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Abstract
Recent success in training artificial agents and robots derives from a combination of direct

learning of behavioral policies and indirect learning via value functions. Policy learning and

value learning employ distinct algorithms that depend upon evaluation of errors in performance

and reward prediction errors, respectively. In animals, behavioral learning and the role of

mesolimbic dopamine signaling have been extensively evaluated with respect to reward

prediction errors; however, to date there has been little consideration of how direct policy

learning might inform our understanding. Here we used a comprehensive dataset of orofacial

and body movements to reveal how behavioral policies evolve as naive, head-restrained mice

learned a trace conditioning paradigm. Simultaneous multi-regional measurement of dopamine

activity revealed that individual differences in initial reward responses robustly predicted

behavioral policy hundreds of trials later, but not variation in reward prediction error encoding.

These observations were remarkably well matched to the predictions of a neural network based

model of behavioral policy learning. This work provides strong evidence that phasic dopamine

activity regulates policy learning from performance errors in addition to its roles in value learning

and further expands the explanatory power of reinforcement learning models for animal

learning.

Introduction
Biological and artificial agents learn how to adapt behavior to achieve targeted outcomes

through experience with an environment. Reinforcement learning (RL) theory describes the

algorithms that allow an agent to iteratively improve its success through training 1. Experience

with the environment can be evaluated both with respect to the success of an agent’s behavioral

‘policy’ that directly determines the actions performed as well as an agent’s subjective

expectations of reward that indirectly guide action. We refer to these distinct aspects of

evaluation as ‘performance errors’ and ‘reward prediction errors (RPEs)’, respectively. The

reinforcement learning algorithms that govern how an agent learns from performance errors and

RPEs are distinct and referred to as direct policy learning and (indirect) value learning methods,

respectively. Learning methods that combine direct policy learning with value learning have

contributed to key breakthroughs in training artificial agents 2,3. However, the contribution of

direct policy learning has been little considered in canonical neuroscience and animal learning

paradigms.
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Animal learning has commonly been compared to the ‘actor-critic’ class of algorithms for

computational reinforcement learning 4, in which an actor module selects actions based upon

the critic module’s predictions from value learning. Ascending projections from midbrain

dopamine neurons (mDA) convey subjective information about expected outcomes and regulate

synaptic and intrinsic plasticity at their targets 5. mDA activity has thus been hypothesized to

implement a ‘critic’. Over the last several decades much work has explored how mDA activity

matches the predicted update signals (RPEs 6) for value learning in a critic, resulting in many

confirmations 5, but also challenges 7–11. Moreover, exogenous stimulation of mDA neurons has

led to influential observations consistent with some predictions of value learning 12–14. However

recent work has also highlighted that mDA neurons reflect a heterogeneous mix of signals and

functions, some of which can be difficult to reconcile with the predictions of value learning

models 11,15–23. That much of this phasic mDA activity is intertwined with the production and

monitoring of action 24–27 calls for a better understanding of how dopamine learning signals

function in the evaluation of performance errors expected in direct policy learning, but not

currently incorporated into actor-critic models of animal learning.

Even though it has received relatively less attention in neuroscience, there are a number

of reasons why it is important to explore the potential of direct policy learning to provide

“computational and mechanistic primitives” 28 that account for aspects of dopamine function,

especially in the context of novel task acquisition by animals. For one, behavioral adaptation

during the initial acquisition of tasks is meaningfully variable across individuals 29. Policy

learning methods allow for explicit modeling of these individual behavioral learning trajectories

as exploration in the space of policy parameterizations. Performance errors can, by definition,

be idiosyncratic to individual animals, whereas RPEs are fixed in the deterministic environment

of many laboratory learning tasks. Second, direct policy learning methods have enjoyed

substantial success in embodied learning problems in robotics that resemble problems faced by

a behaving animal 30. Third, fundamental observations that mDA stimulation reinforces behavior
11,31–34 could in principle be consistent with a direct effect on behavioral policy, but this

perspective requires explicit evaluation of direct policy learning accounts of learning that have

not been articulated. Finally, policy learning can be directly driven by behavioral performance

error signals, in lieu of or in addition to, RPEs 35,36, connecting them to diverse observations of

learning in dopamine-recipient brain areas 20,37–45.

Here we assess whether inferred adaptations of behavioral policy during acquisition of a

novel cue-reward association, and corresponding mDA neuron activity, can be reconciled with a

direct policy learning perspective (see Logic Outline, Sup. Fig. 1). We first collected a detailed
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dataset of multidimensional behavioral changes during the initial acquisition of a classical trace

conditioning task to infer putative behavioral policy. We then articulate a novel variant of a policy

learning model that quantitatively accounts for the learned behavior and in particular is

expressive enough to capture the diverse learning trajectories of individual animals. mDA

activity predicted by the model quantitatively matched fiber photometry recordings of mDA

activity made continuously throughout learning and explains how individual differences in mDA

activity predict learning outcomes. We use the model to identify two novel experimental

predictions uniquely consistent with policy learning and tested these predictions using calibrated

optogenetic mDA stimulation in closed-loop with behavior. Finally, we show that intense,

uncalibrated stimulation can yield effects that appear much more consistent with value learning.

Together these results define parallel functions for mesolimbic dopamine in policy and value

learning to more fully explain associative learning phenomena.
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Results
Characterizing individual learning trajectories over acquisition of a cue-reward pairing

We tracked multiple features of behavioral responses to classical trace conditioning in

mice that had been acclimated to head fixation but had received no other “shaping” or

pre-training (Fig. 1a). On “cued” trials an auditory cue (0.5 s, 10 kHz) preceded a ~3 μL

sweetened water reward by 1.5 seconds. ”Uncued” probe trials (~10% of trials), in which

rewards were delivered in the absence of an auditory cue, were randomly interleaved.

Collection latency progressively decreased in both cued and uncued trials across training (Fig.

1b). The presence of a predictive cue showed additional reductions in collection latency (cued:

176 ± 26 ms, uncued: 231 ± 23 ms, p =0.03), indicating that mice learn to use predictive cues to

speed reward collection.

We sought to describe idiosyncratic learning across individual mice in addition to the

population average by measuring multiple features of behavior. An accelerometer attached to

the moveable basket under the mice summarized body movements 11. High resolution video

was used to infer lick rate, whisking state, pupil diameter, and nose motion. We considered two

general aspects of behavior that determine how rapidly a mouse can collect a water reward

after its delivery. The first is the speed of the reaction to sensory evidence of reward availability

that we will refer to as “transient” behavioral responses to reward delivery (Fig. 1e, reflecting the

efficiency of behavioral activation to reward delivery). The second is preparation for delivery of

water using a preceding stimulus (cue) as a predictor. We refer to these components as

“sustained” behavioral responses observed during the delay period after the cue and prior to

reward (Fig. 1d, aspects of which are referred to as conditioned responding or anticipatory

behavior in other work).

Across all mice the sustained and transient components of learned behavior exhibited

noisily monotonic trajectories, with variable magnitudes and time courses across individuals

(Fig. 1c-e). To understand how these behavioral adaptations are related to learned

improvements in reward collection performance, we built generalized linear models (GLM) to

predict reward collection latency across training in each mouse. GLMs (Fig. 1f) using

“sustained” and “transient” (non-licking) behavioral measures as predictors captured much of

the variance in reward collection efficiency over training (r2 = 0.69 ± 0.11; r2 with shuffled

responses = 0.01 ± 3e-4). We observed a range of consistencies in each predictor’s weighting,

with sustained licking having the most consistent relation to reward collection latency (Fig. 1g).

However, across all mice each predictor had similar unique predictive power as judged by the

partial explained variances of each predictor (1-way ANOVA: p = 0.4). Accordingly, both
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sustained and transient variables were necessary to accurately predict reward collection latency

(Fig. 1h, Friedman’s: P = 0.0003; sustained only r2 = 0.51 ± 0.24, vs full model P = 0.004;

transient only r2 = 0.46 ± 0.20, vs full model P = 0.002).

Thus, across the population of animals initial learning could be characterized by both

gains in transient responding to cues and rewards and the development of sustained behavioral

responses that outlasted cue presentation. From the diverse behavioral measures we could

infer putative underlying quantities - sustained and transient components of behavioral learning

- that manifest as more variable and idiosyncratic measurements across individuals and

behavioral modalities (Fig. 1i, see methods for details). From this perspective updates to the

behavioral policy over learning for each mouse can be viewed as a trajectory through an

abstract ‘learning space’ defined by sustained and transient dimensions that together improve

reward collection performance (Fig. 1j). Across the population, the initial starting points of

animals were quite variable and converged towards a more consistent final, learned state.

Mesolimbic dopamine signals predict differences in learning trajectories across mice
To simultaneously measure and manipulate mDA activity in the same mice, we

expressed Cre-dependent jRCaMP1b in DAT-Cre::ai32 mice that transgenically expressed Chr2

under control of the dopamine transporter promoter (Fig. 2a) 11,46. Optical fibers were implanted

bilaterally over the VTA, and unilaterally in the nucleus accumbens core (NAc), and in the dorsal

medial striatum (DS) (Fig. 2a). For each mouse we recorded signals from two target areas

throughout the first 800 trials of acquisition; NAc in all mice with simultaneous recordings either

from contralateral DS (n = 6) or the ipsilateral VTA (n = 3) in subsets.

