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Abstract
Intrinsically disordered proteins and protein regions make up a substantial fraction of many
proteomes where they play a wide variety of essential roles. A critical first step in understanding
the role of disordered protein regions in biological function is to identify those disordered regions
correctly. Computational methods for disorder prediction have emerged as a core set of tools to
guide experiments, interpret results, and develop hypotheses. Given the multiple different
predictors available, consensus scores have emerged as a popular approach to mitigate biases
or limitations of any single method. Consensus scores integrate the outcome of multiple
independent disorder predictors and provide a per-residue value that reflects the number of
tools that predict a residue to be disordered. Although consensus scores help mitigate the
inherent problems of using any single disorder predictor, they are computationally expensive to
generate. They also necessitate the installation of multiple different software tools, which can be
prohibitively difficult. To address this challenge, we developed a deep-learning-based predictor
of consensus disorder scores. Our predictor, metapredict, utilizes a bidirectional recurrent neural
network trained on the consensus disorder scores from 12 proteomes. By benchmarking
metapredict using two orthogonal approaches, we found that metapredict is among the most
accurate disorder predictors currently available. Metapredict is also remarkably fast, enabling
proteome-scale disorder prediction in minutes. Metapredict is fully open source and is
distributed as a Python package, a collection of command-line tools, and a web server. We
believe metapredict offers a convenient, accessible, accurate, and high-performance predictor
for single-proteins and proteomes alike.
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Introduction

While it is often convenient to consider proteins as nanoscopic molecular machines, such a
description betrays many of their functionally critical features (1–3). As an extreme example,
intrinsically disordered proteins and protein regions (collectively referred to as IDRs) do not
adopt a fixed three-dimensional conformation (4–8). Rather, IDRs exist in an ensemble of
different conformations that are in exchange with one another (9–11). Despite the absence of a
well-defined structured state, IDRs are integral to many important biological processes (12, 13).
As a result, there is a growing appreciation for the importance of disordered regions across the
three kingdoms of life (6, 12, 14, 15).

A key first step in exploring the role of disorder in biological function is the identification of
disordered regions. While IDRs can be formally identified by various biophysical methods
(including nuclear magnetic resonance spectroscopy, circular dichroism, or single-molecule
spectroscopy) these techniques can be challenging and are generally low throughput (16–18).
As implied by the name, the “intrinsically” disordered nature of IDRs reflects the fact that these
protein regions are unable to fold into a well-defined tertiary structure in isolation. This is in
contrast to folded regions, which under appropriate solution conditions adopt macroscopically
similar three-dimensional structures (19–21). The complexities of metastability in protein folding
notwithstanding, this definition implies that this intrinsic ability to fold (or not fold) is encoded in
the primary amino acid sequence (22–24). As such, it should be possible to delineate between
folded and disordered regions based solely on amino acid sequence.

The prediction of protein disorder from amino acid sequence has received considerable
attention for over twenty years, driven by pioneering early work by Dunker et al. (6–8, 25, 26).
Since those original bioinformatics tools, a wide range of disorder predictors have emerged
(27–30). Accurate disorder predictors offer an approach to guide experimental design, interpret
data, and build testable hypotheses. As such, the application of disorder predictors to assess
predicted protein structure has become a relatively standard type of analysis, although the
specific predictor used varies depending on availability, simplicity, and scope of the question.

