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Abstract: Many microbial ecology studies use multivariate analyses to relate

microbial abundances to independently measured physicochemical variables.

However, genes and proteins are themselves chemical entities; in combination

with genome databases, differences in microbial abundances therefore quan-

titatively encode for chemical variability. We combined community profiles

from published 16S rRNA gene sequencing datasets with predicted microbial

proteomes from the NCBI Reference Sequence (RefSeq) database to generate

a two-dimensional chemical representation of microbial communities. This

analysis demonstrates that environmental redox gradients within and between

hydrothermal systems and stratified lakes and marine environments are re-

flected in predictable changes in the carbon oxidation state of inferred commu-

nity proteomes. These findings have important implications for understanding
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the microbial communities in produced well fluids and streams affected by hy-

draulically fractured wells. Although redox measurements for these environ-

ments generally are not available, this analysis suggests that redox chemistry

is likely to be a significant driver of the microbial ecology of these systems.

Teaser

A chemical representation of predicted microbial proteomes reveals new links between com-

munity structure and environmental chemistry.

Introduction

A basic question for microbial ecology is how environmental conditions shape the taxonomic

composition of microbial communities. In a common workflow, next-generation sequencing is

followed by multivariate statistical analysis to cluster similar sequences into operational tax-

onomic units (OTU) (1). Then, patterns in OTU abundances are revealed using ordination

methods and combined with physicochemical measurements to relate community changes to

environmental parameters (2). Despite the power of ordination methods to uncover environ-

mental signals in community sequence data, a well-known issue is the problem of unmeasured

environmental variables, also known as latent factors. Spatial distance and even study ID (which

may be related to geographic location) have been proposed as a proxy for unmeasured variables

in some regional and global microbial biogeography studies (3, 4). However, a distance-based

metric may be an inadequate proxy for physicochemical drivers. For instance, a principal com-

ponents analysis (PCA) biplot for community structure at the Hawaii Ocean Time-series (HOT)

ALOHA station showed clear separation of near-surface and deep-water communities; these

clusters were distinguished by differences of temperature and bulk geochemical measurements

but surprisingly not depth, which therefore appears to be a poor proxy for an obvious yet unmea-
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sured driver of community structure, i.e. photon availability (5). The primary physicochemical

driver of community structure on a global scale is thought to be salinity (4, 6), but some of the

same workers have noted that oxygenation conditions may also be important (6). In particular,

oxygen concentration or other measures of oxidation-reduction (redox) conditions are likely to

have large effects of community structure in settings such as hydrothermal systems and oxygen

minimum zones.

To better understand the physicochemical drivers of community structure, in this study we

used community sequencing data to explore the concept of microbial communities as living

chemical systems that respond to their environment – that is, geobiochemical systems. We re-

cently described the detection of signals of environmental redox and salinity gradients through

compositional analysis of protein sequences coded in shotgun metagenome datasets (7,8). Anal-

ysis of the more readily available 16S rRNA gene sequencing datasets would enable a more

comprehensive test of the hypothesis of a chemical link between communities and environmen-

tal conditions. Therefore, in this study, 16S-based community profiles were combined with

predicted proteomes from the NCBI RefSeq database to obtain the amino acid compositions of

inferred community proteomes, which were then used to compute chemical compositional met-

rics. In this paper, “predicted proteomes” refers to RefSeq proteomes for particular taxonomic

groups, which are automatically predicted from genome sequences, and “inferred community

proteomes” refers to the combination of predicted RefSeq proteomes with 16S-based micro-

bial abundance profiles to estimate the amino acid composition of the proteome for the entire

community.

We made comparisons at a global scale between reduced hydrothermal environments rep-

resented by terrestrial hot springs or submarine vents and seawater, hypersaline lakes, and mi-

crobial mats. Remarkably, the inferred community proteomes for hydrothermal environments

are shifted toward much lower carbon oxidation state compared to other environments. At a
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local scale, oxygen gradients in water columns of the Black Sea, Swiss lakes, Eastern Tropical

North Pacific, the Sansha Yongle Blue Hole in the South China Sea, and Ursu Lake in Romania

all show a decrease in carbon oxidation state with depth. Moreover, microbial communities

in streams affected by unconventional oil and gas (UOG) operations and produced water from

UOG wells have lower oxidation state of carbon of the inferred proteomes compared to non-

affected streams and the injected hydraulic fracturing fluid. The latter result is consistent with

the expectation that fracture networks in organic-rich shales are anoxic environments. By repre-

senting shifts in the taxonomic composition of microbial communities as chemical differences,

this analysis reveals a possible mechanism for the coupling between microbial abundance pat-

terns and redox gradients in natural and engineered environments.

Results

We used inferred community proteomes to calculate two compositional metrics. Carbon oxida-

tion state (ZC) of an organic molecule denotes the average charge on carbon atoms required for

electroneutrality given formal charges of all other atoms (9). Also known by other names such

as nominal oxidation state of carbon, ZC is widely used in studies of natural organic matter, and

to an increasing extent for comparing proteins coded by metagenomic sequences (10, 11). The

equation for ZC only requires elemental abundances (8, 12) and is consistent with models for

complex organic matter used, for example, in soil science (9).

The second compositional metric, stoichiometric hydration state (nH2O), is computed from

the number of water molecules in the theoretical reaction to form a protein from a set of ther-

modynamic components, also referred to as basis species. The method for computing nH2O

is specifically derived for proteins by using a set of basis species that reduces the correlation

between ZC and nH2O for all the proteins coded by a single genome (Escherichia coli) in or-

der to more easily visualize independent variations in oxidation state and hydration state (8).
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This method has been used to separate the signatures of oxidation-reduction and hydration-

dehydration reactions in environmental sequences and clinical proteomic data (8, 13).

Representative datasets from studies of hydrothermal systems, stratified water bodies, and

microbial mats were analyzed to test the predictions that ZC aligns with redox conditions both

locally (within datasets) and globally (across datasets). Accession numbers and literature refer-

ences for the datasets analyzed here are listed in Table 1. While the main focus of this study is

on redox gradients, datasets for a freshwater to marine transition (Baltic Sea) and hypersaline

systems were also included in order to assess the prediction that higher salinity exerts a dehy-

drating force whose effects should be visible in lower nH2O of inferred community proteomes.

