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Abstract 

Severe birth defects or major injuries to the face require surgical reconstruction and 

rehabilitation. The ability to make bona fide craniofacial cartilage – cartilage of the head 

and face – from patient-derived induced pluripotent stem cells (iPSCs) to repair these 

birth defects and injuries has tremendous translational applications, but is not yet 

possible. The neural crest is the normal developmental pathway for craniofacial 

cartilage, however, the knowledge of cell signaling pathways that drive neural crest 

differentiation into craniofacial chondrocytes is limited. Here we describe a 

differentiation protocol that generated self-organizing craniofacial cartilage organoids 

from human embryonic stem cells (hESCs) and IPSCs through a neural crest stem cell 

(NCSC) intermediate. Histological staining of cartilage organoids revealed tissue 

architecture typical of hyaline cartilage. Organoids were composed of rounded 

aggregates of glassy, gray matrix that contained scattered small nuclei in lacunae. Mass 

spectrometry shows that the organoids express robust levels of cartilage markers 

including aggrecan, perlecan, proteoglycans, and many collagens. Organoids 

expressed markers indicative of neural crest lineage, as well as growth factors that are 

candidates for chondrocyte differentiation factors. The data suggest that chondrocyte 

differentiation is initiated by autocrine loops driven by a combination of secreted growth 

factors that bind to chondrocyte receptors. Craniofacial cartilage organoids were 

continuously cultured for one year, reaching up to one centimeter in diameter. The 

ability to grow craniofacial cartilage from NCSCs provides insights into the cell signaling 

mechanisms of differentiation into craniofacial cartilage, which lays the groundwork for 

understanding mechanistic origins of congenital craniofacial anomalies and repairing 

cartilaginous structures of the head and face. 
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Introduction 

Craniofacial reconstruction is necessary to treat several conditions including 

craniofacial birth defects, damage caused by head and neck cancer treatment, and 

traumatic facial injuries. These cases not only affect function but may also cause or 

contribute to psychological and social difficulties. It is difficult to reconstruct natural 

features with plastic surgery techniques, however, and transplanted tissue is often 

rejected by the recipient without immunosuppressants. The use of stem cells to grow 

craniofacial cartilage is an exciting prospect for effective regeneration and repair of birth 

defects and injuries to the head and face.  

Craniofacial cartilage is comprised of hyaline cartilage for the nose and 

developing bones of the head, elastic cartilage for the larynx, epiglottis, and external 

ear, and fibrocartilage for temporomandibular joints. Unlike articular cartilage, 

craniofacial cartilage originates during development from chondrocytes that are derived 

from the neural crest. Neural crest cells (NCCs) are a developmental cell lineage 

restricted to vertebrates, and are sometimes considered the fourth germ layer. During 

neurulation, NCCs are specified at the neural plate border between the ectoderm and 

developing neuroepithelium. At the crest of the neural tube, NCCs undergo an epithelial 

to mesenchymal transition, delaminate, and migrate throughout the developing embryo 

(Bronner and LeDouarin, 2012). During this process, NCCs begin differentiating into a 

number of distinct cell types including cells of the peripheral nervous system, 

melanocytes, smooth muscle, and craniofacial cartilage and bone. Depending on their 

positioning and migratory patterns along the rostrocaudal axis of the developing 

embryo, NCCs can be further categorized into four main populations: cranial neural 

crest cells (CNCCs), cardiac neural crest cells (CaNCCs), vagal neural crest cells 

(VNCCs), and trunk neural crest cells (TNCCs). CNCCs eventually differentiate into 

craniofacial cartilage and bone, as well as glia, Schwann cells and cranial sensory glia 

(Bronner and LeDouarin, 2012). Therefore, craniofacial cartilage has a different 
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developmental origin from the articular hyaline cartilage and fibrocartilage that 

composes the intervertebral disks and insertions of tendons in the rest of the body. In 

these tissues, the skeleton is first made of cartilage by chondrocytes derived from the 

mesoderm, which ossifies into bone; and some cartilage remains in selective locations, 

for example at the interface of joints (Chen et al., 2017). 

Recent research efforts and clinical trials have focused on repairing articular 

cartilage defects. Several of these approaches use transplantation of mesenchymal 

stem cells and/or expanded chondrocytes or recruitment from subchondral bone 

(microfracturing) as a means to regenerate damaged joint and intervertebral cartilage 

(Burnsed et al., 2016; Guo et al., 2018; Huey et al., 2012). While current protocols can 

successfully generate functional cartilage, they suffer from a few major drawbacks. First, 

cartilage produced using embryoid body or mesoderm formation as a precursor has the 

potential to retain stem-like characteristics in the differentiated tissue, which could 

contribute to tumor formation (Fu et al., 2016; Maguire et al., 2015; Oldershaw et al., 

2010; Soto et al., 2021). Second, the terminal differentiation stage of mesenchymal 

tissue is bone, and these systems can suffer from cartilage hypertrophy and ossification 

(Dexheimer et al., 2016; Van de Walle et al., 2018). In fact, transplanted cartilage 

derived from a mesenchymal origin can express heterogeneous markers for 

cartilaginous, fibrous, and hypertrophic tissues simultaneously (Huey et al., 2012; Steck 

et al., 2009). Finally, cartilage designed for joint repair has a different function from 

craniofacial cartilage and has to withstand applied stress (Choi et al., 2018; Huey et al., 