There are currently many disorder predictors that apply different approaches to predict protein
disorder. These range from statistical approaches based on structural data from the protein data
bank, to biophysical methods that consider local ‘foldability’, to machine learning-based
algorithms trained on experimentally determined disordered sequences (31–38). However,
using any individual predictor can be problematic; each predictor has specific biases and
weaknesses in its capacity to accurately predict protein disorder, which can introduce systematic
biases into large-scale disorder assessment (39). As such, an alternative strategy in which
many different predictors are combined to offer a consensus disorder score has emerged as a
popular alternative to relying on any specific predictor (40–44). Consensus scores report the
fraction of independent disorder predictors that would predict a given residue as disordered - for
example, a score of 0.5 reports that 50% of predictors predict that residue to be disordered.
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While using consensus scores mitigates the limitations of any single predictor, calculating
consensus scores is computationally expensive. On a practical level, the installation and
operation of many disorder predictors has specific and often complicated requirements, each of
which may also be operating system specific. This raises a significant barrier to computational
and non-computational scientists alike. To alleviate this challenge, consensus disorder scores
can be precomputed and held in online-accessible databases (42, 45–47). While precomputed
scores are an invaluable resource to the scientific community, they are limited to a set of specific
protein sequences. This raises a challenge - while consensus scores are a convenient means
by which to explore protein disorder, their application is limited to a small subset of possible
sequences. Furthermore, obtaining, managing, and analyzing large datasets of precomputed
consensus predictions can be a daunting task, especially if only a subset of sequences are of
interest.

To address these challenges we have developed a fast, accurate, and simple-to-use deep
learning-based disorder predictor trained on pre-computed consensus scores from a range of
organisms. Our resulting predictor, metapredict, is platform agnostic, simple to install, and
usable as both a Python module and a stand-alone command-line tool. In addition, metapredict
is implemented in a stand-alone web server, appropriate for individual sequences. Metapredict
accurately reproduces consensus disorder scores and is sufficiently fast that for most
bioinformatics pipelines, precomputation of disorder is no longer necessary, and disorder can be
computed in real-time as analysis is performed. Taken together, metapredict offers a lightweight,
accurate, and high-performance disorder predictor that can be readily integrated into existing
workflows.
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Materials and Methods

Training metapredict using PARROT
To create metapredict, we trained a bidirectional recurrent neural network (BRNN) on the
disorder consensus scores from the MobiDB database for each residue for all of the proteins in
12 proteomes (Figure 1) (48). The eight disorder predictors used to generate the consensus
scores in the MobiDB database were IUPred short (34), IUPred long (34), ESpiritz (DisProt,
NMR, and X-ray) (31), DisEMBL 465 (28), DisEMBL hot loops (28), and GlobPlot (49). For
training, we used the general-purpose deep learning toolkit PARROT to train a Long Short-Term
Memory (LSTM) BRNN (50). PARROT offers a general flexible framework for the development
and training of deep-learning-based predictors for sequence data.

Figure 1. Overview of metapredict. Consensus scores are taken from 420,660 proteins distributed
across 12 proteomes. Metapredict was developed by training a BRNN on this data, leading to a set of
network weights that allow the prediction of any possible consensus sequence score.

Specifically, we used PARROT with slight modifications to the default settings (50). We set the
number of training epochs, which defines the number of times the complete dataset is assessed
and used to update the network parameters, to 100. Increasing the number of epochs further
gave a negligible improvement in performance. The PARROT data type was set to ‘residues’
and the number of classes was set to ‘1’ (for regression). The learning rate (--learning-rate),
which is a parameter that alters the rate that the model updates weights after each round of
back-propagation, was set to 0.001. The number of layers (--num-layers), which is the number
of layers in the network between the input layer and the output layer, was set to 1. The hidden
vector size (--hidden-size), which is the size of hidden vectors within the BRNN, was set to 5.
The batch size (--batch), which is the number of sequences processed at the same time, was
set to 32. For training, validation, and testing, 70% of the data was used for training, 15% of the
data was used for validation, and 15% of the data was used for testing.