To provide an evolutionary context for the analysis of 16S gene sequence datasets, the presen-

tation begins with a visualization of the chemical compositions of the predicted proteomes of

taxonomic groups in the RefSeq database.

Chemical differences among taxonomic groups

Compositional metrics for predicted proteomes for phyla with the greatest number of represen-

tative lower-level taxa in the RefSeq database are plotted in Fig. 1. These plots show ZC and

nH2O computed from the mean amino acid composition of RefSeq proteins for phyla and for

classes within each phylum. The first panel includes viruses and archaeal and bacterial phyla,

and reveals that proteins in many viruses have a lower stoichiometric hydration state than most

cellular organisms except for Bacteroidetes. The next panel excludes viruses to consider cellu-

lar organisms. The proteomes of organisms affiliated to Bacteroidetes have the lowest overall

nH2O, and those for Crenarchaeota, Fusobacteria, Actinobacteria, and Euryarchaeota (except the

classes Haloarchaea and Nanohaloarchaea) have relatively high nH2O. In terms of ZC, Acti-

nobacteria, Planctomycetes, and Haloarchaea and Nanohaloarchaea within the Euryarchaeota

are the groups with the most oxidized proteomes, whereas Crenarchaeota, Thermotogae, Fu-
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sobacteria, and Tenericutes have the most reduced proteomes. The third panel represents chem-

ical composition at a lower taxonomic level, for the proteobacterial classes and their orders. The

stoichiometric hydration state distinguishes the main classes of Proteobacteria, with most orders

of Alphaproteobacteria and Gammaproteobacteria at high and low nH2O, respectively, although

the between-order variability for Alphaproteobacteria is much higher. Notably, the proteobac-

terial class with the most reduced proteins is Epsilonproteobacteria. Members of this class are

often identified in hydrothermal vent communities (14, 15), and in a proposed reclassification

this class belongs to a new phylum named Campylobacterota (16).

The chemical representation of microbial proteomes generates a plethora of hypotheses

about the effects of oxidation-reduction and hydration-dehydration reactions on biochemical

evolution. For instance, the highly reducing environmental conditions of sediments and hy-

drothermal fluids (17, 18) provide an explanation based on evolutionary adaptation for the low

ZC of proteins in the Thermococci, Methanococci, and Archaeoglobi, which are the most re-

duced classes in the Euryarchaeota and among the most reduced of all bacterial classes shown

in Fig. 1. In an even broader evolutionary context, the lower hydration state of viral proteomes

than those of cellular organisms may not be surprising given the absence of a cytoplasmic

compartment in viruses; the tight structure of the viral package is thought to exclude water (19).

The low nH2O of Bacteroidetes, which are often enriched in suspended particles in seawater (20),

aligns with our previous finding of lower nH2O of proteins coded by metagenomes of particle-

associated compared to free-living communities (8).

Some natural clustering is evident in Fig. 1, which indicates that the chemical composition

of proteomes of classes within a phylum tend to be more similar to each other than to classes

in other phyla. An interesting exception is the much higher ZC and lower nH2O of Haloarchaea

and Nanohaloarchaea than for other euryarchaeotal classes. The lower water activity associated

with hypersaline environments may be one reason for these groups to have evolved proteomes
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with lower nH2O. However, the high ZC of these groups is most likely not an adaptation to more

oxidizing conditions; indeed, the solubility of O2 decreases at higher salinity (21). Instead,

the proteomes of many halophiles have greater numbers of acidic residues that stabilize the

three-dimensional structure of proteins in high-salt conditions; because of the oxygen atoms

contained in carboxylic acid groups, this adaptation also results in higher average oxidation

state of carbon of the proteins (8).

Microbial communities encode redox and salinity gradients

The first set of compositional analyses of inferred community proteomes is shown in Fig. 2.

Local redox gradients represented by stratified water bodies including the Black Sea (22) and

Lake Fryxell (23), submarine vents in the Manus Basin (24), and within the Guerrero Negro

microbial mat (25) all provide evidence supporting the predicted change of ZC. Specifically, ZC

is locally lower in the deep euxinic water of the Black Sea and anoxic water of Lake Fryxell,

lower in the hotter water samples for the Manus Basin (which have greater input of reduced

hydrothermal fluids), and lower just below the surface of the hypersaline Guerrero Negro mi-

crobial mat, which experiences a sharp oxygen gradient during the day (25). Mat samples

were also taken from the floor of Lake Fryxell, but the environmental gradient here is between

relatively oxygenated shallow water and anoxic deeper water (23).

No oxygen or redox measurements were reported in the study on alkaline hot spring com-

munities in Yellowstone National Park (26); however, this and the Manus Basin dataset rep-

resent hydrothermal systems that emit highly reduced fluids. In the index plot in the center

of Fig. 2, it can be seen that these datasets are distributed toward lower ZC than for the lake

and seawater environments, thereby supporting the conclusion that ZC provides a signature of

oxidation-reduction conditions on a global scale.

Both the Baltic Sea (27) and saline soils in the Qarhan salt lake (28) exhibit decreasing nH2O
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with greater salinity. However, the trends for the Qarhan salt lake soils and Tibetan Plateau lake

datasets (29) are more strongly dominated by increasing ZC in hypersaline conditions, which is

consistent with trends observed from compositional analysis of shotgun metagenomic data in

other hypersaline systems (8).

Different sample types in some datasets have distinct compositional features. Fauna sam-

ples in the Manus Basin dataset have lower nH2O than the majority of fluid and rock samples.

Another interesting result is the higher nH2O inferred for archaeal proteomes compared to bac-

terial proteomes in hot springs in Yellowstone National Park. This is aligned with expected

phylogenetic differences, since the proteomes of major archaeal groups detected in these sam-

ples, including Crenarchaeota and Euryarchaeota (26), generally have higher nH2O than bacterial

proteomes (Fig. 1B).