NAc-DA signals exhibited reward responses at the start of training that became better

aligned to reward delivery but did not change significantly in magnitude over training (trials

1-100: 0.82 ± 0.21 z, trials 700-800: 1.16 ± 0.23 z, signed-rank p = 0.13), even as cue

responses steadily increased (Fig. 2c-d). In contrast, DS-DA signals were not initially excited by

cues or rewards, but developed responses upon further training, consistent with previous

reports 21,47,48. VTA-DA signals more closely resembled NAc-DA signals, and simultaneously

recorded signals grew more correlated with training (Fig. 2d-f), consistent with somatic

recordings in which mesolimbic DA neurons more synchronously represent cues and rewards

as training progressed 11. By the end of the training period, NAc-DA reward signals exhibited

correlates with positive (cued 1.1 ± 0.2 z vs uncued 1.5 ± 0.2 z, p = 0.04) and negative (omitted

-0.3 ± 0.1 z, p = 0.002 vs 0) reward prediction errors. VTA-DA signals exhibited similar trends

(cued 1.3 ± 0.4 z vs uncued 2.0 ± 0.5 z, p =0.25; omitted -0.3 ± 0.2, p = 0.06 vs 0). DS-DA
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reward signals did not reflect RPE correlates (cued 0.6 ± 0.3 z vs uncued 0.5 ± 0.3 z, p = 0.7;

omitted 0.08 ± 0.14 z, p =0.7).

We next examined whether DA reward responses could explain any of the substantial

inter-animal variability in behavioral learning trajectory (Fig. 1j), focusing on NAc-DA given its

robust reward responses throughout training. We found substantial inter-animal variance in

initial NAc-DA responses in the first 100 trials that was not related to anatomical location of

fibers (Fig. 3b; individual axis correlations with NAc-DA reward response trials 1-100: A/P:

p=0.5, M/L: p=0.4, D/V: p=0.5; multiple linear regression, p = 0.7). However, low initial NAc-DA

reward signals were predictive of more extensive sustained behavior at the end of training (Fig.

3a, C; NAc-DA reward response during trials 1-100 vs sustained behavior during trials 700-800,

r = -0.85, p = 0.004), as well as predictive of faster reward collection latencies (Fig. 3d; NAc-DA

reward during trials 1-100 vs reward collection latency during trials 700-800, r = 0.81, p =

0.008). Furthermore, estimates of the sustained and transient components were sufficient to

accurately reconstruct each mouse’s initial dopamine reward signals (Fig. 3e; actual vs

predicted from behavior (see Methods) r = 0.99, p < 0.0001).

Responses of mDA neurons to predictive cues emerge alongside cued behaviors, and

regularly correlate with the learned value of the cue 5. We found that individual differences in

initial NAc-DA reward signals were not correlated with the learning of NAc-DA cue signals

(NAc-DA at rew trials 1-100 vs.NAc-DA at cue trials 700-800, p = 0.5) despite a correlation

between NAc-DA cue signal magnitude and the amount of sustained behavior across individual

mice at the end of training (Sup Fig. 3a). Thus, individual differences in NAc-DA reward signals

correlate with the behaviors that emerge with training, but not with the NAc-DA cue signals that

are correlates of value learning.

ACTR: a direct policy learning model of classical conditioning
The above data suggest that it could be useful to formulate novel associative learning as

a problem of directly learning a control policy for reward collection that minimizes the time to

collect reward. To explore this concept, we first began by specifying a behavioral ‘plant’ that

determines how a control signal produces licking behavior. We used a parsimonious generative

model to capture the statistics of licking behavior - a state model that transitions between a

quiescent state and a licking state which emits regular licks (at 7Hz as observed behaviorally). A

control policy (π(t)) determines the forward transition rate to licking, and the reverse transition

rate reflects an energetic cost to constant licking that decreases in the presence of water such

that licking is sustained until collection is complete (Fig. 4a). The control policy for lick transitions
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was learned by a recurrent neural network (RNN) receiving input at the onset and offset of the

cue and the onset of water delivery (Fig. 4b; see Methods for model details). The optimal target

policy as identified by a search through thousands of weight initializations minimized

performance cost through an enhanced transient component and sustained cued licking that

depends upon sustained network dynamics (Sup. Fig. 2) .

During learning, the internal connection strengths between RNN units (equivalent to

synaptic weights) were updated in order to minimize a cost function that depended on reward

collection latency. This learning rule (ACTR: Adaptive rate, Cost of performance to

REINFORCE) was inspired by a recently described, biologically plausible rule for training RNNs
49 that itself drew upon inspiration variants of node perturbation methods 50 and the classic policy

optimization methods known as ‘REINFORCE’ rules 1,35. As adaptive learning rates are

exceptionally useful for optimization in machine learning (e.g., 51), the ACTR learning rate is not

a fixed constant, but rather is an adaptive rate proportional to the activity of a feedback unit

(pink output unit in Fig. 4b) that compares behavioral plant output (akin to an efference copy of

reward-related action commands 52) to the policy network’s response to reward delivery (akin to

reward-predictive sensory evidence). This scheme has a direct and intentional parallel to the

phasic activity of midbrain DA neurons which, analogously, is well described by action- and

sensory-related components of reward prediction 11,24. Moreover, mDA neurons receive input

from areas involved in determining policy 53,54 and have previously been implicated in

modulating learning rate 55,56.

We generated predicted phasic mDA activity in the ACTR model by summing the action-

and sensory-related components of feedback unit activity as in previous work with somatic

spiking signal 11 and convolving with a temporal kernel matched to the kinetics of the calcium

sensor used in Fig. 2-3 57. This predicted phasic DA photometry signal from the ACTR model

corresponds closely to experimentally measured mDA activity across training and in particular

replicated well known RPE correlates (Fig. 4e). Using this mDA-like feedback signal to control

ACTR’s learning rate allowed us to account for observed learning data and provided novel

experimental predictions regarding the expected correlates of mDA activity and function of

dopamine-mediated feedback as explained below.

Comparison of ACTR dynamics to observed mouse learning
For repeated ACTR simulations (n=12) from a common initialization, we found that

latency to collect rewards declined comparably to observed mouse behavior over training,

including a performance gain on cued versus uncued trials (Fig. 4d). Sampling possible ratios of
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sustained and transient learning produced a range of trajectories (Fig. 4c) comparable to

individual observed mice. This can be illustrated by computing the gradient surface from

simulations of the plant across a range of policies with varying sustained/transient ratios (Fig.

4f). A direct comparison of the model objective gradient with the gradient inferred from

behavioral data (Fig. 4g; see Methods for details) illustrates the similarity between the structure

of learning in each case.

We discovered a strong predictor of learning trajectory in experimental data was the

initial magnitude of phasic DA responses to reward delivery (Fig. 3). In the ACTR model

formulation, the magnitude of the DA response depends on sustained responses to policy

output and transient responses to reward-related sensory input. As simulations initialize with no

initial sustained policy output (to match the lack of cued licking in naive mice), the predicted DA

signal is set by the initial transient response of the RNN to reward input. Thus, we next asked

whether increasing reward input, leading to larger initial DA signals, would reproduce the

experimentally observed correlation with a reduced sustained component and longer collection

latencies at the end of training. Indeed, for 6 distinct network initializations we found that paired

comparisons of weaker and stronger reward input strength at initialization of training was

sufficient to produce differential predicted DA responses at initiation of training (Fig. 4h) and this

difference predicted a delayed collection latency at the end of training (Fig. 4h-I; r=0.73,

p=0.007) due to a reduced sustained licking policy (Fig. 4j).

Specific predictions of the ACTR model for closed-loop manipulation of mDA reward
signals

There is thus a compelling correspondence between the ACTR model and the detailed

structure of experimentally-observed individual differences. But a challenging aspect of

understanding dopamine as a feedback signal is that mDA activity both represents the state of

learning and functions in the progression of learning. Carefully designed manipulation

experiments are required to tease apart representation from function in such feedback systems.

We next explain a set of experimental predictions specific to ACTR that provide a distinguishing

test of the model.

ACTR (and in general any policy learning model) evaluates whether a given change in

parameter values led to better or worse performance. The mDA-like signal (𝜷) uses policy

network output to adaptively determine learning rate, i.e. how fast to change (Fig. 4b). The

actual sign of the change (towards or away from the new policy specification) is determined

independently of mDA by the performance error (PE) (Fig. 4b). This dissociation between the
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rate and the sign of the update in the ACTR learning rule can lead to surprising predictions

about the effect of phasic mDA activity on learning. For example, on trials in which collection

latencies get longer relative to recent performance, the sign of the policy update directs away

from the current parameterization. Enhancing the phasic mDA-like signal at reward (increasing

the learning rate) on such a trial would then bias away from that policy in the future (resulting in

“less” of the associated behavior). Thus depending on the sign of the underlying policy gradient,

a large mDA-like signal can have an effect that is the opposite of simply ‘reinforcing’ a preceding

action.

In the case of the ACTR model this effect is true by construction; however, it raises the

question of how a realizable experiment might be designed to test this prediction of the model.

Specifically, the challenge is that an animal’s underlying policy is not directly observed by the

experimenter. However, we know that the presence or absence of licking on a given trial of

behavior is a (noisy) reflection of the underlying behavioral policy. As a result it is possible that

using an experimentally accessible observation, licking, could be sufficient. This can be

illustrated by classifying trial types: ‘lick+’ trials in which the agent licked during the delay period,

and ‘lick−’ trials where there was no sustained licking (Fig. 4h).

Reward collection latencies converge to small values as the policy approaches an

optimum. However, the stochasticity of the licking plant ensures that some trials with a good

policy can result in transiently worse collection latency, i.e. a negative performance error. Such

trials with a negative performance error are generally lick+ trials that occur relatively late in

learning and have sustained licking that happens to terminate prior to reward delivery.