The proteomes for which consensus disorder scores were available at the time of training were:
Danio rerio (UP000000437, 43,841 proteins), Gallus gallus (UP000000539, 25,238), Mus
musculus (UP000000589, 44,470 proteins), Drosophila melanogaster (UP000000803, 21,114
proteins), Dictyostelium discoideum (UP000002195, 12,733 proteins), Canis lupus familiaris
(UP000002254, 45,089 proteins), Saccharomyces cerevisiae (UP000002311, 6,049 proteins),
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Rattus norvegicus (UP000002494, 29,090 proteins), Homo sapiens (UP000005640, 66,835),
Arabidopsis thaliana (UP000006548, 39,342 proteins), Sus scrofa (UP000008227, 49,792
proteins), and Bos taurus (UP000009136, 37,367 proteins). These numbers reflect protein
sequences composed of the 20 standard amino acids only. Cross-referencing the training
dataset (70% of the total sequences) taken from these proteomes against the assessment
databases used (CheZOD and CAID) identified 28/116 from CheZOD and 451/652 from CAID
databases in a total training set of ~295,000 sequences. These proteomes and the associated
consensus disorder scores were obtained from MobiDB, but were originally curated by UniProt
(42, 51, 52).

To determine the optimal threshold used to delineate disordered and ordered regions, we
systematically varied the cutoff score used to identify IDRs (Supplemental Figures 1-4). This
analysis revealed that a relatively broad range of cutoffs (between 0.2 and 0.4) gave an
approximately equivalent performance, such that a cutoff of 0.3 offered a good balance between
true positives and false negatives. As such, IDRs identified by metapredict with the default
setting can be treated as relatively high-confidence, at the expense of missing some cryptic
disordered regions.

Evaluating metapredict
Evaluations and datasets for the CheZOD score analysis (116 sequences) can be found in (53).
Evaluations and datasets for the Critical Assessment of protein Intrinsic Disorder prediction
(CAID) analysis (652 sequences) can be found in (27). For convenience, all sequences and
scores used are also provided at https://github.com/holehouse-lab/supportingdata/. Details on
results including additional statistical analyses and the raw performance scores for each
predictor that was used for comparisons to metapredict can be found in Supplemental File 1.

Statistical analysis
Statistical analysis and predictor evaluation was carried out following the protocols described
previously and reproduced here for completeness (27, 53). Predictor evaluation is performed via
the Pearson’s Correlation coefficient (Rp), the Matthew’s Correlation Coefficient (MCC), and the
F1-score.

The Pearson’s Correlation Coefficient (Rp) is calculated as,

(Eq. 1)𝑅
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where xi is the value of the current predicted disorder value for a residue in a sequence, xa is the
mean predicted disorder value for the residues in a sequence, yi is the actual disorder value
(specifically the CheZOD score) of the current residue, and ya is the mean actual disorder value.

The Matthew’s Correlation Coefficient (MCC) is calculated as,
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(Eq. 2)𝑀𝐶𝐶 = (𝑇𝑃× 𝑇𝑁) − (𝐹𝑃× 𝐹𝑁)

(𝑇𝑃+ 𝐹𝑃)×(𝑇𝑁 + 𝐹𝑃)×(𝑇𝑃+𝐹𝑁)×(𝑇𝑁 + 𝐹𝑁)

Where true positives (TP) are the number of times a disorder predictor predicts a disordered
residue to be disordered, true negatives (TN) are the number of times a predictor does not
predict something to be disordered when it is not disordered, false positives (FP) are the
number of times a predictor predicts a residue to be disordered when it is in fact not disordered,
and false negatives (FN) are the number of times a predictor predicts a residue to not be
disordered when it is in fact disordered.

Finally, the F1-score is calculated as

F1-score = (Eq. 3)𝑇𝑃
𝑇𝑃 + (0.5 × (𝐹𝑃 + 𝐹𝑁))

Where TP, FP, and FN are defined as described above.

Implementation
metapredict is written in Python 3.7+ and uses PyTorch, with the initial network trained using
PARROT (50, 54).

Usage and features
metapredict is offered in three distinct formats. As a downloadable package, it can be used
either as via a set of command-line tools or as a Python module. Command-line predictions
include functionality to directly predict disorder from a UniProt accession, save disorder scores
as a text file, and predict disorder for multiple sequences within a FASTA file. The Python
module includes the ability to predict per-residue consensus disorder scores or delineate
continuous IDRs. Complete documentation is available at http://metapredict.readthedocs.io/. In
addition, we offer a web server appropriate for individual protein sequences, which is available
at http://metapredict.net.

