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ABSTRACT 

Genome-wide association studies have uncovered hundreds of autoimmune disease-associated 

loci; however, the causal genetic variant(s) within each locus are mostly unknown. Here, we 

perform high-throughput allele-specific reporter assays to prioritize disease-associated variants 

for five autoimmune diseases. By examining variants that both promote allele-specific reporter 

expression and are located in accessible chromatin, we identify 60 putatively causal variants that 

enrich for statistically fine-mapped variants by up to 57.8-fold. We introduced the risk allele of a 

prioritized variant (rs72928038) into a human T cell line and deleted the orthologous sequence in 

mice, both resulting in reduced BACH2 expression. Naïve CD8 T cells from mice containing the 

deletion had reduced expression of genes that suppress activation and maintain stemness. Our 

results represent an example of an effective approach for prioritizing variants and studying their 

physiologically relevant effects. 
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INTRODUCTION 

Genome-wide association studies (GWAS) are a powerful approach for identifying genetic 

susceptibility loci for autoimmune diseases. However, our ability to draw direct mechanistic 

insights from GWAS loci has been hampered by challenges in identifying which variant(s) 

actually cause disease risk at any given locus. Pinpointing the specific causal variant provides 

insight into the context and mechanism by which the disease association modulates disease risk. 

There are three major challenges to identifying causal variant(s): 1) at most loci, there are many 

disease-associated variants due to linkage disequilibrium (LD) between causal and non-causal 

variants, 2) ~90% of causal variants reside in non-coding regions1,2, where their mechanisms of 

action are difficult to infer, and 3) the context (e.g., cell-type, cell-state, etc.) in which variants 

act may at times be difficult to discern, particularly for non-coding variants. Thus, to discern 

causal variants, we must refine strategies to prioritize and test variants for how they perturb 

genomic functions, particularly in disease-relevant cell types and states. 

Recent methodologies have been developed to distinguish causal variants from those that 

are non-causal, including inferring the cell types in which they act. Statistical fine-mapping 

methods can generate credible sets of likely causal variants, with high powered studies able to 

pinpoint singular causal variants for many disease associations3; however, most disease 

association studies lack sufficient power to definitively distinguish the causal variant(s) for each 

locus. Experimental and computational methodologies have also been developed to discern 

putatively causal variants and infer the context in which they act. For instance, overlaying maps 

of accessible and active chromatin regions through DNase Hypersensitivity I and H3K27ac 

ChIP-sequencing in many cell types and environmental conditions have enriched for likely 

causal variants, and these methods can aid in identifying disease-relevant cell types1,2,4,5. In 
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addition, perturbational studies-- such as massively parallel reporter assays (MPRA) that test 

genetic variants for their ability to modulate gene expression and CRISPR inhibition which 

perturbs putative regulatory elements to determine their effect on gene expression-- also enrich 

for disease-associated variants6,7. While each of these methodologies is useful for prioritizing 

potential causal variants, they all have imperfect accuracy due to differences in how variants act 

in the context of the assay as compared to disease-relevant states6. Thus, once variants are 

prioritized, they require further mechanistic dissection to determine whether they are causal for 

disease associations, such as through editing the variants into the genomes of disease-relevant 

cells.  

Here, we used a highly efficacious prioritization scheme on ~18,000 variants associated 

with five autoimmune diseases including type 1 diabetes (T1D), inflammatory bowel disease 

([IBD], including ulcerative colitis [UC] and Crohn’s disease [CD]), rheumatoid arthritis (RA), 

psoriasis, and multiple sclerosis (MS) to identify likely causal variants. Through integrating 

MPRA and chromatin accessibility data, we found 60 likely causal variants that enriched up to 

57.8-fold for causal variants according to fine-mapping. We further characterized the effects of a 

single variant (rs72928038) associated with multiple autoimmune diseases through analyzing the 

presence of the risk allele in accessible chromatin, using a base editing approach to insert the 

variant into a human T cell line, and by constructing mice containing a deletion at the 

orthologous genomic region. Human T cells heterozygous for the variant have substantial 

reductions in accessible chromatin containing the risk allele, and insertion of the variant into 

Jurkat T cells reduced expression of BACH2, a transcriptional repressor that negatively regulates 

effector T cell differentiation8, and positively regulates regulatory T cell differentiation9 and T 

cell stemness10. Because the region containing rs72928038 is highly conserved, and the 
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orthologous region in mouse is also in a putative cis-regulatory element in mouse T cells, we 

created mice with a small deletion in the non-coding region overlapping rs72928038 to 

determine its effect on Bach2 and global expression of naïve T cells. We found rs72928038-

deleted mice to have naïve CD8 T cells with reduced Bach2 expression and reduced expression 

of naïve T cell stemness-associated genes, indicating that rs72928038 plays an important role in 

suppressing naïve T cell activation. This work demonstrates a framework for combining 

chromatin accessibility and MPRA to identify variants that impact risk for autoimmune disease 

and provides a clear example of how to move from variant prioritization to causal effects on 

cellular outcome in an organismic model. 

 

RESULTS 

Prioritizing autoimmune GWAS variants with MPRA. Because autoimmune disease-

associated genetic variants are highly enriched in T cell cis-regulatory elements1,2,5,6,11,12, we 

hypothesized that many disease-causal variants likely alter the activity of T cell cis-regulatory 

elements. One way to test the effect of variants on regulatory activities is through testing variant 

alleles for their differential effects on reporter expression in MPRA13–16.  To this end, we created 

MPRA libraries for variants associated with diseases in which T cells are known to play a role 

(henceforth collectively referred to as T-GWAS). These diseases include IBD (including CD and 

UC)17, MS18,19, T1D20, psoriasis21, and RA22.  

We collected 578 GWAS index variants (representing 531 distinct GWAS loci) and 

variants in tight LD (r2 > 0.8) from the above-cited studies, totaling 18,312 variants 

(Supplementary Table 1). To generate our MPRA, library alleles were synthesized as 200 bp 

elements centered within their genomic context. We also included 91 positive enhancer controls 
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and 506 negative controls used in a previous MPRA study (Supplementary Table 2)13. We 

barcoded the enhancer elements (~1,000 barcodes/element) and cloned them into the MPRA 

vector, followed by inserting a minimal promoter and GFP (Fig. 1a, Supplementary Fig.1a, 

Methods). After nucleofection of the library into Jurkat T cells, followed by RNA-sequencing of 

barcodes after 24 h, we found that barcode prevalence in plasmid and cDNA replicates was 

tightly correlated, and that some barcodes were more present in cDNA than in plasmid libraries, 

indicative of their higher expression (Supplementary Fig.1b; Supplementary Table 3). We found 

7,095 elements that had higher reporter expression than expected from their prevalence in 

plasmid libraries for at least one variant allele (termed putative cis-regulatory elements, pCREs; 

Supplementary Fig.1c; Supplementary Table 4); positive enhancer controls generally were 

pCREs, while negative controls had minimal expression (Supplementary Fig.1d). Of the 7,095 

pCRE elements, we found 313 variants that had statistically significant differences in expression 

between the reference and alternate alleles, which we term expression-modulating variants 

(emVars) (Fig. 1b; Supplementary Table 4).  

We next assessed whether there are specific cis-regulatory phenotypes in which emVars 

were preferentially found. We observed emVars were most highly enriched in transcription start 

site (TSS) regions and distal enhancers (Supplementary Fig. 2a and b), with particularly high 

enrichment at regions marked by H3K4me3, CAGE and DNase hypersensitivity sites (DHS) 

(Supplementary Fig. 2c), consistent with many emVars altering regulatory element activity. 

emVars were also more likely to have allelic bias in ATAC-seq data from hematopoietic cell 

types and to be a chromatin accessibility quantitative trait locus (caQTL) as compared to MPRA 

variants with no activity, and emVar allelic effects were correlated with allelic bias and QTL 

directionality from these data (Supplementary Fig. 3). Consistent with emVars disrupting 
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regulatory element activity and chromatin accessibility, we found that their allelic effects were 

correlated with computationally predicted allelic effects (“delta SVM”) in CD4 T cell enhancer 

elements, with most emVars showing directional concordance with the delta SVM score 

(Supplementary Fig. 4a). emVars were also much more likely to perturb a transcription factor 

(TF) motif (according to position weight matrices) when compared to all variants tested in the 

MPRA assay, with predicted TF binding also correlating strongly with the observed MPRA 

allelic bias for emVars (Supplementary Fig. 4b-d; Supplementary Tables 4-6). Therefore, T-

GWAS emVars enrich in regulatory regions and for variants that have orthogonal regulatory 

phenotypes and allele-specific activities. 

Since emVars enrich for variants that impact regulatory activity, we predicted that MPRA 

could be used to identify causal variants at GWAS loci. Most GWAS loci are thought to have 

one or a small number of causal variants, with remaining variants statistically associated with a 

given disease solely due to tight LD with the true causal variant(s). Consistent with this notion, 

of the 181 GWAS loci for which we found an emVar (31% of all assessed GWAS loci; 

Supplementary Fig. 5a), 120/181 loci had only one emVar, and 169/181 loci had four or fewer 

emVars (Supplementary Fig. 5b).   

To test if emVars are identifying causal variants, we next tested whether emVars are 

enriched for variants identified by statistical fine-mapping. We performed fine-mapping using 

PICS1 for all five autoimmune diseases (Supplementary Tables 7 and 8). Among the various 

statistical fine-mapping approaches available, we chose to use PICS as it does not require full 

GWAS summary statistics, which were unavailable for many of the diseases we analyzed. We 

tested whether emVars are enriched for high posterior probability variants at various posterior 

probability thresholds. When taking into account all GWAS loci, regardless of whether an 
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emVar was identified, emVars enriched up to 3.49-fold for causal variants according to PICS 

(Supplementary Fig. 6a; Supplementary Table 9). With an understanding that MPRA will not 

identify variants in all loci such as those where a coding variant is causal, we decided to test 

enrichments for loci where at least one emVar was identified. Within loci where we identified at 

least one emVar, we found that emVars were as much as 28.5-fold enriched for causal variants 

according to PICS (Fig. 1c; Supplementary Table 10). Among loci containing both an emVar and 

a high posterior probability fine-mapped SNP (posterior inclusion probability [PIP] > 0.5), 45% 

of the high PIP fine-mapped SNPs were also emVars. Since the T1D GWAS we used to create 

our MPRA library also contained statistical fine-mapping data20, we assessed the enrichment of 

emVars for statistically fine-mapped variants from this separate dataset, detecting up to a 4.17-

fold enrichment (Supplementary Fig. 6b). These data suggest that MPRA is a highly robust 

approach for prioritizing causal disease variants. 

