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Abstract 

Single-cell RNA-seq (scRNA-seq) data simulation is critical for evaluating computational 

methods for analysing scRNA-seq data especially when ground truth is experimentally 

unattainable. The reliability of evaluation depends on the ability of simulation methods to 

capture properties of experimental data. However, while many scRNA-seq data 

simulation methods have been proposed, a systematic evaluation of these methods is 

lacking. We developed a comprehensive evaluation framework, SimBench, including a 

novel kernel density estimation measure to benchmark 12 simulation methods through 

36 scRNA-seq experimental datasets. We evaluated the simulation methods on a panel 

of data properties, ability to maintain biological signals and computational scalability. 

Our benchmark uncovered performance differences among the methods and 

highlighted the varying difficulties in simulating data characteristics. Furthermore, we 

identified several limitations including maintaining heterogeneity of distribution. These 

results, together with the framework and datasets made publicly available as R 

packages, will guide simulation methods selection and their future development.  
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Introduction  

Single-cell RNA-sequencing (scRNA-seq) is a powerful technique for profiling the 

transcriptomes at the single cell resolution and has gained considerable popularity since 

its emergence in the last decade1. To effectively utilise scRNA-seq data to address 

biological questions2, the development of computational tools for analysing such data is 

critical and has grown exponentially with the increasing availability of scRNA-seq 

datasets. Evaluation of their performance with credible ground truth has thus become a 

key task for assessing the quality and robustness of the growing array of computational 

resources. While there exist certain control strategies such as spike-ins with known 

sequence and quantity, data that offer ground truth while reflecting the complex 

structures of a variety of experimental designs are either difficult or impossible to 

generate. Thus, in silico simulation methods for creating scRNA-seq datasets with 

desired structure and ground truth (e.g. number of cell groups) are an effective and 

practical strategy for evaluating computational tools designed for scRNA-seq data 

analysis.  

  

To date, numerous scRNA-seq data simulation methods have been developed. The 

majority of these methods employ a two-step process of using statistical models to 

estimate the characteristics of real experimental single-cell data and using the learnt 

information as a template to generate simulation data. The distinctive difference 

between them is the choice of underlying statistical framework. Early methods often 

employ negative binomial3–5 as it has been the typical choice for modelling gene 

expression count of RNA-seq6. Its variant, zero-inflated negative binomial model takes 
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account of excessive zeros in the count data and is chosen by other studies to better 

model the sparsity in single-cell data7,8. In more recent years, alternative models have 

been proposed with the aim to increase modelling flexibility including Gamma-Normal 

mixture model9, Beta-Poisson10, Gamma-Multivariate Hypergeometric11 and the mixture 

of zero-inflated Poisson and log-normal Poisson distributions12. Other studies argued 

that parametric models with strong distributional assumption are often not appropriate to 

scRNA-seq data given its variability and proposed the use of a semi-parametric 

approach as the simulation framework13. Similarly, a recent deep learning-based 

approach14 leverages the power of neural networks to infer underlying data distribution 

and avoid prior assumptions.  

 

A common challenge of simulation methods is the ability to generate data that faithfully 

reflect experimental data15. Given that simulation datasets are widely used for the 

evaluation and comparison of computational methods16, deviations of simulated data 

from properties of experimental data can greatly affect the validity and generalizability of 

evaluation results. With the increasing number of scRNA-seq data simulation tools and 

the reliance on them to guide other method development as well as choosing the most 

appropriate data analytics strategy, a thorough assessment of all currently available 

scRNA-seq simulation methods is crucial and timely, especially when such an 

evaluation study is still lacking in the literature. 

 

Here, we present a comprehensive evaluation framework, SimBench, for single-cell 

simulation benchmarking. Considering that realistic simulation datasets are intended to 
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reflect experimental datasets in all data moments including both cell-wise and gene-

wise properties, as well as their higher-order interactions, it is important to determine 

how well simulation methods represent all these values. To this end, we systematically 

compared the performance of 12 simulation methods across multiple sets of criteria, 

including accuracy of estimates for 13 data properties, the ability to retain biological 

signals and achieve computation scalability. To ensure robustness of results, we 

collected 36 datasets across a range of sequencing protocols and cell types. Moreover, 

we implemented novel measure based on kernel density estimation17 in the evaluation 

framework to enable the large-scale quantification and comparison of similarities 

between simulated and experimental data across univariate and multivariate 

distributions, and thus, avoid visual-based criteria which are often used in other studies. 

