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Abstract 

Proteins interacting with ADP-ribosyl groups are often involved in disease-related pathways or in viral 
infections, which makes them attractive targets for the development of inhibitors. Our goal was to 
develop a robust and accessible assay technology that is suitable for high-throughput screening and 
applicable to a wide range of proteins acting as either hydrolysing or non-hydrolysing binders of mono- 
and poly-ADP-ribosyl groups. As a foundation of our work, we developed a C-terminal protein fusion 
tag based on a Gi protein alpha subunit peptide (GAP), which allows for site-specific introduction of 
cysteine-linked mono- and poly-ADP-ribosyl groups as well as chemical ADP-ribosyl analogs. By fusion 
of the GAP-tag and ADP-ribosyl binders to fluorescent proteins, we were able to generate robust FRET 
signals and the interaction with 22 previously described ADP-ribosyl-binders was confirmed. To 
demonstrate the applicability of this binding assay for high-throughput screening, we utilized it to 
screen for inhibitors of the SARS-CoV-2 nsp3 macrodomain and identified the drug suramin as a 
moderate yet unspecific inhibitor of this protein. To complement the binding technology, we prepared 
high-affinity ADP-ribosyl binders fused to a nanoluciferase, which enabled simple blot-based detection 
of mono- and poly-ADP-ribosylated proteins. These tools can be expressed recombinantly in E. coli 
using commonly available agents and will help to investigate ADP-ribosylation systems and aid in drug 
discovery. 
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Introduction 

ADP-ribosylation is a post-translational modification involved in the regulation of many diverse 
processes in the cell. Despite its physiological importance, the intricate interplay of ADP-ribose 
transfer, detection and removal and its connection to specific pathways is not well-understood at the 
molecular level (Gupte et al., 2017; O’Sullivan et al., 2019; Palazzo and Ahel, 2018). ADP-ribosyl-
transferases (“writers”) such as PARP family members catalyse the transfer of mono- or poly-ADP-
ribosyl groups to target proteins. These ADP-ribosyl groups can then be recognized by ADP-ribosyl-
binding proteins (“readers”), which often serve to recruit further proteins. ADP-ribosyl groups may 
also be removed by hydrolysing proteins (“erasers”), reversing the action of writers and thereby 
impacting respective signalling processes. 

The human genome encodes many different readers and erasers of ADP-ribosyl groups. 
Macrodomains represent a large class of ADP-ribose binders known in humans. Many of them are 
encoded as part of other multidomain proteins such as ADP-ribosyltransferases (PARP9, PARP14, 
PARP15) or histones (macroH2A variants). Other macrodomains such as MDO1, MDO2, PARG or 
TARG1 possess hydrolytic activity and are integral actors in ADP-ribose signalling pathways (Feijs et 
al., 2013; Rack et al., 2016, 2020a). Viruses such as coronaviruses or togaviruses are known to harbour 
macrodomains that can remove ADP-ribose from proteins inside the host cell. These viral 
macrodomains are implied to weaken the host virus defence mechanism by interfering with the host 
ADP-ribosylation signalling machinery and have been shown to be necessary for virus replication and 
pathogenesis (Abraham et al., 2018; Fehr et al., 2018; Leung et al., 2018; McPherson et al., 2017). 
Viruses with these macrodomains include Chikungunya virus, MERS-CoV (camel flu) and SARS-CoV-2 
(COVID-19). In addition to macrodomains, ADP-ribosyl glycohydrolases of another human enzyme 
family, ARH1 and ARH3, have been reported to hydrolyse ADP-ribose linked especially to arginine and 
serine residues, respectively (Abplanalp et al., 2017; Rack et al., 2018, 2020a). Several other domain 
types exist that are primarily associated with binding of poly-ADP-ribosyl groups (PAR). Examples of 
these are the PAR-binding zinc finger (PBZ) domain of APLF (Li et al., 2010; Rulten et al., 2008), WWE 
domain in multiple ADP-ribosyltransferases and E3 ubiquitin ligases (Aravind, 2001; Wang et al., 2012) 
and PAR-binding phosphate pocket in the BRCT1 domain of XRCC1 (Breslin et al., 2015; Kim et al., 
2015). 
 

While development of inhibitors for ADP-ribosyltransferases has been investigated for multiple 
decades mainly in the context of cancer therapeutics, the development of inhibitors against binders 
or hydrolysers of ADP-ribose has only gained momentum in recent years (Palazzo and Ahel, 2018). 
Inhibitors of ADP-ribose binding and hydrolysing proteins would be valuable tools that could help to 
decipher the complex ADP-ribosyl signalling machinery inside the cell. These inhibitors might also 
display therapeutic potential as recently demonstrated with novel PARG inhibitors that can impair 
cancer cell survival (Houl et al., 2019). Furthermore, the inhibition of viral macrodomains to combat 
diseases caused by these viruses was suggested (Fehr et al., 2018; Rack et al., 2020b) and is currently 
being explored extensively for the SARS-CoV-2 nsp3 macrodomain (Shimizu et al., 2020). 

We sought to set up a system that enables easy development of binding assays suited for a wide 
variety of ADP-ribosyl-binders and -hydrolases alike, could further be used for inhibitor screening in a 
high-throughput setting, and would be simple and easily accessible. Many previous binding assays 
could only be applied to either ADP-ribosyl readers (Ekblad et al., 2018) or erasers (Haikarainen et al., 
2018; Wazir et al., 2021) or are not suitable for high-throughput setups like mass-spectrometry and 
immunoblot based methods (Haikarainen and Lehtiö, 2016; Hirsch et al., 2014). Many assays also rely 
on expensive reagents as used in AlphaScreen or TR-FRET technologies or use custom synthesized 
reagents. Voorneveld et al. developed a method to synthesize peptides containing mono-ADP-ribosyl 
(MAR) groups in a selected serine, threonine or cysteine residue (Voorneveld et al., 2021). These 
synthetic peptides provided excellent control on the sample homogeneity and were used to study 
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ADP-ribose hydrolysis by different erasers. In another study, Schuller et al. used a synthetic ring-
opened ADP-ribosyl group linked to a biotinylated peptide to generate a robust binding assay based 
on AlphaScreen technology (Schuller et al., 2017). This modified ADP-ribosyl group was shown to be 
non-hydrolysable, so that this assay technology could be successfully applied to readers and erasers. 
Even though these methods were shown to work robustly, the reagents used may not be easily 
accessible. 