To estimate the sensitivity and specificity of the MPRA, we again leveraged PICS 

statistical fine-mapping. We constructed credible sets of statistically fine-mapped variants (for 

example, an 80% credible set will contain the causal variant 80% of the time (Supplementary 

Table 7; see Methods)), similar to the approach utilized in a recent MPRA study14. At various 

PICS credible sets, we calculated the sensitivity of the MPRA to be 18.4% to 19.7.%, and 

specificity ranging from 90.8% to 95.0%. Thus, MPRA can prioritize causal variants at a fifth of 

all loci while maintaining high specificity.  

 

emVars in T cell accessible chromatin occur near genes that regulate T cell function. We 

found that active elements within our MPRA were enriched for regions of accessible chromatin 

from T cells and other hematopoietic cell types compared to non-hematopoietic cell types (Fig. 
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2a), suggesting that MPRA regulatory activity accurately reflects the transcriptional regulation of 

the cell type in which it is tested. However, because MPRA evaluates the regulatory activity of a 

sequence outside its genomic context, effects of variants measured by MPRA may differ from 

the true endogenous effects. We previously performed MPRA on all common variants near 

TNFAIP3 and observed a higher enrichment for putatively disease-causal variants when taking 

the intersection of MPRA results and regions of accessible chromatin6. To assess whether these 

prior findings extend to our genome-wide T-GWAS MPRA experiment, we compared all 

variants tested in MPRA to those that were in DHS regions in T cells. Of the 313 emVars, 60 

overlapped a T cell DHS peak (Supplementary Table 4). For genetic associations that had at least 

one emVar in accessible chromatin, we found up to 57.8-fold enrichment for causal variants 

according to PICS (Fig. 2b and Supplementary Table 10; when taking into account all GWAS 

loci tested, there was a 9.3-fold enrichment for causal variants according to PICS, Supplementary 

Fig. 7 and Supplementary Table 9).   We calculated sensitivity and specificity for emVars within 

PICS credible sets at loci where any variant on the haplotype overlapped a T cell DHS peak. 

When subsetting loci for those with a variant in DHS, MPRA achieved a sensitivity ranging from 

23.1% to 25.5% and specificity ranging from 81.1% to 91.7%. Therefore, emVars that are 

present in the accessible chromatin of T cells enriched strongly for causal variants, and to a much 

greater extent than either methodology alone. 

Many emVars in accessible chromatin were near (and in most cases were eQTLs for) 

genes with important roles in T cell biology, including genes that regulate T cell differentiation 

(BACH2, EOMES, RORC, CEBPB), signal transduction (CD28, CTLA4, ICOS, STAT1, STAT2, 

STAT4, IRF5, NFKB1, NFKB2, RELA, SOCS1), cytokine production (IL2, IL21, IL23), and 

migration (CCR6) (Fig. 2c). rs654690, associated with psoriasis, IBD, and RA, falls 
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preferentially in the accessible chromatin of Tregs and contacts the TAGAP promoter ~50kb 

downstream23; TAGAP is a gene that has been shown to play a role in Th17 cell differentiation 

and thymocyte trafficking24–26 (Fig. 3a). The rs654690 disease-risk allele depends on the disease: 

the RA risk-increasing allele (C) decreases MPRA activity, while the psoriasis and IBD risk-

increasing allele (T) increases MPRA activity (Fig. 2c). Disease-risk alleles for two variants, 

rs142738614, associated with MS, RA, and UC, and rs3807306, associated with RA, were in 

moderate LD to each other (r2 = 0.7), and in separate regulatory elements of IRF5, a gene with 

many roles in immunity, including T cell-intrinsic roles that modulate signaling, migration, and 

differentiation27 (Supplementary Fig. 8a). The risk alleles for both variants drove an increase in 

reporter expression (Fig. 2c). rs55728265, associated with CD and T1D, is in the 5′ UTR of 

RASGRP1, a gene that regulates T cell signaling and differentiation28,29 (Supplementary Fig. 8b); 

the rs55728265 risk allele increases reporter expression (Fig. 2c). rs72928038, associated with 

T1D, RA, and MS, is within an intron of BACH2, a gene involved in suppressing effector CD4 

and CD8 T cell differentiation, while promoting regulatory T cell differentiation8,9 and T cell 

stemness10 (Fig. 3b). This variant falls preferentially within the accessible chromatin of naïve T 

cells and contacts the BACH2 promoter in naïve T cells23, with the risk allele reducing reporter 

expression (Fig. 2c). Collectively, these data suggest that disease-associated emVars that act in T 

cell regulatory regions regulate genes known to play a role in T cell signaling, differentiation, 

and function. 

 

An emVar in accessible chromatin reduces BACH2 expression. We further characterized 

rs729282038, as it displayed one of the strongest allelic biases in reporter activity in the MPRA 

(Fig. 2c). We first validated our MPRA results for rs72928038 using a luciferase assay in Jurkat 
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T cells. We cloned a construct that contained either allele of rs72928038 centered in 300 bp of 

native genomic sequence upstream of the BACH2 promoter. We found that the risk allele (A) had 

lower luciferase activity (Supplementary Fig. 9a). There were two other statistically fine-mapped 

variants in the locus, rs10944479 (PICS probability 0.0458 in MS GWAS) and rs6908626 

(posterior probability 0.0894 in MS GWAS) (in comparison, rs72928038 had posterior 

probability of 0.865 for MS GWAS). Neither of these variants were found to have allelic bias in 

the MPRA. These data suggest that, rs72928038 is the only variant in the credible set that alters 

regulatory activity (Fig. 4a).  

rs729282038 is an eQTL specifically in naïve CD4, naïve CD8, and naïve regulatory T 

cells (but not other immune or T cell types) with the risk allele (A) associated with lower 

expression of BACH230. If rs72928038 acts through modulating enhancer activity in T cells to 

alter BACH2 expression, one may expect the variant to reside in accessible chromatin of T cells, 

but not of other cell types. Indeed, we found rs72928038 is located in accessible chromatin 

specifically in T cells, and not in B cells or monocytes (Fig. 4b). To assess differences in 

chromatin accessibility between alleles, we surveyed CD4 T cells from healthy donors who were 

heterozygous at rs72928038 and observed the non-risk allele (G) to be preferentially present in 

accessible chromatin (Fig. 4c; Supplementary Table 11).  The 328 bp region surrounding 

rs72928038 is annotated as a candidate cis-regulatory element by ENCODE (EH38E2485452)31 

and the risk allele is predicted to disrupt binding motifs for ETS or STAT family TFs (Fig. 4b; 

Supplementary Table 5). Furthermore, based on published promoter-capture HiC data, the region 

surrounding rs72928038 physically interacts with the BACH2 promoter specifically in naïve T 

cells, but not other immune cell types (Supplementary Fig. 9b), suggesting that the risk allele of 

rs72928038 regulates BACH2 expression in T cells through reducing cis-regulatory activity. 
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We next sought more direct functional evidence for the role of rs72928038 in altering 

BACH2 expression. To do this, we used a cytosine base editor along with a guide RNA targeting 

rs72928038 to introduce the risk allele into the native genomic context in Jurkat T cells, which 

are homozygous for the non-risk allele (Methods)32 (Fig. 4d and Supplementary Fig. 10). Within 

the pool of nucleofected cells, we found 95% edited cells, with a range of bases edited in the 

editing window including specific edits of the variant of interest. To assess the effect of the risk 

variant on BACH2 expression, we used PrimeFlow, which uses in situ hybridization of antisense 

probes to the BACH2 transcript, followed by signal amplification, fluorescent labeling, and 

fluorescence-activated cell sorting to isolate cells that have either high or low BACH2 expression 

(Supplementary Fig. 10)6,7. For each bin, we sequenced the rs72928038 region and compared the 

prevalence of amplicons containing the edited risk allele to those without edits, finding that the 

risk variant reduces BACH2 expression (Fig. 4e, left). However, since unedited cells were only 

5% of the cell population, the estimated expression levels of BACH2 in the WT cells were 

variable leading to unstable estimates of effect. To address this, we created a second condition 

with cells nucleofected with base editor and either a guide RNA targeting rs72928038 or a safe 

harbor sequence, and then combined these cells at a 50/50 ratio, again finding that the base-

edited risk variant confers reductions in BACH2 expression (Fig. 4e, right; Supplementary Fig. 

10).  Together, these experiments show that the rs72928038 risk allele reduces the expression of 

BACH2 in a human T cell line.  

 

Deletion of the orthologous non-coding element containing rs72928038 in mice leads to 

reduced expression of T cell stemness genes. To investigate the phenotypic effects of the 

regulatory region containing rs72928038 in primary naïve T cells, ideally one would isolate 
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naïve T cells from secondary lymphoid organs, where they reside in T cell zones awaiting 

activation by an antigen presenting cell. Since these secondary lymphoid organs are easily 

harvested from mice, we explored the use of mice to study the effect of rs72928038 on naïve T 

cells. We first assessed conservation between human and mouse at the site of the variant. 

Through synteny analysis of the locus between human and mouse, we found that the variant 

exists on mouse chromosome 4 within an intron of Bach2, similar to its position with respect to 

BACH2 in the human genome (Fig. 5a). The 328 bp human cCRE containing rs72928038 is 

51.2% conserved between species, with especially high conservation in the 16 bps surrounding 

rs72928038 (Fig. 5a). Additionally, at the orthologous region, mouse T cells have accessible 

chromatin, H3K27ac deposition, and we found both ETS1 and STAT TFs bind (Supplementary 

Fig. 11a)33, consistent with the epigenetic profile observed in human T cells. Based on these 

findings, we created a mouse line containing an 18bp deletion of the non-coding region 

overlapping the variant using CRISPR-mediated genome editing (Bach218del; Fig. 5b, 

Supplementary Fig. 11a).  

