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Abstract  15 

Experimental studies reveal that genome architecture splits into DNA sequence domains 16 

suggesting a well-structured genomic architecture, where, for each species, genome populations are 17 

integrated by individual mutational variants. Herein, we show that, consistent with the fundamental 18 

theorem of Abelian finite groups, the architecture of population genomes from the same or closed 19 

related species can be quantitatively represented in terms of the direct sum of homocyclic Abelian 20 

groups of prime-power order defined on the genetic code and on the set of DNA bases, where 21 

populations can be stratified into subpopulations with the same canonical decomposition into p-22 

groups. Through concrete examples we show that the architectures of current annotated genomic 23 

regions including (but not limited to) transcription factors binding-motif, promoter regulatory boxes, 24 

exon and intron arrangement associated to gene splicing are subjects for feasible modeling as 25 

decomposable Abelian p-groups. Moreover, we show that the epigenomic variations induced by 26 

diseases or environmental changes also can be represented as an Abelian group decomposable into 27 

homocyclic Abelian p-groups. The nexus between the direct sum of homocycle Abelian p-groups and 28 

the endomorphism ring paved the ways to unveil unsuspected stochastic-deterministic logical 29 

propositions ruling the ensemble of genomic regions. Our study aims to set the basis for concrete 30 

applications of the theory in computational biology and bioinformatics. Consistently with this goal, a 31 

computational tool designed for the analysis of fixed mutational events in gene/genome populations 32 
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represented as endomorphisms and automorphisms is provided. Results suggest that complex local 33 

architectures and evolutionary features no evident through the direct experimentation can be unveiled 34 

through the analysis of the endomorphism ring and the subsequent application of machine learning 35 

approaches for the identification of stochastic-deterministic logical rules (reflecting the evolutionary 36 

pressure on the region) constraining the set of possible mutational events (represented as 37 

homomorphisms) and the evolutionary paths. 38 

 39 

 40 
Keywords: Genomics, Genetic code, Abelian groups, genome algebra, automorphism, mutational 41 

event 42 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 22, 2022. ; https://doi.org/10.1101/2021.06.01.446543doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.01.446543
http://creativecommons.org/licenses/by/4.0/


3 

 

   

 

1 Introduction 43 

The analysis of the genome architecture is one of biggest challenges for the current and future 44 

genomics. Herein, with the term genome architecture we are adopting the definition given by Koonin 45 

[1]: Genome architecture can be defined as the totality of non-random arrangements of functional 46 

elements (genes, regulatory regions, etc.) in the genome. 47 

Current bioinformatic tools make possible faster genome annotation process (identification of 48 

locations for genes, regulatory regions, intron-exon boundaries, repeats, etc.) than some years ago 49 

[2]. Current experimental genomic studies suggest that genome architectures must obey specific 50 

mathematical biophysics rules [3–6]. Experimental results points to an injective relationship: DNA 51 

sequence → 3D chromatin architecture [3,4,6], and failures of DNA repair mechanisms in preserving 52 

the integrity of the DNA sequences lead to dysfunctional genomic rearrangements which frequently 53 

are reported in several diseases [5]. Hence, some hierarchical logic is inherent to the genetic 54 

information system that makes it feasible for mathematical studies. In particular, there exist 55 

mathematical biology reasons to analyze the genetic information system as a communication system 56 

[7–10]. 57 

We propose the study of genome architecture in the context of population genomics, where all 58 

the variability constrained by the evolutionary pressure is expressed. Although the random nature of 59 

the mutational process, only a small fraction of mutations is fixed in genomic populations. In 60 

particular, fixation events, ultimately guided by random genetic drift and positive selection are 61 

constrained by the genetic code, which permits a probabilistic estimation of the evolutionary 62 

mutational cost by simulating the evolutionary process as an optimization process with genetic 63 

algorithms [11]. 64 

1.1 The genetic code  65 

Under the assumption that current forms of life evolved from simple primordial cells with very simple 66 

genomic structure and robust coding apparatus, the genetic code is a fundamental link to the primeval 67 
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form of live, which played an essential role on the primordial architecture.  The genetic code is the 68 

cornerstone of live on earth, the fundamental communication code from the genetic information 69 

system [8,9]. The code-words from the genetic code are given in the alphabet of four DNA bases 70 

{ }A,C G TB , ,= and integrates a set of 64 DNA base-triplets { }XYZ  also named codons, where 71 

, ,X Y Z ∈B . Each codon encodes the information for one aminoacids and each aminoacid is 72 

encoded by one or more codons. Hence, at biomolecular level, the genetic code constitute a set of 73 

biochemical rules (mathematically expressed as an injective mapping: codon → aminoacid) used by 74 

living cells to translate information encoded within genetic material into proteins, which sets the basis 75 

for our understanding of the mathematical logic inherent to the genetic information system [9,12]. 76 

The subjacent idea to impose a group structure on the set of codons resides on that the genetic 77 

code is the code of a communication system, the genetic information system [8,13,14]. As suggested 78 

by Andrews and Boss [15]: “In codes used for electrical transmission of engineering signals, group 79 

structure is imposed to increase efficiency and reduce error. Similarly, the group characteristics of 80 

codon redundancy could serve to transmit additional information superimposed on the messages 81 

directing amino acid order in protein synthesis”. As in the current human communication systems 82 