In proteins, many different residues can serve as acceptors of ADP-ribose. Residues such as serine, 
aspartate or glutamate form an O-glycosidic bond and lysine, arginine or asparagine form an N-
glycosidic bond with ADP-ribose. Additionally, the linkage via an S-glycosidic bond can be formed with 
cysteine residues (Cohen and Chang, 2018). While many different ADP-ribosyl-hydrolases exist and 
can remove ADP-ribose from O- or N-glycosidic bonds, to date there is no human enzyme reported 
able to reverse the S-glycosidic linkage (Voorneveld et al., 2021). We reasoned that a naturally 
occurring S-glycosidically linked ADP-ribosyl group may serve as non-hydrolysable ADP-ribosyl binding 
probe and therefore could be used to measure the interaction to both hydrolysing- and non-
hydrolysing ADP-ribosyl binders. 

 
To generate S-glycosidically linked ADP-ribosyl groups in controlled manner, we used S1 subunit of 
pertussis toxin from the bacterium Bordetella pertussis, which is known to efficiently catalyse the 
transfer of a single ADP-ribosyl group to a specific C-terminal cysteine residue in the αi subunits of 
heterotrimeric G proteins (Gαi) (Ashok et al., 2020; Katada, 2012). We recombinantly produced 
proteins with a C-terminal 10-mer peptide of Gαi and still observed efficient modification. This allows, 
in theory, site-specific addition of ADP-ribose to any protein with accessible C-terminus. We used this 
system to generate a MARylated YFP protein with stable S-glycosidic bond able to bind ADP-ribosyl 
readers or erasers. We were able to further extend this system by using PARP enzymes that extend 
the single residue linked MAR to PAR, allowing us to probe the binding of both MAR and PAR binders. 
The in vitro system allows for simple and efficient setup of binding assays for ADP-ribosyl readers and 
erasers based on site-specific cysteine ADP-ribosylation of a Gαi-based tag we termed GAP (Gi protein 
Alpha subunit Peptide). We further demonstrated the possibility to modify GAP-tagged proteins with 
chemically modified NAD+-analogs. To complement the binding assays, we developed a fast and simple 
detection method of mono- or poly-ADP-ribosylation on blots by fusing ADP-ribosyl binders to 
nanoluciferase (Nluc). These methods open ways for the development of various in vitro assay systems 
(Figure 1). To show the applicability for screening, we set up a binding assay for the macrodomain of 
SARS-CoV-2 non-structural protein 3 and identified the drug suramin as a moderate inhibitor. 
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Figure 1: A molecular toolbox for in vitro interaction studies and assay development of ADP-ribosyl binding 
proteins. (a) Site-specific ADP-ribosylation of a C-terminal Gαi-based 10-mer peptide (GAP-tag) by pertussis toxin 
subunit S1 (PtxS1) allows for generation of single S-glycosidically linked mono-ADP-ribosyl (MAR) groups. (b) The 
MAR group of the GAP-tag can be extended to a poly-ADP-ribosyl (PAR) group by PARP2. This system can be 
used to measure binding of proteins interacting with mono- or poly-ADP-ribosyl groups by FRET or other binding 
technologies. (c) The GAP-tag can be used for site-specific labelling with NAD+ analogs. (d) High-affinity ADP-
ribosyl binders fused to nanoluciferase (Nluc) can be used as luminescent probes for fast, sensitive, and selective 
detection of mono- and poly-ADP-ribosylated proteins in blot-based methods. 
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Results 
Initial preparation of proteins for toolbox studies 

The proteins used in this study were recombinantly produced in E. coli. We reasoned that mono-ADP-
ribosylation (MARylation) of Gαi by pertussis toxin would provide a good probe to test binding to ADP-
ribosyl groups because the modification is well-defined at a single residue and is linked to cysteine via 
an S-glycosidic linkage. We initially assumed this linkage to be stable against enzymatic hydrolysis by 
many of the erasers, which was later during our work also experimentally confirmed by others 
(Voorneveld et al., 2021). It was previously shown that the recombinantly produced pertussis toxin 
subunit S1 (PtxS1) could be used to ADP-ribosylate Gαi proteins in vitro (Ashok et al., 2020). We tested 
the ability of PtxS1 to modify unlabelled and YFP-fused full-length Gαi as well as a 10-residue C-
terminal peptide of Gαi (GAP) when fused to YFP (Figure 2a). While ADP-ribosylation by PtxS1 was 
confirmed for these Gαi constructs, the lower signal for the GAP-tag indicates less efficient 
modification by PtxS1 compared to full-length constructs. Similar was reported recently for synthetic 
Gαi peptides (Eskonen et al., 2020) and further confirmed by NAD+-consumption assay (Figure S1). 
Despite this, we found that ADP-ribosylation activity by PtxS1 was sufficient to produce MARylated 
GAP-tagged YFP (Figure S2). 

Next, we aimed to introduce a poly-ADP-ribosyl (PAR) chain to the GAP-tag in order to generate a 
probe that could be used to detect interaction of PAR-binding proteins. We reasoned that the mono-
ADP-ribosyl group of the previously modified GAP tag could serve as the starting point for elongation 
to poly-ADP-ribose by PARP enzymes. Detection of poly-ADP-ribosyl chains by western blot shows that 
the MARylated GAP-tag, but not the unmodified GAP-tag, can be PARylated by PARP2 in the presence 
of NAD+ (Figure 2b, Figure S3). A similar extension can be done by using TNKS1 instead of PARP2 
(Figure S4). 