Using these mice, we performed experiments to determine if primary mouse naïve T cells 

containing the deletion had reduced Bach2 expression and altered expression of other important 

genes that play a role in T cell biology. Bach2-ablated mice have previously been shown to have 

aberrant CD8 T cell activation8. To assess whether deletion of the variant alters naïve CD8 T cell 

phenotypes in mice, we sorted naïve CD8 T cells from Bach218del and WT mice and analyzed 

their transcriptomes via BRB-seq34. We found Bach218del naïve CD8 T cells to have altered 

transcriptional programs according to principal components analysis (PCA) and reduced Bach2 

expression compared to WT littermates (Fig. 5c and d). Through differential expression analysis, 

we found 47 differentially expressed genes (Fig. 5e; Supplementary Table 12). Genes more 
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highly expressed in Bach218del naïve CD8 T cells were enriched for KLRG1lo effector CD8 T cell 

gene sets (Supplementary Table 13), as well as for a gene set in which CD8 T stem-like memory 

cells (Tscms) were perturbed with CRISPR/Cas9 targeted against Bach2 (Fig. 5f; Supplementary 

Fig. 11b)10. We found 66% of the differentially expressed genes from Bach218del naïve CD8 T 

cells have the same directionality in Bach2 guide RNA targeted Tscms (Supplementary Fig. 

11c). Similar to Bach2-perturbed Tscms, Bach218del naïve CD8 T cells had significantly reduced 

CD62L surface expression (Fig. 5g), concomitant with a reduction in Lef1 and Myb expression 

(Fig. 5h); these TFs are required to maintain stemness of naïve T cells and Tscms, and are 

downregulated during effector T cell differentiation10,35–37. In addition, Bach218del naïve CD8 T 

cells showed a reduction in Elf4 and a significant upregulation of ribosomal protein mRNAs, 

both indications of early T cell stimulation38,39 (Fig. 5e and h). Bach218del naïve CD8 T cells also 

had reduced expression of Pten and Itch, both negative regulators of signaling that are required 

for suppressing effector T cell differentiation40,41 (Fig. 5h). Thus, deletion of the orthologous 

non-coding region containing rs72928038 in mice leads to reduced features of naïve T cell 

stemness and indications of early T cell activation. 

 

DISCUSSION 

Identifying mechanisms that drive genetic risk for autoimmunity and other complex phenotypes 

remains a substantial challenge. Most autoimmune genetic associations have many variants in 

tight LD to the lead variant3, and the majority of these variants have not been functionally 

characterized using a systematic approach within disease-relevant cell types. Here, using a 

combination of MPRA and T cell chromatin accessibility, we identify 60 variants associated with 

five autoimmune diseases that enrich 57.8-fold for causal variants according to statistical fine-
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mapping. Collectively, these data demonstrate that this combination of methods serves as a 

robust prioritization scheme for identifying causal variants for disease associations. Many 

GWAS loci with T-GWAS emVars are near genes that regulate T cell function, or those that are 

known to dysregulate T cells in the context of autoimmune disease. One of the variants with high 

allelic bias in MPRA was rs72928038, a variant in an intron of BACH2. We found the 

rs72928038 risk allele was less present in chromatin accessibility data from T cells harvested 

from humans heterozygous for rs72928038, and base editing of the rs72928038 risk allele in a 

human T cell line reduced BACH2 expression. We also engineered mice that have an 18 bp 

deletion overlapping orthologous rs72928038 (Bach218del), and found that their naïve CD8 T 

cells had reduced Bach2 expression, as well as reduced expression of transcriptional regulators 

of T cell stemness and indications of early T cell activation.  

By applying MPRA, we substantially enriched for statistically fine-mapped GWAS 

variants, an enrichment that was further magnified when combining these data with chromatin 

accessibility data from T cells. Combining MPRA and accessible chromatin data was an 

effective strategy, possibly because chromatin accessibility, which provides an endogenous 

measure of cis-regulatory activity from relevant cell types, acts as a stringency filter for MPRA, 

which is plasmid-based. This strategy was further supported by an increase in sensitivity for 

identifying credible set variants from 18.4-19.7%  to 23.1-25.5% while maintaining a specificity 

of 81.1-91.7%. Other prioritization methodologies could also be applied in tandem such as allele-

specific ATAC-seq12, CRISPR-inhibition7,42, and SELEX43, among others. However, requiring a 

variant to score for multiple methodologies may substantially increase type II error, as different 

methods tend to test different genomic features and have variable signal-to-noise ratios6. Thus, 

combining data from orthogonal tests of variant action with high signal-to-noise ratios, such as 
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MPRA and accessible chromatin, could provide a reasonable balance between sensitivity and 

specificity6. Because perturbational and statistical fine-mapping are still imperfect approaches, 

discovery of causal variants still requires further mechanistic evaluation, ideally within systems 

that recapitulate the (patho)-physiological environment of the disease. 

While we discovered emVars for ~31% of GWAS loci studied, there are a variety of 

reasons why many loci did not contain an identified emVar. We found emVars to be enriched in 

TSS regions, thus this methodology may have increased sensitivity for variants that alter 

promoter activity. We performed the MPRA in unstimulated conditions, although variants may 

disrupt TFs that are downstream of signaling cascades following T cell stimulation or 

differentiation into specific effector cell subsets (e.g., Th1, Th2, Th17, Treg, Tfh). Stimulation 

with various ligands in eQTL studies has been crucial for identifying variants that were 

otherwise inactive at baseline44–46. Other cell types also likely play a role in these autoimmune 

diseases; beta cell accessible chromatin is enriched for T1D-associated variants, especially after 

stimulation with pro-inflammatory cytokines47, B cell accessible chromatin enriches for MS-

associated variants48, skin cell accessible chromatin enriches for psoriasis49, and intestinal CAGE 

data enriches for IBD-associated variants50. Variants in GWAS loci may have roles beyond 

disrupting cis-regulatory elements, such as coding mutations, altering the activity of untranslated 

regions (UTRs), or promoting alternative splicing. These actions are unlikely to be identified by 

MPRAs designed to test how variants modulate regulatory region activity, but alternative 

massively parallel methodologies have been created to address how variants may alter UTR 

function and alternative splicing51,52. Thus, applying the prioritization scheme of MPRA + 

accessible chromatin and other methodologies to a wider range of cell types and stimulation 

conditions could unveil additional likely causal variants. 
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Using our MPRA and accessible chromatin prioritization scheme, we found variants in 

GWAS loci that were highly relevant to T cell biology, including rs72928038 in the BACH2 

locus. We selected rs72928038 for further mechanistic studies due to its high allelic bias in 

MPRA and the strength of genetic and epigenetic evidence supporting the variant. Through base 

editing the variant in Jurkat T cells and deleting the orthologous region surrounding the variant 

in mice, we found rs72928038 and the regulatory region in which it is contained altered T cell 

BACH2 expression. Similar to Bach2-deficient CD8 stem-like memory cells from a separate 

study10, we observed that Bach218del naïve CD8 T cells have reductions in stem-associated TFs 

Lef1, Myb, antiproliferative TF Elf4, signaling attenuators Pten and Itch, and a reduction in 

surface expression of CD62L. We also found an increase in expression of ribosomal genes, 

indicative of early T cell stimulation39. Consistent with increased activation, we saw enrichments 

of effector CD8 T cell gene programs. Collectively these data suggest that the Bach218del naïve 

CD8 T cells may have a reduced threshold for activation. However, Bach218del naïve CD8 T cells 

do not appear to have phenotypes of fully differentiated effector cells (e.g., increased expression 

of Gzmb, Klrg1 and Cd44), possibly due to only partial Bach2 reduction mediated by removing 

only a single regulatory element as opposed to deletion of the gene. Indeed several TFs have 

been noted to act in a graded manner to promote transcription and cell fate during the 

differentiation of CD8 T cells53,54, and mice heterozygous for the deletion of Bach2 show 

intermediate effects on T cell differentiation between WT and homozygous mice9. Other than 

naïve T cells, further dissection will be required to understand the effects of rs72928038 on 

subsets of T cells that are known to require BACH2 for fate determination, such as Tscms, 

memory T cells, and Tregs8–10. Thus, organismic models, such as the Bach218del mice, provide 
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rare insight into the physiological effects of variants and their regulatory elements within living 

systems. 

In summary, this work provides a scalable and high-yield prioritization scheme to 

identify likely causal variants at high specificity. We find 60 likely causal variants that have 

significant evidence for acting in T cells, and direct evidence of a variant that reduces Bach2 

expression and transcriptional hallmarks of naïve T cells and T cell stemness. Together, this 

work demonstrates a clear path for addressing the long-term obstacle of defining causal variants 

for complex traits and their effects on gene regulation and cellular and organismal functions. 

 

METHODS 

Cell lines  

For MPRA, luciferase, and base editing experiments, we used low passage aliquots of the Jurkat 

T cell line (ATCC TIB-152™), maintaining the culture under 20 passages. Cells were grown at 

37 °C maintaining cultures between 1x105 and 1x106 cells per mL.  

Study subjects 

The study was performed in accordance with protocols approved by the institutional review 

board at Partners (Brigham and Women’s Hospital, Massachusetts General Hospital, Dana-

Farber Cancer Institute, Boston, USA) and Broad Institute (USA) Research Ethics Committee, as 

well as the Feinstein Institute for Medical Research, Northwell Health institutional review board 

(Manhasset New York, USA). All donors provided written informed consent for the genetic 

research studies and molecular testing. Healthy donors were recruited from the Sisters of Lupus 

Erythematosus patients (SisSLE) Research Study based in Manhasset, NY, and the Boston-based 

PhenoGenetic project, a resource of healthy subjects.  
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GWAS data 

Lead SNPs were obtained from GWAS for T1D20, RA22, psoriasis21, IBD17, and MS18,19. We 

collected 578 GWAS lead SNPs from these studies, representing 531 distinct GWAS loci. We 

identified all proxy SNPs (r2 ≥ 0.8) for each lead SNP based on 1000 Genomes Phase 3 European 

subset. Proxy SNPs were identified using PLINK v1.90b3.3260 (www.cog-

genomics.org/plink/2.0/) with parameters --r2 --ld-window-kb 2000 --ld-window 999999 --ld-

window-r2 0.8 . There were 20792 total proxy SNPs across the 578 GWAS loci (18324 unique 

proxy SNPs across these 531 distinct GWAS loci).  