Selectively enhancing learning rates on these trials with a negative performance error can have

the effect of pushing the model away from a policy with sustained licking especially by reducing

transient response components. In contrast, lick− trials are much more likely to be trials in which

the sustained policy (generally early in learning) was low and thus only positive signed

performance errors can occur. Thus, enhancing learning rates in these trial types generally acts

to push away from a low sustained policy (essentially exaggerating the adaptive component of

the ACTR learning rule that produces sustained licking) and thus constitute a good matched

comparison. As expected, ACTR simulations of trial-type dependent enhancement of learning

rate indeed produced opposite signed effects on sustained licking behavior for multiple model

initializations (n=3, Fig. 4i). These analyses indicate two experimentally-tractable tests of the

relevance of the ACTR model to phasic mDA activity (Fig. 4h) and function (Fig. 4i).

Calibrated manipulation of DA reward signals in closed-loop with cued behavior
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The ACTR learning model suggested the surprising possibility that larger NAc-DA

reward signals could bias learning away from the sustained component of behavior that

preceded reward delivery if (and only if) NAc-DA signals were selectively elevated following

robust sustained behavior. This is in stark contrast with both qualitative and formal models in

which DA reward signals act as a positive feedback signal to reinforce preceding behavior and

thus provides a compelling prediction of the ACTR modelling framework. We first examined

whether, during learning in control animals, there was evidence of differential NAc-DA reward

signaling on trials with sustained licking (lick+) versus trials without sustained licking (lick−) (Fig.

5a). As mice learned in our task, they gradually increased the probability of licking during the

delay period on each trial, with the top half of performers in terms of collection latency (Fig. 5b)

reaching a higher probability of licking with less training compared to the bottom half of

performers (Fig. 5b). As training proceeded, the top performing mice exhibited larger NAc-DA

reward signals during lick− trials than during lick+ trials, as in trials 400-800 there was a

significant correlation between mice’s lick+/lick− differential and their final reward collection

latency (r=0.71, p=0.03, n=9) (Fig5c-e). Thus, as mice became better performers, their NAc-DA

reward signals on lick− vs lick+ resembled those predicted by the ACTR model (Fig. 4h).

The ACTR model (Fig. 4i) and the above observational data (Fig. 3, 5) make two further

surprising predictions. First, exogenous NAc-DA stimulation contingent on cued licking behavior

should bias away from the contingent behavior. Second, augmenting NAc-DA reward signals

will not directly translate into larger NAc-DA cue responses, rather DA cue responses will follow

the level of sustained cued behavior. We tested these predictions by selectively increasing DA

reward signals through optogenetic stimulation in the VTA contingent upon sustained cued

behavior. Separate groups of animals experienced each of the following stimulation

contingencies: “stimLick+” animals received VTA-DA stimulation at the moment of reward

delivery on trials in which we detected licking in the 750 ms preceding reward delivery, while

“stimLick−” animals received the same stimulation on trials in which no licking was detected

during the delay interval (Fig. 5f-g). Crucially, stimulation was brief (150 ms) and calibrated to

endogenous fiber photometry signals in each mouse to approximately double the endogenous

NAc-DA reward response (Fig. 5g, see Methods, 11,46). In order to account for the large

discrepancy in stimulated trials that would arise between the two stimulation groups due to

eventual predomination of lick+ trials (Fig. 5b), stimLick+ animals were limited to having a max

of 50% of total trials stimulated in a given session. This resulted in a comparable number of

stimulated trials between the two groups by the end of the training period (Fig. 5g, lower right).
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Calibrated enhancement of reward-related activity in VTA→NAc-DA projections in this

way had opposite effects on emerging delay-period behavior across the two stimLick

contingencies. As in the ACTR model, behavior was biased in opposite directions for each

contingency, with stimLick+ animals exhibiting lower and stimLick− animals exhibiting higher

sustained licking ((trials 600-800, stimLick+ 1.0 ± 0.7, stimLick- 0.6 ± 0.1, ANOVA F 1,72 = 10.5, p

= 0.002)). Furthermore, NAc-DA cue signals were biased in matching directions, with the

stimLick− group also exhibiting higher NAc-DA cue responses vs stimLick+ (trials 600-800,

stimLick+ 0.3 ± 0.1 z, stimLick- 2.6 ± 0.7 z, ANOVA F1,72 = 10.1, p = 0.002). These contingent

stimulation experiments confirmed predictions from the ACTR model and provided causal

evidence supporting the observational correlations between NAc-DA reward signals and

individual differences in learning across mice.

In control animals NAc-DA cue response magnitude was correlated with sustained

behavior at the end of training (Sup. Fig. 3a), and the effects of closed-loop stimulation on

NAc-DA cue responses matched the direction of the effects on licking behavior. As noted above

our modeling suggests that NAc-DA cue responses are correlates that reflect underlying

differences in policy but not an immediate cause for the emission of sustained behavior. At the

same time, work exploring direct roles of DA in movement 21,58 or motivation 10,59 could suggest

that these cue signals function in generating or invigorating sustained behavior. In a subset of

mice, at the end of regular training we included an extra session in which we paired

reward-calibrated VTA-DA neuron stimulation with cue presentation on a random subset of trials

(Sup. Fig. 3b-d). Increasing VTA-DA cue responses in this way had no effect on cued licking in

the concurrent trial (control 2.3 ± 1.1 Hz, stim. 2.3 ± 1.0 Hz, p > 0.99). Thus within this context

and the observed range of NAc-DA cue responses, the magnitude of NAc-DA cue signals is a

correlate of learned changes in behavioral policy that does not directly regulate sustained

behavior in anticipation of reward delivery 11.

Large dopamine manipulations drive value-like learning
Above we describe a set of results that are difficult to reconcile with pure value or

action-value learning accounts, in which DA reward signals should promote the emergence of

DA cue signals or directly reinforce contingent behavior. Moreover, we articulate a

computational model of biologically plausible, direct policy learning (ACTR) that is consistent

with observed data and predicted exogenous stimulation effects. At the same time, seminal

results in rodents 12 and monkeys 13 make specific and well-supported arguments for value-like

learning effects following exogenous VTA-DA stimulation. It is possible that the novel
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closed-loop stimulation design used here may explain some differences. However, another

technical detail that differentiates the current study is that our VTA-DA stimulation was designed

to match the brief (~200 ms) reward-related mDA bursts reported across species 5, and

calibrated to the dynamic range of NAc-DA signals measured within the same context. We next

explored whether a more intense and sustained stimulation could induce effects more

compatible with the predictions of value learning.

We introduced mice used in Figures 1-5 to a novel sensory cue - a 500-ms flash of

visible light directed at the chamber wall in front of the mouse. After 10 introductory trials, this

visible cue stimulus was paired with exogenous VTA-DA stimulation after 1 s delay for 5 daily

sessions (~150 trials per session). One group of randomly selected mice received VTA-DA

stimulation (150 ms at 30 Hz and 1-3 mW steady-state power) calibrated to uncued reward

responses (stim response = 1.4 ± 0.3 uncued reward response, n=10), while the complement

received larger, uncalibrated stimulations (500 ms at 30 Hz and 10 mW steady-state power, stim

response = 5.5 ± 0.8 uncued reward response) (Fig. 6b). After 5 sessions, we found that the

group receiving calibrated, reward-sized stimulation did not exhibit NAc-DA cue responses

above baseline (0.0 ± 0.2 z, p = 0.8), whereas the large, uncalibrated stimulation group

exhibited substantial NAc-DA cue responses (0.5 ± 0.2 z, p = 0.02).

The qualitative differences in effects of calibrated and uncalibrated stimulations suggests

that uncalibrated stimulation could counteract the suppression of cued licking seen for calibrated

stimulation in stimLick+ animals (Fig. 5h, i). To test this possibility we repeated the closed loop

stimLick+ experiment (Fig. 5) with a new set of mice, but this time augmented rewards with

large, uncalibrated VTA-DA stimulation (500 ms, at 30 Hz and ~10 mW power) on trials in which

mice licked during the delay period. Indeed, with this new large exogenous stimulation, the

stimLick+ contingency now resulted in increased NAc-DA cue responses within 600 trials (2-way

ANOVA, stim group F1,66, p = 0.001) as well as increased cued licking (2-way ANOVA, stim

group F1,60, p =0.01), essentially reversing the sign of the effects of calibrated stimLick+

stimulation (Fig. 5f-i).

Discussion
It has been proposed that animal learning and its neural basis can be understood in

terms of cost functions, circuit architecture, and learning rules - the core computational elements

of machine learning 60. Here we apply this approach to a canonical animal learning paradigm,

classical trace conditioning (see Logic Outline, Sup. Fig. 1). We define a cost function which

drives learning to minimize the latency to reward collection by exploiting the presence of a
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predictive cue. We propose a functional circuit architecture in which mDA activity integrates

reward-predictive sensory input and current behavioral policy, consistent with known anatomy of

forebrain projections and functional data on phasic activity of mDA neurons 24. Finally, we

demonstrate that this circuit architecture, combined with a recurrent neural network and a

biologically plausible learning rule (ACTR) is sufficient to optimize reward collection. The

formulation of associative learning as a form of direct policy learning has the expressive power

to capture individual differences in learning trajectories and replicates canonical neural

correlates observed in mDA neurons.

The discovery that the phasic activity of mDA neurons in several species correlated with

core predictions of value learning algorithms, in particular TD, has been a dramatic and

important advance 5,6,61. At the same time, reinforcement learning constitutes a large class of

methods that include many additional functions for learning about states in the environment and

policies for behavioral control. Expanding the space of models for learning about states has

yielded recent gains in explanatory power 62–64. A significant advance of our work is to

demonstrate a formulation of policy learning that is consistent not just with signals observed in

mDA neuron activity, but also with many aspects of behavior during novel classical conditioning.