As a tool to detect ADP-ribosylation, we adapted a method for blot-based detection by Nluc 
luminescence (Boute et al., 2016). Instead of fused antibodies, we produced the recently reported 
engineered ADP-ribosyl superbinder eAf1521 (Nowak et al., 2020) or high affinity PAR binder ALC1 
(Singh et al., 2017) as fusion proteins with Nluc. We found that these constructs are easy to produce 
in E. coli and work in a simple and fast protocol for sensitive detection of mono- and poly-ADP-
ribosylated proteins (Figure 2c, d).  
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Figure 2: Initial development and preparation of toolbox components. (a) Testing ADP-ribosylation by PtxS1 
with different Gαi constructs. Unlabelled or YFP-fused full length Gαi constructs and GAP-tagged YFP were tested 
as cysteine-ADPr acceptors when treated with 50 nM (+) or 250 nM (++) PtxS1. As controls, buffer or YFP-GAP in 
which the acceptor cysteine was mutated to alanine were used. Reactions were blotted on a nitrocellulose 
membrane and detection was done using Nluc-eAf1521. (b) The mono-ADP-ribosyl group in the GAP-tag can be 
extended to poly-ADP-ribose by PARP2. 10 µM YFP-GAP or YFP-GAP(MAR) were mixed with 1 mM NAD and 400 
nM (+) or 4 µM (++) PARP2 or buffer as control. The reactions were run on SDS-PAGE and visualized using 
coomassie blue or by western-blot and detection using Nluc-eAf1521 or Nluc-ALC1. (c) Detection of MAR and 
PAR by Nluc-eAf1521. (d) Selective detection of PAR by Nluc-ALC1. Dilution series of YFP-GAP(±MAR) or 
TNKS1(±PAR) were blotted on nitrocellulose membranes. YFP-GAP: 1 fmol = 31 pg, TNKS1: 1 fmol = 75 pg. 
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The GAP-tag for site-specific labelling of proteins using NAD+ analogs 

While we could use the GAP-tag to site-specifically label proteins with ADP-ribose, we sought to 
demonstrate that this system could be extended with NAD+ analogs to introduce various chemical 
groups to the C-terminus of proteins. Many NAD+ analogs already exist and are commercially available 
such as biotinylated, fluorescent and click-chemistry ready NAD+ analogs (Depaix and Kowalska, 2019). 
We first tested the modification of GAP-tagged YFP with 6-biotin-17-NAD+ and confirmed that this 
NAD+ analog serves as substrate for PT-based modification of the GAP-tag (Figure 3a). The site-specific 
modification was detected using dot blot with streptavidin-conjugated horseradish peroxidase. We 
further tested modification of the GAP-tag with 6-propargyladenine-NAD+. The NAD+ analog is 
accepted as a substrate by PtxS1 and, as the resulting ADP-ribosyl-group contains an alkyne residue, 
it can be used in a copper(I)-catalyzed alkyne-azide cycloaddition reaction with azide-labelled Cy3 or 
Cy5 fluorophores to label the proteins (Figure 3b). 

 

 

 

Figure 3: The GAP-tag can be used to introduce site-specific modifications with NAD+ analogs. (a) Site-specific 
biotinylation of the GAP-tag. GAP-tagged YFP was mixed with NAD+ or 6-Biotin-17-NAD+ in absence or presence 
of PtxS1. The reactions were blotted on a nitrocellulose membrane and detection of biotin was done with 
Streptavidin-HRP. (b) YFP-GAP was MARylated with PtxS1 using NAD+ or 6-propargyladenine-NAD+ containing 
an alkyne group. The resulting proteins YFP-GAP(MAR) or YFP-GAP(MAR-alkyne) or buffer were mixed with Cy3-
azide or Cy5-azide and the copper(I)-catalyzed alkyne-azide cycloaddition reaction was performed by addition 
of 5 mM sodium ascorbate, 300 µM CuSO4 and 600 µM L-histidine. The samples were incubated for 3 hours at 
room temperature and blotted on nitrocellulose membranes and color images were taken. Unreacted Cy3-azide 
or Cy5-azide were removed by washing of the membranes in TBS-T. Color images as well as fluorescent images 
were taken. 
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Evaluation of binding with confirmed and potential ADP-ribosyl binders 

We selected a set of 27 different proteins to be tested for binding to the MARylated GAP-tag. We 
recombinantly produced these proteins in E. coli as fusions with CFP and tested ratiometric FRET 
signals upon binding to the MARylated YFP-GAP construct (Figure 4a). We used non-MARylated YFP-
GAP construct as a control as well as MARylated YFP-GAP containing 200 µM ADP-ribose to compete 
with the interaction. A higher FRET signal correlates with a higher occupancy and thus binding-affinity 
of the binding partners, but it is also affected by the distance and orientation of the fluorophores 
(Kashida et al., 2017). We found that the proteins previously reported to bind ADP-ribose showed a 
higher FRET signal compared to the controls, indicating the binding to the MARylated GAP-tag. ARH1 
was reported to bind ADP-ribose with a low affinity (Rack et al., 2018), which is likely the reason that 
we could not measure a FRET signal for this construct. While all three histone macrodomains 
macroH2A1.1, macroH2A1.2 and macroH2A2 have highly similar sequences, previous reports have 
concluded that only macroH2A1.1 has the ability to bind ADP-ribose (Kozlowski et al., 2018; 
Kustatscher et al., 2005). This is in agreement with our observations, wherein only macroH2A1.1 
shows an elevated FRET signal over the controls. The GDAP2 protein has a macrodomain with 
similarities to MDO1 and MDO2, however it was reported to be unable to bind ADP-ribose (Neuvonen 
and Ahola, 2009), which is consistent with our findings.  