Performance
On all hardware tested, metapredict obtained prediction rates of ~8,000 to 12,000 residues per
second. At this performance, a single 300-residue protein takes between 20-30 ms, and the
complete prediction of all IDRs across the reviewed human proteome (20,396 sequences) takes
approximately 21 minutes with an average performance of ~9,000 residues per second.
Importantly and unlike some other predictors, the computational cost scales linearly with
sequence length (Supplemental figure 5) (55). For reference, disorder prediction for the
complete CAID dataset takes ~30 seconds.
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Results

Approaches to evaluating metapredict
Given the large number of protein disorder predictors available, multiple groups have
investigated different approaches by which to measure their accuracy (27, 53, 56, 57). Here, we
used metrics from two recent studies, allowing us to compare directly with many previously
evaluated predictors.

The first approach made use of data obtained from nuclear magnetic resonance (NMR)
spectroscopy, specifically a metric referred to as the Chemical shift Z-score for assessing
Order/Disorder (CheZOD) score (53). The CheZOD score describes how far the measured
chemical shift of a given residue deviates from the expected random coil chemical shifts. As a
result, CheZOD offers a continuous score at the resolution of individual residues (53).

The second approach assessed how well various disorder predictors were able to predict the
disorder of proteins from the DisProt database (27, 58). In this approach, regions deposited in
the DisProt database were considered true positives, providing a simple test set against which
disorder predictors could be evaluated.

Evaluating metapredict using CheZOD scores
To evaluate metapredict using the CheZOD Z-scores, we carried out the same analyses that
had previously been done to examine other predictors using the same set of proteins as in (53).
In these analyses, the authors examined how the continuous probability values of the predictors
correlated with the continuous values of the Z-scores using the Pearson correlation coefficient
(Eq. 1). Because the CheZOD Z-scores increase with order and decrease with disorder, a score
of -1 for a disorder predictor would mean that it has a perfect correlation with the Z-scores, and
0 would mean that there is no correlation. As such, the results are displayed as the absolute
value of the Pearson Correlation coefficient. Using this analysis, we found that metapredict had
ranked 8th among the 23 predictors previously examined (Figure 2A). In addition to examining
the accuracy of metapredict using the absolute value of the Pearson Correlation coefficient, we
also calculated the area under a receiver operating characteristic curve, which uses true
positive values and false positive values to assess the accuracy of the various predictors, such
that a perfect predictor would have an AUC of 1. In examining metapredict using this approach,
we found that metapredict was ranked 11th out of the 23 predictors evaluated (Figure 2B).

We next examined the accuracy of metapredict in predicting binary classification of either order
or disorder. Previously, a CheZOD score of less than 8 was considered disordered (53). When
converting a metapredict score to binary classification, we considered any residue with a score
of 0.3 or higher as disordered. For this analysis the Matthews Correlation Coefficient (MCC) was
also calculated for each predictor (Eq. 2). The MCC uses a combination of false positives, false
negatives, true positives, and true negatives in order to examine the accuracy of a classifier. We
found that metapredict had the 8th highest MCC out of the predictors evaluated (Supplemental
File 1). In examining where metapredict did poorly in classifying residues as either ordered or
disordered, we found that metapredict suffered from a relatively high false-negative rate

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 30, 2021. ; https://doi.org/10.1101/2021.05.30.446349doi: bioRxiv preprint 

https://paperpile.com/c/TUuSUu/DOcQ+aylZ+0Zn5+jXBY
https://paperpile.com/c/TUuSUu/jXBY
https://paperpile.com/c/TUuSUu/jXBY
https://paperpile.com/c/TUuSUu/2D6K+0Zn5
https://paperpile.com/c/TUuSUu/jXBY
https://paperpile.com/c/TUuSUu/jXBY
https://doi.org/10.1101/2021.05.30.446349
http://creativecommons.org/licenses/by-nc-nd/4.0/


suggesting that metapredict was classifying residues as ordered when they were in fact
disordered.