To assist development of new methods, we studied potential factors affecting simulation 

results and identified common strength and weakness of current simulation methods. 

Finally, we summarised the result into recommendation to the users, and highlighted 

potential areas requiring future research.  

 

Results   

A comprehensive benchmark of scRNA-seq simulation methods on three key sets 

of evaluation criteria using diverse datasets and a novel comparison measure 

Our SimBench framework evaluates 12 recently published simulation methods 

specifically designed for single-cell data (Fig. 1a, Table 1 and Supplementary Table 1). 

To ensure robust and generalizability of study results and account for variability across 

datasets (Supplementary Fig. 1), we curated 36 public scRNA-seq datasets (Fig. 1b and 
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Supplementary Table 2) that include major experimental protocols, tissue types, and 

organisms. To assess a simulation method's performance on a given dataset, 

SimBench splits the data into input data and test data (referred to as the “real data”). 

Simulation data is generated based on the data properties estimated from the input data 

and compared with the real data in the evaluation process (Fig. 1c). Using three key 

sets of evaluation criteria (Fig. 1c-d), we systematically compare the single-cell 

simulation methods' performance for 432 simulation data representing 12 simulation 

methods applied to 36 scRNA-seq datasets.  

 

The first set of evaluation criteria, termed data property estimation, aims to assess how 

realistic is a given simulated data. To address this, we first defined the properties for a 

given dataset with 13 distinct criteria and then developed a novel comparison process to 

quantify the similarity between the simulated and real data (Supplementary Fig. 2). The 

13 criteria capture both the distributions of genes and cells as well as higher-order 

interactions such as mean-variance relationship of genes. We anticipated that not all 

simulation methods will place emphasis on the same set of data properties and it is thus 

important to incorporate a wide range of criteria. We then examined a number of 

statistics for measuring distributional similarity18. Supplementary Fig. 3 shows that all 

statistics show similar performance with mean correlation of 0.7 and we have chosen to 

use the Kernel Density Based Global Two-Sample Comparison Test statistic19 (KDE 

statistic), in our current study as it is applicable to both univariate and multivariate 

distributions. 
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The other two sets of evaluation criteria seek to assess each simulation method's ability 

to maintain biological signals and its computational scalability. For biological signals, we 

measured the proportion of differentially expressed (DE) genes as well as four other 

types of gene signals (see Methods) obtained in the simulated data. A similar proportion 

to the real data would indicate an accurate estimation of biological signals present in the 

data. Scalability reflects the ability of simulation methods to efficiently generate large-

scale dataset. This is measured through computational run time and memory usage 

with respect to the number of cells. Overall, our framework provides recommendation by 

taking into account all aspects of evaluation (Fig. 1e). 

 

Comparison of simulation methods revealed their relative performance on 

different evaluation criteria 

Through ranking the 12 methods on the above three sets of evaluation criteria, we 

found that no method clearly outperformed other methods across all criteria (Fig. 2). We 

therefore examined each set of criteria individually in detail below and the variability in 

methods’ performance within and across the three sets of evaluation criteria.  

 

For data property estimation, we observed variability in methods’ performance across 

the 13 criteria. ZINB-WAV, SPARSim and SymSim are the three methods that 

performed better than the others across almost all 13 data properties (Fig. 2a). For the 

remaining methods, a greater discrepancy was observed between the 13 criteria, in 

which the rankings of methods based on each criterion do not show any particular 
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relationship or correlation structure. Overall, our results highlight the relative strengths 

and weaknesses of each simulation method on capturing the data properties. 

 

We observed that some methods (e.g. POWSC and scDesign) that were not ranked the 

highest in data properties estimation performed well in retaining biological signals (Fig. 

2b). Both POWSC and scDesign are designed for the purpose of power calculation and 

sample size estimation and thus require an accurate simulation and estimation of 

biological signals, particularly differential expression. It is thus not unexpected that they 

ranked highly in this aspect despite not being the most accurate in estimating other data 

properties.  