While cysteine-(ADP-ribosyl)hydrolase activity was detected in human erythrocytes and mitochondria 
(Herrero-Yraola et al., 2001; Tanuma and Endo, 1990), no specific enzymes in humans with this activity 
could be identified to date. To test if any of the proteins show S-glycosylhydrolase activity, we mixed 
the CFP-fused constructs from above with MARylated YFP-GAP protein and tested hydrolysis of ADP-
ribose using dot blot analysis after a 24-hour incubation period (Figure 4b). While the controls 
including snake venom phosphodiesterase I (SVP) showed loss of the signal through cleavage of the 
ADP-ribose diphosphate, none of the tested proteins were able to substantially hydrolyse the S-
glycosidic bond under the conditions tested. ARH family members also showed no hydrolysis upon 
addition of MgCl2 (Figure S5). These findings highlight the versatility of this system for measuring the 
ADP-ribosyl binding of proteins that can otherwise hydrolyse O- or N-glycosidic linkages such as 
MDO1, MDO2, TARG1, ARH3 or SARS-CoV-2 nsp3. 

The PAR binders ALC1, APLF, XRCC1 and RNF146 WWE domain did not show binding to MARylated 
YFP-GAP (Figure 4a), however they showed increased FRET signals when we used YFP-GAP PARylated 
by PARP2 (Figure 4c). For proteins binding to the MARylated GAP-tag, even comparatively low rFRET 
values showed good signals in dose-response experiments by competition with ADP-ribose (Figure 4d, 
Figure S6). Similarly, a representative curve for ALC1 with PARylated YFP-GAP was recorded and shows 
loss of the FRET signal with higher concentrations of auto-PARylated PARP2 protein (Figure 4e).  
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Figure 4: Testing interactions of reported and potential readers and erasers with YFP-GAP. (a) Interactions of 
CFP-fused potential and confirmed ADP-ribosyl binders with MARylated YFP-GAP. 1 µM CFP-fusion proteins 
were mixed with 5 µM YFP-GAP or with 5 µM YFP-GAP(MAR) in absence or presence of 200 µM ADP-ribose. The 
ratiometric FRET signals were measured. P9, P14, P15 = PARP9, PARP14, PARP15. (b) Test of ADP-ribosyl removal 
from GAP tag. 10 µM YFP-GAP(MAR) were prepared in absence (-) or presence (+) of 1 µM CFP-fused proteins 
or 0.01 µM to 1 µM snake venom phosphodiesterase I (SVP). Samples were incubated for 24 hours at room 
temperature and blotted on a nitrocellulose membrane. Detection was done with Nluc-eAf1521. (c) Interactions 
of poly-ADP-ribosyl binders with PARylated YFP-GAP. 250 nM CFP-fusion proteins were mixed with 500 nM YFP 
or with 500 nM YFP-GAP(PAR) in absence or presence of 100 µM ADP-ribose or 2.5 µM automodified PARP2. 
The ratiometric FRET signals were measured. (d) Representative dose-response curve of 1 µM CFP-SARS-CoV 
nsp3 and 5 µM YFP-GAP(MAR) upon competition with ADP-ribose. The control containing no ADP-ribose was set 
one logarithmic unit below the lowest concentration. (e) Representative dose-response curve of 250 nM CFP-
ALC1 and 500 nM YFP-GAP(PAR) upon competition with PARylated PARP2. The control containing no 
PARP2(PAR) was set one logarithmic unit below the lowest concentration, while the control using YFP-GAP(MAR) 
instead of YFP-GAP(PAR) was set one logarithmic unit above the highest PARP2(PAR) concentration. Data shown 
are mean ± standard deviation with number of replicates n = 4. 
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We used FRET for testing the interaction of proteins with the ADP-ribosylated GAP-tag, however we 
sought to demonstrate that binding to MARylated Gαi could also be measured with different binding 
technologies. We used MDO2 as an example protein for this. Similarly to the binding of CFP-fused 
MDO2 to MARylated YFP-GAP to measure FRET (Figure 5a, Figure S7, Kd=654 nM), we used Nluc-fused 
MDO2 to generate a BRET signal upon interaction with MARylated YFP-GAP (Figure 5b). Conveniently, 
the same YFP variant can serve as acceptor in FRET and BRET applications. AlphaScreen protocols for 
ADP-ribosyl readers or erasers exist (Ekblad et al., 2018; Haikarainen et al., 2018; Schuller et al., 2017) 
and we could use our system adapted to AlphaScreen technology to directly probe binding to 
MARylated Gαi by MDO2 (Figure 5c). We further showed binding of MDO2 to MARylated YFP-GAP 
using biolayer interferometry (BLI, Figure 5d), which in recent years has gained popularity as method 
for screening of small molecule compounds (Kaminski et al., 2017; Overacker et al., 2021; Peltomaa 
et al., 2018). This method also allows for simple quantification of kinetic binding parameters such as 
the dissociation constant (Figure S8). 

 

Figure 5: Various assay technologies can be utilized to detect binding to the MARylated Gαi. (a) Measurement 
of interaction by FRET. Ratiometric FRET signal of CFP-MDO2 and YFP-GAP(MAR) in absence (control) or 
presence of 200 µM ADP-ribose as shown in Figure 4a. (b) Measurement of interaction by BRET. Ratiometric 
BRET signal of Nluc-MDO2 and YFP-GAP(MAR) in absence (control) or presence of 200 µM ADP-ribose. (c) 
Measurement of interaction by AlphaScreen. Biotinylated MDO2 and His-tagged MARylated Gαi were mixed 
with streptavidin donor beads and chelate acceptor beads in absence (control) or presence of 10 µM ADP-ribose. 
The luminescence signal was detected upon excitation of donor beads. (d) Measurement of interaction by 
biolayer interferometry. His-tagged YFP-GAP(MAR) was bound to the optical sensor surface and the change of 
signal after association (0 sec) or dissociation (120 sec, dotted line) of unlabelled MDO2 protein was determined 
in absence or presence of 3.16 µM ADP-ribose. Data shown in a-c are mean ± standard deviation with number 
of replicates n = 4. 
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Application example: Screening for inhibitors against the SARS-CoV-2 nsp3 macrodomain 

In light of the current situation regarding the COVID-19 pandemic, we chose to demonstrate the 
applicability of this binding system for screening of small molecule inhibitors against the macrodomain 
of SARS-CoV-2 nsp3. Presently, efforts are being made by researchers worldwide to find inhibitors 
against this macrodomain (Bonfiglio et al., 2020; Brosey et al., 2021; Cantini et al., 2020; Michalska et 
al., 2020; Ni et al., 2021; Russo et al., 2021; Schuller et al., 2021; Virdi et al., 2020). The nsp3 
macrodomain of coronaviruses was shown to be critical for the viral replication (Fehr et al., 2015, 
2016), and therefore small molecule inhibitors might show promise as therapeutic agents to fight 
infections caused by SARS-CoV-2 (COVID-19) and other viruses. 