We speculate that reinforcement learning in other situations in which anticipatory, approach, or

operant behavior can be shown to minimize performance errors can also be explained as a

descent along a gradient of policy evaluation. Indeed, this space of alternative formulations of

classic learning paradigms is beginning to be considered 65,66. Much evidence shows that implicit

predictions and feedback about behavioral performance are fundamental to the central

production of action 67. Further research should clarify how dopamine-recipient circuits 1)

represent aspects of an animal’s policy 68 and 2) compute performance errors matched to an

animal’s current objectives 44.

We replicate many previous findings that across learning mesolimbic DA cue responses

correlate with inferred value learning and reward responses correlate with RPEs after training

(Fig. 2). However, at the level of the individual animals we made several observations that

would be surprising in the context of value learning. First, the magnitude of DA signaling at the

reward was correlated with behavioral evidence of learning but not the emergence of DA cue

signals (as suggested by other recent results 69,70). Second, the initial magnitude of DA

responses to reward was anti-correlated with the emergence of sustained cued-behavior (Fig.

3). Lastly, exogenous stimulation of VTA-DA neurons did not necessarily increase DA signals at

a predictive cue (Fig. 5), rather such effects depended on DA-independent learning or a

magnitude of DA stimulation that far exceeded reward signals measured in our task (Fig. 6).

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 31, 2021. ; https://doi.org/10.1101/2021.05.31.446464doi: bioRxiv preprint 

https://paperpile.com/c/wJi4fr/2eWIa
https://paperpile.com/c/wJi4fr/CntCU+0d3Z2+9IhG3
https://paperpile.com/c/wJi4fr/GrjiP+Shr4K+EW60M
https://paperpile.com/c/wJi4fr/BIhJv+vuNxK
https://paperpile.com/c/wJi4fr/mdy4I
https://paperpile.com/c/wJi4fr/RsHKx
https://paperpile.com/c/wJi4fr/ZmM3v
https://paperpile.com/c/wJi4fr/paT5J+K9HWt
https://doi.org/10.1101/2021.05.31.446464
http://creativecommons.org/licenses/by-nc/4.0/


These results suggest that the dopamine-dependent attribution of motivational value to cues
12,71–73 is at least partially dissociable from the regulation of policy learning within the same

mesolimbic circuits, suggesting that they may be complimentary building blocks for animal

learning 28.

It may be that in other contexts the threshold activation of DA for inducing value learning

is lower due to local circuit conditions, or phasic DA signaling is larger such that physiological

dopamine signals are sufficient to support value learning. Such flexibility could support

exploration of the policy space when appropriate (as in the naive conditions studied here), while

promoting value learning in the conditions where it has been studied predominantly - in

well-trained animals deciding between discrete options in the environment. Value effects

following higher power, longer simulations may depend on specific receptor recruitment within a

circuit 74, and/or recruitment of a wider population of DA circuits, as a spectrum of DA function

and signaling has been demonstrated across striatal subregions 15,18,69,75–78. Future experiments

exploring a putative threshold for phasic DA-driven value learning may yield insight into both

adaptive and maladaptive functions of dopamine-recipient circuits in the forebrain. Drugs of

abuse can enhance DA signaling, recruiting dopaminergic value learning as in our large

uncalibrated stimulations (Fig. 6) , or leading to suboptimal policy learning (Fig. 3) -- both

intriguing perspectives on the mixtures of adaptive and maladaptive learning observed in the

context of addiction 79,80. Finally, our results underscore the importance of matching exogenous

mDA stimulation to measured signals, and support the idea that extended, high-magnitude mDA

stimulation is an important model of addiction 81 that is dissociable from natural learning about

rewards.

Recent success in artificial intelligence has been achieved by direct learning of policy in

parallel to learning about states of the environment 3,82. The variable optimization path of direct

policy methods 30 is consistent with the meaningfully variable learning trajectories of individual

animals (Fig. 1). By examining the diverse learning trajectories of individual mice, we discovered

that individual variability in the naive response of mesolimbic mDA neurons to reward delivery

predicted the variable quality of performance in individual trained mice assessed hundreds of

trials later (Fig. 3). This relationship was non-intuitive; enhanced mDA responses were

associated with worse learning (slower reward collection and less cued behavior). The ACTR

model provided insight into how this surprisingly inverted relation could arise. A key idea in the

ACTR model is that the sign of policy updates is determined by performance errors from the

behavioral policy. The (unsigned) rate at which the policy is updated is determined by feedback

from the (derivative of the) current policy output. We show that mesolimbic mDA activity is
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quantitatively well predicted by the activity of this feedback unit which controls adaptive learning

rate. As a consequence, even in naive animals the reward response of mDA neurons (or the

feedback unit of the ACTR model) reflects the initial state of the policy network and is thus

predictive of the final policy obtained after learning as observed both experimentally (Fig. 3d)

and in the ACTR model (Fig. 4h). In addition to predicting activity of mDA neurons, insights from

the model also allowed us to predict two key experimental tests (Fig. 4k, l): the magnitude of

mDA activity depends upon the current policy and exogenous stimulation of DA neurons can

either enhance or impair learning contingent upon the policy when stimulated; both of which

were confirmed (Fig. 5).

There are many opportunities to extend the current model formulation, in particular the

recurrent neural network component, to capture more biological reality and evaluate the

biologically plausible, but currently incompletely tested, cellular and circuit mechanisms of its

learning rule in greater detail. Given that adaptive control over the magnitude of learning rate

can be a key determinant of machine learning performance (e.g. proximal policy optimization 2),

studying how adaptive control of learning rates are implemented in animals, and especially

across diverse tasks, may provide additional algorithmic insights to those developed here. Our

work argues that future efforts to explain learning in biological systems that control continuous

action, like the basal ganglia 83, should continue to explore a larger space of reinforcement

learning algorithms by incorporating direct policy learning driven by performance errors.
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Methods
Animals. All procedures and animal handling were performed in strict accordance with
protocols (11-39) that were approved by the Institutional Animal Care and Use Committee
(IACUC) and consistent with the standards set forth by the Association for Assessment and
Accreditation of Laboratory Animal Care (AALAC). For behavior and juxtacellular recordings we
used 24 adult DAT-Cre::ai32 mice (3-9 months old) resulting from the cross of DATIREScre (The
Jackson Laboratory stock 006660) and Ai32 (The Jackson Laboratory stock 012569) lines of
mice, such that a Chr2/EYFP fusion protein was expressed under control of the endogenous
dopamine transporter Slc6a3 locus to specifically label dopaminergic neurons. Animals were
housed on a 12-hour dark/light cycle (8am-8pm) and recording sessions were all done between
9am-3pm. Following at least 4 days recovery from headcap implantation surgery, animals’ water
consumption was restricted to 1.2 mL per day for at least 3 days before training. Mice
underwent daily health checks, and water restriction was eased if mice fell below 75% of their
original body weight.

Behavioral training. Mice were habituated to head fixation in a separate area from the
recording rig in multiple sessions of increasing length over >= 3 days. During this time they
received some manual water administration through a syringe. Mice were then habituated to
head fixation while resting in a spring-suspended basket in the recording rig for at least two 30+
minute sessions before training commenced. No liquid rewards were administered during this
recording rig acclimation, thus trial 1 in the data represents the first time naive mice received the
liquid water reward in the training environment. The reward consisted of 3 μL of water
sweetened with the non-caloric sweetener saccharin delivered through a lick port under control
of a solenoid. A 0.5 s, 10 kHz tone preceded reward delivery by 1.5 s on “cued” trials, while 10%
of randomly selected rewards were “uncued”. Matching our previous training schedule 11, after
three sessions, mice also experienced “omission” probe trials, in which the cue was delivered by
not followed by reward, on 10% of randomly selected trials. Intertrial intervals were chosen from
randomly permuted exponential distribution with a mean of ~25 seconds. Ambient room noise
was 50-55 dB, while an audible click of ~53 dB attended solenoid opening upon water delivery
and the predictive tone was ~65 dB loud. Mice experienced 100 trials per session and one
session per day for 8-10 days. In previous pilot experiments, it was observed that at similar
intertrial intervals, behavioral responses to cues and rewards began to decrease in some mice
at 150-200 trials. Thus the 100 trial/session limit was chosen to ensure homogeneity in
motivated engagement across the dataset.

Some animals received optogenetic stimulation of VTA-DA neurons concurrent with
reward delivery, contingent on their behavior during the delay period (see technical details
below). Following trace conditioning with or without exogenous DA stimulation, 5 mice
experienced an extra session during which VTA-DA neurons were optogenetically stimulated
concurrently with cue presentation (Sup. Fig. 3). Mice were then randomly assigned to groups
for a new experiment in which a light cue predicted VTA-DA stimulation with no concurrent liquid
water reward (5-7 days, 150-200 trials per day). The light cue consisted of a 500 ms flash of a
blue LED directed at the wall in front of head fixation. Intertrial intervals were chosen from
randomly permuted exponential distributions with a mean of ~13 seconds. Supplementary Table
1 lists the experimental groups each mouse was assigned to in the order in which experiments
were experienced.
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trace conditioning group cued VTA-DA stimulation

(Fig. 1-3, 4a-d) (Sup Fig. 3) (Fig. 6a-d)

mouse control stimLick+ stimLick- stim. at cue reg. stim. large stim.