Figure 2. Evaluation of metapredict using CheZOD scores. (A) The absolute value of the Pearson’s
correlation coefficient calculated by comparing the correlation between each predictor’s score per residue
and the CheZOD score. (B) The area under the receiver operating characteristic curve (AUC) (generated
by comparing disorder scores of various predictors to disorder predictions from CheZOD scores. Values
for all predictors in (A) and (B) other than metapredict (orange bar) were obtained from (53).

Evaluating metapredict using the Critical Assessment of protein Intrinsic Disorder
prediction
We next turned to evaluate metapredict using the protocol developed for the Critical
Assessment of protein Intrinsic Disorder prediction (CAID). CAID is a biennial event in which a
large set of protein disorder predictors are assessed using a standardized dataset and
standardized metrics (27). As such, evaluation using CAID’s standards offers a convenient route
to benchmark metapredict against the state of the art.

CAID uses a curated dataset of 646 proteins from DisProt, a database of experimentally
validated disordered regions (58). CAID also standardizes hardware upon which predictions are
run, allowing performance and runtime to be considered with respect to predictor performance.
To avoid inadvertently misrepresenting our results with respect to performance through the use
of non-standard hardware, we focused on a subset of the CAID protocol focused on the
accuracy of predictors, although we note metapredict’s computational efficiency performance is
a major strength.
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In keeping with the assessments developed by CAID, we evaluated metapredict in its capacity
to predict disorder across two distinct databases (DisProt, DisProt-PDB) as well as its ability to
identify fully disordered proteins (27). While DisProt contains only true positive disordered
regions, DisProt-PDB contains true positive and true negative regions, making it more
appropriate for robust validation of discriminatory predictors (27). To maintain consistency with
CAID, we used the F1-score (defined as the maximum harmonic mean between precision and
recall across all threshold values, Eq. 3) to compare metapredict against other predictors (27).
The F1-score of metapredict in the analysis of the DisProt dataset ranked 12th highest out of
the 38 predictors originally assessed (Figure 3A).

DisProt contains protein subregions that have been experimentally validated as disordered.
However, as noted in the original study, it is possible, if not likely, that there are other subregions
from those same proteins which, while not yet annotated as such, are in fact disordered (27).
The DisProt-Protein Database (PDB) dataset addresses this limitation and includes only protein
regions that are unambiguously annotated as either disordered or ordered, based on extant
experimental data (27). In examining the performance of metapredict in predicting disorder on
the DisProt-PDB dataset, we found that metapredict ranked 11th among all of the disorder
predictors assessed (Figure 3B).

The last analysis that we carried out from the CAID experiment was the capacity of metapredict
to identify fully disordered proteins. In this context, the CAID experiment considers something to
be a fully disordered protein if the disorder predictor predicts 95% or more residues to be
disordered (27). Metapredict ranked 3rd out of the disorder predictors examined in its capacity
to identify fully disordered proteins (Figure 3C).

In examining the results from the three CAID assessments more closely, we found that in
comparison to the other disorder predictors, metapredict was most negatively impacted by its
high frequency of false-negative predictions (where metapredict predicted something to be
ordered when it was in fact disordered). This is consistent with our comparison against the
CheZOD scores. As such, metapredict appears to possess a slight bias towards
underestimating disorder, such that IDRs identified by metapredict can be considered
reasonably high confidence.
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Figure 3. Evaluation of metapredict using CAID experiments. (A) F1-score for various predictors in
examining their accuracy in predicting protein disorder from the DisProt dataset. (B) F1-scores for various
predictors in examining their accuracy in predicting protein disorder from the DisProt-PDB dataset. (C)
F1-scores for various predictors in predicting fully disordered proteins in the DisProt dataset. Values for all
predictors in (A), (B), and (C) with the exception of those for metapredict (orange bar) were obtained from
(27).
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Discussion