 

For computational scalability, the majority of methods showed good performance with 

runtime of under two hours and memory consumption of under eight gigabytes (GB) 

(Supplementary Fig. 4) when tested on the downsampled Tabula Muris dataset20 with 

50 to 8000 cells (see Methods). However, some top performing methods such as 

SPsimSeq and ZINB-WAVE revealed poor scalability (Fig. 2c). This highlights the 

potential trade-off between computational efficiency and complexity of modelling 

framework. SPsimSeq, for example, involves the estimation of correlation structure 

using Gaussian-copulas model and scored well in maintaining gene- and cell-wise 

correlation. Its advantage came at the cost of poor scalability, taking nearly 6 hours to 

simulate 5000 cells. Thus, despite the ability to generate realistic scRNA-seq data, the 

usefulness of such methods may be partially limited if a large-scale simulation dataset is 

required. 
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Impact of data- and experimental-specific characteristics on model estimation 

Aside from comparing the overall performance of methods to guide method selection, it 

is also necessary to identify specific factors influencing the outcome of simulation 

methods. Here, we examined the impact of data- and experimental-specific 

characteristics including cell numbers and sequencing protocols on simulation model 

estimation. 

 

To explore the general relationship between cell number and accuracy of data property 

estimation across simulation methods, we evaluated each method on thirteen 

subsamples of Tabula Muris data with varying numbers of cells but fixed number of cell 

types (see Methods). Through regression analysis, we found certain data properties 

such as mean-variance relationships were more accurately estimated under datasets 

with larger numbers of cells, as shown by the positive regression coefficients (Fig. 3a 

and Supplementary Fig. 5). Nevertheless, most other data properties in the simulated 

data were negatively correlated with the increasing number of cells (e.g. library size, 

gene correlation). These observations suggest that overall, the increasing cell number 

may be accompanied by the increasing complexity of data and thus maintaining data 

properties may become more challenging. Future method development should consider 

this factor as an aspect of evaluation when assessing model performance.  

 

To examine the impact of sequencing protocols, we utilised datasets consisting of 

multiple protocols applied to the same human PBMC and mouse cortex samples from 

the same study21. Fig. 3b reveals no substantial impact was introduced by protocol 
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difference on the overall simulation results, as indicated by the flatness of the line 

representing the accuracy of each data property across each protocol. Taken together, 

these results indicate that the choice of reference input being shallow sequencing or 

deep sequencing has no substantial impact on the overall simulation results. Given that 

SymSim and powsimR are the only two methods that require specification of input data 

as either deep or shallow protocols, these results suggest that a general simulation 

framework for the two major classes of protocols may be sufficient.  

 

Comparison across criteria revealed common areas of strength and weakness 

While the key focus of our benchmark framework is assessing methods’ performance 

across multiple criteria, we can further use these results to identify criteria where most 

methods performed well or were lacking (Fig. 4a). Comparing across criteria, those that 

display a large difference between the simulated and real data for most methods are 

examples of common weakness. This ability to identify common weakness has 

implications for future method development as it highlights ongoing challenges of 

simulation methods.  

 

First, we compared the accuracy of maintaining each data property, where a larger KDE 

score indicates greater similarity between simulated and real data. Fig. 4b shows data 

properties relating to the higher-order interactions including mean-variance relationship 

of genes revealed larger differences between the simulated and real data. In 

comparison, a number of gene-wise and cell-wise properties such as fraction of zero 
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per cell had relatively higher KDE scores, suggesting they were more accurately 

captured by almost all simulation methods. These observations thus highlight the 

difficulty in incorporating high-order interactions by current simulation methods in 

general, and the potential area for method development.  

 

The ability to recapture biological signals were quantified using the metric Symmetric 

Mean Absolute Percentage Error (SMAPE), where a score closer to 1 indicates greater 

similarity between simulated and real data (see Methods). In general, DE was relatively 

better maintained by simulation methods compared to other types of biological signals. 

This is as expected, as many simulation methods solely focus on capturing DE genes. 

In comparison, differentially distributed (DD) and bimodally distributed (BD) genes 

exhibited a greater difference between simulated and real data (Fig. 4b). We also noted 

that five out of the 12 methods consistently had very low SMAPE score of between 0 to 

0.3, indicating the biological signals in the simulated data were at a very different 

proportion to that in real data. Upon closer examination, these methods simulated close 

to zero proportions of biological signals irrespective of the “true” proportion in the real 

data (Supplementary Fig. 6). Together, these observations point to the need for better 

strategies to simulate biological signals.  

 

Discussion    

We presented a comprehensive benchmark study assessing the performance of 12 

single-cell simulation methods using 36 datasets and a total of 20 criteria across three 

aspects of interest. Our primary focus was on assessing accuracy of data property 
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estimation and various factors affecting it, as well as ability to maintain biological signals 

and computational scalability. Additionally, using these results we also identified 

common areas of strength and weakness of current simulation tools. Altogether, we 

highlighted recommendations for method selection and identified areas of improvement 

for future method development.  