1 x x

2 x

3 x x

4 x x

5 x x

6 x x

7 x x

8 x x

9 x x

10 x x

11 x x

12 x x

13 x x x

14 x x

15 x x x

16 x x x

17 x x x

18 x x

19 x

20 x x x

Supplementary Table 1. Subsequent experimental groups for each mouse.

Video and behavioral measurement. Face video was captured at 100 Hz continuously across
each session with a single camera (Flea 3, FLIR) positioned level with the point of head fixation,
at a ~30º angle from horizontal. Dim visible light was maintained in the rig so that pupils were
not overly dilated, while an infrared LED (model#) trained at the face provided illumination for
video capture. Video was post-processed with custom matlab code (available at:
www.github.com/).

Briefly, for each session, a rectangular region of interest (ROI) for each measurement
was defined from the mean of 500 randomly drawn frames. Pupil diameter was estimated as the
mean of the major and minor axis of the object detected with the MATLAB ‘regionprops’
function, following noise removal by thresholding the image to separate light and dark pixels,
then applying a circular averaging filter and then dilating and eroding the image. This noise
removal process accounted for frames distorted by passage of whiskers in front of the eye, and
slight differences in face illumination between mice. For each session, appropriateness of fit was
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verified by overlaying the estimated pupil on the actual image for ~20-50 randomly drawn
frames. A single variable, the dark/light pixel thresholding value, could be changed to ensure
optimal fitting for each session. Nose motion was extracted as the mean of pixel displacement in
the ROI Y-axis estimated using an image registration algorithm (MATLAB ‘imregdemons’).
Whisker pad motion was estimated as the absolute difference in the whisker pad ROI between
frames (MATLAB ‘imabsdiff’; this was sufficiently accurate to define whisking periods, and
required much less computing time than ‘imregdemons’). Whisking was determined as the
crossing of pad motion above a threshold, and whisking bouts were made continuous by
convolving pad motion with a smoothing kernel. Licks were timestamped as the moment pixel
intensity in the ROI in between the face and the lick port crossed a threshold.

Body movement was summarized as basket movements recorded by a triple-axis
accelerometer (Adafruit, ADXL335) attached to the underside of a custom-designed 3D-printed
basket suspended from springs (Century Spring Corp, ZZ3-36). Relative basket position was
tracked by low-pass filtering accelerometer data at 2.5 Hz. Stimulations and cue deliveries were
coordinated with custom-written software using Arduino Mega hardware (www.arduino.cc). All
measurement and control signals were synchronously recorded and digitized (at 1 kHz for
behavioral data, 10 kHz for fiber photometry data) with a Cerebus Signal Processor (Blackrock
Microsystems). Data was analyzed using Matlab software (Mathworks).

Sustained and transient measures and abstract learning trajectories. To describe the
relationship between behavioral adaptations and reward collection performance, for each
mouse in the control group a generalized linear model (GLM) was created to predict reward
collection latency from sustained and transient predictor variables on each trial. Sustained
changes in licking, whisking, body movement, and pupil diameter were quantified by measuring
the average of each of those signals during the 1 s delay period preceding cued rewards. The
nose motion signal was not included as it did not display consistent sustained changes.
Transient responses in the whisking, nose motion, and body movement were measured as the
latency to the first response following reward delivery. For whisking, this was simply the first
moment of whisking following reward delivery. For nose motion, the raw signal was convolved
with a smoothing kernel and then the first response was detected as a threshold crossing of the
cumulative sum of the signal. For body movement, the response was detected as the first peak
in the data following reward delivery. On occasional trials no event was detected within the
analysis window. Additionally, discrete blocks of trials were lost due to data collection error for
mouse 3-session 7, mouse4-session 5, and mouse9-session 4. In order to fit learning curves
through these absent data points, missing trials were filled in using nearest neighbor
interpolation.

Trial-by-trial reward collection latencies and predictor variables were median filtered
(MATLAB ‘medfilt1(signal,10)’) in order to minimize trial-to-trial variance in favor of variance due
to learning across training. After z-scoring the predictor variables, collection latency was then
predicted according to the following equation:

β values were fit using MATLAB ‘glmfit’. The unique explained variance of each predictor was
calculated as the difference in explained variance between the full model and a partial model in
which β values were fit without using that predictor.

Sustained and transient predictor variables were used to define abstract learning
trajectories which were plots of collection latency against the inferred transient and sustained
variables for each of the first 800 cue-reward trials of training. Transient and sustained variables
were calculated as the first principal component of the individual transient and sustained
variables used in the GLM fits. For visualization we fit a parametric model to all 3 variables
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(single exponential for sustained, double exponentials for transient and latency using MATLAB
‘fit’ function). Quality of fits and choice of model were verified by visual inspection of all data for
all mice. An individual mouse’s trajectory was then visualized by plotting downsampled versions
of the fit functions for latency, transient and sustained. Arrowheads were placed at
logarithmically spaced trials.

In order to quantify the total amount of sustained behavior in each mouse at a given
point in training (“sustained”, Fig. 3c), each sustained measure (pupil, licking, whisking, body
movement) was z-scored and combined across mice into a single data matrix. The first principal
component of this matrix was calculated and loading onto PC1 was defined as a measure of an
inferred underlying ‘sustained’ component of the behavioral policy. This created an equally
weighted, variance-normalized combination of all sustained measures to allow comparisons
between individual mice. An analogous method was used to reduce the dimensionality of
transient variables down to a single ‘transient’ dimension that captures the majority of variance
in transient behavioral variables across animals. Initial NAc-DA signals were predicted from
trained behavior at trials 700-800 by multiple regression (specifically, pseudoinverse of the data
matrix of transient and sustained variables at the end of training multiplied by data matrix of
physiological signals for all animals).

Combined fiber photometry and optogenetic stimulation. In the course of a single surgery
session, DAT-Cre::ai32 mice received:
1) Bilateral injections of AAV2/1-CAG-FLEX-jRCaMP1b in the VTA (150 nL at the coordinates
-3.1 mm A/P, 1.3 mm M/L from bregma, at depths of 4.6 and 4.3 mm) or in the SNc (100 nL at
the coordinates -3.2 mm A/P, 0.5 mm M/L, depth of 4.1,  mm).
2) Custom 0.39 NA, 200 μm fiber cannulas implanted bilaterally above the VTA (-3.2 mm A/P,
0.5 mm M/L, depth of -4.1 mm).
3) Fiber cannula implanted unilaterally in the dorsomedial striatum (DS; 0.9 mm A/P, 1.5 mm
M/L, depth of 2.5 mm) and nucleus accumbens core (NAc; 1.2 mm A/P, 0.85 mm M/L, depth of
4.3 mm). Hemisphere choice was counterbalanced across individuals. A detailed description of
the methods has been published 46.

Imaging began >20 days post-injections using custom-built fiber photometry systems
(Fig. 2a)46. Two parallel excitation-emission channels through a 5-port filter cube (FMC5, Doric
Lenses) allowed for simultaneous measurement of RCaMP1b and eYFP fluorescence, the latter
channel having the purpose of controlling for the presence of movement artifacts. 470 nm and
565 nm fiber-coupled LEDs (M470F3, M565F3, Thorlabs) were connected to excitation ports
with acceptance bandwidths of 465-490 nm and 555-570 nm respectively with 200 μm, 0.22 NA
fibers (Doric Lenses). Light was conveyed between the sample port of the cube and the animal
by a 200 μm core, 0.39 NA fiber (Doric Lenses) terminating in a ceramic ferrule that was
connected to the implanted fiber cannula by a ceramic mating sleeve (ADAL1, Thorlabs) using
index matching gel to improve coupling efficiency (G608N3, Thorlabs). Light collected from the
sample fiber was measured at separate output ports (emission bandwidths 500-540 nm and
600-680 nm) by 600 μm core, 0.48 NA fibers (Doric Lenses) connected to silicon photoreceivers
(2151, Newport).

A time-division multiplexing strategy was used in which LEDs were controlled at a
frequency of 100 Hz (1 ms on, 10 ms off), offset from each other to avoid crosstalk between
channels. A Y-cable split each LED output between the filter cube and a photodetector to
measure output power. LED output power was 50-80 μW. This low power combined with the
10% duty cycle used for multiplexing, prevented local ChR2 excitation 46 by 473 nm eYFP
excitation. Excitation-specific signals were recovered in post-processing by only keeping data
from each channel when its LED output power was high. Data was downsampled to 100 Hz,
then band-pass filtered between 0.01 and 40 Hz with a 2nd-order Butterworth filter. Though
movement artifacts were negligible when mice were head-fixed in the rig (the moveable basket

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 31, 2021. ; https://doi.org/10.1101/2021.05.31.446464doi: bioRxiv preprint 

https://paperpile.com/c/wJi4fr/Fpo4F
https://paperpile.com/c/wJi4fr/Fpo4F
https://paperpile.com/c/wJi4fr/Fpo4F
https://doi.org/10.1101/2021.05.31.446464
http://creativecommons.org/licenses/by-nc/4.0/


was designed to minimize brain movement with respect to the skull 11), according to standard
procedure the least squares fit of the eYFP movement artifact signal was subtracted from the
jRCaMP1b signal. dF/F was calculated by dividing the raw signal by a baseline defined as the
polynomial trend (MATLAB ‘detrend’) across the entire session. This preserved local slow signal
changes while correcting for photobleaching. Comparisons between mice were done using the
z-scored dF/F.