Many water bodies around the world develop vertical redox gradients as a result of microbial

respiration of organic matter derived from the photic zone that leads to oxygen depletion with

depth. Besides the Black Sea, we analyzed data for permanently stratified lakes in Switzerland

(30), the oxygen minimum zone of the Eastern Tropical North Pacific (ETNP) (31), the Sansha

Yongle Blue Hole in the South China Sea (32), and Ursu Lake in Central Romania (33). At

each location, the ZC of the inferred community proteomes decreases with depth (Fig. 3).

At the ETNP, the ZC decreases strongly with depth in the free-living communities (0.2–1.6

mm size fraction), but to a lesser extent in particle-associated communities (1.6–30 mm size

fraction), suggesting that environmental microniches and cell-cell interactions might make these

communities less sensitive to external redox conditions.

At a non-stratified location outside the Sansha Yongle Blue Hole, the water remains oxy-

genated at depth. In the upper 100 meters, the profile of ZC has a “C” shape, but maintains

relatively high values at greater depths. The overall higher ZC with depth appears to be more

closely associated with the ratio of nitrate to nitrate than with O2 concentration. It therefore ap-
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pears that where oxygen is abundant, other inorganic redox couples may reflect redox gradients

that could contribute to the environmental shaping of community structure.

Ursu Lake in Central Romania has both strong redox and salinity gradients, and a recent

study reported chemical and biological measurements over a span of 9 months to characterize

the spatial and seasonal variability (33). At all times, both O2 and ZC show an overall decline

with depth. The profile of ZC exhibits a broad maximum at less than 2 m depth in November

that becomes narrower and deeper through the winter and spring. The development of the

ZC maximum precedes that of an O2 maximum in February, and the two profiles exhibit a

remarkable meter-scale correspondence in April.

Physicochemical signal is strongest at high taxonomic levels

Not only the abundances but also the proteomic composition of individual taxonomic groups

contribute to the overall chemical differences between microbial communities. To assess the

chemical differences along redox and salinity gradients in more detail, the abundances and

calculated ZC or nH2O of major taxonomic groups at the domain, phylum, class, and genus

levels are plotted in Fig. 4 for the Manus Basin and Baltic Sea. The plots represent aggregated

values for the indicated taxonomic groups, but the lowest-level taxonomic classification for each

sequence in that group was used for mapping to the NCBI taxonomy to generate the inferred

microbial proteome (see Materials and Methods).

The first thing to notice in Fig. 4 is that at the domain level (the leftmost plot), increasing

temperature in the Manus Basin is associated with decreased ZC. The same trend can be seen

in Fig. 2; note that the symbol shape and color have the same meaning in both figures. Go-

ing down to the phylum level, the high-temperature samples in the Manus Basin are associated

with greater numbers of Aquificae and Campylobacterota (formerly Epsilonproteobacteria) and

fewer Proteobacteria. These groups have relatively low and high ZC, respectively, which to a
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large extent explains the overall lower ZC at the whole-community level. However, the campy-

lobacterotal sequences themselves are affiliated with organisms whose proteomes have lower ZC

in the higher-temperature samples. Therefore, the whole-community chemical differences are

due to both differential taxonomic abundances at the phylum level, which have the largest effect,

as well as differential abundances within phyla. A similar finding applies to the major classes;

at this level it is apparent that the proteobacterial contribution is mainly due to lower numbers

of Gammaproteobacteria. Notably, the arrows for the two most abundant taxonomic classes

(Gammaproteobacteria and Campylobacteria) point in the downward direction, indicating that

the taxa identified within these classes have relatively lower ZC in the higher-temperature sam-

ples. The RDP Classifier does not resolve taxonomy below the genus level, so the final plot

has horizontal lines; nevertheless, the differential abundances of these genera yield a small ZC

difference between hotter and cooler fluids in the same direction as the whole-community trend.

Analogous reasoning can be used to interpret the trends in the Baltic Sea. The relatively high

nH2O in low-salinity samples is mostly controlled by an increase in Actinobacteria. In contrast,

Proteobacteria become less abundant at lower salinity, which to some extent counteracts the

nH2O rise, but the Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria taken

individually each exhibit higher nH2O at lower salinity. The chemical differences among genus-

level assignments for the Baltic Sea suggest an opposite trend (higher nH2O at higher salinity),

but this is less likely to represent the actual differences because the low classification rate to the

genus (37%; see table S1) together with the 1% abundance cutoff for genera in Fig. 4 results in

a low fraction of assignments represented at this level (23%) .

To summarize, differences in the chemical composition of inferred community proteomes

along redox and salinity gradients are mainly associated with changes in abundances of partic-

ular phyla. Changes at lower taxonomic levels make a smaller contribution but in many cases

the chemical differences are in the same direction, indicating that physicochemical conditions

10

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 1, 2021. ; https://doi.org/10.1101/2021.05.31.446500doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.31.446500
http://creativecommons.org/licenses/by/4.0/


shape microbial communities at multiple taxonomic levels.

Application to datasets for unconventional oil and gas operations

During unconventional oil and gas (UOG) extraction, hydraulic fracturing fluid is injected into

shale formations to create extensive horizontal fracture networks that improve hydrocarbon

recovery. The injected fluid mixes and reacts with natural formation waters and the fractured

rock surfaces. Water that returns to the surface is initially referred to as flowback and later as

produced water during the hydrocarbon production stage of the well (34). Depending on the

operator, chemical oxidants may be added to the injected fracturing fluid; these enhance mineral

dissolution and can also have antibacterial effects. Even without such additives, fracturing fluids

generally consist of large amounts of water from surface sources, which makes them highly

oxidized compared to the reducing conditions in organic-rich shale.

Changes in the chemistry and biology of streams that are in proximity to or may be directly

affected by UOG operations are an important issue for environmental assessments of UOG

operations. The chemistry of affected surface streams is thought to reflect the possible input

of methane and/or chemical additives in fracking fluid from nearby wells, though the overall

strength of these associations has been debated (35).