MPRA 

MPRA oligo synthesis and cloning was adapted from refs 6,13. Each allele was tagged with an 

average of ~1,000 DNA barcodes. Oligos were synthesized by Agilent Technologies containing 

170 bp of genomic context and 15 bp of adapter sequence at either end (5′-

ACTGGCCGCTTGACG[170 bp oligo]CACTGCGGCTCCTGC-3′; Supplementary Table 14; 

200 bp total). 20 bp barcodes and additional adapter sequences were added by performing 28 

emulsion PCR reactions, each 50 μL in volume containing 1.86 ng of oligo, 25 μL of Q5 

NEBNext MasterMix (NEB, M0541S), 1 unit Q5 HotStart polymerase (NEB, M0493S), 0.5 μM 

MPRA_v3_F and MPRA_v3_20I_R primers (Supplementary Table 14) and 2 ng BSA (NEB, 

B9000). PCR master mix was emulsified by vortexing with 220 μL Tegosoft DEC (Evonik), 

60 μL ABIL WE (Evonik) and 20 μL mineral oil (Sigma, M5904) per 50 μL PCR reaction at 

4 °C for 5 min. 50 μL of emulsion mixture was added to each well of a 96-well plate and cycled 

with the following conditions; 95 °C for 30 s, 15 cycles of (95 °C for 20 s, 60 °C for 10 s, 72 °C 

for 15 s), 72 °C for 5 min. Amplified emulsion mixture was broken and purified by adding 1 mL 

of 2-butanol (VWR, AA43315-AK), 50 μL of AMPure XP SPRI (Beckman Coulter, A63881) 
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and 80 μL of binding buffer (2.5 M NaCl, 20% PEG-8000) per 350 μL of emulsion mix and 

vigorously vortexed, followed by incubation for 10 min at room temperature. Broken 

emulsion/butanol mixture was spun at 2900 × g for 5 min and the butanol phase was discarded. 

The aqueous phase was placed on a magnetic rack for 20 min prior to aspiration. Remaining 

beads were washed once with 2-butanol, three times with 80% EtOH and eluted in EB (Qiagen, 

19086) to yield the barcoded oligo pool. 

To create our mpra∆orf library, barcoded oligos were inserted into SfiI digested 

pGL4.23∆xba∆luc by Gibson Assembly (NEB, E2611) using 1.1 μg of oligos and 1 μg of 

digested vector in a 40 μL reaction incubated for 60 min at 50 °C followed by AMPure XP SPRI 

purification and elution in 20 μL of EB. Half of the ligated vector was then transformed into 

200 μL of EnduraTM ElectroCompetent  E. coli (Lucigen, 60242-2) by electroporation (1.8 kV, 

600 Ω, 10 μF). Electroporated bacteria were immediately split into eight 1 mL aliquots of SOC 

(NEB, B9020S) and recovered for 1 h at 37 °C then independently expanded in 20 mL of LB 

supplemented with 100 μg/mL of carbenicillin (EMD, 69101-3) on a floor shaker at 37 °C for 

6.5 h. After outgrowth, aliquots were pooled prior to plasmid purification (Qiagen, 12963). For 

each of the aliquots, we plated serial dilutions after SOC recovery and estimated a library size of 

~4 × 107 CFUs, representing ~1000 barcodes per allele. 

To insert minP and GFP ORF, 20 μg of mpra:∆orf plasmid was linearized with AsiSI 

(NEB, R0630S) and 1x CutSmart buffer (NEB, B7204S) in a 500 μL volume for 3.5 h at 37 °C, 

followed by bead inactivation for 20 m at 80 °C and SPRI cleaning. An amplicon containing 

minP, the GFP open-reading frame, and a partial 3′ UTR was then inserted by Gibson assembly 

using 10 μg of AsiSI linearized mpra∆orf plasmid, 33 μg of the minP/GFP amplicon in 400 μL of 

total volume for 90 min at 50 °C followed by a 1.5× beads/sample SPRI purification. The total 
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recovered volume was digested a second time to remove remaining uncut vectors by incubation 

with AsiSI in a 100 μL reaction for 6 h at 37 °C followed by Ampure XP purification and elution 

with 55 μL of Buffer EB. 

10 μL of the mpra:minP:gfp plasmid was electroporated (1.8 kV, 600 Ω, 10 μF) into 

200 μL of Endura cells. Electroporated bacteria was split across six tubes and each recovered in 

2 mL of SOC for 1 h at 37 °C then added to 500 mL of LB with 100 μg/mL of carbenicillin and 

grown for 9 h at 37 °C prior to plasmid purification (Qiagen, 12991). The plasmid prep was then 

normalized to 1 μg/μL to generate the final mpra:minP:gfp library used for transfection delivery. 

For all transfections, cells were grown to a density of ~1 × 106 cells/mL, and 1 × 108 cells 

were used for each experiment. Cells were collected by centrifugation at 300 × g and eluted in 

1 mL of RPMI with 100 μg of mpra:minP:gfp library. Electroporation was performed in 100 μL 

volumes with the Neon transfection system (Life Technologies) applying three pulses of 1600V 

for 10 ms each into Jurkat T cells. Using separate control transfections, we achieved transfection 

efficiencies of 40–60% for all replicates. Cells were allowed to recover in 200 mL in RPMI with 

15% FBS for 24 h before being collected by centrifugation, washed once with PBS, collected and 

frozen at −80 °C. 

Total RNA was extracted from cells using QIAGEN Maxi RNeasy (QIAGEN, 75162) 

following the manufacturer’s protocol including the on-column DNase digestion. A second 

DNase treatment was performed on the purified RNA using 5 μL of Turbo DNase (Life 

Technologies, AM2238) with buffer, in 750 μL of total volume for 1 h at 37 °C. The digestion 

was stopped with the addition of 7.5 μL 10% SDS and 75 μL of 0.5 M EDTA followed by a 5-

min incubation at 70 °C. The total reaction was then used for pulldown of GFP mRNA. Water 

was added to the DNase-digested RNA to bring the total volume to 898 μL to which 900 μL of 
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20X SSC (Life Technologies, 15557-044), 1800 μL of Formamide (Life Technologies, AM9342) 

and 2 μL of 100 μM biotin-labeled GFP probe (GFP_BiotinCapture_1-3, IDT, Supplementary 

Table 14) were added and incubated for 2.5 h at 65 °C. Biotin probes were captured using 400 μL 

of pre-washed Streptavidin beads (Life Technologies, 65001) eluted in 500 μL of 20X SSC. The 

hybridized RNA/probe bead mixture was agitated on a nutator at room temperature for 15 min. 

Beads were captured by magnet and washed once with 1× SSC and twice with 0.1× SSC. Elution 

of RNA was performed by the addition of 25 μL water and heating of the water/bead mixture for 

2 min at 70 °C followed by immediate collection of eluent on a magnet. A second elution was 

performed by incubating the beads with an additional 25 μL of water at 80 °C. A final DNase 

treatment was performed in 50 μL total volume using 1 μL of Turbo DNase with addition of the 

buffer incubated for 60 min at 37 °C followed by inactivation with 1 μL of 10% SDS and 

purification using RNA clean SPRI beads (Beckman Coulter, A63987). 

First-strand cDNA was synthesized from half of the DNase-treated GFP mRNA with 

SuperScript III and a primer specific to the 3′ UTR (MPRA_v3_Amp2Sc_R, Supplementary 

Table 14) using the manufacturer’s recommended protocol, modifying the total reaction volume 

to 40 μL and performing the elongation step at 47 °C for 80 min. Single-stranded cDNA was 

purified by SPRI and eluted in 30 μL EB. 

To minimize amplification bias during the creation of cDNA tag sequencing libraries, 

samples were amplified by qPCR to estimate relative concentrations of GFP cDNA using 1 μL of 

sample in a 10 μL PCR reaction containing 5 μL Q5 NEBNext master mix, 1.7 μL SYBR Green I 

diluted 1:10,000 (Life Technologies, S-7567) and 0.5 μM of TruSeq_Universal_Adapter and 

MPRA_Illumina_GFP_F primers (Supplementary Table 14). Samples were amplified with the 

following qPCR conditions: 95 °C for 20 s, 40 cycles (95 °C for 20 s, 65 °C for 20 s, 72 °C for 
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30 s), 72 °C for 2 min. The number of cycles for sample amplification was 1−n (the number of 

cycles it took for each sample to pass the threshold) from the qPCR. To add Illumina sequencing 

adapters, 10 μL of cDNA samples and mpra:minP:gfp plasmid control (diluted to the qPCR cycle 

range of the samples) were amplified using the reaction conditions from the qPCR scaled to 

50 μL, excluding SYBR Green I. Amplified cDNA was SPRI purified and eluted in 40 μL of EB. 

Individual sequencing barcodes were added to each sample by amplifying the entire 40 μL 

elution in a 100 μL Q5 NEBNext reaction with 0.5 μM of TruSeq_Universal_Adapter primer and 

a reverse primer containing a unique 8 bp index (Illumina_Multiplex, Supplementary Table 14) 

for sample demultiplexing post-sequencing. Samples were amplified at 95 °C for 20 s, six cycles 

(95 °C for 20 s, 64 °C for 30 s, 72 °C for 30 s), 72 °C for 2 min. Indexed libraries were SPRI 

purified and pooled according to molar estimates from Agilent TapeStation quantifications. 

Samples were sequenced using 1 × 30 bp chemistry on a NextSeq 2000 (Illumina). 

To determine oligo/barcode combinations within the MPRA pool, Illumina libraries were 

prepared from the mpra∆orf plasmid library by performing five separate amplifications with 

200 ng of plasmid in a 100 μL Q5 NEBNext PCR reaction containing 0.5 μM of 

TruSeq_Universal_Adapter and MPRA_v3_TruSeq_Amp2Sa_F primers (Supplementary Table 

14) with the following conditions: 95 °C for 20 s, 6 cycles (95 °C for 20 s, 62 °C for 15 s, 72 °C 

for 30 s), 72 °C for 2 min. Amplified material was SPRI purified using a 0.6 × bead/sample ratio 

and eluted with 30 μL of EB. Sequencing indexes were then attached using 20 μL of the eluted 

product and the same reaction conditions as for the tag-seq protocol, except the number of 

enrichment cycles was lowered to 5. Samples were molar pooled and sequenced using 2 × 150 bp 

chemistry on an Illumina NextSeq 2000. 

