cross-entropy 757

loss is used as an objective function, optimized using stochastic 758

gradient descent with weight decay and momentum. We expect 759

our general findings to hold for any learning algorithm that places 760

comparable demands on high-level representation learning. 761

Visual systems often have to perform multiple tasks, where the 762

specific organization of tasks is not known ahead of time. There- 763

fore, a pre-specified task segregation (c.f. 89) is not possible. By 764

specifying only a domain-general architecture, and optimizing to 765

performance over multiple tasks, ITN models can discover the task- 766

specific organization that maximizes task performance in the context 767

of its task-general architectural constraints. Here, we simulate the 768

requirement of performing three somewhat different visual tasks 769

from common inputs, using common resources. The first task is face 770

identification, for which we use VGGFace2 (81). The second task is 771

object and animal recognition (hereafter just referred to as objects), 772

for which we use the ImageNet dataset (82). The third task is scene 773

recognition, for which we use the Place365 dataset (83). These three 774

tasks constitute three separate “domains,” each containing several 775

categories which the network must learn to discriminate between. 776

However, the network has no prior knowledge of the separability of 777

these domains, and they are fully interleaved during training. 778
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IT architecture and training. The main ITN model consists of 3 IT779

layers (pIT, cIT, aIT) with separate E and I populations, and780

feedforward connections sent only by E units. To facilitate training781

many models with fewer computational demands, the model is782

trained using a fixed pre-trained ResNet-50 encoder on smaller783

subsets of faces, objects, and scenes. Specifically, we created image784

subsets equal to the size of the popular CIFAR-100 dataset but at785

higher image resolution, containing 100 categories each with 500786

training images and 100 validation images, resized to 112x112 pixels.787

Thus, the combined dataset contained 300 categories with 150,000788

training images and 30,000 validation images. The same learning789

rate schedule as used for training the encoder was used. Stochastic790

gradient descent with momentum (ρ = 0.9) was used, with batch791

size of 1024 on a single GPU. We used spatial regularization with792

λw = 0.05, without additional weight decay on IT connections.793

IT model variants. To better understand the factors that contribute794

to the development of topographic organization, we examine a vari-795

ety of IT model variants containing different subsets of implemented796

constraints. Some of these models do not use separate populations797

of E and I units, but still restrict feedforward connectivity to be exci-798

tatory. In this case, we simply restrict the feedforward weights to be799

positive, despite the same neuron having both positive and negative800

lateral connections. In another variant, we remove learned lateral801

connections entirely. This model is trained for a single time step,802

and the only recurrent computation is that of a single pass of layer803

normalization. Lastly, we explore a range of spatial regularization804

strengths.805

Analyses of trained models. After training, the responses in IT lay-806

ers are probed to investigate emergent task specialization and its807

topographic organization. We use three main approaches.808

Mass univariate analyses. The first analytic approach is the simple809

mass-univariate approach, in which each unit is analyzed separately810

for its mean response to each stimulus domain (objects, faces,811

scenes), using untrained validation images from the same categories812

used in training. In addition to computing the mean response to813

each domain, we compute selectivity, a ubiquitous metric used in814

neuroscience, to analyze how responsive a unit is to one domain815

compared to all others. We compare the responses of each domain816

versus the others using a two-tailed t-test, and given the test statistic817

t, the significance value p of the test, and the sign of the test statistic818

s = sign(t), we compute the selectivity as −s log(p).819

Searchlight decoding analysis. The second analysis approach we use820

is the multivariate searchlight analysis commonly used in fMRI (51),821

in which a pool of units are selected in a (circular) spatial window822

around each unit, and the accuracy for discriminating between823

different categories (e.g., hammer vs. screw-driver) in each domain824

(e.g., objects) is computed using the activations of only that pool of825

units; the mean accuracy value is assigned to the center unit, and826

the process is repeated for all units.827

Lesion analysis. To assess the causal role of certain units in the828

performance of specific tasks, we adopt a lesioning approach in829

which the activities of lesioned units are set to 0 throughout per-830

ception. This effectively removes them from processing, allowing831

the network’s dynamics to unfold independently of these units. The832

effect of a lesion is measured by computing the accuracy following833

the lesion and relating that to the baseline accuracy.834

The first type of lesion we perform is a spatial or focal lesion835

in which a circular neighborhood of size p ∗ n units is selected,836

where p is the fraction of units selected and n is the total number837

of units in the area where the lesion is performed. The lesion is838

centered on a unit ui,j either randomly or according to the peak839

of a specific metric such as selectivity. In the main analyses, we840

attempt to lesion spatial neighborhoods corresponding to regions841

of high domain selectivity. To do so, we take the selectivity map,842

perform spatial smoothing, and select the unit u of peak smoothed843

selectivity. We then systematically vary p while keeping u fixed to844

assess the causal role of increasingly large regions centered on the845

peak of smoothed selectivity.846

The second type of lesion sorts units according to a given selec-847

tivity metric irrespective of their spatial location. In this analysis,848

the p ∗ n most selective units are chosen for a given lesion. This is849

done separately for the selectivity of each domain, as in the focal 850

lesions. When the topography is smooth and the regions approxi- 851

mately circular, the selectivity-ordered and focal lesions yield similar 852

results. However, to the extent that the topography is not perfectly 853

smooth or circular, the selectivity-ordered lesion may knock-out a 854

more relevant set of units for a given task. 855

Distance-dependent response correlation. We calculate the correla- 856

tions of the responses of all pairs of units as a function of distance 857

between them. Response correlation is computed for a given time 858

step over a large number of images, either from all domains, or from 859

each domain separately. We additionally compute a scalar metric 860

of this analysis by taking the Spearman correlation of response 861

correlation and distance. This metric can be easily visualized over 862

many time steps, layers, cell types, models, etc. 863

Analyzing spatial costs of trained networks. To understand the 864

wiring cost of certain trained models, we analyze the spatial cost of 865

a network, as given by Equation 4, as a function of architectural 866

parameters such as the spatial regularization strength λw. In one 867

analysis, we analyze only the feedforward spatial cost, which simply 868

requires summing spatial costs over pairs of areas a and b where 869

a! = b. Similarly, to analyze only the recurrent spatial cost, we can 870

sum spatial cost over pairs of areas a and b where a = b. 871

Unweighted spatial cost of sparsified networks. While wiring cost in 872

an artificial neural network should depend to some extent on the 873

strength of connections—stronger connections may require greater 874

myelination, and strong connections in an artificial neural network 875

may correspond to a larger number of connections in a biological 876

neural network—there is another notion of wiring cost whereby 877

it depends only on whether or not two neurons are connected. 878

This notion of wiring costs has been commonly applied to the 879

study of cortical areal layout and early visual cortical maps (e.g. 880

29, 58, 59, 90). Moreover, the analysis of binary connectivity in 881

thresholded networks is also common in graph-theoretic analysis of 882

brain data (91). To analyze this notion of wiring costs, we pruned 883

our trained models to a desired connection sparsity level s, setting to 884

0 the n∗m∗s connections with the smallest magnitude, where n and 885

m are the number of units in areas a and b . Sparsity was enforced 886

globally within IT and from IT to readout, rather than individually 887

for each set of connections. We then analyzed an unweighted wiring 888

cost L(a,b)
w,u that computes the mean of squared Euclidean distance 889

values between connected units i and j in areas a and b, given that 890

(a, b) are in the set of connected areas C: 891

L(a,b)
w,u =

1
(1− s) ∗ n ∗m

∑
i,j

(
D(a,b)
ij

)2 (
W

(a,b)
ij 6= 0

)
[6]
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