Previous authors have noted that little quantitative information is available about the changes

in redox conditions of flowback and produced fluid over time (36, 37). However, it was found

that oxygen is rapidly depleted in flowback and produced waters in the Duvernay Formation

in Alberta, Canada (38). In a study on the Marcellus Shale in Pennsylvania, USA, the abun-

dances of S-bearing organic compounds determined from FT-ICR-MS measurements exhibited

a decrease in carbon oxidation state compared to injected fluids (39). Furthermore, oxidation-

reduction potential (ORP) measured using a multiprobe is lower (more reducing) in ground-

water samples with higher concentrations of CH4 (40). Therefore, we predicted that inferred
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community proteomes in produced water would be shifted toward a more reduced state com-

pared to source water. A related prediction is that putative hydrocarbon input to surface streams

has a similar reducing effect, but is likely to be much smaller because of the greater extent of

dilution.

Analysis of 16S sequence data for water from streams in Northwestern Pennsylvania (41)

shows that both ZC and nH2O are lower in streams affected by Marcellus Shale activity com-

pared to unaffected streams (Fig. 5A). Smaller differences, but in the same direction, are found

for stream sediments and for stream water in Pennsylvania State Forests (35, 42) (Fig. 5B).

Although comparisons between studies are complicated by different sampling strategies and

analytical techniques, the results show a general agreement that inferred community proteomes

in streams affected by UOG operations are offset toward lower ZC and nH2O.

Much larger shifts, toward lower ZC and higher nH2O, occur in produced waters compared

to source waters and injected fracturing fluids. This trend is evident for not only the Marcel-

lus Shale (43) but also the Denver–Julesburg Basin in Colorado, USA (44) and the Duvernay

Formation (38) (Fig. 5, C and D).

Discussion

The main finding of this study is that the oxidation state of inferred community proteomes de-

creases in more reducing conditions at global and local scales. This conclusion is consistent

with our earlier analysis of shotgun metagenomic data that showed lower ZC of proteins in

Yellowstone hot springs compared to other environments (7) and a study from another group

reporting that metagenome-encoded proteins for the newly discovered Old City hydrothermal

field have lower ZC than ambient seawater (11) (the value for ZC of seawater communities used

by (11) was taken from our previous study (7)). The present study also reveals decreasing ZC

with depth using data from multiple studies for stratified water bodies; this strong physicochem-
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ical signal is in contrast to the ambiguous results for oxygen minimum zones that we previously

obtained by analyzing shotgun metagenomic data (7).

The results for the Baltic Sea and Qarhan Salt Lake support the prediction that nH2O de-

creases in more saline environments (8), but in hypersaline environments the compositional

trend is mainly toward higher ZC instead of lower nH2O. This is again consistent with our pre-

vious findings based on shotgun metagenome sequences (8), and indicates a limitation of using

nH2O as an indicator of hypersaline conditions.

The ability to use community profiles to directly predict physicochemical associations is a

powerful new tool for microbial ecology and can be applied to other systems that are domi-

nated by redox gradients. In UOG systems, the mixing of fracturing fluids with highly saline

and anoxic formation waters leads to environmental filtering for halophilic and anaerobic or-

ganisms (36). Produced waters from many shales converge toward a common profile domi-

nated by Halanaerobium (36), but in the Denver–Julesburg Basin Thermoanaerobacter, which

has similar metabolic capabilities, is present instead (44). These groups are both members

of the phylum Clostridia, which has representatives with more reduced proteomes than many

other bacterial classes (Fig. 1B). Specifically, the predicted RefSeq proteomes of Halanaer-

obium and Thermoanaerobacter have ZC values of -0.195 and -0.227, respectively (see file

RefSeq metrics.csv in the JMDplots package); the very low oxidation states of these

abundant groups accounts for much of the decrease in ZC in produced fluids. This trend is the

opposite of increasing ZC observed in other hypersaline systems (this study and (8)), which

strengthens the interpretation that reducing conditions are a primary driver of community struc-

ture in UOG produced water. ZC decreases to a lesser extent in UOG-affected streams (Fig.

5B), but the consistency among datasets suggests a new line of evidence that reducing condi-

tions may contribute to shape the community ecology in these systems.

Under a mass-action hypothesis, higher salinity should have a dehydrating effect, but this
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prediction is falsified by the observed increase of nH2O of inferred community proteomes in

produced fluids. It is possible that lower ZC is intrinsically linked to higher nH2O as a result of

the background correlation between these metrics when nH2O is calculated using the QEC basis

species (Fig. 5C; see also (8)). However, datasets for the stream samples show the opposite

trend, so the relations between ZC and nH2O reflect specific communities and are not universally

dictated by the basis species. More work is needed to derive a chemical metric that better cap-

tures the relationship between the chemical composition of community proteomes and salinity,

which is a strong driver of microbial community structure (6). At the same time, Lozupone

and Knight (2007) (6) remarked that “oxygenation may also be important” for the global dis-

tribution of bacteria, such as the presence of anaerobic Clostridia in sediments. The present

analysis shows that to a considerable extent the association between particular taxa and oxygen

concentrations can be predicted from differences of ZC.

The results of the analysis applied to UOG systems suggest that in addition to salinity, the

large redox gradient between the surface (oxidizing) and subsurface (reducing) is a primary

factor that shapes the structure of microbial communities. In contrast, a dependence on redox

conditions was not identified in the multivariate analyses previously reported for these sys-

tems (38,43,44). This may be because ordination methods are limited to the available chemical

measurements. Previous authors have commented on the dearth of redox and oxygen measure-

ments in samples collected from black shale well sites (36), and a lack of such measurements

is also apparent by analyzing metadata for the USGS National Produced Waters Geochemical

Database (45). Of the 114943 records in the database, there are only 66 with measurements

of dissolved oxygen (O2) or ORP, and these are only for conventional or geothermal wells.

Since oxygen or redox measurements of produced waters from unconventional wells were not

available, the multivariate analyses used in previous studies could not be used to identify an as-

sociation between microbial communities and oxidation-reduction state of the fluids. However,
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such an association is exactly what is predicted by the compositional analysis in this study.