MPRA analysis 
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Barcode sequencing results from the MPRA were analyzed as previously described13. Briefly, 

the sum of the barcode counts for each oligo was provided as input to DESeq2 and replicates 

were median normalized followed by an additional normalization of the RNA samples to center 

the RNA/DNA activity distribution over a log2 fold change of zero72. Oligos showing differential 

expression relative to the plasmid input were identified by modeling a negative binomial 

distribution with DESeq2 and applying a false discovery rate (FDR) threshold of 1%. For 

sequences that displayed significant MPRA activity, a paired two-sided Student’s t-test was 

applied on the log-transformed RNA/plasmid ratios for each experimental replicate to test 

whether the reference and alternate allele had similar activity. An FDR threshold of 10% was 

used to identify SNPs with a significant difference in MPRA activity between alleles (emVars). 

Genomic data integration and enrichment analyses 

DHS data across 733 samples was obtained from 4. Pre-processed DHS peaks lifted to hg19 were 

downloaded from https://zenodo.org/record/3838751#.X_IA7-lKg6U. For each of 261 unique 

cell types, DHS peaks were merged across replicates of the same cell type. To assess enrichment 

between DHS sites for each cell type and MPRA data, we counted the number of MPRA variants 

with regulatory activity (i.e., pCRE) overlapping the genomic interval bed file for each cell type. 

We then constructed a 2 x 2 contingency table based on whether the MPRA SNP showed 

regulatory activity (i.e., pCRE) or had no regulatory activity, and whether the SNP intersected a 

genomic interval or not. P values were calculated based on a two-sided Fisher’s exact test. 

Multiple testing correction was performed using Bonferroni correction by taking an alpha of 0.05 

divided by the number of unique cell types tested (n=261).  

Histone ChIP-seq data were obtained from the ENCODE project for all available human 

CD4 positive alpha-beta T cell samples. For each cell type, all available ChIP-seq peak call sets 
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for H3K4me1, H3K4me3, H3K27ac, and H3K36me3 aligned to hg19 were downloaded in bed 

file format. If multiple replicates were available, peaks call sets were merged using the merge 

function in BEDTools v2.26.061.  Human CAGE-based enhancer sequences were downloaded 

from https://fantom.gsc.riken.jp/5/datafiles/latest/extra/Enhancers/ in bed file format. 

chromHMM annotations in the 18 chromatin state model were obtained for primary T cells from 

peripheral blood (E034) from the Roadmap Epigenomics Project 

(https://egg2.wustl.edu/roadmap/data/byFileType/chromhmmSegmentations/ChmmModels/core

_K27ac/jointModel/final/) in bed file format. To assess enrichment between each of these 

genomic datasets and MPRA data, we counted the number of emVar SNPs overlapping the 

genomic interval bed file. We then constructed a 2 x 2 contingency table based on whether the 

SNP showed MPRA activity (i.e., emVar) or had no MPRA activity, and whether the SNP 

intersected a genomic interval or not. P values were calculated based on a two-sided Fisher’s 

exact test. Multiple testing correction was performed using Bonferroni correction by taking an 

alpha of 0.05 divided by the number of genomic annotations tested.  

Transcription factor enrichment 

To calculate the predicted effect of each MPRA variant on TF binding, we applied motifbreakR 

version 2.4.062. For each single nucleotide substitution in the MPRA data, we calculated 

predicted TF binding scores for the reference and alternate alleles. We used the sum of log 

probabilities approach in motifbreakR, applied to all TF position-weighted matrices in 

HOCOMOCO v1063. All MPRA SNPs with a difference in TF binding scores between the 

reference and alternate alleles at P < 1x10-5 were considered to be significant. 

To assess overlaps between MPRA SNPs and TF binding motifs derived from ChIP-seq, 

we applied HOMER v4.1064. For each emVar, we generated sequences in a ± 100 bp window 
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around the emVar SNP. We then generated background sequences in a  ± 100 bp window around 

all variants tested in the MPRA. To calculate enrichments, we applied findMotifGenome.pl in 

HOMER with -size 200; all other default parameters were used. Enrichments were tested against 

the library of all known TF motifs available in HOMER. 

ATAC-seq skew and QTL enrichment 

To assess enrichment of MPRA SNPs at sites of allelic skew in open chromatin regions, we 

downloaded significant allelic skew SNPs from Calderon et al.12. We used all available 

unstimulated hematopoietic cell types. For SNPs with evidence of skew across multiple samples 

or cell types, we summed the reference and alternate allele counts for that SNP across the cell 

types. To assess enrichment of MPRA SNPs at ATAC-QTLs, we downloaded primary T-cell 

ATAC-QTLs from65.  

In silico predictions of effect of regulatory activity 

We applied deltaSVM v1.366 to predict the effect of MPRA SNPs on regulatory activity. This 

method uses a classifier (gkm-SVM) to encode cell-specific regulatory sequence vocabularies, 

and then subsequently deltaSVM quantifies the effect of a SNP as the change in gkm-SVM 

score). To apply deltaSVM, we downloaded pre-computed gkm-SVM weights derived from 

ENCODE2 enhancers in naïve CD4 T cells. We then used deltasvm.pl from the software 

developers to calculate deltaSVM scores for each emVar. Default parameters were used 

throughout. 

PICS fine-mapping and enrichment analyses 

For each GWAS locus, PICS1 was applied to all SNPs in LD (r2 ≥ 0.8) to the lead SNP at based 

on the 1000 Genomes Phase 3 European subset using PLINK v1.90b3.32 with parameters --r2 --

ld-window-kb 2000 --ld-window 999999 --ld-window-r2 0.8. GWAS association P values for 
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lead SNPs were obtained from the EMBL GWAS catalog56 on August 10, 202056. If the same 

lead SNP was seen multiple times in the GWAS catalog for either the same disease or multiple 

diseases, the most significant lead SNP P value was used. Given long-range patterns of high LD, 

we excluded the human MHC locus (chr6:29691116-33054976 in hg19) and excluded any lead 

SNP where the most significant GWAS association P value did not reach 5 x 10-8. In total, 512 

GWAS loci were analysed.  PICS fine-mapping posterior probabilities were calculated using a 

custom PERL script. Of note, in the scenario where a lead SNP was seen multiple times (either 

across the same disease or shared by different diseases), all proxy SNPs to the lead SNP were 

assigned based on the most significant lead SNP association P value, and PICS probabilities 

were calculated for both this lead SNP and its proxies. 

We defined SNPs as being statistically fine-mapped based on either if it had a posterior 

probability greater than a given threshold, or if it was in a fine-mapping credible set. We used 

posterior probability thresholds of ≥  0.01, 0.05, 0.1, 0.2, 0.3, or 0.5. We also calculated credible 

sets of fine-mapping variants. An X% credible set is expected to contain the true causal variant 

X% of the time. To generate credible sets, we greedily summed up the highest fine-mapping 

posterior probabilities at each locus until reaching a cumulative X%.  We further required all 

credible set variants to have a fine-mapping posterior probability ≥ 0.01.  

To calculate enrichment of MPRA emVars in PICS fine-mapped SNPs, we determined 

for each MPRA variant whether it was a PICS statistically fine-mapped SNP (i.e., had a PICS 

probability greater than a given threshold) and whether the fine-mapped SNP showed MPRA 

activity (i.e., emVar). From this, we constructed 2 x 2 contingency tables. We then calculated 

variant-level enrichment (𝐸!), represented as a risk ratio: 

𝐸! =
(𝑛!"#$#)/(𝑛!"#$# 	+ 	𝑛!"#$%	)
(𝑛!"%$#)/(𝑛!"%$# +	 	𝑛!"%$%)
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Here, 𝑛!refers to the number of variants. Superscript 𝑀 refers to whether the variant is an 

emVar (𝑀 + if emVar, 𝑀 − otherwise). Superscript 𝑃refers to whether the SNP is a statistically 

fine-mapped SNP by PICS (𝑃 + if PICS fine-mapped, 𝑃 − otherwise). We can then construct a 2 

x 2 contingency table with values 𝑛!"#$#, 𝑛!"#$%, 𝑛!"%$#, and 𝑛!"%$%. Statistical significance 

was calculated using a two-sided Fisher’s exact test based off this 2 x 2 contingency table. 

We similarly calculated enrichment of MPRA variants overlapping T cell DHS sites in 

PICS statistically fine-mapped SNPs. We determined for each MPRA variant whether it directly 

overlapped a T cell DHS site and whether it was a PICS fine-mapped SNP (i.e., had a PICS 

probability greater than a given threshold). We then calculated variant-level enrichment (𝐸! ) 

represented as a risk ratio: 

𝐸! =	
(𝑛!#$%$&$)/(𝑛!#$%$&$ 	+	𝑛!#$%$&'	)

(𝑛!#'%'&$ +	𝑛!#$%'&$ +	𝑛!#'%$&$)/(𝑛!#'%'&$ +	𝑛!#$%'&$ +	𝑛!#'%$&$ 	+	𝑛!#'%'&' +	𝑛!#$%'&' +	𝑛!#'%$&')
 

Here, superscript 𝐷 refers to whether the variant is within a DHS site (𝐷 + if emVar, 𝐷 − 

otherwise) and superscript 𝑀 refers to whether the variant is an emVar (𝑀 + if emVar, 𝑀 − 

otherwise). We can then construct a 2 x 2 contingency table with values 𝑛!"#&#$#, 𝑛!"#&#$%, 

𝑛!"%&%$# +	𝑛!"#&%$# +	𝑛!"%&#$#, and 𝑛!"%&%$% +	𝑛!"#&%$% +	𝑛!"%&#$%. P values were 

calculated using a two-sided Fisher’s exact test.  

We also calculated sensitivity and specificity of the MPRA using PICS fine-mapping as 

the benchmark “ground truth.” To do this, we tabulated for each locus, if there was a fine-

mapped SNP (i.e., in X% credible set) and whether the fine-mapped SNP showed MPRA activity 

(i.e., emVar). We can then calculate sensitivity at the locus level (𝑆𝐸'):  

𝑆𝐸' =	
(𝑛'"#$#)

(𝑛'"#$# +	 	𝑛'"%$#)
 

And specificity (𝑆𝑃'): 
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𝑆𝑃' =	
(𝑛'"%$%)

(𝑛'"%$% +	 	𝑛'"#$%)
 

Here, 𝑛'refers to the number of GWAS loci. Superscript 𝑀 refers to whether the variant is an 

emVar (𝑀 + if emVar, 𝑀 − otherwise). Superscript 𝑃refers to whether the SNP is a statistically 

fine-mapped SNP by PICS (𝑃 + if PICS fine-mapped, 𝑃 − otherwise).  