2012; Panadero et al., 2016). In addition, microfracturing techniques are not applicable 

for craniofacial cartilage that has no adjacent bone. Developing techniques to effectively 

generate craniofacial cartilage is essential, requires procedures different from those 

used for other types of cartilage, and therefore requires an understanding of the cellular 

processes that underlie craniofacial cartilage development.  
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The exact growth factor signaling pathways directing the differentiation of human 

CNCCs into craniofacial cartilage is currently unknown, although insights can be gained 

from animal models (Van Otterloo et al., 2016). In general, chondrogenesis is under the 

control of several major developmental signaling pathways including from WNT, BMP/

TGFβ, and FGF family members, among others (Green et al., 2015; Mishina and 

Snider, 2014; Zhong et al., 2015). In mice, bone morphogenetic protein 2 (BMP2) and 

BMP4 are expressed in the cranial neural crest derived mesenchyme during E10.5-13.5 

and signaling via the BMPRIa receptor is essential for proper palate, tooth, and 

temporomandibular joint formation (Bennett et al., 1995; Graf et al., 2016; Gu et al., 

2014; Li and Chen, 2012; Liu et al., 2005; Mimura et al., 2016). Accordingly, mice 

lacking functional BMP receptors in the neural crest lineage exhibit hypoplastic 

mandibles, cleft palates, and die shortly after birth (Dudas et al., 2004; Komatsu et al., 

2006). BMP7 has been shown to be able to induce extracellular matrix synthesis, 

prevent chondrocyte hypertrophy and maintain chrondrogenic potential (Mariani et al., 

2014). BMP signaling crosstalk with the p53 apoptotic pathway controls nasal cartilage 

formation and fusion of the nasal septum in mice (Hayano et al., 2015).  

Transforming growth factor β (TGFβ) family members have also been implicated 

in chondrogenesis, although the impact of different ligands to the formation of cartilage 

seems to be variable (Chimal-Monroy and Díaz de León, 1997; Yang et al., 2009). In 

particular, TGFβ-I and TGFβ-III have been used to increase chondrogenesis during in 

vitro differentiation of mesenchymal stem cells. Pre-seeding of TGFβ ligands on 

scaffolding materials is being investigated as a method to increase the mechanical 

strength of transplanted cartilage tissues (Deng et al., 2019; Pfeifer et al., 2019). These 

studies suggest that TGFβ ligands may be more important for cartilage derived from a 

mesenchymal stem cell origin. 

Signaling pathways initiated by fibroblast growth factor (FGF) family members 

have also been shown to be important for both bone and cartilage formation in mice. 
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Specifically, FGF8 has been shown to promote chondrogenesis over osteogenesis, both 

in the mouse skull and during thickening of the palate (Xu et al., 2018), and FGF18 has 

been known to induce cell proliferation and extracellular matrix synthesis in porcine and 

human cartilage (Mariani et al., 2014). In summary, most research examining growth 

factor signaling dynamics during craniofacial cartilage generation have been conducted 

using animal models and seems to have converged on BMP, TGFβ, and FGF signaling 

as the main signaling pathways involved in this process. However, exactly how each of 

these pathways conduct craniofacial development in human models is an area of active 

research.   

 Here we describe the generation of craniofacial cartilage organoids from human 

embryonic stem cells via a neural crest cell intermediate. We report a protocol for neural 

crest differentiation that integrates and streamlines several existing protocols from the 

recent literature. Using this protocol, craniofacial cartilage organoids were generated 

that did not require a scaffold, were amenable to handling and histological techniques, 

and did not rely on embedding in extracellular matrices. Tandem mass tag mass 

spectrometry and immunofluorescence revealed that craniofacial cartilage organoids 

expressed several markers of hyaline cartilage and retained markers indicative of their 

neural crest origin. We hypothesized that cartilage formation was triggered by an 

autocrine signaling loop. Using a subset of growth factors identified via mass 

spectrometry, we were able to accelerate organoid formation, suggesting that these 

pathways may play an important role in normal chondrocyte differentiation. Craniofacial 

cartilage organoids are a promising new model for this aspect of human development 

and may give insights into the signaling pathways that regulate cartilage formation.  
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Results 

Neural crest stem cells differentiated into cartilage organoids 

 To differentiate craniofacial cartilage, we first directed the differentiation of human 

embryonic stem cells (hESCs) into a neural crest stem cell (NCSC) intermediate (Figure 

1A). To do this we integrated a number of previously published protocols with the goal of 

shortening this stage of differentiation and generating the NCSC intermediate as quickly 

as possible while optimizing the yield. To obtain neural crest cells, it is first necessary to 

induce neuroectoderm formation. To do this, we used the LSB short protocol previously 

published by Kreitzer et al., which utilizes dual SMAD inhibition via the small molecules 