We assessed the quality of the FRET signals of the alternating positive and negative controls in a 384-
well plate by mixing CFP-fused SARS-CoV-2 nsp3 macrodomain with MARylated YFP-GAP in the 
absence and presence of 200 µM ADP-ribose (Figure 6a). While the SARS-CoV-2 macrodomain was 
reported to have a relatively low binding affinity to ADP-ribose (Kd = 17 µM, Alhammad et al., 2021), 
we still found that the FRET signal showed sufficient separation of positive and negative controls. The 
Z’-factor was calculated to be 0.7, indicating that this assay is well suitable for high-throughput 
screening (Zhang et al., 1999). 

We screened against an FDA-approved drug library comprising 640 small molecule compounds at 20 
µM compound concentration (Figure 6b). From the screening, only the compound suramin was 
regarded as hit with 82% inhibition (Figure 6c). The IC50 value of this compound was determined to be 
8.7 µM against the SARS-CoV-2 nsp3 macrodomain in the FRET-based assay (Figure 6d). To confirm 
binding of the compound to the SARS-CoV-2 nsp3 macrodomain, we performed nanoDSF analysis and 
showed stabilization of the protein by suramin in a concentration dependent manner (Figure 6e). 
Intriguingly, suramin is used as a broadband antiviral and antiparasitic drug and was recently reported 
to inhibit SARS-CoV-2 infection in cell culture-based models (Salgado-Benvindo et al., 2020) and to 
bind with high affinity to the RNA polymerase of SARS-CoV-2 (Yin et al., 2021). After reviewing the 
literature associated with suramin, we found that it is reported to inhibit a plethora of protein targets 
such as DNA- and RNA-polymerases, sirtuins, ATPases and G protein-coupled receptors (Freissmuth et 
al., 1996; Torrente et al., 2014; Trapp et al., 2007; Wiedemar et al., 2020), indicating that it exhibits 
low target specificity. We next tested the inhibition of suramin against the viral and human ADP-ribose 
readers and erasers produced in this study using the FRET-based assay (Figure 6f). Not surprisingly, 
suramin showed strong inhibition even at 10 µM against many of the proteins tested, confirming the 
low target specificity of this compound. To our knowledge, inhibition of macrodomains by suramin 
was not previously reported. We show that suramin also inhibits the nsp3 macrodomain of CHIKV, and 
inhibition of CHIKV pathogenesis by suramin was shown in multiple studies (Albulescu et al., 2015, 
2020; Henß et al., 2016; Ho et al., 2015; Kuo et al., 2016; Lu et al., 2017). While multiple mechanisms 
for this inhibitory activity against CHIKV were reported, it is tempting to speculate that the inhibition 
of the nsp3 macrodomain poses another yet overlooked mechanism. 
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Figure 6: Development of a screening assay for the SARS-CoV-2 nsp3 macrodomain. (a) Signal validation for a 
screening assay with CFP-SARS-CoV-2. 1 µM SARS-CoV-2 was mixed with 5 µM YFP-GAP(MAR) in the absence 
(negative control) or presence (positive control) of 200 µM ADP-ribose and a Z’-factor of 0.7 was calculated. (b) 
Screen of ENZO FDA-approved drug library. One compound showed inhibition above 30% and was taken to 
further validation. (c) Structure of the hit compound suramin. (d) Dose-response curve with suramin shows an 
IC50 of 8.7 µM for the SARS-CoV-2 nsp3 macrodomain in the FRET-based. The control containing no compound 
was set one logarithmic unit below the lowest concentration, while the control containing 200 µM ADP-ribose 
was set one logarithmic unit above the highest suramin concentration.  (e) Suramin shows stabilization of SARS-
CoV-2 nsp3 macrodomain by DSF. (f) Inhibition profile of suramin against human and viral ADP-ribosyl binders 
used in this study. The inhibition was calculated based on the ratiometric FRET signals of the CFP-fused binders 
mixed with YFP-GAP(MAR) or YFP-GAP(PAR). Data shown are mean ± standard deviation with number of 
replicates n = 4. 
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Discussion 