T1D GWAS fine-mapping enrichment analysis 

For T1D GWAS, we obtained statistical fine-mapping credible sets from Onengut-Gumuscu et 

al.20.  The main fine-mapping results from this study were used (Supplementary Table 1 of 

Onengut-Gumuscu et al.). We considered all T1D GWAS loci where an emVar was identified 

(n=11). For each MPRA variant in these loci, we then determined whether it was in the fine-

mapping study credible set and had a fine-mapping posterior probability above a specified 

threshold. If a SNP was not part of the fine-mapping because it was present in 1000 Genomes 

Project but not ImmunoChip (SNPs designated by “proxy” from the T1D study authors), the 

SNP was assigned the fine-mapping posterior probability of its closest ImmunoChip proxy. To 

assess enrichments for MPRA in the T1D statistical fine-mapping data, we constructed a 2 x 2 

contingency table based on whether the SNP did or did not show MPRA activity (i.e., emVar), 

and whether the SNP was a statistically fine-mapped variant. Enrichments and P values were 

calculated as described above. 

Visualization of GWAS loci 

For visualization of gene tracks, bigWig files (Fig. 3a, 3b, Supplementary Fig. 8a and 8b) were 

downloaded from ENCODE. For cell types with multiple bigWig tracks, these were merged 

using bigWigMerge in the UCSC genome browser software suite76. bigWig tracks were then 

loaded into the UCSC genome browser (hg19). Track heights were adjusted to the maximum 

height of all tracks in a given viewing window. Gene transcripts are based on default UCSC 
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genome browser gene annotations. To calculate the DHS score, the DHS sequencing depth in a 

±10 bp window around each MPRA SNP was calculated using the multiBigwigSummary 

command in deepTools v3.5.077 with default options. The DHS score plot shows the maximum 

DHS signal observed across each of the T cell types. PCHiC loops for Fig.s. 3a, 3b and 

Supplementary Fig. 9 were downloaded from https://www.chicp.org/. The visualized loops were 

selected from those with a CHiCAGO score ≥ 5 are shown. 

Luciferase Assay 

Firefly luciferase reporter constructs (pGL4.24) were generated by cloning the 300 nucleotide 

genomic region centered on rs72928038 (rs72928038_luc_G and rs72928038_luc_A, 

Supplementary Table 14) of interest upstream of the BACH2 promoter (Bach2_promoter_luc 

Supplementary Table 14) by using BglII and XhoI sites. The firefly luciferase constructs (500 

ng) were nucleofected with a pRL-SV40 Renilla luciferase construct (50 ng) into 2 x 106 Jurkat 

cells by using the Neon nucleofection system (Invitrogen) using the program 1600V, 3 pulses, 

10ms. After 48 h, luciferase activity was measured by Dual-Glo Luciferase assay system 

(Promega) according to the manufacturer’s protocol. For each sample, the ratio of firefly to 

Renilla luminescence was measured and normalized to the empty pGL4.24 construct. Two 

separate biological replicates with at least 3 technical replicates per rs72928038 allele were 

conducted. For comparison of luminescence conferred by rs72928038 risk and non-risk alleles in 

the luciferase assay, we used a two-sided Student’s t-test.  

Base-editing and PrimeFlow 

Base editor mRNA (evoCDAmax-SpCas9-NG) was provided by TriLink Biotechnologies, and 

was transcribed in vitro from PCR product using full substitution of 5-methoxyuridine for 

uridine. mRNA was capped co-transcriptionally using CleanCap AG analog (TriLink 
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Biotechnologies) resulting in a 5′ Cap 1 structure. In vitro transcription reaction was performed 

as previously described67 with the following changes; 16.5 mM magnesium acetate and 4 mM 

CleanCap AG were used as the final concentration during transcription, and mRNAs were 

purified using RNeasy kit (QIAgen). Mammalian-optimized UTR sequences (TriLink) and a 

120-base polyA tail were included in the transcribed PCR product.  

To edit Jurkat T cells, 1x106 were centrifuged at  500 × g for 5 min, washed with 1X 

PBS, and centrifuged again at 500 × g for 5 min. The cells were resuspended in 12 uL of plain 

RPMI 1640, 3 μg of evoCDAmax and 100 μM IDT-synthesized guide RNA was added, and cells 

were nucleofected using the Neon transfection system program 1600V, 3 pulses, 10ms. Cells 

were ejected into RPMI. rs72928038 base-edited cells were either left alone or combined with 

safe harbor base-edited cells (termed WT for the purposes of this study). The cells were 

incubated for 7 days prior to harvesting for PrimeFlow.  

For PrimeFlow, 10 million cells were aliquoted in PBS in polypropylene tubes and 

centrifuged at 500 × g for 5 min. All but 100 μL of the supernatant was discarded (this step is true 

for every centrifugation step in this protocol) and the cells were resuspended in the residual 

volume. Cells were then fixed according to the manufacturer’s protocol (ThermoFisher, 88-

18005-210) using Fixation Buffer 1 for 30 min rotating at 2–8 °C. Cells were then centrifuged at 

800 × g for 5 min and the supernatant was discarded. Cells were then permeabilized according to 

manufacturer’s protocol with addition of RNase inhibitors through inversion, and centrifugation 

at 800 × g for 5 min, then the supernatant was discarded. This step was repeated. A second 

fixation step was carried out using Fixation Buffer 2 according to manufacturer’s protocol, the 

samples were mixed, and inverted for 1 h in the dark at RT. The cells were then centrifuged at 

800 × g for 5 min at RT, and the samples were washed twice with PrimeFlow RNA Wash Buffer, 
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centrifuging the samples at 800 × g between each wash for 5 min. The BACH2 target probe 

(ThermoFisher) was added at 1X in PrimeFlow RNA Target Probe Diluent, mixed thoroughly by 

pipetting up and down (100 μL of probe/sample), and incubated at 40 °C for 2 h, with inversion 

every 30 min. 1 mL of PrimeFlow RNA Wash Buffer was added to each sample, the samples 

were inverted to mix, and centrifuged at 800 × g for 5 min, and the supernatant was aspirated. 

Samples were then washed with 1 mL PrimeFlow RNA Wash Buffer containing RNase 

inhibitors twice, followed by centrifugation at 800 × g for 5 min. 100 μL of PrimeFlow RNA 

PreAmp Mix was then added to each sample and briefly vortexed to mix, and the samples were 

then incubated for 1.5 h at 40 °C with mild vortexing once every 30 min. Samples were washed 

three times with 1 mL of PrimeFlow RNA Wash Buffer, and then were centrifuged at 800 × g for 

5 min, and the supernatant was aspirated. 100 μL of PrimeFlow RNA Amp Mix was then added 

to each sample, the samples were mixed by vortexing, and incubated for 1.5 h at 40 °C with mild 

vortexing once every 30 min. The cells were then washed twice in 1 mL of PrimeFlow RNA 

Wash Buffer and centrifuged at 800 × g for 5 min. Each sample received 100 μL of PrimeFlow 

RNA Label Probe diluted in PrimeFlow RNA Label Probe Diluent and incubated for 1 h at 40 °C 

with mild vortexing once at 30 min. Samples were then washed with 1 mL of PrimeFlow RNA 

Wash Buffer at RT followed by centrifugation at 800 × g for 5 min. The samples were then 

washed five times with 35 °C PrimeFlow RNA Wash Buffer following each wash with 

centrifugation at 800 × g for 5 min. Samples were then left in 100 μL of PBS and stored in the 

dark at 4 °C until sorting. 

Base edited BACH2 PrimeFlowed cells were cell sorted into six 10.5% bins, sorting on 

the extremes of expression (30% on either the low or high portion of the expression distribution, 

each divided into three contiguous bins each comprising ~10.5% of the overall distribution) 
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using a Beckman Coulter MoFlo Astrios instrument. For each independent experiment, ~100K 

cells were sorted per bin. Genomic DNA for each sample was then reverse-crosslinked using 

ChIP Lysis Buffer (1% SDS, 0.01 M EDTA, 0.05 M Tris–HCl pH 7.5). Briefly, sorted cells were 

spun at 800 × g for 10 min at 4 °C, the supernatant was aspirated, and the cells were resuspended 

in 50 μL of ChIP Lysis Buffer, and incubated at 65 °C for 10 min. The samples were then cooled 

to 37 °C and 2 μL of RNase Cocktail (ThermoFisher, AM2286) was added to each sample and 

the sample was mixed well by pipetting, followed by incubation at 37 °C for 30 min. 10 μL of 

Proteinase K (NEB, P8107S) was added to each sample and the sample was mixed well by 

pipetting, followed by incubation at 37 °C for 2 h and then 95 °C for 20 min. gDNA was 

extracted using Agencourt XP beads at 0.7X following the manufacturer’s protocol, and the 

sample was eluted at 100 μL. rs72928038 region amplicon libraries were prepared by nested 

PCR of each sample, splitting each into two 50 μL reactions (25 μL NEBNext Master Mix, 

2.5 μL 10 μM BACH2_gDNAamp_F and 2.5 10 μM BACH2_gDNAamp_R, and 20 μL of 

reverse-crosslinked sample), program: 98 °C for 30 s, 23 cycles of 98 °C for 15 s, 65 °C for 30 s, 

72 °C for 1 min, then 72 °C for 2 min, followed by 1.5X Ampure XP cleanup, and elution in 25 

μL EB. A second 50 μL PCR was performed to add Nextera adapters (25 μL NEBNext Master 

Mix, 2.5 μL 10 μM BACH2_gseq_F and 2.5 10 μM BACH2_gseq_R, and 20 μL of Ampure-

cleaned PCR1), program: 98 °C for 30 s, 6 cycles of 98 °C for 15 s, 64 °C for 30 s, 72 °C for 30 s, 

then 72 °C for 2 min, followed by 1.5X Ampure XP cleanup, and elution in 25 μL EB. A final 50 

μL PCR to add Nextera barcodes and sequencing adapters was then performed (25 μL NEBNext 

Master Mix, 2.5 μL of mixed 10 μM barcoded Nextera_F and Nextera_R, and 22.5 μL Ampure-

cleaned PCR2) for 6 cycles; program: 98 °C for 30 s, 25 cycles of 98 °C for 15 s, 62 °C for 15 s, 

72 °C for 16 s, then 72 °C for 2 min. The libraries were then quantified by Qubit and 
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TapeStation, mixed at equimolar ratios, PhiX (Illumina, FC-110-3001) was added at 20%, and 

samples were sequenced aiming to get >1,000,000 reads per bin, on either an Illumina Nextseq 

550 or MiSeq. 