In spite of the oxygenation of injected fluids, subsurface conditions are likely to be anoxic

(38), so other types of measurements should be considered for monitoring the redox state of pro-

duced water. For instance, the USGS database cites a study from 2009 that gives both NO3
- and

NO2
- measurements in injected and produced water from the Marcellus Shale (46). Monitoring

the dynamics of N species in conjunction with biological sampling would give further insight

into the extent of nitrate reduction in the subsurface (43,47) and could also serve as a proxy for

in situ redox conditions through a metric such as the NO3
-/NO2

- ratio (48). Because the elec-

troactivity of specific redox couples is affected by kinetic barriers that are not well understood,

ORP measurements generally have a more difficult interpretation. Nevertheless, they can yield

information about electrochemical reactions that are relevant to microbial growth, especially if

the measurements are made continuously in time (49).

By leveraging the chemical information contained in protein sequences, it is possible to

achieve a broader view of the coupling between inorganic and organic oxidation-reduction reac-

tions that is essential for all ecosystems (47,50). How geochemistry affects biochemistry is one

of the questions addressed in the emerging field of geobiochemistry (51), and the present anal-

ysis demonstrates a strong linkage between environmental conditions and the chemical compo-

sition of inferred community proteomes. Unlike most multivariate techniques used to analyze

microbial abundance data, in which the plot axes represent dataset-dependent synthetic vari-

ables that can be difficult to interpret (2), a chemical representation of communities uses vari-

ables that have an intuitive meaning and stable definition, which enables comparisons across

datasets. The results suggest that more comprehensive monitoring of dissolved oxygen con-

centrations and other redox indicators should be used to better characterize the responses of

microbial communities in produced water and streams affected by unconventional hydrocarbon

extraction and ecosystems in general.
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Materials and Methods

Data sources, processing, and classification

16S rRNA gene sequences were downloaded from the NCBI Sequence Read Archive (SRA) ex-

cept for the Guerrero Negro microbial mat sequences (25), which were obtained from GenBank.

The processing pipeline consisted of merging of paired-end reads, length and quality filtering,

removal of singletons, subsampling, chimera removal, and taxonomic classification. VSEARCH

version 2.15.0 (52) was used to merge Illumina paired-end reads; for some datasets with low-

quality reverse reads, only the forward reads were used as in previous studies (41,42). For Illu-

mina datasets, quality and length filtering were done with the options -fastq maxee rate

0.005 (i.e. maximum one expected error for every 200 bases) and -fastq trunclen

with a length value depending on the specific dataset. For 454 datasets, where reads are

generally longer but have more variable length, quality and length filtering were done with

-fastq truncqual 15 -fastq minlen 200 -fastq maxlen 600; also, the op-

tion -fastq stripleft 18 was used to remove adapter sequences. Sequence processing

statistics and additional details are given in table S1.

After filtering, the remaining sequences for all samples in each dataset were pooled and sin-

gletons (sequences that appear exactly once, but not including subsequences of other sequences)

were removed. Then, samples were subsampled to a depth of 10000 sequences; samples with

fewer than 10000 sequences were not affected. The subsampling reduces the processing time

for chimera detection, which is the longest step in the pipeline, and retains enough sequences

for classifying the major taxonomic groups in the communities. Reference-based chimera de-

tection was performed using the VSEARCH command -uchime ref with the SILVA 138.1

SSURef NR99 database (53). Sequences identified as chimeras or borderline chimeras were

removed.
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The remaining sequences were processed with the Ribosomal Database Project (RDP) (54)

Classifier version 2.13 (55) with the provided training set (RDP 16S rRNA training set No. 18

07/2020). The sequence classifications for all samples in each dataset were merged using the

RDP Classifier command merge-count.

RefSeq proteomes

Predicted protein sequences were obtained for all 49448 bacterial, archaeal and viral taxa in the

RefSeq database release 206 (2020-05-21) (56). For each taxon (identified by a unique taxid

number), the amino acid compositions of all protein sequences were summed to generate the

total amino acid composition of the predicted proteome. For each taxid, the available taxonomic

names at ranks of superkingdom, phylum, class, order, family, genus, and species were parsed

from the current (as of the RefSeq release date) NCBI taxonomy files.

For taxonomic groups at genus and higher levels, the amino acid compositions of proteins

present in all taxa within this group (including lower levels) were combined and normalized to

yield the overall amino acid composition of the predicted proteome for this group. The number

of proteomes, corresponding to the number of taxonomic groups at each level, is 4788 (genus),

763 (family), 303 (order), 140 (class), 78 (phylum), and 3 (superkingdom).

Taxonomy mapping

To infer the amino acid compositions of communities from 16S sequencing data, RDP clas-

sifications at only the root or domain level were first omitted because they provide very little

taxonomic resolution. Sequences assigned to RDP class- and family-level name Chloroplast or

genus-level names Chlorophyta and Bacillariophyta were also discarded because they do not

fall within the archaeal and bacterial taxonomy used by NCBI. All remaining classifications at

any taxonomic level were retained for attempted mapping to the NCBI taxonomy.
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In general, mapping from the RDP Classifier to the NCBI taxonomy was performed by

text matching of both the taxonomic rank and name. Some particular mappings were used to

improve the representation of common taxa in the datasets. The RDP phylum Cyanobacte-

ria/Chloroplast, class Planctomycetacia, and genus Escherichia/Shigella were mapped to the

NCBI phylum Cyanobacteria, class Planctomycetia, and genus Escherichia, respectively. The

RDP order Rhizobiales was mapped to the NCBI order Hyphomicrobiales (57). The RDP

taxon Spartobacteria genera incertae sedis, which is relatively abundant in the Baltic Sea (27),

was mapped to NCBI class Spartobacteria. The RDP taxon Marinimicrobia genera incertae

sedis, which was identified in this study in some deep ocean datasets (24, 31), was mapped to

NCBI species Candidatus Marinimicrobia bacterium, which is the only representative of the

Candidatus Marinimicrobia phylum in the RefSeq database. Among Acidobacteria, which are

fairly abundant in river water and sediment, the RDP genus-level classifications Gp1 and Gp6

were mapped to NCBI genera Acidobacterium and Luteitalea, respectively, which are mem-

bers of Acidobacteria subdivisions 1 and 6 (58). The RDP genus-level cyanobacterial groups

GpI, GpIIa, and GpVI were mapped to the NCBI genera Nostoc, Synechococcus, and Pseudan-

abaena, and the RDP taxon Family II was mapped to the family Synechococcaceae; these map-

pings are based on names of members of these groups given in Bergey’s Manual (59), although

the mappings are necessarily imperfect because of inconsistencies with the NCBI taxonomy.