 

Whilst we discovered some methods performed better than others (Fig.3), it is unclear 

which aspect of the underlying statistical modelling influences model performance. This 

is partly due to the variety of modelling framework underlying each method. Each of the 

five top performing methods in category 1, for instance, uses a different underlying 

statistical modelling framework (Table 1). We observed that the zero-inflated negative 

binomial model used in ZINB-WAVE is also employed in powsimR and ZingeR. The 

latter two did not achieve comparable results. Interestingly, while deep learning 

methods have dominated the computer vision field, the deep learning-based model 

cscGAN only had moderate performance compared to the remaining models which are 

all statistical model-based. We speculate that this could be due to the sample size 

required to train a deep learning model in general. The smallest dataset used by 

cscGAN in its publication contains 3000 cells, which is greater than many of the 

datasets used in our evaluation framework.  

 

Based on the experiments conducted, we identified several areas of exploration for 

future researchers. Maintaining a reasonable amount of biological signal is desirable 

and was not well captured by a number of methods. We also observed the genes 
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generated by some methods (Table 1) were assigned uninformative names such as 

“gene 1” and exhibit no relationship with genes from the real data. This limited us to 

assessing the proportion of biological signals in the simulated data, instead of assessing 

whether the same set of genes carrying biological signals (e.g. marker gene) are 

maintained in the simulated data. Incorporating the additional functionality of preserving 

biologically meaningful genes is likely to increase the usability of future simulation tools. 

Furthermore, we noted that several simulation studies only assessed their methods 

based on a number of gene-wise and cell-wise properties and did not examine higher-

order interactions. Those studies are thus limited in the ability to uncover limitations in 

their methods. In comparison, our benchmark framework covered a comprehensive 

range of criteria and identified relative weakness of maintaining certain higher-order 

interactions compared to gene- and cell-wise properties.  

 

As expected, we identified that none of the simulation methods assessed in this study 

could maintain the heterogeneity in cell population that was due to patient variability. 

This is potentially related to the paradigm used by current simulation techniques, as 

some methods implicitly require input to be a homogeneous population. For instance, 

some simulation studies inferred modelling parameters and performed simulation on 

each cell type separately when the reference input contains multiple cell types. However, 

experimental datasets with data from multiple samples, for example multiple patients, 

would be characterised by sample-to-sample variability within a cell type. This cellular 

heterogeneity is an important characteristic of single-cell data and has key applications 

such as identification of subpopulations. The loss of heterogeneity can thus be a limiting 
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factor, as in some cases the simulation data could be an oversimplified representation 

of single-cell data. Future research such as phenotype-guided simulation22 can help to 

extend the use of simulation methods.  

 

Finally, we found there exists various trade-offs between the three aspects of criteria 

and having a well-rounded approach could be more important than a framework that 

performs best on one aspect but limiting in the other aspect. For example, whilst ZINB-

WAVE is highly accurate in parameter estimation and biological signals, it requires more 

than 100GB of memory on 8000 cells, making it potentially difficult to execute on a 

personal computer. Some other methods such as scDesign, while performing well in 

biological signals and scalability, are limited to simulation of either one or two cell states 

(Table 1). Methods that have the flexibility of allowing users to customise the number of 

cell type groups and the amount of differential expression between groups and that are 

scalable are therefore directions of future research.  

 

In conclusion, we have illustrated the usefulness of our framework by summarising each 

method’s performance across different aspects to assist with method selection for users 

and identify areas of further improvement for method developers. We advise users to 

select the method that offers the functionality best suited to their purpose and 

developers to address the limitations of current methods. The evaluation framework and 

the collection of curated datasets have been made publicly available as R package 

(https://github.com/SydneyBioX/SimBench) and as Bioconductor data package 

(https://bioconductor.org/packages/devel/data/experiment/html/SimBenchData.html) 
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as useful resources to the scientific community. These resources could support the 

ongoing development of new methods by enabling developers to easily evaluate their 

simulation methods and compare them with existing methods. 

 

Methods 

Dataset collection  

A total of 36 publicly available datasets was used for this benchmark study. For all 

datasets, the cell type labels are either publicly available or obtained from the authors 

upon request23. Details of each dataset including their accession code are included in 

the Supplementary Table 2. The datasets contain a range of sequencing protocols 

including both Unique Molecular Identifiers (UMIs) and read-based protocols, multiple 

tissue types and conditions, and from human and mouse origin.  