LDN193189 and SB431542, inhibiting BMP and TGF-β signaling respectively (Kreitzer 

et al., 2013a). However, we fit the timeline of this protocol to the research by Mica et al., 

which showed that early removal of TGF-β inhibitors, followed by the prolonged addition 

of the small molecule WNT signaling activator CHIR99021 (GSK3β inhibitor) increased 

anterior NCSC yield (Chambers et al., 2015; Mica et al., 2013). Finally, we added Shh, 

FGF8, ascorbic acid, and BDNF to the last stage of NCSC induction, following the 

neural crest specification protocol outlined by Zeltner et al., to further increase the 

number of NCSCs over a short time period (Zeltner et al., 2014). After neural crest 

differentiation, following the re-plating stages of the Zeltner et al. protocol, we then 

sorted NCSCs via magnetic-activated cell sorting based on p75/NGFR expression and 

re-plated cells as a monolayer on laminin and fibronectin substrate. Over the course of 

NCSC differentiation, hESCs acquired NCSC morphology and migrated outwards from 

hESC colonies (Figure 1B, Day 1-9).  

 When left undisturbed for over 52 hours, confluent NCSCs migrated together and 

self-organized into roughly spherical growths on the surface of dishes (Figure 1B). Once 

formed, these organoids detached from the dish surface and floated in the cell culture 

media. Over time, cells remaining on the surface of the dish exhibited the morphology of 

migrating chondrocyte precursors (Figure 1B, Day 68). Floating organoids were easily 
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harvested with a spatula, and remaining cells on the dish surface continued to produce 

new organoids. Cell confluency typically remained around 50% at this stage, with 

localized dense patches of cells that begin to migrate into new growths. The largest 

harvested organoid was one centimeter in diameter (Figure 1B, Day 162), and it was 

possible to maintain organoid-producing culture dishes for up to one year. Organoids 

had the appearance and physical characteristics of cartilage, being opaque and glassy 

in appearance, robust to handling, and resistant to applied pressure by springing back 

into shape. 

Organoids were positive for neural crest cell markers and were composed of 

collagens and other extracellular matrix proteins 

 To test if organoids generated from neural crest cells were cartilaginous, we first 

looked for markers of cartilage and the neural crest by immunofluorescence and 

staining of organoid cryosections by histological analysis and sectioning techniques. 

Hematoxylin and eosin staining of sections highlighted the typical morphology of 

cartilaginous tissues – small cell nuclei in the center of lacunae embedded in a glassy 

gray matrix (Figure 2A). The indicative basophilic staining is likely due to the presence 

of negatively charged aggrecan and other proteoglycans, which was confirmed by mass 

spectrometry (Figure 3). Staining with Saffranin O and Toluidine Blue was performed to 

verify collagen content and visualize collagen distribution throughout slices (Figure 2A). 

Immunofluorescence staining revealed that some cells in the center of organoid 

sections retained stem-like markers such as Sox2 (Figure 2B), although these cells 

were isolated and dispersed throughout sections. Neural cell adhesion molecule 

(NCAM) staining, a marker for immature neurons and early neural crest lineage, was 

also seen in the interior of larger organoids, although these cells appeared to have 

undergone apoptosis as evidenced by fragmented nuclei. Some cell death in the center 

of larger organoids was expected, we suspect that these organoids could only get so 
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large without the use of a bioreactor due to the avascular nature of normal cartilage 

tissues. Doublecortin (DCX), a migratory neural crest and chondrocyte cell marker (Ge 

et al., 2014; Vermillion et al., 2014; Zhang et al., 2007), showed robust staining, 

particularly in the outer layer of organoids, suggesting outward growth (Figure 2B). 

Finally, COL2A1 staining, the primary collagen isoform found in craniofacial cartilage, 

exhibited bright and diffuse staining throughout organoids (Figure 2B). In summary, both 

immunofluorescence and histological staining methods indicated the presence of 

abundant collagen in organoids, consistent with formation of craniofacial cartilage. In 

addition, organoids retained some markers of their neural crest cell lineage.  

 To further investigate the composition of organoids, and the change in protein 

expression throughout the differentiation procedure, we performed tandem mass tag 

mass spectrometry (TMT-MS) analysis comparing the parent stem cell line (H9/WA09), 

neural stem cells (p75 negative population after magnetic sorting, NSCs), the p75 

positive NCSCs, cartilage organoids, and two neuroblastoma cell lines (SMS-KCN and 

SH-SY5Y). Our TMT-MS approach enabled us to directly compare relative protein 

expression in all samples and therefore track changes at each stage of differentiation. In 

particular, this analysis reliably yields robust quantitative comparisons of proteins in 

different samples. The parent hESC line, WA09, expressed the highest amounts of the 

pluripotency markers OCT4 (POU5F1 gene) and SOX2 (Figure 2C). NSCs expressed 

high amounts of SOX2 protein, but significantly less OCT4 than undifferentiated stem 

cells. Compared to NSCs, NCSCs had higher amounts of the neural crest markers 

SOX9 and the low-affinity nerve growth factor receptor (NGFR), which was used to sort 

this cell population. Craniofacial cartilage organoid samples retained markers indicative 

of their neural crest origin (SOX9), and had low expression of OCT4 and SOX2 (Figure 

2C).  