Any other RDP classifications whose rank and name could not be matched to the NCBI tax-

onomy were removed from the subsequent calculations. Across all datasets, a median of 95.5%

of RDP classifications at all levels from genus to phylum were mapped to the NCBI taxonomy

(table S1). The lowest classification rate is for a dataset for UOG produced water (44), in which

the genus Cavicella makes up 27% of the RDP classifications but has no counterpart in the

available RefSeq proteomes (table S2).
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Compositional analysis

The RDP counts for each mapped taxon were multiplied by the amino acid compositions of

the RefSeq taxa described above and summed to obtain the amino acid composition of the

inferred whole community proteome. Only unique classifications at the lowest taxonomic level

were included in the sum. Therefore, the inferred community proteome represents counts of all

sequences classified and mapped at the genus level together with counts of sequences classified

and mapped at each higher level, up to phylum, for which lower-level assignments were not

generated by the RDP Classifier. The ZCAA() and H2OAA() functions in the canprot package

(13) were used to calculate ZC and nH2O from the amino acid compositions.
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A later version of the package was used to make the figures in this submission and will be de-

posited on Zenodo before final publication (https://github.com/jedick/JMDplots).

All figures were made using R (61) with data files and code provided in the JMDplots package;

the “geo16S” vignette in the package runs the functions to make each of the figures.

29

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 1, 2021. ; https://doi.org/10.1101/2021.05.31.446500doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.31.446500
http://creativecommons.org/licenses/by/4.0/


−0.25 −0.20 −0.15 −0.10 −0.05

−
0.

90
−

0.
85

−
0.

80
−

0.
75

−
0.

70
−

0.
65

ZC

n
H

2O

1

2

3

4
5

Cellular
Proteobacteria
Actinobacteria
Firmicutes
Bacteroidetes
Cyanobacteria
Euryarchaeota
Viruses
Uroviricota
Pisuviricota
Cressdnaviricota
Kitrinoviricota
Negarnaviricota

Major phyla and their classesA

−0.25 −0.20 −0.15 −0.10 −0.05

−
0.

80
−

0.
78

−
0.

76
−

0.
74

−
0.

72
−

0.
70

−
0.

68

ZC

n
H

2O

6

1

2

3

4
5

Proteobacteria
Actinobacteria
Firmicutes
Bacteroidetes
Cyanobacteria
Euryarchaeota
Tenericutes
Spirochaetes

Verrucomicrobia
Planctomycetes
Deinococcus−Thermus
Fusobacteria
Thermotogae
Chloroflexi
Crenarchaeota
Acidobacteria

Major cellular phyla and their classesB

−0.25 −0.20 −0.15 −0.10 −0.05

−
0.

77
−

0.
76

−
0.

75
−

0.
74

−
0.

73
−

0.
72

−
0.

71

ZC

n
H

2O

Alphaproteobacteria
Betaproteobacteria
Gammaproteobacteria
Deltaproteobacteria
Epsilonproteobacteria *
Zetaproteobacteria

Acidithiobacillia
Hydrogenophilalia
Oligoflexia

Proteobacterial classes and their ordersC

Figure 1: Distinct chemical compositions of predicted proteomes of major taxonomic
groups.

Stoichiometric hydration state (nH2O) and carbon oxidation state (ZC) are aggregate values for

all available proteins for particular taxonomic group in the RefSeq database. (A) Archaeal,

bacterial, and viral phyla with more than 500 members at all lower levels (identified by unique

taxids in the NCBI taxonomy database); (B) archaeal and bacterial phyla with more than 60

lower-level members; (C) proteobacterial classes. Large symbols are for high-level taxa (phyla

in A and B; classes in C) and small outlined symbols represent lower-level taxa (classes in A and

B; families in C). Points labeled 1, 2, 3, 4, and 5 in (A) and (B) are for the euryarchaeotal classes

Thermococci, Methanococci, Archaeoglobi, Nanohaloarchaea, and Halobacteria, respectively,

and the point labeled 6 in (B) is for the class Clostridia in the phylum Firmicutes. The taxonomic

names are taken from the current NCBI taxonomy, but according to a proposed reclassification

the Epsilonproteobacteria are moved to the Campylobacterota (phyl. nov.) (16).
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Figure 2: Inferred community proteomes from different environments have distinct chem-
ical signatures.

nH2O and ZC were calculated for inferred community proteomes using 16S rRNA gene sequenc-

ing datasets for hydrothermal systems, seawater, hypersaline environments, and microbial mats.

Sources of data are listed in Table 1. The plot for each dataset shows individual samples as

points and the convex hull containing all the samples. The convex hulls for individual datasets

are assembled in the center index plot. The gray lines here have a slope corresponding to that

of the regression between nH2O and ZC for amino acids, and therefore represent the background

covariation between these metrics when nH2O is calculated using the QEC basis species (glu-

tamine, glutamic acid, cysteine, H2O, and O2) (8). The salinity values reported for the Baltic

Sea (supplementary information of (27)) have no units.
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Figure 3: Lower carbon oxidation state is tied to oxygen depletion in water columns.
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Depth profiles of O2 concentrations in water bodies and ZC of community proteomes inferred

from microbial 16S rRNA gene sequences. All sites except for ETNP and station C4 outside

the Blue Hole are permanently stratified. Oxygen concentrations were taken from the source

publications (see Table 1), except for locations inside and outside the Blue Hole (62). For the