 

The raw (unnormalised) count matrix was obtained from each study and quality control 

was performed by removing potentially low quality cells or empty droplets that 

expressed less than one percent of UMIs. For methods that require normalised count, 

we converted the raw count into log2 counts per million reads (CPM), with addition of 

pseudocount of 1 to avoid calculating log of zero.  

 

Note the Tabula Muris dataset was only used to benchmark speed and scalability of 

methods. Properties estimation was evaluated on all other datasets. For evaluating 
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biological signals, 25 datasets containing multiple cell types or conditions as specified 

by Supplementary Table 2 were used.  

Selection and implementation of simulation methods 

An extensive literature review was conducted and a total of 12 published single-cell 

simulation methods with implementation available in R and Python was found. The 

details of each method, including the version of the code used in this benchmark study 

and its publication are outlined in Table 1 and Supplementary Table 1. Supplementary 

Table 3 detailed the execution strategy of each method for data property estimation and 

biological signals and is dependent on the input requirement and the documentation of 

each method. Where possible, default setting or suggested setting from documentation 

is followed. 

 

To ensure the simulated data is not simply a “memorisation” of the original data, we 

randomly split each dataset into 50% training and 50% testing (referred to as the real 

data in this study). The training data was used as input to estimate model parameters 

and generate simulated data. The real data was used as the reference to evaluate the 

quality of the simulated data, by comparing the similarity between the simulated data 

and the real data. The same training and testing subset was used for all methods to 

avoid the data splitting process being a confounding factor in evaluation.  

 

All methods were executed using a research server with dual Intel(R) Xeon(R) Gold 

6148 Processor (40 total cores, 768 GB total memory). For methods that support 

parallel computation, we used 8 cores and stopped the methods if the simulation was 
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not completed within 3 hours. For methods that run on a single core, we stopped the 

methods if not completed within 8 hours.  

Evaluation of data property estimation 

Data properties measured in this study 

We adapted the implementation from countsimQC (v1.6.0)18, which is an R package 

developed to evaluate the similarities between two RNA-seq datasets, either bulk or 

single-cell and evaluated a total of 13 data properties across univariate and bivariate 

distribution. They are described in detail below: 

● Library size: total counts per cell.  

● TMM: weighted trimmed mean of M-values normalisation factor 24.  

● Effective library size: library size multiplied by TMM. 

● Scaled variance: z-score standardisation of the variance of gene expression in 

terms of log2 CPM.  

● Mean expression: mean of gene expression in terms of log2 CPM.  

● Variance expression: variance of gene expression in terms of log2 CPM.  

● Fraction zero cell: fraction of zeros per cell.  

● Fraction zero gene: fraction of zeros per gene. 

● Cell correlation: Spearman correlation between cells.  

● Gene correlation: Spearman correlation between genes. 

● Mean vs variance:  the relationship between mean and variance of gene 

expression. 

● Mean vs fraction zero:  the relationship between mean expression and the 

proportion of zero per gene 
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● Library size vs fraction zero:  the relationship between library size and the 

proportion of zero per gene  

 

Note that properties relating to library size, including TMM and effective library size can 

only be calculated using unnormalised count matrix and could not be obtained from 

methods that generate normalised count. As a result, these scores were shown as a 

blank space in all relevant figures. 

Evaluation measures 

In this study, we used a non-parametric measure termed Kernel Density Based Global 

Two-Sample Comparison Test19 (KDE test) to compare the data properties between 

simulated and real data. The discrepancy between two distributions is calculated based 

on the difference between the probability density functions, either univariate or 

multivariate, that are estimated via kernel smoothing.  

 

The null hypothesis of the KDE test is that the two kernel density estimates are the 

same. An integrated squared error (ISE) serves as the measure of discrepancy and is 

subsequently used to calculate the final test statistic under the null hypothesis. The ISE 

is calculated as:  

� � ���� ��	  
 ����	�� ��  

where ��and ��are the kernel density estimates of sample 1 and sample 2, respectively. 

The implementation from the R package ks (v1.10.7) was used for the KDE test 

performed in this study.  
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We used the test statistic from the KDE test as the measure to quantify the extent of 

similarity between simulated and real distributions. We applied a transformation rule by 

scaling the absolute value of the test statistic to [0,1] and then taking 1 minus the value 

as shown in the equation below: 

                                              �������	�
�� �  |�| � |��������|

|��������| � |��������|
                             (1) 

where x is the raw value before transformation. The purpose of the transformation is to 

follow the principle of “the higher the value, the better” and enable easier interpretation.  