IDRs play many important roles in various biological processes (12, 13). An essential first step
in the investigation of IDR function reflects the ability to identify IDRs within a protein sequence.
Consensus disorder scores represent an attractive means by which to obtain high confidence
disorder predictions that do not suffer from inaccuracies due to the limitations of any single
disorder predictor. However, calculating disorder probabilities from many different predictors to
generate a consensus score is cumbersome, technically challenging, and computationally
expensive. To address this, we developed metapredict, a simple to use protein disorder
predictor that accurately reproduces consensus disorder scores. While other consensus
meta-predictors do exist, web-based access to these can be on the order of minutes-to-hours
per sequence and where available local access has operating-system dependencies, making
them poorly suited to cross-platform proteome-scale analysis (41, 59, 60). As such, we believe
metapredict fills a niche that is currently unoccupied.

To illustrate the ability of metapredict to predict consensus scores, Figure 4 shows the
computed consensus scores and the analogous prediction for four proteins with IDRs. Across
our datasets, we found that metapredict generally performed better than over two-thirds of the
currently available disorder predictors examined, likely with a slight bias for false negatives
when the default disorder threshold is applied.

Figure 4. Metapredict accurately recapitulates precomputed consensus disorder scores.
Precomputed consensus disorder scores from the MobiDB database compared to predicted consensus
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disorder scores calculated by metapredict for (A) Velo1 from Xenopus laevis (UniProt Q7T226), (B)
PGL-3 from Caenorhabditis elegans (UniProt G5EBV6), (C) Early E1A protein from Human adenovirus C
serotype 5 (UniProt P03255), and (D) Sup35 from Schizosaccharomyces pombe (UniProt O74718). None
of these proteins were part of the training, test, or validation set for metapredicts.

Features of metapredict
While metapredict did not score as the most accurate available protein disorder predictor based
on the analyses presented here, it was still consistently among the most accurate predictors.
Furthermore, the difference in F-score between metapredict and the best-scoring predictor
across the CAID dataset was on average only 0.095. We would propose that the convenience,
computational efficiency, and ease-of-use that metapredict affords outweigh what amounts to a
relatively small cost in overall accuracy. Similarly, metapredict’s flexibility, ease of installation,
and lack of dependencies beyond standard Python packages make it an appealing option for
modern disorder prediction across heterogeneous hardware.

To further aid in the identification of bona fide contiguous disordered regions, metapredict
contains a stand-alone function for extracting contiguous IDRs based on a threshold value
applied to a smoothed disorder score and several additional parameters (Supplemental
Figures 1-4). For this approach, we again found a threshold between 0.3 and 0.4 was optimal,
and this method generally outperformed our prior more simple analyses. However, because
other predictors did not use this approach for the classification of ordered or disordered regions,
we chose to not use this function for our primary analyses in examining the accuracy of
metapredict. Nonetheless, this suggests that metapredict can achieve even marginally higher
accuracy in identifying IDRs, and automates this procedure for the users, allowing boundaries
between IDRs and folded domains to be automatically identified and greatly facilitating IDR-ome
style analyses of datasets.