CRISPResso (version 2.0.29)68 was used to count the genotypes of each of the base 

editor-induced mutations present within the sequencing data associated with each FACS sorting 

bin. The read counts and genotypes for each sorting bin and the unsorted cells as output by 

CRIPSResso, were input into R, and MAUDE (version 0.99.3)69 was used to infer the expression 

levels of genotype, separately for each experiment. Here, we assumed that 10.5% of the cells 

were sorted into each of the sorting bins, which was the approximate number observed to fall 

into each bin during the experiments. We used MAUDE's 'findGuideHitsAllScreens' function to 

identify the mean expression associated with each genotype (treating genotypes as MAUDE 

"guides"), using default parameters. The statistical effect of rs72928038 base edits compared to 

WT on BACH2 expression were calculated using a paired (by experiment) one-sided Student's t-

test with unequal variance. 

ATAC-seq  

We used the FAST-ATAC protocol11. Human primary T cells from female subjects (age 12-46) 

were isolated from blood by Ficoll, followed by flow sorting of live cell single lymphocytes, 

CD3+ CD4+. Cells were sorted into RPMI with 10% FBS, and were immediately processed for 

ATAC-seq. 10,000–40,000 cells were sorted into RPMI 1640 containing 10% fetal bovine 

serum. The cells were centrifuged at 500 × g for 5 min at 4 °C. All of the supernatant was 

aspirated, ensuring that the pellet was not disturbed in the process. The pellet was then 

resuspended in the tagmentation reaction mix (25 μL 2X TD Buffer (Illumina, 15027866), 2.5 μL 

TD Enzyme (Illumina, 15038061), 0.5 μL 1% Digitonin (Promega, G9441), 22 μL H2O) and 
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mixed at 300 RPMs at 37 °C for 30 min on an Eppendorf Thermomixer. Immediately after the 

incubation, samples were purified using a minElute kit (Qiagen, 28006), eluting in 10 μL. The 

entire sample underwent PCR amplification (a 50 μL reaction with 25 μL NEBNext, 2.5 μL of 

mixed Nextera_F and Nextera_R (10 μM each; Supplementary Table 14), 10 μL of tagmented 

DNA, and 12.5 μL H2O) for five cycles with the following program (72 °C, 5 min; 98 °C, 30 s; 

five cycles of 98 °C, 15 s, 63 °C, 15 s, 72 °C, 1 min). We performed qPCR with 5 μL of the 

sample to determine the number of additional cycles required, while the rest of the sample 

remained on ice. The 5 μl of sample was added to a qPCR mix (5 μL of PCR, 5 μl of NEBNext, 

0.5 μL mixed Nexter_F and Nextera_R primers, 0.09 μL of 100X SYBR (Invitrogen, S7563), 

4.41 μL H2O) and qPCRed (98 °C, 30 s; 20 cycles of 98 °C, 15 s, 63 °C, 15 s, 72 °C, 1 min). The 

number of cycles that it took to reach 1/3 the maximum fluorescence threshold in the qPCR was 

then applied via PCR to the original PCR sample. Libraries were cleaned using 1.5X Agencourt 

XP beads and ethanol washes per manufacturer’s protocol. The DNA concentration of the 

sample was measured using Qubit and the average fragment size was determined using a 

TapeStation. Samples were then multiplexed and sequenced using 50 bp paired end chemistry at 

an average read-count of 30M reads per sample. 

Paired-end ATAC-seq reads were mapped to the genome (hg19) using Bowtie270 (v2.2.1; 

parameters: --maxins 2000), with duplicate reads removed using Picard (v2.20.6; 

MarkDuplicates REMOVE_DUPLICATES=true), and peaks called using HOMER (v4.6; 

findPeaks -style dnase). 

The comparison of the allelic bias of risk and non-risk alleles in accessible chromatin 

data from heterozygous individuals was conducted through the use of a binomial test for each 

sample. Samples indicated in red (Fig. 4C) had significant allelic bias. 
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Creation of Bach2 enhancer mutant and knockout mice  

All animal procedures were performed in accordance with The Jackson Laboratory, Broad 

Institute, and Benaroya Research Institute Institutional Animal Care and Use Committees. 

The mouse syntenic region including rs72928038 and EH38E2485452 was determined 

using LiftOver (UCSC) and conservation with human sequence was calculated using EMBOSS 

Matcher58. Bach218del mice were generated using direct delivery of CRISPR-Cas9 reagents to 

mouse zygotes following the protocol of Qin et al. including guide design and electroporation59. 

The sequence of guide RNA IDT1038 and ssDO Donor10653 to create Bach218del is listed in 

Supplementary Table 14. crRNA containing target sequence (Alt-R CRISPR-Cas9, IDT, 

1072532) and tracRNA (Alt-R tracrRNA, IDT,1072534) were hybridized according to the 

manufacturer's protocol. The guideRNA duplex was mixed with AltR-SpCas9 V3 (IDT, 108105) 

in TE (pH 7.5) and incubated for 20 min at room temperature followed by adding ssDO and 

centrifuging at 14,000 RPM in a microcentrifuge. The final concentrations of the gRNA, spCas9 

and ssDO were 600 ng/µl, 500 ng/µl and 1000 ng/µl respectively. 10 µl of the supernatant of the 

mixture was mixed with 10 µl of Opti-MEM (Thermo Fisher, 3198570) and zygotes treated with 

acidic Tyrode’s solution (Millapore-Sigma, T1788) for 10 sec and washed with pre-warmed M2 

media (Millapore-Sigma, M7167). Electroporation was performed by using ECM830 Square 

Wave Electroporation System (BTX, 45-0661) with 1 mm electroporation cuvette (Harvard 

Apparatus, 45-0124) in the following conditions: 2 × 1 ms pulses at 30 V with 100 ms interval. 

After recovery in 100 µl of M2 media, embryos were transferred into B6Qsi5F1 pseudopregnant 

female mice.  

Genotypes of founder mice were checked by Illumina sequencing. A 384 bp genomic 

fragment surrounding the target reference (mm10, chr4:32263658-32264041) was amplified 
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from genomic DNA isolated from tail and peripheral blood using 1 µl of prepped DNA in 20 µl 

of PCR reaction containing 0.4 µl of PrimerStar GXL (TAKARA Bio, R050A), 4 µl of 5× 

Buffer, 2 µl of 10 mM each dNTP mixture, 0.5 µl each of Bach2ilmn_F1 and Bach2ilmn_R1 

primers (10 µM, Supplementary Table 14) with the following conditions: 98 °C for 2 min, 20 

cycles of (98 °C for 10 sec, 62 °C for 15 sec, 68 °C for 60 sec), 68 °C for 2 min. PCR products 

were purified by using 1.1× volume of AMPure XP and eluted by 20 µl of EB. P5/P7 tags were 

added using 10 µl of first PCR product in a 50 µl of PCR reaction containing 25 µl of Q5 

NEBNext master mix, 2.5 µl each of TruSeq multiplexing primers (10 µM) with the following 

conditions: 98 °C for 30 sec, 6 cycles of (98 °C for 10 sec, 62 °C for 20 sec, 72 °C for 30 sec), 72 

°C for 5 min. Amplified products were purified by using 1.2 × volume of AMPure XP, eluted by 

20 µl of EB and pooled with the same amount. The mixed library was sequenced on MiSeq 

(Illumina) using 2 × 250 bp chemistry of nano v2 reagent. 

Isolation of primary mouse T cells  

Mouse primary naïve CD8 T cells were isolated from the spleens of WT or Bach218del mice 

through sorting on live single lymphocytes, CD3+ CD8+ CD62Lhi CD44lo into PBS containing 

2% of FBS.  Cells were spun at 500 × g for 5 min and lysed by RLT buffer with 40 mM DTT, 

followed by processing for BRB-seq. 

BRB-seq 

Naïve T cells were sorted from spleens collected from 21-week-old females. 5 x 105 cells for 

each replicate were sorted by using BD FACSymphony S6 with a 70 µm nozzle. The 

fluorophore-conjugated antibodies and dilutions used for cell sorting are listed in Supplementary 

Table 14. Total RNA from sorted cells was isolated by using RNeasy plus micro (QIAGEN, 

74034). 50 ng for each sample was used for the reverse transcription with barcoded primer BU3 
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(IDT; Supplementary Table 14) followed by the purification, second strand synthesis and 

tagmentation following the original BRB-seq protocol but using AMPure XP for purification34. 

Tagmented library was amplified with P5_BRB and BRB_Idx7N5 primers (5 μL, Supplementary 

Table 14) using NEBNext UltraTM II Q5 Master Mix (NEB, M0544L) which was incubated at 

98 °C for 30 sec before adding DNA with the following conditions: 72 °C 3 min, 98 °C for 

30sec, and 15 cycles of (98 °C for 10 sec, 63 °C for 30 sec, 72 °C 60 sec), 72 °C for 5 min. 

Libraries were sequenced by NextSeq 550 High Output with 21 bp for read 1 and 72 bp for read 

2 (Illumina). Sequenced reads were aligned using STAR (v2.7.6a, --outFilterMultimapNmax 1)71 

followed by demultiplexing using BRB-seq Tools (v1.6)34.  

BRB-seq differential expression and gene set enrichment analysis 

Counted unique UMIs for genes were normalized using variance stabilizing transformation (vst) 

in DESeq2 (v1.26.0) using default parameters72. Differential expression of genes was calculated 

using DESeq2 with default parameters and genes were then sorted by their differential 

expression test statistic as input into Gene set enrichment analysis (GSEA).  

Expression heatmaps of differentially expressed genes in the Bach218del mouse compared 

with WT littermates in Fig. 5e are based on row and column-normalized gene expression. 