 

To assess the validity of the KDE statistic and compare it against other measures, for 

example, the well-established KS test for univariate distribution, we utilised the 

measures implemented in countsimQC package. It includes the implementation of the 

following six measures: Average silhouette width, average local silhouette width, NN 

rejection fraction, K-S statistics, scaled area between eCDFs and Runs statistics. For 

ease of comparing between the six measures and with the KDE test, we applied 

transformation rules where applicable such that the outputs from all measures are within 

the range of 0 to 1, where value closer to 1 indicates greater similarity.    

 

The measures and their transformation rules are:  

1. Average silhouette width 

For each feature, the Euclidean distances to all other features were calculated. 

The feature was either gene or cell, depending on the data properties evaluated. 

A silhouette width s(i) was then calculated using the following formula:  


��	  �  ���	  
  ���	
�������	, ���		 
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where b(i) is the mean distance between feature i and all other features in the 

simulation data, a(i) is the mean distance between feature i and all other features 

in the original dataset.  

 

s(i) of all features is then averaged to obtain the average silhouette width. The 

range of silhouette width is [-1, 1]. A positive value close to 1 means the data 

point from the simulation data is similar to the original dataset. Value close to 0 

means the data point is close to the decision boundary between the original and 

simulated. A negative value means the data point from the original dataset is 

more similar to the simulation data. The same transformation as described above 

in equation (1) was applied.  

 

2. Average local silhouette width 

Similar to the average local silhouette width. The difference is that instead of 

calculating the distance with all the features, only the k nearest neighbours were 

used in the calculation. Default setting of k of 5 was used. The same 

transformation as described above in equation (1) was applied.  

 

3. NN rejection fraction 

First, for each feature the k nearest neighbours were found using Euclidean 

distance. A chi-square test was then performed with the null hypothesis being the 

composition of k nearest neighbours belonging to original and simulation data is 

similar to the true composition of real and simulation data. The NN rejection 
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fraction was calculated as the fraction of features for which the test was rejected 

at a significance level of 5%.  

 

The output is the range of [0,1], where a higher value indicates greater 

dissimilarity between the features from real and simulation data. The value was 

thus transformed by taking 1 minus the value.  

 

4. Kolmogorov-Smirnov (K-S) statistic  

The K-S measure is based on K-S statistic obtained from performing 

Kolmogorov-Smirnov test, which measures the absolute max distance between 

the empirical cumulative distribution functions of simulated and real dataset. The 

K-S statistics is in range [0, Inf]. The K-S measure was obtained by log-

transformation followed by the transformation rule defined previously.  

 

5. Scaled area between empirical cumulative distribution (eCDFs) 

The difference between the eCDFs of the properties in simulated and real 

dataset. The absolute value of the difference was then scaled such that the 

difference between the largest and smallest value becomes 1. The area under 

the curve was calculated using the Trapezoidal Rule. The final value is in the 

range of [0,1], where a value closer to 1 indicates greater differences between 

the data properties distributions of the real and simulation data. The value was 

then reversed by taking 1 minus the value such that it follows the general pattern 

of higher value being better.  
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6. Runs statistics 

The Runs statistics is the statistic from a one-sided Wald-Wolfowitz runs test. 

The values from the simulated and real dataset were ordered and a runs test was 

performed. The null hypothesis is that the sequence is a random sequence with 

no clear pattern of values from simulated or real dataset next to each other in 

position.  

Methods comparison through multi-step score aggregation  

In order to summarise results from multiple datasets and multiple criteria, we 

implemented the following multi-step procedure to aggregate the KDE scores.  

 

First, we aggregated the KDE scores within each dataset. For most methods, each cell 

type in a dataset containing multiple cell types was simulated and evaluated separately 

for the reason mentioned in the previous section. This resulted in multiple KDE scores 

for a single dataset, one for each cell type. To aggregate the scores into a single score 

for a dataset, we calculated the weighted sum by using the cell type proportion as 

weight, defined as the following: 

�� �� � ��	
�

� � �

 

 

where n is the number of cell types in the simulated or original datasets, xi is the 

evaluation score of the ith cell type and wi is the cell type proportion of the ith cell type.   
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Since each method was evaluated using multiple datasets, we then summarised the 

performance of each method across all datasets by taking the median score. This 

resulted in a single score for each method on each criterion, which then enabled us to 

readily rank each method by comparing the score. Cases where a method was not able 

to produce result on particular dataset were not considered in the scoring process.  