The high complexity of ADP-ribosyl associated pathways makes the involved proteins notoriously hard 
to study (Bonfiglio et al., 2020; Lüscher et al., 2018). While potent and specific inhibitors against many 
of the ADP-ribosyl transferases fundamentally helped to broaden our understanding of these enzymes 
(Durkacz et al., 1980; Huang et al., 2009; Kirby et al., 2018; Venkannagari et al., 2016; Wang et al., 
2018), such inhibitors against ADP-ribosyl readers and erasers are still scarcely available or in early 
stages of development (Harrision et al., 2020; James et al., 2016; Liu et al., 2020; Palazzo and Ahel, 
2018; Schuller et al., 2017). It was suggested that a possible bottleneck for the discovery of inhibitors 
is due to the lack of accessible high-throughput technologies (Schuller et al., 2017). Many of the assay 
systems work for only a subset of mono- or poly-ADP-ribosyl readers or erasers, require expensive or 
custom-made reagents or are not suited for high-throughput screening. 
We have shown that the MARylated GAP-tag provides an easy to use and stable template for the 
development of binding assays for ADP-ribosyl binding proteins. This system can be adapted to 
different binding technologies such as FRET, BRET, AlphaScreen or BLI as shown in this study – but is 
not limited to these and could be extended to work with technologies such as protein-fragment 
complementation assays or time resolved-FRET methods. The GAP-tag can also be used to site-
specifically introduce chemical ADP-ribose analogs to the protein of interest, adding another 
technology to the chemical biology toolkit of protein labelling tags (Lotze et al., 2016). The ADP-ribosyl 
labelling technology ELTA might further be used to extend this functionality (Ando et al., 2019). We 
have further shown that the mono-ADP-ribosyl group attached to the GAP-tag can be subsequently 
extended to poly-ADP-ribosyl chains by PARP2, which we used to detect interactions with PAR binding 
proteins. A similar strategy for generation of defined single poly-ADP-ribosyl chains to protein targets 
was to our knowledge not reported before and might prove useful also in other applications in the 
future. 
We tested in this study a total of 27 proteins that were either confirmed to bind to ADP-ribosyl groups 
or were shown not to bind them, despite being macrodomains. For 22 of these proteins, we confirmed 
binding to either mono- or poly-ADP-ribosyl groups attached to the GAP tag. The remaining 5 proteins 
not showing binding were either reported not to bind ADP-ribose or bind it only with very low affinity. 
The systems described in this work can be entirely recombinantly produced in E. coli with good yields 
for most of the proteins (>200 mg/L culture). While we have produced and tested a large set of 
proteins in this study, the production of only three proteins is required to set up a high-throughput 
assay for an ADP-ribosyl binder of interest (for instance: CFP-fusion protein, YFP-GAP and PtxS1).  
In the frame of our work, we also made use of Nluc-fused high-affinity ADP-ribose binders eAf1521 
and ALC1 as sensitive detection agents of mono- and poly-ADP-ribosyl groups for blot-based studies, 
respectively. Gibson et al. described a similar system based on ADP-ribosyl binding proteins fused to 
the Fc region of rabbit immunoglobulin, which can subsequently be detected by commercial 
antibodies targeting the Fc region (Gibson et al., 2017). Due to simple recombinant expression, we 
used Nluc and not the more established horse radish peroxidase as luminescent reporter. This may 
require more optimization efforts for quantitative blots, but it however works readily for semi-
quantitative or qualitative detection.  We found that our system, which does not require a secondary 
antibody, takes only little working time of about 1 hour from blotting to imaging in practice. We used 
these to confirm mono- or poly-ADP-ribosylation of the GAP tag and other Gαi constructs and to test 
for potential hydrolysis of S-glycosidic bonds by the proteins used in this study, but it could also be 
used for studying ADP-ribosylation by PARP family members or might find applications in cell-based 
studies. 

As an example for an application of this GAP-based binding assay, we screened a small molecule library 
of existing drugs against the nsp3 macrodomain of SARS-CoV-2. We validated suramin as a hit 
compound, confirming that the assay system is suitable for screening of inhibitors. While suramin 
showed significant inhibition of other ADP-ribosyl binders utilizing the same assay system, we believe 
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that the simple setup of profiling of potential inhibitors against many different ADP-ribosyl binders in 
itself is a valuable application of this technology.  

In summary, the tools presented in this study are very accessible and allow setting up of robust and 
adaptable ADP-ribosyl binding assays and will therefore aid in the investigation of ADP-ribosyl binders 
and the discovery of chemical probes targeting them.  
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Methods 
Cloning 

Detailed cloning procedures are described in the supplementary material. Boundaries of the cloned 
constructs are shown in Supplementary Table S1. Briefly, expression constructs were cloned into 
expression vectors based on pNIC28-Bsa4 or pNH-TrxT by SLIC (Jeong et al., 2012). 

Protein expression 

Detailed protein expression procedures are described in the supplementary material. Briefly, E. coli 
BL21(DE3) or E. coli Rosetta 2 cells were transformed with the plasmids encoding the expression 
constructs. Terrific Broth (TB) autoinduction media including trace elements (Formedium, 
Hunstanton, Norfolk, England) was supplemented with 8 g/l glycerol and antibiotics and inoculated 
with 1:100 of preculture grown over night in LB. The flasks were incubated shaking at 37 °C until an 
OD600 of about 1 was reached. The temperature was set to 15-18 °C and incubation continued 
overnight. The cells were collected by centrifugation at 4,200×g for 15-30 min at 4 °C. The pellets were 
thereafter resuspended in lysis buffer. Resuspended cells were stored at -20 °C until purification.  

Protein purification 

Detailed protein expression procedures are described in the supplementary material and 
Supplementary Table S2. Briefly, the cells were thawed and lysed by sonication and all constructs 
were initially purified by immobilized metal affinity chromatography (IMAC). Following IMAC, an 
additional size exclusion purification was performed for most of the proteins. Finally, proteins were 
concentrated and subsequently aliquoted and flash frozen in liquid nitrogen and stored at -70 °C. 

Preparation of mono- and poly-ADP-ribosylated GAP-tagged proteins 

YFP with C-terminal GAP-tag was purified by IMAC and dialyzed against 20 mM HEPES pH 7.5, 350 mM 
NaCl. YFP-GAP was diluted to 100 µM in 50 mM sodium phosphate buffer pH 7.0 and mixed with 1.5 
µM PtxS1 and 150 µM NAD+. The reaction was incubated for an hour at room temperature. To ensure 
completeness of the reaction, a second 150 µM were added to the reaction. Incubation was continued 
for 1 h at room temperature. The reaction mixture loaded to an IMAC column to remove pertussis 
toxin, hydrolysis products and unreacted NAD+. IMAC was carried out as described in the purification 
procedures above. The buffer was exchanged to 20 mM HEPES pH 7.5, 150 mM NaCl, 0.5 mM TCEP 
and the MARylated YFP-GAP was subsequently concentrated to about 1 mM concentration using a 
Amicon Ultra-15 Centrifugal Filter Unit (MWCO: 10kDa). The protein was flash frozen in liquid nitrogen 
and stored at -70 °C. 