Expression heatmaps of genes from CD8 Tscms with Bach2 gRNA-knockdown vs. empty vector 

control cells in Supplementary Fig. 11c are similarly based on row and column-normalized gene 

expression. Comparisons of gene expression for sample genes (Fig. 5d and 5h) were performed 

by plotting expression levels of each gene from DESeq2 normalized counts from WT and 

Bach218del naïve CD8 T cells, followed by performing a Student’s unpaired t-test. Differences in 

CD62L mean fluorescence intensity between WT and Bach218del naïve CD8 T cells (Fig. 5e) was 

performed using an unpaired Student’s t-test. 
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GSEA v4.1.073 was performed from the differential expression ranked gene list. Mouse 

genes were collapsed to their human orthologs. The GSEAPreranked tool was used with 

minimum gene set size of 15 and maximum of 250; otherwise, all default parameters were used. 

The ImmunoSigDB immunologic signatures database (v7.2)74 was used for the gene sets in 

addition to gene sets comprised of differentially expressed genes from the re-analysis of the 

Bach2-perturbed Tscm RNA-seq data (as described below). 

Bach2-perturbed Tscm RNA-seq analysis 

Bach2-gRNA perturbed (n=3) and cognate empty vector control (n=3) RNA-seq data from 

Tscms10 was downloaded from NCBI GEO (GSE152379). Transcript quantification from raw 

RNA-seq data was performed using Kallisto v0.46.075 against the reference Mus musculus 

transcriptome index based on GRCm38 as provided by the software developers. Quantification 

of transcripts was performed using parameters --single -l 200 -s 20. Differential expression of 

genes in Bach2-gRNA perturbed vs. empty vector was performed using DESeq2 as described 

above. Gene sets were constructed from the differential expression results based on genes with a 

Benjamini-Hochberg adjusted P value < 0.05). One gene set was comprised of  the top 200 genes 

with increased expression in the gRNA vs. empty vector, and the other gene set consisted of the 

top 200 genes with decreased expression in gRNA vs. empty vector. 

Data visualization and processing 

Data visualization, exploratory data analysis, and processing were performed using R v3.6.2.  

Materials Availability 

• The Bach218del (stock #35028) mouse strain is available from the Jackson Laboratory 

(Bar Harbor, ME). 

• Plasmids generated in this study will be deposited to Addgene upon publication. 
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Data and code availability 

Datasets  supporting this manuscript are freely available upon reasonable request from the 

corresponding author, and will be published on NCBI GEO upon the manuscript’s acceptance.   

  

Code availability 

Code supporting this manuscript is freely available upon reasonable request from the 

corresponding author, and will be published on GitHub upon the manuscript’s acceptance.   
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FIGURES AND LEGENDS 

Fig. 1. Prioritizing GWAS variants using high-throughput reporter assays in Jurkat T 

cells. a) Workflow for creating MPRA libraries- i) Oligonucleotide synthesis of variants and 200 

bp surrounding genomic region; ii) barcoding, cloning, and transfection of plasmid library into 

Jurkat T cells; iii) harvesting RNA from Jurkat and pull down of GFP mRNA; iv) RNA-

sequencing of barcodes, normalization to their prevalence in the plasmid library, and comparison 

of alleles for differential reporter activity (a more detailed workflow is provided in 

Supplementary Fig. 1a). b) Volcano plot. The log2 expression value of the highest expressing 

allele is on the X axis, and the log2 of the activity of allele1/allele2 is on the Y axis. pCRE = 

putative cis-regulatory element; emVar = expression-modulating variant. c) Bar plot showing 

enrichment of emVars for PICS statistically fine-mapped variants at GWAS loci where an 

emVar was detected, with the minimum PICS probability threshold indicated on the X axis. Gray 

numbers below each bar show the number of emVars that are statistically fine-mapped at a given 

PICS probability threshold. Purple numbers above each bar show the -log10 of the enrichment P 

value. Details of PICS enrichment results are shown in Table S9. Enrichment in (c) was 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 30, 2021. ; https://doi.org/10.1101/2021.05.30.445673doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.30.445673


page 51 of 58 

calculated as a risk ratio (see Methods), and P values were determined through a two-sided 

Fisher’s exact test. 

 

  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 30, 2021. ; https://doi.org/10.1101/2021.05.30.445673doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.30.445673


page 52 of 58 

 

 

Fig. 2. T-GWAS emVars in T cell accessible chromatin enrich highly for fine-mapped 

variants. a) Enrichment of DHS sites from hematopoietic and non-hematopoietic cell types for 

MPRA pCREs. Cell types are ranked from left to right from most statistically significant to least 

significant. Hematopoietic cell types are colored by their ontogeny as indicated in the legend. 

Non-hematopoietic cell types are shown in gray. Y-axis shows the -log10 of the enrichment P -

value. b) Enrichment of statistically fine-mapped variants within T cell DHS sites (left) and 

enrichment of statistically fine-mapped variants that are emVars within T cell DHS sites (right). 
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Details of PICS enrichment results are shown in Table S9. c) Bar plot (top) of 60 emVars in T 

cell DHS sites with their allelic bias (y-axis) and log2FDR (shade of bar). GWAS for which 

emVar is associated (middle). emVars in 95% fine-mapping credible sets are shown in dark 

purple, while variants in tight LD to lead the variant (r2 > 0.8) but not in credible sets are shown 

in light purple. Immediately underneath, pink and teal boxes indicate the MPRA expression 

directionality of the GWAS disease risk-increasing variant as compared to the non-risk variant, 

followed by variant rsIDs. For one variant, rs654690, the risk alleles are opposing depending on 

disease, with * indicating the risk allele for both psoriasis and IBD, and ** indicating the risk 

allele for RA. Nearby genes that are known to play a role in T cell differentiation and function 

(gray) and nearby genes for which the variant is an eQTL (dark blue; according to Open Targets 

Genetics;55 are listed on bottom. Enrichment (a) were determined through a two-sided Fisher’s 

exact test. Enrichment in (b) was calculated as a risk ratio (see Methods), and P values were 

determined through a two-sided Fisher’s exact test. Statistical significance of allelic bias in (c, 

top bar plot) was calculated using a paired Student’s two-sided t-test. 
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Fig. 3. Putative causal variants in a BACH2 intron and upstream of TAGAP. a and b) 

Dotplot (top) showing DHS signal (DHS score) and statistical significance of allelic bias 

(log10FDR of MPRA allelic bias) for MPRA variants in the region; all tested variants on 

haplotype (black), significant emVars in DHS (red dot). Position of variants that are emVars, 

pCREs, variants tested in MPRA, and disease-associated variants for CD, MS, psoriasis, RA, 

T1D, and UC from the GWAS Catalog56 (middle). Genes in the locus are shown along with 

chromatin accessibility profiles (from Jurkat and specific T cell subsets) and T cell promoter 

capture HiC (pcHiC23) loops anchored on the region containing the emVar. pcHiC loops in (a) 

are specific to naïve T cells; pcHiC loop in (b) is present in all T cell subsets and conditions 

tested. Gray line depicts position of the prioritized emVar with respect to all data types. 

Statistical significance of allelic biases in (a) and (b) were calculated using a paired Student’s 

two-sided t-test as described in Methods. 
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Fig. 4. Base editing of the BACH2 emVar (rs72928038) reduces BACH2 expression. a) 

MPRA reporter expression of credible set variant alleles at the BACH2 locus (n=3 independent 

replicates). b) ATAC-seq profiles in CD4 T cells, B cells, CD8 T cells, and monocytes, 

vertebrate conservation, and ETS1 ChIP-seq57 at the site of rs72928038 (top). STAT and ETS1 

TF motifs at the site of rs72928038 (bottom). c) ATAC-seq reads overlapping rs72928038 in 

CD4 T cells from heterozygous healthy individuals (10 genotyped individuals);. 5 of the 10 

individuals (marked red) had a significant difference (at P < 0.05) in number of reads between 

reference and alternate alleles according to a binomial test. d) Schematic of base editing 

rs72928038 using the evoCDAmax cytosine base editor. e) PrimeFlow mean expression of 

BACH2 in cells containing the rs72928038 non-risk (G) and base-edited risk (A) allele with 

rs72928038 base-edited cells alone (left; 8 independent replicates) and when combined with cells 
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that were edited at a safe harbor locus (right; 6 independent replicates). For (a), central tendency 

is shown as median and all points are plotted to show dispersion. For (e), central tendency is 

shown as mean and all points are plotted to show dispersion. P values determined by Student’s 

two-sided t-test (a); Binomial test (c); Student’s one-sided t-test (e). 

 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 30, 2021. ; https://doi.org/10.1101/2021.05.30.445673doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.30.445673


page 57 of 58 

Fig. 5. Naïve T cells from mice with a deletion overlapping orthologous rs72928038 have 

reduced transcriptional features of stemness. a) Synteny analysis of rs72928038 between 

human and mouse. Location of rs72928038 (arrow and dotted line) on human chromosome 6 and 

mouse chromosome 4 (top) with colors indicating mouse chromosome synteny (see key). 

Conservation of human BACH2 with mouse Bach2, with the location of rs729280378 noted 
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(dotted line), with inset showing conserved sequence between human and mouse at the site of 

rs72928038 (bottom). b) Schematic of Bach218del mutation. c) Principal components 1 and 2 

from gene expression analysis of naïve CD8 T cells from Bach218del and their WT littermates. d) 

Bach2 gene expression within naïve CD8 T cells from WT and Bach218del mice. e) Expression 

heatmap of differentially expressed genes (adjusted P value ≤ 0.05; calculated as described in 

Methods) between WT and Bach218del naïve CD8 T cells (n = 3 per genotype). f) GSEA showing 

enrichment of Bach218del vs. WT naïve CD8 T cells for a gene set derived from genes 

differentially expressed in Bach2 guide RNA-targeted CD8 Tscm cells vs. empty vector Tscm 

cells. Full GSEA results are shown in Table S13. g) Mean fluorescence intensity of CD62L 

surface expression on naïve WT and Bach218del CD8 T cells. h) Sample genes differentially 

expressed between WT and Bach218del mice in naïve CD8 T cells (c-h, n = 3 per genotype). P 

values determined by Student’s one-sided t-test (d); Student’s two-sided t-test (g and h). For (d), 

(g), and (h), central tendency shown as median and all points are plotted to show dispersion. 

Normalized enrichment score (NES) in (f) was calculated based on observed enrichment as 

compared to enrichments from permuted data as previously described and statistical significance 

shown as the false discovery rate (q)58. 
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