Blue Hole, ratios of nitrate to nitrite (NO3
- / NO2

-) are also plotted based on NO3
- and NO2

-

concentrations reported in (62). No ZC value is shown for 1 m depth in Ursu Lake in April 2016

because only 161 sequences remained for this sample after all sequence processing steps.
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Figure 4: Changes of abundance and chemical composition for individual taxonomic
groups.
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Symbols represent median values of ZC for samples with relatively high and low temperature (as

a proxy for reducing and oxidizing conditions) from the Manus Basin or nH2O for samples with

high and low salinity from the Baltic Sea. The leftmost plots represent all sequences classified

by the RDP Classifier and mapped to the NCBI taxonomy at the domain level; only bacterial

sequences are available in these datasets. In subsequent plots, sequences classified and mapped

at lower taxonomic levels were combined to calculate the percentage abundance and median

ZC or nH2O for each group within that level whose sequences make up at least 2% (for phylum

or class) or 1% (for genus) of the total number of sequences from all samples. Percentages in

the plot titles indicate the total percentage represented by groups shown in the plot. Arrows

connect the same taxonomic group in different sample groups and point to samples with higher

temperature (Manus Basin) or lower salinity (Baltic Sea). Abundance-weighted means for the

taxonomic groups shown in each plot are indicated by dashed lines for high temperature or low

salinity samples and dotted lines for low temperature or high salinity samples. All taxonomic

names are taken from the output of RDP Classifier. Campilobacterota may be a misspelling

of the phylum name Campylobacterota (16); the latter spelling is used in the RDP Classifier

Release Notes (63).
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Figure 5: Decreased carbon oxidation state of inferred proteomes for communities af-
fected by unconventional oil and gas extraction.

Community proteomes were inferred from 16S rRNA gene sequencing of UOG produced water

and affected streams and sediments. (A) Water samples from streams affected by Marcellus

Shale activity (MSA+) and non-affected streams (MSA-) in Northwestern Pennsylvania (41);

star-shaped symbols represent group means. (B) Mean values for sample groups in various stud-

ies on streams in Pennsylvania: Northwestern Pennsylvania (water and sediment samples) (41),

Northeastern Pennsylvania (sediment samples) (42), and Pennsylvania State Forests (PASF;

water samples in spring and fall) (35). (C) Injected fluids and produced water from a hydrauli-

cally fractured well in the Marcellus Shale (43); star-shaped symbols represent group means.

(D) Mean values for sample groups in various studies on produced water compared to injected

fluids or source water for hydraulically fractured wells in the Marcellus Shale (43), Denver–

Julesburg Basin (44), and Duvernay Formation (38).
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Table 1: Sources of data used in this study.

Description BioProject Description BioProject
Guerrero Negro mat N/A (25) (a,b) UOG-affected streams

O2 gradient (in mat)
Yellowstone hot springs PRJNA207095 (26) Pennsylvania Streams PRJNA394724 (41)

Archaea and Bacteria Water and sediment
ETNP water PRJNA263621 (31) Pennsylvania Streams PRJNA449552 (42)

O2 gradient Sediment
Baltic Sea water PRJEB1245 (27) (b,c) Pennsylvania Streams PRJNA544240 (35)

Salinity gradient Water
Lake Fryxell mat PRJNA291280 (23)

O2 gradient (in water) Source water, fracturing fluid, and produced water
Tibetan Plateau lakes PRJNA294836 (29)

Salinity gradient Marcellus Shale PRJNA229085 (43)
Manus Basin vents PRJEB15554 (24) (b)

O2 and T gradient Denver–Julesburg Basin PRJNA438710 (44)
Qarhan Salt Lake PRJNA388250 (28) (d)

Saline and normal soils Duvernay Formation PRJNA407226 (38)
Ursu Lake PRJNA395513 (33)

O2 and salinity gradient
Black Sea water PRJNA423140 (22)

O2 gradient
Swiss Lakes PRJEB27579 (30) (b)

O2 gradient
Sansha Yongle Blue Hole PRJNA503500 (32)

O2 gradient

a. 16S rRNA gene sequences were obtained from GenBank (JN427016 to JN539989) using the
read.GenBank() function from R package ape (64). For all other datasets, sequences were
downloaded from the NCBI Sequence Read Archive (SRA) under the BioProject accessions
listed in the table. b. Only bacterial 16S primers were used in these studies; other studies
include both archaeal and bacterial sequences. c. To minimize the effects of seasonality and
depth, we selected samples taken in the summer from depths of not more than 20 m. d. The
available samples include both surface (0–10 cm) and subsurface (15–30 cm) layers. Normal
(low salinity) soil samples are from outside the Qarhan Salt Lake (Water Park, Tianjin, China).
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Table S1. Sequence processing statistics.
Study key BioProject Samples Reads per

sample (RPS)
(a)

Filtered RPS
(b)

Filtered
read

length

Single-
ton %

(c)

Chim-
era %

(d)

RPS used for
classification

Classification to
genus level (%)

(e)

Map to NCBI
taxonomy (%) (f)

Natural Environment Datasets
HCW+13 N/A (GenBank) 10 11297 11297 (g) (g) 18.1 9249 30 86.9
BGPF13 PRJNA207095 14 36386 17886 (h) 60.2 2.0 6120 20 84.4
GBL+15 PRJNA263621 15 20371 18123 250 6.1 7.0 8882 29 97.3
HLA+16 PRJEB1245 105 1878 1464 (h) (i) 0.4 1458 37 98.0
JHM+16 PRJNA291280 8 1165067 420093 (j) 230 16.1 10.4 8960 17 96.3
ZLM+16 PRJNA294836 46 59934 48973 250 14.2 5.4 9456 33 97.6
MPB+17 PRJEB15554 54 165298 88931 450 54.4 7.7 8359 48 97.7
XDZ+17 PRJNA388250 29 59876 54360 250 8.9 2.4 9757 46 95.5
BCA+20 PRJNA395513 36 280205 95996 450 34.9 9.9 8638 43 98.0
SVH+19 PRJNA423140 15 6631 5718 (h) 11.6 5.9 4753 17 97.5
MZG+20 PRJEB27579 134 (k) 47294 32779 450 59.3 4.0 9151 54 94.6
HXZ+20 PRJNA503500 21 (l) 92727 75235 440 34.3 2.3 9773 38 95.4