Analysis windows were chosen to capture the extent of mean phasic activations
following each kind of stimulus. For NAc-DA and VTA-DA, reward responses were quantified
from 0-2 s after reward delivery and cue responses from 0-1 s after cue delivery. DS-DA
exhibited significantly faster kinetics, and thus reward and cue responses were quantified from 0
to 0.75 s after delivery.

Somatic Chr2 excitation was performed with a 473 nm laser (50mW, OEM Laser
Systems) coupled by a branching fiber patch cord (200 μm, Doric Lenses) to the VTA-implanted
fibers using ceramic mating sleeves. 30 Hz burst activations (10 ms on, 23 ms off) were
delivered with durations of either 150 ms for calibrated stimulation or 500 ms for large
stimulations. For calibrated stimulation, laser power was set between 1-3 mW (steady state
output) in order to produce a NAc-DA transient of similar amplitude to the largest transients
observed during the first several trials of the session. This was confirmed during analysis to
have roughly doubled the size of reward-related NAc-DA transients (Fig. 5g). For large
stimulations, steady state laser output was set to 10 mW.

Computational learning model: ACTR

Behavioral plant. An important aspect of this modeling work was to create a generative agent
model that would produce core aspects of reward-seeking behavior in mice. To this end we
focused on licking, which in the context of this task is the unique aspect of behavior critical for
reward collection. A reader may look at the function dlRNN_Pcheck_transfer.m within the
software repository to appreciate the structure of the plant model. We describe the function of
the plant briefly here. It is well known that during consumptive, repetitive licking mice exhibit
sustained periods of ~7Hz licking. This we modeled as a simple fixed rate process from a ‘lick’
state that emitted observed licks at a fixed time interval of 150 ms. The onset of this lick pattern
relative to entry into the lick state was modeled as starting at a random phase. We used the
simplest possible model in which behavior consisted of two states ‘rest’ and ‘lick’ with stochastic
transitions between states governed by forward and backward transition rates. The backward
transition rate was a constant that depended upon the presence of reward {5e-3 ms without
reward, 5e-1 ms with reward}. This change in the backwards rate captured the approximate
duration of consumptive licking. The forward rate was governed by the scaled RNN output (see
below) and a background tendency to transition to licking as a function of trial time (analogous
to an exponential rising hazard function; 𝜏=200ms). The output unit of the RNN was constrained
to {-1,1} by the tanh activation function and scaled by S=0.02/ms to convert to a transition rate.
Behavior of the plant for a range of policies is illustrated in Fig. 4a. A large range of
parameterizations were explored with qualitatively similar results. Chosen parameters were
arrived at by scanning many different simulations and matching average initial and final
latencies for cue-reward pairings across the population of animals. More complicated versions
(high-pass filtered, non-linear scaling) of the transition from RNN output to transition rate can be
explored in the provided function. However, all transformations were found to produce
qualitatively similar results and thus the simplest (scalar) transformation was chosen for
reported simulations for clarity of presentation.

Recurrent neural network (RNN). As noted in the main text the RNN component of the model
and the learning rules used for training drew upon inspiration from 49 that itself drew upon
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inspiration variants of node perturbation methods 50 and the classic policy optimization methods
known as ‘REINFORCE’ rules 1,35. Briefly, 49 demonstrated that a relatively simple learning rule
that computed a nonlinear function of the correlation between a change input and change in
output multiplied by the change in performance on the objective was sufficiently correlated with
the analytic gradient to allow efficient training of the RNN. This uses a version of node
perturbation to explore potential weight changes within the network. Below we delve into the
learning rule as implemented here or a reader may examine the commented open source code
to get further clarification as well. First, we describe the structure of the RNN and some core
aspects of its function in the context of the model. The RNN was constructed largely as
described in 49 and was very comparable to the structure of a re-implementation of that model in
84. In our implementation we add a few novel features (the mDA-like feedback component,
distinct manner in which to calculate the learning) that we will discuss.

Although we explored a range of parameters governing RNN construction, many
examples of which are shown in Sup. Fig. 2, the simulations shown in the main results come
from a network with 50 units (Nu=50; chosen for simulation efficiency, larger networks were
explored extensively as well), densely connected (Pc=0.9), spectral scaling to produce sustained
dynamics (𝒈=1.3), a characteristic time constant (𝝉=25ms), and a standard tanh activation
function for individual units. Initial internal weights of the network (Wij) were assigned according
to the equation:

Wij = 𝒈 * 𝒩(0,1) * (Pc*Nu)−1/2 (1) line 351 RNN-dudlab-master-LearnDA.m

The RNN had a single primary output unit with activity that constituted the continuous time
policy (i.e. π(t)) input to the behavior plant (see above), and a ‘feedback’ unit that did not project
back into the network as would be standard, but rather was used to produce adaptive changes
in the learning rate (described in more detail in “Learning rules” section below).

Objective function. Evaluation of model performance was calculated according to an objective
function that defines the cost as the weighted sum of a performance cost (2, “costP”) and a
network stability cost (3, “costN”).

costP = 1-e-∆t/500 (2)
costN = sum( | 𝜹𝝅(t)/𝜹t | ) (3)
Robj = costP + 𝓌N*costN (4) e.g. line 209 in dlRNN-train_learnDA.m
⟨R(T)⟩ = 𝛂R*Robj(T) + (1-𝛂R)*Robj(T-1) (5) e.g. line 323 in dlRNN-train_learnDA.m

Where T is the trial index. In all presented simulations, 𝓌N=0.25. A filtered average cost, R, was
computed as before 49 with 𝛂R=0.75 and used in the update equation for changing network
weights via the learning rule described below. For all constants (𝛂R and 𝓌N) a range of values
were tried with qualitatively similar results. The performance objective was defined by costP
where ∆t is the latency to collected reward after it is available. The network stability cost (costN)
penalizes high-frequency oscillatory dynamics that can emerge in some (but not all) simulations.
Such oscillations are inconsistent with observed dynamics of neural activity to date.

Identifying properties of RNN required for optimal performance. In order to examine what
properties of the RNN were required for optimal performance, we scanned through thousands of
simulated network configurations (random initializations of Wij) and ranked those networks
according to their mean cost (Robj) when run through the behavior plant for 50 trials (an
illustrative group of such simulations is shown in Sup. Fig. 2). This analysis revealed a few key
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aspects of the RNN required for optimality. First, a sustained policy that spans time from the
detection of the cue through the delivery of water reward minimizes latency cost. Second, while
optimal RNNs are relatively indifferent to some parameters (e.g. Pc) they tend to require a
coupling coefficient (g) ≧1.2. This range of values for the coupling coefficient is known to
determine the capacity of a RNN to develop sustained dynamics 85. Consistent with this
interpretation we found that optimal policies were observed uniquely in RNNs with large leading
eigenvalues (Sup. Fig. 2; i.e. long time constant dynamics 86). These analyses define the
optimal policy as one that requires sustained dynamics of output unit activity that span the
interval between the cue offset and reward delivery and further reveal that an RNN with long
timescale dynamics is required to realize such a policy. Intuitively: sustained anticipatory
behavior, or “conditioned responding”, optimizes reward collection latency. If an agent is already
licking when reward is delivered the latency to collect that reward is minimized.

RNN Initialization for simulations. All mice tested in our experiments began training with no
sustained licking to cues and a long latency (~1 second or more) to collect water rewards. This
indicates that animal behavior is consistent with an RNN initialization that has a policy π(t)~0 for
the entire trial. As noted above there are many random initializations of the RNN that can
produce clear sustained behavior and even optimal performance. Thus, we performed large
searches of RNN initializations (random matrices Wij) and used only those that had ~0 average
activity in the output unit. We used a variety of different initializations across the simulations
reported in Fig. 4 and indeed there can be substantial differences in the observed rate of
convergence depending upon initial conditions (as there are across mice as well). For
simulations of individual differences in Fig. 4h-j 6 distinct network initializations were chosen (as
described above) and paired comparisons were made for the control initialization and an
initialization in which the weights of the inputs from the reward to the internal RNN units were
tripled.

Learning rules. Below we articulate how each aspect of the model acronym, ACTR (Adaptive
rate Cost of performance to REINFORCE), is reflected in the learning rule that governs updates
to the RNN. The connections between the variant of node perturbation used here and
REINFORCE 35 has been discussed in detail previously 49. There are two key classes of weight
changes governed by distinct learning rules within the ACTR model. First, we will discuss the
learning that governs changes in the ‘internal’ weights of the RNN (Wij). The idea of the rule is to
use perturbations (1-10Hz rate of perturbations in each unit; simulations reported used 3Hz) to
drive fluctuations in activity and corresponding changes in the output unit that could improve or
degrade performance. To solve the temporal credit assignment problem we used eligibility
traces similar to those described previously 49. One difference here was that the eligibility trace
decayed exponentially with a time constant of 500 ms and it was unclear whether decay was a
feature of prior work. The eligibility trace (ℯ) for a given connection i,j could be changed at any
time point by computing a nonlinear function (𝒮) of the product of the derivative in the input from
the ith unit (𝓍i) and the output rate of the jth unit (𝓇j) in the RNN according to the equation:

ℯi,j(t) = ℯi,j(t−1) + 𝒮[ 𝓇j(t−1)×(𝓍i(t)−⟨𝓍i⟩) ] (5) line 82 in dlRNN_engine.m

As noted by Miconi, the function 𝒮 need only be a signed, nonlinear function. Similarly, in our
simulations we also found that a range of functions could all be used. Typically, we either used
𝒮(y)=y3 or 𝒮(y)=|y|*y and simulations presented were generally the latter which runs more
rapidly.