 

Finally, the overall rank of each method was computed by firstly calculating its rank for 

each criterion and then taking the mean rank across all criteria.  

 

Evaluation of biological signals 

The five categories of biological signals evaluated in this study were adapted from 25 

and their descriptions are detailed below. 

1. DE 

This is the typical differentially expressed genes. Limma 26 was performed to 

obtain the log fold change associated with each gene. We selected genes with 

log fold change > 1.  

2. DV 

DV stands for differentially variable genes. Bartlett’s test for differential variability 

was performed to obtain the P-value associated with each gene.  

3. DD 

DD stands for differentially distributed genes. Kolmogorov–Smirnov test was 

performed to obtain the P-value associated with each gene.  

4. DP 
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DP is defined as differential proportion genes. We considered genes with log2 

expression greater than 1 as being expressed and otherwise as non-expressed. 

A chi-square test was then performed to compare the proportion of expression of 

each gene between two cell types.  

5. BD 

BD is defined as bimodally distributed genes. Bimodality index defined using the 

below formula was calculated for each gene: 

 

�� � |�� 
 ��|

���1 
 �	  

where m1 and m2 are the mean expression of genes in the two cell types, 

respectively, s is the standard deviation and p is the proportion of genes in the 

first cell type.  

 

For the first four categories, genes with P-value < 0.1 (Benjamini-Hochberg adjusted) 

were selected. This higher threshold was used instead of the typical threshold of 0.05 to 

result in a higher proportion of biological signals, as larger value would enable clearer 

differentiation of methods’ performance. For the last category, we used bimodality 

index27 > 0.03 as the cut-off to yield a reasonable proportion of BD genes 

(Supplementary Fig. 6).  

 

To quantify the performance of each method, we used SMAPE28: 

����  �  1
! � |"� 
 ��|

��� # "�	/2
�

���
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where Ft is the proportion of biological signals in simulated data and At is the proportion 

in the corresponding real data, n is the number of data points, one from each dataset 

evaluated. The proportion was calculated as the number of biological signal genes 

divided by the total number of genes in a given dataset.  

Evaluation of scalability  

To reduce potential confounding effect, we measured scalability using the Tabula Muris 

dataset only. The dataset was subset to the two largest cell types and random samples 

of the cells without replacement were taken to generate datasets containing 50, 100, 

250, 500, 750, 1000, 1250, 1500, 2500, 3000, 4000, 6000 and 8000 cells with equal 

proportion of the two cell types.  

 

Running time of each method was measured using the Sys.time function built-in R and 

the time.time function built-in Python. Tasks that did not finish within the given time limit 

are considered as no result generated. To record the maximal memory for R methods 

we used the function Rprofmem in the built-in utils Package in R. For Python methods 

we used the psutil package and measured the maximal Resident Set Size. All 

measurements were repeated three times and the average was reported.  

 

In the majority of methods, simulation was performed in a two-step process. In the first 

step, a range of properties is estimated from a given dataset. This set of properties are 

then used in the second step of generating the simulation data. For these methods, the 

time and memory usage of the two steps was recorded separately and shown in 

Supplementary Fig. 4. For other methods where the two processes were completed in 
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one single function, we measured the time and memory usage of this single step and 

used a dashed line to indicate these methods in Supplementary Fig. 4. 

 

In order to compare and rank the methods as shown in Fig. 2, we summed the time and 

memory of the methods that use two-step procedure and displayed the total time and 

memory usage, such that their results became comparable with methods that involve 

one single step.  

Evaluation of impact of data characteristics  

Impact of number of cells  

To assess the impact of the number of cells on the accuracy of data property estimation, 

we used subsets of Tabula Muris dataset as described in the previous section and 

sampled to create datasets of 100, 200, 500, 1000, 1500, 2000, 2500, 3000, 5000, 6000, 

8000, 12000 and 16000 cells. Each dataset was split into 50% training and 50% testing 

as previously described.  