PARylated YFP-GAP for FRET experiments was prepared from MARylated YFP-GAP. 10 µM of 
MARylated YFP-GAP was incubated in the presence of 400 nM PARP2 (residues 90-583) and 1 mM 
NAD+ in a buffer solution containing 50 mM Tris pH 8.0 and 5 mM MgCl2 for 2 h at room temperature. 
The reacted sample was then purified using IMAC as described above to remove PARP2. The sample 
buffer was exchanged to 30 mM HEPES pH 7.5, 150 mM NaCl, 10% glycerol, 0.5 mM TCEP using an 
Amicon Ultra-15 Centrifugal Filter Unit (MWCO: 10kDa). The protein was aliquoted and flash frozen in 
liquid nitrogen and stored at -70 °C.  

For Tankyrase1 PARylated YFP-GAP production, MARylated YFP-GAP was incubated with 200 nM 
Tankyrase 1 SAM-catalytic domain dimer and 1 or 10 mM NAD+ in a buffer solution containing 10 mM 
BisTrisPropane [pH7.0], 0.01% Triton X100. The reaction has carried out for 16 h at room temperature. 

Blot-based detection of mono- and poly-ADP-ribosylation 

For dot blot experiments, we transferred 0.5 µl per spot of the sample solution to dry nitrocellulose 
membranes using Echo 650. All following steps were performed at room temperature. After drying of 
the spots, the membrane was blocked on a shaker for 10 min in 15 ml 5%(w/v) skimmed milk powder 
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in TBS-T. The blocking solution was discarded, and the membrane was incubated on a shaker with 15 
ml of 0.1 µg/ml Nluc-eAf1521 or Nluc-ALC1 in 1%(w/v) skimmed milk powder in TBS-T. After discarding 
the Nanoluc-eAf1521 solution, the membrane was rinsed with 15 ml TBS-T and incubated on a shaker 
with 15 ml TBS-T for 15 min. After a final rinsing with 15 ml TBS-T, the membrane was imaged using 
500 µl of 1:1000 NanoGlo substrate (Promega, catalogue number: N1120) diluted in 10 mM sodium 
phosphate buffer pH 7.0. 

For western blot, 10 µl samples were first run in SDS-PAGE (Mini-Protean TGX 4-20% gradient gel, 
BioRad). The proteins were then transferred to a nitrocellulose membrane (Trans-Blot Turbo, BioRad) 
using TransBlot semi dry system (BioRad). After transfer, membranes were treated following the same 
procedure as described above for dot-blot. Nanoluc-eAF1521 and Nanoluc-ALC1 were used at 0.1 
µg/ml.  

Testing Nluc-eAf1521 and Nluc-ALC1 sensitivity and selectivity. 

Dilution series of YFP-GAP, MARylated YFP-GAP, MBP-TNKS1 construct or auto-PARylated MBP-TNKS1 
construct were blotted on a nitrocellulose membrane and detected with Nluc-eAf1521 or Nluc-ALC1 
as described above. 

To generate auto-PARylated TNKS1, 10 µM of purified TNKS1 construct were mixed with 1 mM NAD+ 
in 50 mM Bis-Tris-Propane pH 7.0, 0.01% Triton X-100, 0.5 mM TCEP. To generate a control containing 
TNKS1 without PAR, partial auto-PARylation that occurred during recombinant expression in E. coli 
was removed by mixing TNKS1 construct with 2 µM snake venom phosphodiesterase I from Crotalus 
adamanteus (Worthington Biochemical Corporation). 

Modification test of YFP-GAP with 6-Biotin-17-NAD+ 

10 µM YFP-GAP or YFP-GAP(cysteine to alanine mutant) were mixed with 1 µM NAD+ or 6-Biotin-17-
NAD+ (Biolog). Reactions were prepared in absence or presence of 0.5 µM PtxS1 and were incubated 
for 1 h at room temperature and then blotted to a dry nitrocellulose membrane (0.5 µl per spot of the 
sample solution to dry nitrocellulose membranes using Echo 650). The membrane was let dry and 
thereafter blocked on a shaker for 10 min in 15 ml blocking buffer (1% casein in TBS, BioRad). The 
blocking solution was discarded, and the membrane was incubated on a shaker for 1 hour with 15 ml 
of 1:5000 Streptavidin-HRP in blocking buffer. After discarding the Streptavidin-HRP solution, the 
membrane was rinsed with 15 ml TBS-T and incubated on a shaker with 15 ml TBS-T for 15 min. After 
a final rinsing with 15 ml TBS-T, the membrane was imaged using ECL solution (BioRad). 

Modification test of YFP-GAP with 6-propargyladenine-NAD+ and addition Cy3 and Cy5 
azides by CuAAC 

YFP-GAP(6-propargyladenine-MAR) was prepared as described above for YFP-GAP using 6-
propargyladenine-NAD+ instead of NAD+. To test the addition of Cy3 or Cy5 to YFP-GAP(6-
propargyladenine-MAR) by CuAAC, reactions were prepared in 25 mM HEPES pH 7.5 by mixing 15 µM 
of YFP-GAP(6-propargyladenine-MAR) or YFP-GAP(MAR) with 5 mM sodium ascorbate, 50 µM Cy3-
azide or Cy5-azide and pre-mixed 300 µM CuSO4 and 600 µM L-histidine. Additionally, controls without 
protein were prepared. The reactions were let incubate for 3 hours at room temperature and 
afterwards blotted on a nitrocellulose membrane (5 µl per spot). The membrane was washed in 15 ml 
TBS-T for 30 min and imaged. Fluorescence imaging was done with an Azure 600 imaging system 
(Azure Biosystems) using Cy3 or Cy5 filter settings, respectively. 