 We found that twenty chondrocyte markers in cartilage organoids are significantly 

elevated compared to NCSCs (p < 2.2 x 10-16, Welch two-sample t-test). Organoid 
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samples were highly enriched for most major collagen isoforms, especially COL1A1 and 

COL2A1 (Figure 3). Aggrecan (ACAN), HAPLN1, HAPLN3, and EMILIN1 were also 

enriched, all of which are involved in cell-matrix attachments and hyaluronan and 

proteoglycan binding (Chen and Birk, 2013; Spicer et al., 2003). Aggrecan in particular 

is a major protein required for the structural integrity and durability of both hyaline and 

articular cartilage (Gibson and Briggs, 2016). Collagen X (COL10A1) and MMP13, 

markers for chondrocyte hypertrophy (Miao et al., 2018), were not detected. These data 

strongly reinforce the conclusion that organoids derived from the neural crest cell 

intermediate were craniofacial cartilage, one of the terminal differentiation stages of the 

neural crest lineage. 

Craniofacial cartilage organoids expressed ligand and receptor pairs that directed 

differentiation through the formation of an autocrine loop   

 In sum, 9372 proteins were identified in our TMT-MS panel, including 44 different 

growth factors and 185 cell signaling receptors. Because the signaling pathways 

involved in human craniofacial development have not been fully described, this data 

revealed which signaling pathways were represented at each stage of development. 

Receptor and ligand pairs that are known to be involved in either neural crest formation 

or cartilage differentiation were present in the dataset. Notably, enriched growth factors 

included MDK; PTN; TGF-β family members; WNT ligands; FGF1 and FGF2; HDGF; 

and VGF (Figure 4). Both PTN and MDK are important for chondrocyte differentiation 

and cartilage formation because they bind extracellular heparan-sulfate proteoglycans 

and cell surface syndecans as well as the signaling proteins ALK and PTPRZ1 (Pufe et 

al., 2007). In animal models and human cell lines, PTN and MDK have been shown to 

increase chondrocyte proliferation and both have been implicated in bone and cartilage 

repair after injury (Bouderlique et al., 2014; Ohta et al., 1999; Zhang et al., 2010). 

Several growth factor receptors were also enriched, including BMPR2; FZD2,7, and 1; 
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EGFR; PDGFRB; several Ephrin receptors; ROR2; and DDR2. DDR2 is a receptor 

tyrosine kinase that binds collagen to initiate signaling and is a transcriptional target of 

Twist1 in the cranial neural crest (Bildsoe et al., 2016; Vogel et al., 1997). The 

neuroendocrine specific peptide VGF is induced by the receptor tyrosine kinase BDNF 

(NTRK2), both of which were present in our data set (Bozdagi et al., 2008). 

Furthermore, the ligand and receptor pairs enriched in organoid samples in Figure 4 are 

different from the set of ligands used during the differentiation protocol. 
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Discussion 

 Here we have described the differentiation of craniofacial cartilage organoids 

from human embryonic stem cells, utilizing a neural crest cell intermediate. Previous 

studies have demonstrated the differentiation of neural crest lineage chondrocytes 

(Umeda et al., 2015); our protocol builds from these studies by generating a self-

organizing chondrocyte population. Starting with human embryonic stem cells (hESCs), 

we first differentiated the neural crest lineage from specified neuroectoderm, merging 

several previously published protocols. Following neural crest isolation, we then 

differentiated chondrocytes, which self-organized in tissue culture dishes (Figure 1). 

Cartilage organoids exhibited markers of both cartilage and neural crest cells, indicative 

of their differentiation from an intermediate lineage (Figure 2).  

 Previous protocols that have generated articular cartilage for transplantation and 

tissue regeneration have utilized different approaches. Most cartilage tissue models first 

derive or obtain mesenchymal lineage cells from patient-derived adult bone marrow 

stem cells and adipose-derived stem cells, which can then be differentiated into articular 

cartilage via the application of specific growth factors (Burnsed et al., 2016). This 

approach can be advantageous because these cells are more differentiated and less 

likely to form tumors in transplanted tissue. They also start from single-cell suspensions, 

which are amenable to bioprinting techniques (Leberfinger et al., 2017). However, these 

cell lineages are not ideal for craniofacial cartilage transplantations. First, for many 

facial structures, there is no direct underlying bone that can act as a cell seeding 

scaffold or as printing pads for chondrocytes. Second, craniofacial cartilage is distinct in 

that it does not have to withstand the large amounts of stress that is applied to articular 

cartilage. Finally, cartilage is a terminal differentiation stage of neural crest derived 

chondrocytes, whereas mesenchymal stem cells may be more likely to further ossify 

into bone. Therefore, protocols that utilize a neural crest cell intermediate to derive 

craniofacial cartilage are more appropriate for the regeneration of facial structures.  
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 To start the differentiation procedure from an embryonic cell or induced 

pluripotent cell lineage, three main techniques are typically used to induce 

mesenchymal cell formation; embryoid body (EB) formation, pellet cell culture, and 

micromass culture. Suchorska et al. recently compared the efficacy of each of these 

approaches and found that embryoid body culture was the most efficient and least 

challenging of the techniques (Suchorska et al., 2017b). Indeed, EB formation appears 

to be the most commonly used technique to derive mesenchymal stem cells in the 

laboratory, although these cell lineages often suffer from hypertrophy and osteogenic 

differentiation (Chen et al., 2015; Pelttari et al., 2006). The protocols described by 