The change in a connection weight (Wij) in the RNN in the original formulation 49 is then
computed as the product of the eligibility trace and the change in performance error scaled by a
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learning rate parameter. Our implementation kept this core aspect of the computation, but
several critical updates were made and will be described. First, since the eligibility trace is
believed to be ‘read out’ into a plastic change in the synapse by a phasic burst of dopamine
firing 87. Thus, we chose to evaluate the eligibility at the time of the computed burst of DA firing
estimated from the activity of the parallel feedback unit (see below for further details). Again,
models that do not use this can also converge, but in general converge worse and less similarly
to observed mice. The update equation is thus,

Wi,j(T) = Wi,j(T-1) + 𝜷DA × 𝜂W × ℯi,j(tDA) × (Robj(T)−⟨R(T)⟩) (6) e.g. line 286 in
dlRNN-train_learnDA.m

Where 𝜂W is the baseline learning rate parameter and is generally used in the range {1e-5,1e-4}
(however, a large range was scanned for the data shown in Fig. 4c); and 𝜷DA is the ‘adaptive
rate’ parameter that equals the derivative of the feedback unit response, equivalent to the
proposed role of DA in modulating learning.

As noted in the description of the behavioral data described in Fig. 1 it is clear that
animal behavior exhibits learning of both sustained behavioral responses to the cue as well as
transient learning that reduces reaction times between sensory input (either cues or rewards)
and motor outputs. This is particularly prominent in early training where a dramatic decrease in
reward collection latency occurs even in the absence of particularly large changes in the
sustained component of behavior. We interpreted this transient component as a ‘direct’
sensorimotor transformation consistent with the treatment of reaction times in the literature 88

and thus transient learning updates weights between sensory inputs and the output unit (one
specific element of the RNN indexed as ‘o’ below). This transient learning was also updated
according to performance errors. In particular the difference between Robj(T) and the activity of
the output unit at the time of reward delivery. For the cue updates were proportional to the
difference between the derivative in the output unit activity at the cue and the performance error
at the reward delivery. These rates were also scaled by the same 𝜷DA adaptive learning rate
parameter:

Wtrans,o(T) = Wtrans,o(T-1) + 𝜷DA × 𝜂I × (Robj(T)−𝛑(treward)) (7) e.g. line 299

Where 𝜂I is the baseline transient learning rate and typical values were 0.033 in presented
simulations.

We compared acquisition learning in the complete model to observed mouse behavior,
scanning ~2 orders of magnitude for two critical parameters 𝜂I and 𝜂W or (1) the baseline rate
governing changes in the input weights of sensory inputs, analogous to the transient learning
component of observed behavior and (2) the baseline rate governing updates to internal weights
(Wij) of the RNN, analogous to the sustained component of observed behavior, respectively (Fig.
4c). As described above, simulations were initialized from network configurations that had no
sustained licking behavior nor any direct licking in response to cue/reward inputs. As these
simulations make clear, a broad range of model parameters lead to convergence upon an
optimal policy that minimizes performance cost through learned increases in sustained policy
and an enhanced transient component as observed in behavioral data (Fig. 4c, analogous to
plots in Fig. 1h).

Visualizing the objective surface. In order to visualize the objective surface that governs
learning we scanned a range of combinations of transient and sustained components of an
analytic policy passed through the behavior plant. The space of transient components covered
was [-0.1 0 10[-1:0.1:1]] and the space of sustained values covered was 0.33*[0:0.05:1]
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corresponding to the range of observed licking behavior in experiments. For each pair of values
a policy was computed and passed through the behavior plant 1000 times to get an accurate
estimate of the mean performance cost. These simulation results are presented in Fig. 4f.

In the case of experimental data the full distribution of individual trial data points across
all mice (N=7200 observations) was used to fit a 2nd order, 2d polynomial (MATLAB; ‘fit’).
Observed trajectories of sustained vs transient were superimposed on this surface by finding
the nearest corresponding point on the fit 2d surface for the parametric sustained and transient
trajectories. These data are presented in Fig. 4g.

Simulating closed-loop stimulation of mDA experiments. We sought to develop an
experimental test of the model that was tractable (as opposed to inferring the unobserved policy
for example). The experimenter in principle has access to real-time detection of licking during
the cue-reward interval. In simulations this also can easily be observed by monitoring the output
of the behavioral plant. Thus, in the model we kept track of individual trials and the number of
licks produced in the cue-reward interval. For analysis experiments (Fig. 4h) we tracked these
trials and separately calculated the predicted DA responses depending upon trial type
classification. For simulations in Fig. 4h we ran simulations from the same initialization in 9
replicates (matched to the number of control mice) and error bars reflect the standard error.

To simulate calibrated stimulation of mDA neurons, we multiplied the adaptive rate
parameter, 𝜷DA, by 2 based upon the same trial classification. Specifically, on trials with no licks
detected (stim lick−) or on trials with at least one lick detected (stim lick+). For simulations
reported in Fig. 4i we used 3 conditions: control, stim lick−, stim lick+. For each of these 3
conditions we ran 9 simulations (3 different initializations, 3 replicates) for 27 total learning
simulations (800 trials). This choice was an attempt to estimate the expected experimental
variance since trial classification scheme is an imperfect estimate of underlying policy.

Code availability. All code relating to simulating the ACTR model and for a reader to explore
both described parameterizations and explore a number of implemented, but unused in this
manuscript, features can be found at https://github.com/dudmanj/RNN_learnDA. Specific line
numbers are provided within the code for a subset of critical computations in the model.

Histology. Mice were killed by anesthetic overdose (isoflurane, >3%) and perfused with ice-cold
phosphate-buffered saline (PBS), followed by paraformaldehyde (4% wt/vol in PBS). Brains
were post-fixed for 2 h at 4° C and then rinsed in saline. Whole brains were then sectioned (100
μm thickness) using a vibrating microtome (VT-1200, Leica Microsystems). Fiber tip positions
were estimated by referencing standard mouse brain coordinates 89.

Statistical analysis. Two-sample, unpaired comparisons were made using Wilcoxon’s rank
sum test (MATLAB ‘ranksum’); paired comparisons using Wilcoxon signed-rank test (MATLAB
‘signrank’). Multiple comparisons with repeated measures were made using Friedman’s test
(MATLAB ‘friedman’). Comparisons between groups across training were made using 2-way
ANOVA. Correlations were quantified using Pearson’s correlation coefficient (MATLAB ‘corr’).
Linear regression to estimate contribution of fiber position to variance in mDA reward signals
was fit using MATLAB ‘fitlm’. Errors are reported as standard errors of the mean (s.e.m.). All
sample sizes refer to the number of mice in the sample.