FRET measurement 

The measurements were done as previously described (Sowa et al., 2020). Briefly, the samples were 
excited at 410 nm and emission at 477 nm and 527 nm wavelengths were measured. The ratiometric 
FRET value (rFRET) was calculated by dividing the fluorescence intensity at 527 nm by the fluorescence 
intensity at 477 nm. The experiments with MARylated YFP-GAP were carried out in assay buffer (10 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 1, 2021. ; https://doi.org/10.1101/2021.05.31.445082doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.31.445082
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 
 

mM Bis–Tris-Propane pH 7.0, 3% (w/v) PEG20,000, 0.01%(v/v) Triton X-100 and 0.5 mM TCEP) in 10 µl 
volume per well whereas those with PARylated YFP-GAP were done in 10 mM Tris pH 8.0, 150 mM 
NaCl, 0.01% Tween-20 in 20 µl, unless stated otherwise. 

BRET measurement 

The reactions were performed in 384-well white OptiPlates (PerkinElmer). A reaction volume of 40 µl 
per well was used. 50 nM Nluc-MDO2 were mixed with 1 µM MARylated YFP-GAP. The reaction was 
started by addition of 1:4000 NanoGlo substrate (Promega, catalogue number N1110). The reaction 
was incubated for 5 minutes and the emission was measured at wavelengths of 445-470 nm and 520-
545 nm using Tecan Spark multimode plate reader with luminescence readout and a settle time of 10 
ms and integration time of 500 ms. The ratiometric BRET value (rBRET) was calculated by dividing the 
luminescence intensity and 520-545 nm by the luminescence intensity at 445-470 nm. The 
experiments were carried out in assay buffer (10 mM Bis–Tris-Propane pH 7.0, 3% (w/v) PEG20,000, 
0.01%(v/v) Triton X-100 and 0.5 mM TCEP). 

AlphaScreen 

AlphaScreen technology was utilized to demonstrate the assay principle as described previously 
(Haikarainen et al., 2018). The reaction was performed in a 384-well flat-grey Alphaplate (PerkinElmer) 
in a total volume of 25 µl. The reaction consisted of 300 nM His-tagged Gαi(MAR) mixed with 300 nM 
biotinylated MDO2 in a buffer containing 25 mM HEPES pH 7.5, 100 mM NaCl and 0.1 mg/ml BSA. The 
plate was sealed and incubated for 80 min at room temperature with constant shaking at 300 rpm. 
Finally, 5 µg/ml nickel chelate acceptor and streptavidin donor beads were added to the plates 
followed by additional 3 hrs incubation. The plate contained blank wells (assay buffer and AlphaScreen 
beads only), control 1 (biotinylated MDO2, His-tagged Gαi) and control 2 (biotinylated MDO2, 
MARylated His-tagged Giα and 10 µM ADP-ribose). Luminescence was read using Tecan infinite M1000 
Pro plate reader with AlphaScreen detection module. 

Biolayer interferometry 

Biolayer interferometry (BLI) assays were carried out in Octet Red system (ForteBio) in a buffer 
containing 10 mM Bis-Tris-Propane pH 7.0, 150 mM NaCl, 1% BSA, 0.02% Triton X-100 and at 30 °C 
and shaking at 1500 rpm. 10 µg/ml YFP-GAP or MARylated YFP-Gi was loaded on Ni2+-NTA coated 
sensors, followed by a wash step in buffer. Association to MDO2 was measured by dipping the sensors 
in solution containing 0-2 µM MDO2 for 120 s, while for the dissociation step the sensors were dipped 
in buffer for 120 s. 

For the ADP-ribose competition experiments, 10 µg/ml YFP-GAP or MARylated YFP-GAP were loaded 
onto Ni2+-NTA coated sensors. For association, sensors were dipped in 100 nM MDO2 mixed with a 
half-log dilution series of ADPr (10 nM to 10 µM) for 120 s and then transferred to buffer for the 
dissociation step. 

Cysteine-ADP-ribosyl hydrolysis assay 

All samples were incubated for 24 hours at room temperature prior to blotting. 1 µM of CFP-fused 
proteins or 0.01, 0.1 and 1 µM of SVP were mixed with 10 µM MARylated YFP-GAP in 10 mM HEPES 
pH 7.5, 25 mM NaCl, 0.5 mM TCEP. After incubation, 0.5 µl per spot of the reaction mixtures were 
blotted next to 0.5 µl spots of 10 µM MARylated YFP-GAP. As control, 10 µM of non-MARylated YFP-
GAP was blotted next to 10 µM of MARylated YFP-GAP. 

Validatory screening 

For the screening, 40 nl of 10 mM compound stocks dissolved in DMSO from the FDA-approved drug 
library (Enzo Life Sciences) were transferred to 384-well black low-volume polypropylene plates 
(Fisherbrand). The sample mixture containing 1 µM CFP-SARS-CoV-2 nsp3 macrodomain and 5 µM 
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MARylated YFP-GAP was prepared in assay buffer (10 mM Bis–Tris-Propane pH 7.0, 3%(w/v) 
PEG20,000, 0.01%(v/v) Triton X-100 and 0.5 mM TCEP) and 20 µl per well were dispensed using Mantis 
liquid dispenser (Formulatrix). The rFRET signal was determined after 5-minute incubation time. The 
sample mixtures in presence or absence of 200 µM ADP-ribose were used as positive and negative 
controls, respectively. 

Differential scanning fluorimetry 

The SARS-CoV-2 nsp3 macrodomain without tags was diluted to 5 µM in 10 mM HEPES pH 7.5, 25 mM 
NaCl, 0.5 mM TCEP buffer and mixed with 5x SYPRO Orange. Samples were prepared with 10 µM, 50 
µM, 100 µM or 1 mM of suramin. Samples in presence or absence of 1 mM ADP-ribose were used as 
controls. Samples were transferred to 96-well qPCR plates. Measurement was performed in a BioRad 
C1000 CFX96 thermal cycler. Data points for melting curves were recorded in 1 min intervals from 20–
95 °C, with the temperature increasing by 1 °C/min. The analysis of the data was done in GraphPad 
Prism 7 using a nonlinear regression analysis (Boltzmann sigmoid equation) of normalized data.  

Data availability 

The data that support the findings of this study are available from the corresponding author upon 
reasonable request. Expression constructs generated in this study will be available through Addgene. 
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