Suchorska et al. utilized BMP-2, TGF-β1, and TGF-β3 addition to the EB culture media, 

members of growth factor families that were represented in our approach. However, 

they also found that addition of growth factors in excess concentration was more likely 

to induce osteogenesis, and changed the expression of collagen isoforms to a pattern 

that resembled bone (Suchorska et al., 2017a; Suchorska et al., 2017b). These findings 

highlight one advantage of our protocol; by forming an autocrine signaling loop, 

chondrocyte cultures may be less prone to hypertrophy by controlling the amount of 

growth factors produced or by controlling the response to growth factor induced 

signaling. Because we did not want mesoderm-derived cartilage, we did not use the 

embryoid body method to derive chondrocytes. However, our methods followed a 

similar line of reasoning by mimicking the normal development of the neural crest by 

first differentiating the neuroectoderm lineage, inducing neural rosette formation, and 

finally isolating cells that expressed neural crest markers.  

 To differentiate NCSCs, we combined several previously published protocols 

(Lee et al., 2010; Leung et al., 2016a; Mica et al., 2013; Zeltner et al., 2014). Because 

our goal was to derive chondrocytes, the purity of the intermediate NCSC population 

before sorting was less of a concern. Fluorescence activated cell sorting (FACS) of 

NCSC cultures provided a more uniform NCSC population, but contributed to high 
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amounts of cell death and severely decreased the NCSC yield. Therefore, we fit the 

NCSC differentiation to a shorter timeline, and purified NCSCs via magnetic-activated 

cell sorting (MACS) to increase cell survival.    

 The mass spectrometry data indicated that cartilage organoids concomitantly 

express growth factors and receptors for those growth factors, suggesting that an 

autocrine loop forms to drive chondrocyte differentiation (Figure 4). Both pleiotrophin 

(PTN) and midkine (MDK), which are heparin-binding growth factors, activate signaling 

pathways through the receptor tyrosine kinase, ALK and are well known to be involved 

in chondrogenesis during mouse development and bone repair (Dreyfus et al., 1998; 

Haffner-Luntzer et al., 2014; Ohta et al., 1999). TGF-β family members are also involved 

in chondrogenesis, with all three isoforms (TGF-β1,2, and 3) represented in 

mesenchymal progenitor populations (Wang et al., 2015). In particular, TGF-β1 

increases collagen production in embryonic stem cells, while TGF-β2 and -β3 increase 

glycosaminoglycan production in human bone marrow mesenchymal stem cells (Barry 

et al., 2001; Yang et al., 2009). There is less evidence in the literature for BMP5 

involvement during these processes, especially in human models, and we were 

surprised to see it more highly represented in our data set compared to the canonical 

cartilage growth factors BMP2 and BMP4. However, in rats, BMP5 expression has been 

shown to increase during tibia growth plate development, and inhibition of BMP5 

signaling significantly decreased extracellular matrix production in primary rat 

chondrocytes (Mailhot et al., 2008). In an older study, Kingsley et al. found that mice 

harboring mutations and deletions in the short ear gene locus also exhibited deletions in 

the BMP5 coding region, and were a likely cause for the skeletal defects seen in short 

ear mice (Kingsley et al., 1992; Nie et al., 2006). Guenther et al. then found that specific 

BMP5 enhancer regions controlled cartilage and bone growth zones induced by BMP5 

expression, which included cartilage deposits in the mouse nasal cavity (Guenther et 

al., 2008). In zebrafish, BMP5 is required for neural crest progenitor survival, and a 
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BMP5 morpholino significantly reduced Alcian-blue cartilage staining, though this could 

be due to loss of progenitor NC populations and not specifically NC derived 

chondrocytes (Shih et al., 2017). To our knowledge, a thorough analysis of the 

contribution of BMP5 signaling to human craniofacial development has not been done, 

although insights from animal models, and our present study, suggest that BMP5 plays 

a role in both neural crest differentiation and in cartilage formation.    

 While several groups have differentiated chondrocytes from stem cells, to our 

knowledge using derived human iPS cells to generate large amounts of transplantable 

cartilage has not yet been achieved. Current approaches for facial reconstruction 

usually involve autologous chondrocyte implantation (ACI) to the damaged area, which 

involves harvesting patient cartilage from an un-injured location in the face, typically 

from nasal cartilage (Watson and Reuther, 2014). Nasal septal chondrocytes are neural 

crest lineage chondrocytes and retain some proliferative potential (Pelttari et al., 2017). 

For example, isolated human nasal septal chondrocytes have been successfully grafted 

to mice, expanded, applied to synthetic polymers to facilitate injection, and then used for 

reconstruction (Dobratz et al., 2009). Furthermore, NCSCs have been identified within 

isolated dental pulp stem cell (DPSC) populations (Janebodin et al., 2011), which have 

been successfully used to regenerate mandibular bone (d'Aquino et al., 2007; Gronthos 

et al., 2000). Isolated DPSCs were limited to bone re-growth, but clonal DPSCs could 

differentiate into other neural crest derived cell lineages (Janebodin et al., 2011). 