Data Availability. The data and custom code used to generate results supporting the findings of
this study are within the [dudman lab github] repo including both modeling code
(https://github.com/dudmanj/RNN_learnDA) and analysis code ([dudman lab github]).
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Figure 1.Changes to behavioral policy correlate with improved reward collection
performance.
a) Naive, thirsty, head-fixed mice underwent classical trace conditioning.
b) Learning quantified by a decrease in reward collection latency over training. As training
progressed, a predictive cue led to faster reward collection (red) as compared to uncued probe
trials (black).
c) Reward collection latency (leftmost column) compared to normalized heat maps (right 4
columns) of measures of licking, body movement, whisking probability and pupil diameter, for
standard trials in which a 0.5 s auditory cue (grey arrows at cue start) predicted 3 μL sweetened
water reward (blue arrows), averaged in 10-trial bins across training. Each row summarizes an
individual mouse’s learning trajectory,  with a background color that identifies each example
mouse in figure panels (d)-(j).
d) Moving means of the averaged “sustained” behavioral responses during the 1 s delay
between cue end and reward delivery for each example mouse from panel (C).
e) (top) Normalized heat maps of licking, nose motion, body movement, and whisking probability
in 10 trial bins across training, with mean first response following reward delivery indicated by
black triangles. (bottom) Moving means of the “transient” nose, body, and whisking responses,
quantified as the latency to the first response following reward delivery, for each example mouse
from panel (C).
f) Sustained and transient measures as in panels (D) and (E) used as predictors of reward
collection latency in a generalized linear model.
g) Weights of each predictor in the GLM for each of 9 individual mice.
h) Sustained predictors alone (blue) or transient predictors alone (red) provided worse
predictions than the full model.
i) Abstract learning trajectories were described as exponential fits to the first principal
component of transient (top) and sustained (bottom) measurement variables used as predictors
in the GLM in panels (F-H).
j) Sustained and transient abstract learning trajectories plotted against the latency to collect
reward for all mice (example mice from panel C: red, yellow, grey; all other mice: thin black;
mean of all mice: thick black line; arrows placed every 100 trials to convey relative speed of
updates), providing a full visualization of how inferred policy updates are related to reward
collection performance.
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Figure 2. Mesolimbic DA experiences significant reward signaling throughout acquisition
training.
a) (left) Fiber photometry hardware schematic. 10% duty cycle 473 and 656 nm excitations were
offset from eachother and split between the main filter cube and photodectors (white squares)
that measure output power. Excitation and emission of eYFP and jRCaMP1b fluorescence were
conveyed by one cable between the filter cube and the brains of head-fixed animals. YFP and
RCaMP emissions were measured at separate filter cube outputs. (right) jRCaMP1b was virally
expressed bilaterally in the VTA and SNc of DAT-cre::ai32 mice, allowing measurement and the
option for simultaneous manipulation of mesostriatal DA circuits.
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b) Histology showing example fiber paths and virus expression.
c) (left 3 columns) jRCaMP1b DA signals in the nucleus accumbens core (NAc, black, n=9) and
simultaneous recordings in the ventral tegmental area (VTA, purple, n = 3) and dorsal striatum
(DS, green, n = 6), for cued reward trials in the trial bins indicated across training. (right) Reward
or omission signals in NAc (top), VTA (middle), and DS (bottom) in trials 600-800, for cued (red),
uncued (black), and cued but omitted (blue) trials.
d) Mean signals during the 1 s following cue delivery (left) and 2 s following reward delivery
(right) across training for each brain region from panel (C).
e) Example simultaneous recordings from NAc-VTA (top) and NAc-DA (bottom).
f) Mean cross correlations for simultaneously measured NAc-VTA signals (top row, n =3) and
NAc-DS signals (bottom row, n=6) in trials 1-100 (left) and trials 700-800 (right) within trial
periods (1 second before cue to 3 seconds after reward).
g) Peak cross correlation coefficients between NAc-VTA and NAc-DS signal pairs across
training, within trial periods.
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Figure 3. Individual differences in mesolimbic DA signals correlate with learned
behavioral policy.
ai) NAc-DA, licking, body movements, whisking probability, and pupil diameter measurements
for example animals with low NAc-DA (blue) and high NAc-DA (pink) initial reward signals.
aii) Same as (Ai), except showing the mean of the 4 animals with lowest (blue) and highest
(pink) initial NAc-DA reward signals .
b) Visualization of fiber locations for each mouse (n=9), color-coded according to the size of
their initial NAc-DA reward signals.
c) Correlation of total sustained behavior magnitude (see Methods) in trials 700-800 vs initial
NAc-DA reward signals trials 1-100 (n=9 mice).
d) Correlation of latency to collect reward in trials 700-800 vs initial NAc-DA reward signals trials
1-100 (n=9 mice).
e) Correlation of initial NAc-DA reward signals predicted from behavior measures in trials
700-800 to observed initial NAc-DA reward signals.
f) Lack of significant correlation between NAc-DA cue signals at trials 700-800 and initial
NAc-DA reward signals at trials 1-100.
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Figure 4. ACTR model of policy learning during classical conditioning.
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a) (top row) Licking behavior was modeled as a two state ({off,on}) plant that emitted 7 Hz lick
bouts from the ‘on’ state. Forward transition rate (off→on) was determined by a policy π(t).
Reverse transition rate (on→off) was a constant modulated by the presence of water. Bottom
three rows illustrate example licking behavior produced by the plant for three different constant
policies (red, purple, blue) before and after water reward delivery (vertical black line) for 100
repetitions of each policy.
b) The ACTR model (see methods) learned a control policy for the lick plant as the activity of a
single output neuron (cyan) from an RNN that received sensory inputs upon cue onset and
offset (purple) and water reward delivery (red). Weights of connections between neurons were
updated according to the ACTR learning rule summarized in the equation. Wij: weight of the
connection between the i-th neuron and the j-th neuron. 𝛽: adaptive learning rate set by a
mDA-like signal from a feedback neuron proportional to policy error (pink). Eij: eligibility trace for
the synapse between the i-th neuron and the j-th neuron. PE: performance error from comparing
the latency to collect reward on the current trial to the recent history of collection latencies.
c) Different ratios of sustained vs transient learning rates (inset color code) produced a range of
trajectories similar to observed trajectories in individual mice (Fig. 1).
d) 12 simulations of a common network initialization produced mouse-like decreases in cued
and uncued reward collection latency across training.
e) Activity of the mDA-like feedback unit, convolved with kernels to match the variance and
kinetics of jRCaMP1b measurements of mouse mDA activity, for uncued (black), cued (red), and
omitted (blue) reward trials during early (left), middle (middle), and late (right) training periods.
f) Objective surface to visualize policy gradient calculated from ACTR model using arbitrary
combinations of transient and sustained components (mean of 1000 simulations per point).
g) Objective surface fit (2nd order polynomial surface) from observed mouse data. H)
Simulations with low (small dots, n=6) or high (large dots, n=6) initial reward-related sensory
input exhibited a significant correlation between initial predicted mDA reward response and final
reward collection latency.
i) Reward collection latency and J) sustained cued licking for simulations with low (cyan) and
high (magenta) initial reward-related sensory input.
k) As training progresses (bottom left), ACTR model mDA-like signals (bottom right) display
differential signals on trials with sustained cued licking (lick+) versus trials without sustained
cued licking (lick-).
l) Enhancing the mDA-like adaptive learning rate signal at reward selectively (schematic at left)
on either lick- (green) or lick+ (purple) trials biases future licking behavior in opposite directions
from the stimulation contingency across training (right): in other words, enhancing mDA-like
reward signals on trials with cued licking decreases cued licking in the future.
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Figure 5. Role of mesolimbic DA in learning is consistent with an adaptive policy learning
rate.
a) Trial types defined as “lick+” trials with at least one lick during the delay between cue and
reward and “lick-” trials with no delay period licking.
b) Percent of total trials that are “lick+” (left) and reward collection latency (right), for top 4
(green) and bottom 4 (purple) performing mice, as determined by their reward collection latency
in trials 700-800.
ci) NAc-DA signals early (trials 1-200, left column) and late (trials 400-800, right column) in
training for lick- (red) and lick+ (blue) trials, for top 4 performing mice in terms of reward
collection latency in trials 700-800.
cii) Same as (ci) except for bottom 4 performing mice.
d) The ratio of NAc-DA reward signals on lick- vs lick+ trials was correlated with the final reward
collection latency.
e) The ratio of NAc-DA reward signals on lick- vs lick+ trials increased with training for top
performing mice.
f) Simultaneous measurement and manipulation of mesolimbic DA signals (top). Closed-loop
experiment design, where different groups of mice received VTA stim concurrent with reward
delivery on either lick- trials (“stim lick-”) or lick+ trials (“stime lick+).
g) (top) Mean NAc-DA reward responses across training with (colored traces) and without (black
traces) exogenous stimulation, for stimLick- (green)and stimLick+ (purple) mice. (bottom) Fold
increase in NAc-DA reward signals and cumulative sum of stimulated trials for stimLick- (green)
and stimLick+ (purple).
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h) NAc-DA (top) and licking (bottom) during early (left) and late (right) training for control (black),
stimLick- (green) and stimLick+ (purple) animals.
i) NAc-DA cue responses (top) and cued licking (bottom) for StimLick- (green) and stimLick+
(purple) mice across training, displayed as the difference from control mice.
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Figure 6. Large mesolimbic DA manipulations drive value-like learning.
a) Experimental design for VTA-DA stimulation predicted by a 0.5 s light flash at the front of the
behavioral chamber.
b) Mean uncued NAc-DA reward responses (left) and individual responses to VTA-DA
stimulation (right) for mice that either received large, uncalibrated stimulation (top; 30 Hz, 12
mW for 500 ms) or stimulation calibrated to reward responses (bottom; 30 Hz, 1-3 mW for 150
ms).
c) (left) jRCaMP1b NAc-DA cue responses across training for mice that received large
stimulations (5x the size of reward responses; filled circles) or calibrated stimulations (1x the
size of reward responses; open circles). (right) Mean NAc-DA traces after 750 training trials.
d) Quantification of NAc-DA cue responses at the end of training for large (top) and calibrated
(bottom) stimulation.
e) (top) Experimental design for new group of mice that experienced a “stim+ lick+” contingency:
they received large, uncalibrated VTA-DA stimulation on lick+ trials. (bottom) NAc-DA reward
responses on stimulated (light) and unstimulated (dark) trials, and fold increase in NAc-DA
reward responses due to stimulation (n=4).
f) NAc-DA cue responses (top) and cued licking (bottom) for control (black) and stim+Lick+ (light
green) mice.
g) Quantification across training of NAC-DA cue responses (top), peak cued licking (middle),
and latency to collect reward (bottom) for control (black) and stim+lick+ mice (light green).
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Supplementary Figure 1. Logic Outline
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a) Narrative logic of the manuscript.
b) Visualization of proposed dissociation between policy and value learning functions for
NAc-DA reward signals
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Supplemental Figure 2. Search through
ACTR initialization space. (top) Schematic of
ACTR policy recurrent neural network (RNN).
(bottom) We scanned through thousands of
simulated network configurations and ranked
those networks according to their performance
cost (Fig. 4b; cost is a combination of latency
cost and a network variance cost, see methods
for details). Displayed are the latency to collect
reward (black), network sparsity (blue),
coupling coefficient (red), leading eigenvalue
(purple). This analysis reveals a few key
aspects. First, a sustained policy that spans
time from the detection of the cue through the
delivery of water reward is necessary to
minimize latency cost. Second, while optimal
RNNs are relatively indifferent to some
parameters (sparsity of connectivity) they tend
to require a strong coupling coefficient which is
known to determine the capacity of a RNN to
develop sustained dynamics 85. Consistent with
this interpretation we found that optimal
policies were observed uniquely in RNNs with
large leading eigenvalues (i.e. long time
constant dynamics 86). These analyses indicate
that there are realizable RNN configurations
sufficient to produce an optimal policy.
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Supplemental Figure 3. Enhancing mesolimbic cue signals has no immediate effect on
cued behavior.
a) Cued licking was correlated with the size of NAc-DA cue responses.
b) To test for a causal connection between the size of mesolimbic DA cue responses and cued
behavior, in a new session after regular training was complete, we delivered large, uncalibrated
VTA-DA stimulation on a random subset of cued reward trials (light green).
c) Licking behavior appeared unchanged between unstimulated (black) vs VTA-DA stimulated
(light green) trials.
d) Quantification of sustained licking during the delay period for unstimulated (black) vs
stimulated (green) trials.
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