We designed metapredict to be as flexible and user-friendly as possible. For example,
metapredict can be used as a Python library (Figure 5A), a stand-alone command-line tool
(Figure 5B) or a web server (http://metapredict.net) (Figure 5C). Moreover, metapredict
contains functionality to generate graphs or disorder scores from the command-line by directly
inputting a single protein sequence or even by passing a UniProt accession number.
Alternatively, the user can pass in protein sequences in a FASTA formatted file, and metapredict
will return either raw scores or individual graphs for each protein. Finally, in comparison to other
predictors, which can take seconds, minutes or even hours per sequence, metapredict’s
computational performance makes it sufficiently fast that on-the-fly disorder prediction can be
faster than reading pre-computed values from disk. It is the combination of accuracy,
computational efficiency, ease of use, and flexibility that makes metapredict a convenient tool for
any kind of disorder prediction, from single sequences to proteome-wide analyses.
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Figure 5. Metapredict offers three distinct modes of use. (A) Metapredict can be used as a Python
library, with simple and intuitive integration into existing Python code or for exploration in a Jupyter
notebook. (B) Metapredict can be used as a command-line tool to interact directly with FASTA files. The
file generated by the command metapredict-predict-disorder (“disorder_scores.csv”) is a simple comma
separated value (CSV) file with per-residue disorder values provided for each sequence in the FASTA file.
(C) Finally, metapredict is offered as a simple web server (https://metapredict.net), which can generate
high-quality downloadable figures or allow per-residue disorder scores to be obtained as a CSV data file.
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Code and data availability
The code for metapredict can be found at: https://github.com/idptools/metapredict.
Documentation is available at https://metapredict.readthedocs.io/. Fully processed sequences
used for assessment (including sequences and scores) are provided at
https://github.com/holehouse-lab/supportingdata/. Metapredict can be installed directly from the
Python Packaging Index using pip (i.e., pip install metapredict).
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Supplemental Information
Supplemental File 1 - Summary of all analyses including additional statistical analyses not
shown in the primary manuscript as well as raw values for each analysis for all predictors
examined. All values with the exception of those for metapredict were obtained from (27, 53).

Supplemental Figure 1. Assessing the impact of disorder cutoff values on binary order
and disorder classification of CheZOD data. (A) Absolute value of Pearson’s Correlation
Coefficient for binary predictions of disorder by metapredict compared to binary classifications of
disorder from the CheZOD dataset. (B) Absolute value of Pearson’s Correlation Coefficient for
binary predictions of disorder by metapredict where the binary predictions were obtained using
the predict_disorder_domains() function. These predictions are compared to binary
classifications of disorder from CheZOD dataset. For both (A) and (B), the orange line
represents the cutoff value used for binary classifications of order and disorder for metapredict.
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Supplemental Figure 2. Assessing the impact of disorder cutoff values on binary order
and disorder classification of the Disprot Dataset (CAID). (A) F1-scores for binary
predictions of disorder by metapredict compared to binary classifications of disorder from the
Disprot dataset. (B) F1-scores for binary predictions of disorder by metapredict where the binary
predictions were obtained using the predict_disorder_domains() function. These predictions
were compared to binary classifications of disorder from the Disprot dataset. For both (A) and
(B), the orange line represents the cutoff value used for binary classifications of order and
disorder for metapredict.
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Supplemental Figure 3. Assessing the impact of disorder cutoff values on binary order
and disorder classification of the Disprot Dataset-PDB (CAID). (A) F1-scores for binary
predictions of disorder by metapredict compared to binary classifications of disorder from the
Disprot-PDB dataset. (B) F1-scores for binary predictions of disorder by metapredict where the
binary predictions were obtained using the predict_disorder_domains() function. These
predictions were compared to binary classifications of disorder from the Disprot-PDB dataset.
For both (A) and (B), the orange line represents the cutoff value used for binary classifications of
order and disorder for metapredict.
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Supplemental Figure 4. Assessing the impact of disorder cutoff values on metapredict
identifying fully disordered proteins from the Disprot Dataset (CAID). (A) F1-scores for
predicted fully disordered proteins by metapredict compared to the known number of fully
disordered proteins in the Disprot dataset. (B) F1-scores for predicted fully disordered proteins
by metapredict where the binary predictions used to classify a protein as fully disordered were
obtained using the predict_disorder_domains() function. These predictions were compared to
the known number of fully disordered proteins in the Disprot dataset. For both (A) and (B), fully
disordered proteins were counted if the predictor classified at least 95% of residues within a
protein as disordered. For both (A) and (B), the orange line represents the cutoff value used for
binary classifications of order and disorder for metapredict.
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Supplemental Figure 5. Metapredict performance as a function of sequence length in
number of residues. Assessment of length-dependence of metapredict performance reveals a
linear scaling of prediction time with sequence length. Sequences here are randomly generated
fixed-length sequences. Error bars are standard error of the mean calculated over thirty
independent runs for random sequences of the specified length. Code for this analysis is
provided in the Supporting Data GitHub repository.
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