Together, these studies highlight the potential applications of different NC lineages to 

craniofacial regeneration and reconstruction. 

 How different NC lineages colonize and differentiate within facial structures, and 

how this is affected by different signaling pathways is an open area of research. To 

further determine the contribution of each signaling pathway to craniofacial 

development, our future goals involve an analysis comparing the efficiency of organoid 

growth and the activation of signaling molecules downstream of the ligand and receptor 
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pairs we identified as part of an autocrine signaling loop. The presence of an autocrine 

signaling loop may be exploited if organoids, or the underlying chondrocyte population, 

are intended for transplantation or growth on cell scaffolding matrices. However, more 

work is needed to determine the exact growth factor formulation that most efficiently 

produces craniofacial cartilage for these types of experiments, and may involve other 

growth factors identified in our data set. Recent work by Kaucka et al. tracked different 

neural crest lineages throughout mouse cranial development and found that 

ectomesenchymal neural crest cells could contribute equally to osteogenic, 

chondrogenic, odontogenic, and adipogenic lineages within a clonal niche in the 

developing facial structure (Kaucka et al., 2016). Determining the differentiation 

potential of neural crest derived chondrocytes, and other cells within organoids, will be 

critical for experiments exploring organoid growth for transplantations and cartilage 

repair. Furthermore, addressing these questions in a human context could identify 

similarities and differences between human and animal models, while shedding light on 

the mechanisms that influence neural crest differentiation within specific tissue types. 

 The organoids described here are a promising model for human craniofacial 

cartilage development (Drubin and Hyman, 2017). Our findings demonstrate that they 

retain markers of both their neural crest lineage, while also exhibiting the structural and 

molecular markers of cartilage. Because they migrate and self-organize, they may be 

amenable to transplantation and growth on cell scaffolding materials. If organoids can 

be grown into specific shapes or on scaffolding biomaterials, they would be a promising 

candidate for the regeneration and repair of craniofacial defects. Therefore, these 

organoids are applicable both to the biology of human craniofacial development and to 

the improvement of stem cell models for craniofacial regeneration and repair. 
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Materials and Methods 

Please see the materials table at the end of this section for product details and exact 

media formulations. 

Cell Culture 

WA09 hESCs were purchased from the WiCell Institute. hESCs were expanded and 

maintained in mTeSRTM1 (Stem Cell Technologies), passaged with Versene, and 

cultured on plates coated with growth factor reduced Matrigel (Corning). All cell lines 

were grown in a humidified incubator at 37ºC, 5% CO2.  

Neural Crest Differentiation 

Neural Crest Stem Cells (NCSCs) and Neural Stem Cells (NSCs) were derived by 

integrating the approaches of several previously published protocols (Chambers et al., 

2015; Kreitzer et al., 2013b; Lee et al., 2010; Leung et al., 2016b; Mica et al., 2013; 

Zeltner et al., 2014). WA09 hESCs were passaged in Matrigel coated dishes to 25-40% 

confluency prior to differentiation. Daily changes with different media compositions and 

the addition of growth factors and small molecule inhibitors were used to direct 

differentiation. Day 1: media was changed from mTeSR1 to KSR containing 0.1 µM 

LDN193189 and 10 µM SB431542. Day 2: 75% KSR, 25% N2 containing 10 µM 

SB431542 and 3 µM CHIR99021. Day 3: 50% KSR, 50% N2 containing 3 µM 

CHIR99021. Day 4: 25% KSR, 75% N2 containing 3 µM CHIR99021. Day 5: 100% N2 

containing 3 µM CHIR99021. Day 6-9: media was changed daily with NC Specification 

media containing 10 µM ROCK inhibitor Y-27632. On day 10 after differentiation, 

NCSCs were sorted via magnetic cell sorting. p75+ NCSCs were positively selected 

following the MACS MS protocol (Miltenyi Biotech). p75- flow-through was collected as 

“NSCs”, although this population represents a multitude of cell types. NCSCs were 
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plated and maintained by passaging on Poly-L-Ornithine/Laminin/Fibronectin coated 

dishes in NCSC Maintenance media. NSCs were plated and maintained by passaging 

on Matrigel coated dishes in NSC media. Overly confluent NCSC cultures 

spontaneously form and grow free-floating cartilage organoids when fed regularly with 

NCSC maintenance media. Organoids were harvested with a sterile spatula for 

cryosectioning.  

Organoid Cryosections 

Cartilage organoids were fixed in fresh 4% PFA in 1X PBS, rotated at 4ºC overnight. 

Organoids were dehydrated in the following stepwise sucrose washes at 4ºC: 5% 

sucrose - 2 hrs., 10% sucrose - 2 hrs., 30% sucrose - overnight, 1:1 ratio of 30% 

sucrose:OCT - 2 hrs., 100% OCT - 2 hrs. Organoids were embedded in OCT and snap 

frozen in a dry ice and ethanol bath. Samples were stored at -80ºC before sectioning. 