 

Linear regression was fitted using the lm function in the built-in stats package in R for 

each of the 13 data properties. This resulted in a total of 13 regression models with the 

formula defined as: 

& � '� # '���  
The response variable y was the KDE score corresponding to the data property and the 

exploratory variables x1 was the number of cells measured in 1000.  
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Impact of the sequencing protocols 

To assess the impact of the sequencing protocols while avoiding potential batch effect, 

we utilised two sets of datasets from the same study21 that sequenced the same tissue 

type using multiple protocols. It contains human PBMC data generated using the 

following six protocols, 10x Genomics, CEL-seq2, Drop-seq, inDrops, Seq-Well and 

Smart-seq2 and mouse cortex cells using the following four protocols of sci-RNA-seq, 

10x Genomics, DroNc-seq and Smart-seq2.   
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Figures 

Fig 1. Schematic of the benchmarking workflow.  

a A total number of 36 datasets, covering a range of protocols, tissue types, organisms and 

sample size was used in this benchmark study. b We evaluated 12 simulation methods 

available in the literature to date. c Multiple aspects of evaluation were examined in this study, 

with the three primary focuses illustrated in detail in panel d. e Finally, we summarised the result

into a set of recommendations for users and identified potential areas of improvement for 

developers.   
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Fig 2. Ranking of methods across key aspects of evaluation criteria.  

The colour and size of circle denote ranking of methods, where large blue circle represents the 

best possible rank of 1. Missing space indicates where a measurement was not able to be 

obtained, for example due to the output format being normalised count instead of raw count 

(see Methods). The ranks within each criterion were summarised into an overall tier rank, with 

tier 1 being the best tier. a Ranking of methods within data property estimation, ranked by 

median score across multiple datasets. b Ranking of methods within biological signals, ranked 

by median score across multiple datasets. c Scalability was ranked by the total computational 

speed and memory usage required for properties estimation and dataset generation across 

datasets. 
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Fig 3. Impact of dataset characteristic on method performance 

a Impact of the number of cells on selected properties (see Supplementary Fig. 5 for all 

properties). Line shows the trends with increasing cell numbers. Dot indicates where a 

measurement is taken. b Impact of protocols was examined using two collections of datasets. 

Boxplots show the individual score of each property for each method. 
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Fig 4. Comparison of criteria in data property estimation and in biological signals 

a Evaluation procedure for data property estimation and biological signals. b Evaluation results 

and the comparison of criteria within the two aspects of evaluation. For data property estimation,

the KDE score measures the difference between the distribution of 13 data properties in 

simulated and in real data. A score close to 1 indicates a greater similarity. For biological signals

the SMAPE score measures the percentage difference between the proportion of biological 

signals detected in simulated and in real data. A score of 1 indicates no difference in the 

biological signals detected in real and simulated data and a score of 0 indicates maximal 

difference.  
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Table 1. scRNA-seq simulation methods evaluated in this study.  

Methods 
Year of 
publication 

 
 
Approach 

Customise and 
simulate > 1 cell 
population * 

Assign gene 
name to 
generated data 

Customise 
DE 
expression 
** 

scDD5  2016 Dirichlet process mixture of 
normals 

No, can only 
simulate 2  

No Yes 

Splat4 2017 Gamma distribution for modelling 
mean expression; Poisson 
distribution for modelling count 

Yes, > 2 No Yes 

powsimR3 2017 Negative binomial (default) or 
zero-inflated negative binomial 
model; Mean-dispersion spline   

Yes, > 2 Yes Yes 

SparseDC29  2017 Optimization framework  No, can only 
simulate 2  

No Yes 

zingeR8  2018 Zero-inflated negative binomial 
model 

Yes No Yes 

ZINB-
WAVE7  

2018 Zero-inflated negative binomial 
model  

No, restricted to 
the population in 
the original data 

No No 

SymSim10  2019 Kinetic model using Markov chain 
Monte Carlo 

Yes, > 2 No Yes 

scDesign9 2019 Gamma-normal mixture 
model; Parameter estimation 
(dropout, mean, standard 
deviation) via expectation 
maximisation  

Yes, can simulate 
either 1 or 2 
populations 

No Yes 

SPARSim11 2020 Gamma distribution for modelling 
expression; Multivariate 
hypergeometric distribution for 
modelling technical variability 

Yes, > 2 Yes Yes 

SPsimSeq13  2020 Estimation of probability 
distribution uses fast log-linear 
model-based density estimation 
method; Gaussian-copulas for 
modelling gene-gene correlation  

Yes, > 2 Yes Yes 

POWSC12  2020 Mixture of zero inflated Poisson 
for modelling inactive 
transcription; Log-normal Poisson 
for modelling the active 
transcription 

Yes, > 2 No Yes 

cscGAN14 2020 Generative Adversarial Network 
with Wasserstein distance  

No, restricted to 
the population in 
the original data 

Yes No 

* Meaning the method can be used to generate more than 1 cell populations and the user can define the number of cell 
populations.  
** Includes either proportion of differential expression or fold change. 
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