Unconventional Oil and Gas Datasets
UKD+18.sediment PRJNA394724 93 129499 115420 (m) 100 10.4 1.4 9799 22 85.0

UKD+18.water PRJNA394724 80 87546 73960 (m) 100 14.2 1.3 9635 21 92.7
CUN+18 PRJNA449552 29 121350 95128 (m) 250 23.8 4.4 9253 36 85.9
MMA+20 PRJNA544240 138 154859 114533 250 17.8 4.3 9496 38 82.4
CHM+14 PRJNA229085 46 5852 4169 (h) 25.4 35.2 2014 96 97.4
HRR+18 PRJNA438710 9 388424 175069 (n) 300 44.4 23.5 7655 99 72.7
ZLF+19 PRJNA407226 6 64644 32638 290 16.8 0.6 9938 66 97.5

a. Paired forward and reverse reads are counted as one. Paired-end reads were merged with “vsearch -fastq mergepairs” with default options; reads that failed merging were excluded from the subsequent
analysis. All “reads per sample” columns are averages of all samples.

b. Filtering was done with “vsearch -fastq filter” with the options “-fastq maxee rate 0.005” and “-fastq trunclen length” with length value given in next column.
c. Reads in all samples (runs) were pooled and singletons (sequences appearing exactly once) were identified with “vsearch -derep fulllength” with the option “-maxuniquesize 1”. The singletons were

removed from the pooled file using “seqtk subseq”; the remaining sequences for each run were extracted from the pooled file using an awk script. After removing the singletons, 10000 sequences were
subsampled from each run for the subsequent analysis using “vsearch -fastx subsample” with the options “-sample size 10000” and “-randseed 1234”; subsampling was not done on runs with fewer than
10000 sequences remaining after filtering and singleton removal.

d. After subsampling, runs were pooled again and chimeras were removed using “vsearch -uchime ref” with the option “-nonchimeras” to output non-chimeric sequences (i.e. those not classified as
either chimeras or borderline chimeras). The remaining sequences for each run were extracted from the output and used for taxonomic classification.

e. Classification using RDP Classifier. Any samples with < 500 classified sequences at all taxonomic levels were excluded from downstream analysis.
f. This shows the percentage of successful mappings (exact matches of rank and taxonomic name, with exceptions noted in the text) between RDP and the NCBI taxonomy for all sequences classified at

phylum and lower levels.
g. FASTA sequences were downloaded from GenBank. No quality filtering or singleton removal was done.
h. For these 454 sequencing experiments, filtering was done with “vsearch -fastq filter” with options “-fastq stripleft 18” to remove the primer sequence and “-fastq minlen 200 -fastq maxlen 600

-fastq truncqual 15” for read length and quality filtering.
i. Because of the low number of sequences, singletons were not removed.
j. After merging, reads were filtered only on length, not quality scores.
k. Library “c” was chosen, representing 134 out of 536 total runs, because it has more sequences per run than the other available libraries (a, b, and d).
l. Sequences from Station C4 were used for samples outside the Blue Hole.
m. Only forward reads were used, as indicated by the previous authors.
n. Only forward reads were used because a large majority of merge attempts failed for one or more runs (likely because of low-quality reverse reads).
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Table S2. Most abundant unmapped taxonomic groups. These groups were identified by the RDP Classifier (abundances given in parentheses) but could not be mapped to the
NCBI taxonomy. These groups are printed by the getmap() function in the JMDplots package.

Study key Site Most abundant unmapped groups
HCW+13 Guerrero Negro mat genus Potamolinea (2.27%), genus Saccharicenans (1.54%)
BGPF13 Yellowstone hot springs genus Armatimonadetes gp7 (4.05%), genus Diapherotrites Incertae Sedis AR10 (3.91%)
GBL+15 ETNP water phylum Woesearchaeota (0.95%), genus Pacearchaeota Incertae Sedis AR13 (0.47%)
HLA+16 Baltic Sea water family Thalassobaculaceae (0.92%), genus Cryptomonadaceae (0.48%)
JHM+16 Lake Fryxell mat genus Acidibacter (0.43%), phylum Woesearchaeota (0.4%)
ZLM+16 Tibetan Plateau lakes genus Cryptomonadaceae (1.1%), phylum Woesearchaeota (0.42%)
MPB+17 Manus Basin vents genus Parcubacteria genera incertae sedis (0.56%), genus Thioprofundum (0.28%)
XDZ+17 Qarhan Salt Lake soils genus Candidatus Nanosalina (1.59%), genus Gp4 (0.46%) (a)
BCA+20 Ursu Lake genus Desulfonatronobacter (1.53%), class Subdivision3 (c) (0.24%)
SVH+19 Black Sea water genus Pacearchaeota Incertae Sedis AR13 (0.52%), genus Cryptomonadaceae (0.36%)
MZG+20 Swiss Lakes genus Cryptomonadaceae (1.12%), genus GpXI (1.07%) (b)
HXZ+20 Sansha Yongle Blue Hole family Arcobacteraceae (1.6%), genus Parcubacteria genera incertae sedis (0.84%)

UKD+18.sediment Pennsylvania Streams genus Gp2 (5.52%) (a), genus Gp3 (1.79%) (a)
UKD+18.water Pennsylvania Streams genus Gp6 (0.91%) (a), genus GpVIII (0.66%) (b)

CUN+18 Penn. Streams Sediment genus Subdivision3 genera incertae sedis (2.18%) (c), genus Gp16 (2.1%) (a)
MMA+20 Penn. Streams Water genus Subdivision3 genera incertae sedis (2.96%) (c), genus Gp3 (1.64%) (a)
CHM+14 Marcellus Shale family Arcobacteraceae (2.11%), order Clostridiales (0.44%)
HRR+18 Denver-Julesburg Basin genus Cavicella (27.02%), genus Gelria (0.13%)
ZLF+19 Duvernay Formation genus Armatimonas/Armatimonadetes gp1 (1.14%), genus Subdivision3 genera incertae sedis (0.53%) (c)

a. Acidobacteria.
b. Cyanobacteria.
c. Verrucomicrobia.
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