Cryosectioning was performed using a Leica CM1950 cryostat. 16 µm thick slices were 

collected at -25ºC on Superfrost plus slides (Fisherbrand). Slices were air dried before 

storage at -80ºC.  

Immunofluorescence 

Before staining, frozen slides were dried at room temperature overnight. Slices were 

rehydrated at room temperature in 1X TBS for 20 minutes, and permeabilized for 45 

minutes (Permeabilization solution: 0.1% saponin, 1% BSA, 2% Goat serum in 1X 

TBS). Primary antibodies were diluted in Permeabilization solution, added to samples, 

and incubated overnight at 4ºC. Slides were washed with Perm. four times. Secondary 

antibody diluted in Perm. was added to samples and incubated for 1 hour at room 

temperature. Sections were mounted with SlowFade Gold antifade reagent with DAPI 

(Invitrogen) and imaged on an Olympus FV1000 confocal microscope. 
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Simple Stains 

Safranin O staining: Frozen slides were rehydrated in distilled water, stained with 

Weigerts iron hematoxylin for 10 minutes, washed in running tap water for 10 minutes, 

stained with 0.05% fast green for 5 minutes, rinsed with 1% acetic acid for 10 seconds, 

stained in 0.1% safranin for 5 minutes, dehydrated in 95% ethanol for 2 minutes (2X), 

100% ethanol for 2 minutes (2X), and finally xylene for 2 minutes (2X). 

Toluidine Blue staining: Frozen slides were rehydrated in distilled water, stained in 

toluidine blue solution (3.5mM in 1% NaCl, 7.7% ethanol, pH 2.38), washed 3X with 

distilled water, dehydrated: 10 dips in 95% ethanol, 10 dips in 100% ethanol, 10 dips in 

100% ethanol, cleared in xylene 2X 3 minutes each, and mounted with mounting media 

and coverslip media.  

Hematoxylin and Eosin:  H&E stained slides of organoid cryosections were prepared 

and provided by Dr. Brad Peterson M.D. (Staff Pathologist, Department of Pathology, 

Community Medical Center, 2827 Fort Missoula Road, Missoula, Montana 59804). 

Mass Spectrometry Sample Preparation 

Cells were washed and harvested in either phosphate-buffered saline or versene. 

Organoids were harvested with a sterile spatula. Cell pellets/organoids were stored at 

-80ºC. Cells were lysed in a 10:1 (v/w) volume of lysis buffer [5% SDS, 100 mM NaCl, 

20 mM Hepes (pH 8.5), 5 mM dithiothreitol, 2.5 mM sodium pyrophosphate, 1 mM β-

glycerophosphate, 1 mM Na3VO4, and leupeptin (1 mg/ml)], and proteins were reduced 

at 60°C for 30 min. Proteins were then alkylated by the addition of 10 mM 

iodoacetamide (Sigma-Aldrich) for 45 minutes at room temperature in the dark, and 

methanol/chloroform precipitation was performed. Protein pellets were resuspended in 

urea lysis buffer (8 M urea, 20 mM Hepes (pH 8.5), 1 mM sodium orthovanadate, 2.5 
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mM sodium pyrophosphate, and 1 mM β-glycerolphosphate) and sonicated. Cell lysates 

were diluted to 2 M urea in 20 mM Hepes (pH 8.5) and 1mM CaCl2 for Lys-C digestion 

overnight at 37°C, then diluted twofold followed by trypsin (Promega) digestion for 4 

hours at 37°C. Samples were then acidified to pH 2 to 3 with formic acid, and peptides 

were purified on a Waters Sep-Pak column and dried in a speed-vac. Peptides were 

quantified using a micro-BCA assay (ThermoFisher). Peptides were crosslinked to ten 

mass tag labels (ThermoFisher TMTplex) and analyzed on an Orbitrap Fusion Lumos 

(ThermoFisher; at Cell Signaling Technology, Beverly, MA). Identification of peptides 

and quantification of mass tags was obtained from the MS2 spectrum after 

fragmentation by MS/MS analysis as described (Beausoleil et al., 2006; Grimes et al., 

2018; Guo et al., 2014; Possemato et al., 2017; Stokes et al., 2016). The iBAQ method 

was used to normalize signals, where a proteins total intensity is divided by the number 

of tryptic peptides between 6 and 30 amino acids in length (Arike et al., 2012).  
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Table 1: Media and reagents. 

Item Company Catalog #
Concentration/ 
Amount

WA09 hESCs WiCell

DMEM F-12 Media Thermo Fisher 12500-096

Matrigel - Growth Factor 
Reduced

Corning 354230

mTeSR1 media Stem Cell Tech 05857

Versene 0.48 mM EDTA in 
1XPBS

KSR Media   

knockout DMEM Thermo Fisher 10829018 820 mL

KSR Thermo Fisher 108280 150 mL

L-glutamine Thermo Fisher 25030081 10 mL

MEM minimum non-essen. 
Amino acids

Thermo Fisher 11140050 1X

beta-mercaptoethanol Thermo Fisher 21985023 1 mL (0.55mM)

N2 Media   

DMEM F-12 Media: Thermo Fisher 12500-096 980 mL

insulin Sigma-Aldrich I6634 25 mg

apotransferrin Sigma-Aldrich T1147 100 mg

sodium selenite Sigma-Aldrich S9133 30 nM

putrescine Sigma-Aldrich P5780 100 µM

progesterone Sigma-Aldrich P6149 20 nM

glucose 8.5 mM
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NC Specification Media   

Base N2 media made as above

ascorbic acid (AA) Sigma-Aldrich A4034 200 µM

BDNF CST 3897 20 ng/mL

FGF-8 Peprotech 100-25 100 ng/mL

SHH Peprotech 315-22 20 ng/mL

ROCK inhibitor (Y-27632 
dihydrochloride)

StemCellTech 72304 10 µM

Neural Stem Cell (NSC) 
Media

  

Knockout DMEM F12 Thermo Fisher 12660012 500 mL

Glutamax or L-glutamine Thermo Fisher 35050061 1X

FGF basic Peprotech I00-18B 10 ng/mL

EGF Cell Signaling 
Technology

8916S 20 ng/mL

StemPro Neural 
Supplement

Thermo Fisher A1050801 1X 

Neural Crest Stem Cell 
(NCSC) Media

  

N2 base media made as above

FGF basic Peprotech I00-18B 10 ng/mL

EGF Cell Signaling 
Technology

8916S 20 ng/mL

ROCK inhibitor StemCellTech 72304 10 µM

Inhibitors   

CHIR99021 Sigma-Aldrich SML1046 3 µM
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LDN193189 VWR 10192-010 0.1 µM

SB431542 Sigma-Aldrich S4317 10 µM

SB431542 Tocris 1614 10 µM

Plate Coatings   

Poly-L-Ornithine 
hydrobromide

Sigma-Aldrich P3655 15 µg/mL

Mouse Laminin-1 Thermo Fisher 23017015 2 µg/mL

Human Fibronectin Corning 356008 2 µg/mL

Antibodies   

p75 Ab BioLegend 345105 5 uL/million cells

HNK1 Ab BioLegend 359603 5 uL/million cells

Miltenyi FITC beads Miltenyi Biotec 130-048-70
1

10 uL per 10 million 
cells

OCT4 Cell Signaling 
Technology

2890 1:1000

SOX2 Cell Signaling 
Technology

23064 1:1000

COL2a1 Millipore MAB8887 1:1000

NCAM Cell Signaling 
Technology

3576 1:1000

DCX Cell Signaling 
Technology

4604 1:1000

anti-Mouse AF594 Cell Signaling 
Technology

8890 1:1000

anti-Rabbit AF488 Cell Signaling 
Technology

4412 1:1000
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Figure 1. Neural crest differentiation protocol and cartilage organoids. A) Neural Crest Stem Cell (NCSC) 
differentiation protocol. WA09 hESCs were differentiated using stepwise replacement of KSR media with N2 for 
5 days, followed by addition of NCSC specification media containing BDNF, FGF8, SHH, and ROCKi. Small 
molecule inhibitors were added to guide differentiation. NCSCs and organoid producing cells were maintained 
in N2 media containing FGF2 and EGF. B) Representative light microscopy images of cell morphology 
throughout differentiation and after prolonged culture. Day = number of days after the original differentiation 
protocol and does not represent the age of the pictured organoids. Organoids continue to spontaneously form 
in cell culture dishes containing differentiated NCSCs.
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Figure 2. Organoid structure and markers 
for collagen and immature neurons. (A) 
Histology and simple stains of organoid 
cryosections. H&E, hematoxylin and 
eosin. Saffranin O stains collagen red. 
Toluidine Blue stains collagen purple. (B) 
Immunofluorescence of organoid 
cryosections. Sox2, pluripotency marker. 
NCAM, neural cell adhesion molecule. 
DCX, doublecortin, immature neuronal 
marker. Col2a1, collagen II. Scale bar = 
100μm.
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Figure 3. Summary of mass spectrometry identification 
of chondrocyte markers, plotted as greyscale heatmaps 
(left) of detected signals and row z-scores (right). All of 
the major cartilage proteins (e.g., ACAN, PRG4, and 
COL2A1) are expressed in high amounts.  Also detected 
were perlecan and collagen 6 family members, which 
suggests that the cells are starting to make a pericellular 
matrix. TMT data were obtained in collaboration with 
Bluefin Biomedicine (Beverly, MA) comparing H9 human 
embryonic stem cells (WA09); neural stem cells (NSCs); 
neural crest stem cells (NCSCs); and neuroblastoma 
cell lines (SH-SY5Y, SMS-KCN) to chondrocyte 
organoids (rightmost column). Greyscale heatmaps (left) 
show relative amounts (log2 scaled) of proteins with 
black representing the maximum signal and white 
representing no signal. Color heatmaps (right) show 
data transformed by calculating the z-score of protein 
signals across samples (row z-score), with increased 
expression represented in yellow and decreased 
expression in blue. Data are ordered from highest to 
lowest by the chondrocyte organoid column.
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Figure 4. Highlights from mass 
spectrometry data to examine growth 
factors (A) and receptors (B) as 
markers for differentiation, graphed as 
in Figure 3. Data are ordered from 
highest to lowest by the chondrocyte 
organoid column.
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