[16], to impose a group structure (on biophysical basis) on the set of codons facilitate a better 83 

understanding and evaluation of the error performance and efficiency of the genetic message carried 84 

in the chromosomes across generations [15]. 85 

1.2  The genetic code algebraic structures 86 

The basis of the current study are algebraic structures (specifically groups structures) defined on the 87 

set of bases and on the codon sets.  We assume that readers are familiar with algebraic structures like 88 

group, ring, and the classical mapping defined on them, homomorphisms, automorphism, and 89 

translations. For readers not familiar with this subject, a brief basic introduction to these definitions 90 

is given in the Appendix. 91 

The meaning of group operations. Group operations are defined on the sets of DNA bases and 92 

codons, are associated to physicochemical or/and biophysical relationships between DNA bases and 93 
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between codons and aminoacids.  In other words, a proper definition of a group operation on the set 94 

of bases or on the set of codons will encode the physicochemical or/and biophysical relationships 95 

between the set’s elements.  Thus, by group operations defined on the set of bases or on the set of 96 

codons, we understand an encoding applied to represent specified physicochemical or/and biophysical 97 

relationships as group operations between the elements of the set. Then, we shall say that such an 98 

encoding permits the representation of DNA bases, codons, genes, and genomic sequences as 99 

elements from algebraic structures. 100 

Obviously, depending on which physicochemical or biophysical relationship is under scrutiny, 101 

different encodings of the group operations can be defined on the sets of bases and codons, as shown 102 

in reference [17]. The meaning of the group operations has been subjects of the references where the 103 

corresponding groups have been reported [11,17–20]. For example, in the DNA double helix, 104 

nucleotide bases are paired following specific physicochemical relationships: 1) the chemical type 105 

sets the main rule for a paring: a purine base is paired with a pyrimidine, 2) paired bases must have 106 

the same hydrogen-bonding capability. These physicochemical relationships rule the DNA base 107 

pairing: G:::C (three hydrogen bonds) and A::T (two hydrogen bonds). In this scenario, the sum 108 

operation is defined in [20], over the ordered set of bases { },A,C G TB , ,D= , in such a way that the 109 

DNA complementary bases are also complementary algebraic elements. 110 

Pioneering works on the genetic code algebraic structure. Pioneering works were made in the 70s 111 

[15,21–23], just few years after Nirenberg won the Nobel Prize in Physiology or Medicine (in 1968) 112 

for his seminal work on the genetic code. Andrews and Boss proposed the cyclic groups of DNA 113 

bases, which is isomorphic to the Abelian group defined on the set of integers modulo 4, 4 ( / 4 
114 

) [15]. Their approach also considered the base representation with cyclic group of complex numbers.  115 

Further studies were focused on operational groups applied to transform bases and base-doublet into 116 

each other. Dankworth and Neubert (1975) proposed the Klein-4-group structure (K) of doublet-117 

exchange operators and applied the direct product K×K to study the symmetries of genetic-code 118 

doublets [22]. The four dimensional hypercube structure of the genetic-code doublets (K×K group) 119 

was later studied by Bergman and Jungck (1979) [23].  120 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 22, 2022. ; https://doi.org/10.1101/2021.06.01.446543doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.01.446543
http://creativecommons.org/licenses/by/4.0/


6 

 

Efforts with the application of group representation theory to study the origin and evolution of 121 

the genetic code were made by Honors and Hornos [24,25], and extended to Lie superalgebras by 122 

Forger and Sachse [26]. However, these efforts on the application of group representation theory are 123 

heavily relying on physical interpretations disconnected from concrete molecular biology context, 124 

which made hard a further application on concrete molecular biology or computational biology 125 

studies, and on bioinformatic applications. Here, it is important to recall that the representation of 126 

DNA bases, codons, genes, and genomic sequences as elements from algebraic structures must not 127 

be confused with the term group representation typically used in algebra referring to the theory of 128 

representations of algebraic structures or, particularly, the group representation theory. Nevertheless, 129 

once a group structure has been defined, for example, in the set of codons, a further application of the 130 

group representation theory can be developed.  131 

In the current study, we aim to show that all possible genomic regions and, consequently, whole 132 

chromosomes can be described by way of finite Abelian groups which can be split into the direct sum 133 

of homocyclic 2-groups and 5-groups defined on the genetic code. Concepts and basic applications 134 

are introduced step by step, sometimes with self-evident statements for a reader familiar with 135 

molecular biology.  However, it will be shown that the algebraic modeling is addressed to unveil more 136 

complex relationships between molecular evolutionary process and the genomic architecture than 137 

those eyes-visible relationships.  This goal will be evidenced on section 3.2. Our algebraic model 138 

approach is intended to set the theoretical basis for further studies addressed to unveil and to 139 

understand the rules on how genomes are built. Concrete examples and an implementation in a R 140 

package are provided to pave the way for future computational and bioinformatic applications. A 141 

graphical summary of the modeling of DNA genomic regions proposed here is shown in Fig 1. 142 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 22, 2022. ; https://doi.org/10.1101/2021.06.01.446543doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.01.446543
http://creativecommons.org/licenses/by/4.0/


7 

 

 143 
Fig 1. Graphical of the summary showing the bioinformatic and analytical steps followed in the 144 
algebraic modeling proposed in current work. 145 

2 Materials and Methods 146 

2.1 Preceding models applied in the current work 147 

Of particular interest are the Abelian p-groups defined on the set of DNA bases { }A,C,G,T=B  148 

and on the set of 64 codons { }, ,gC XYZ X Y Z= ∈B , which are applied to modeling the 149 

physicochemical relationships between DNA bases in the codons [11,18]. Herein, for application 150 

purposes in computational biology and bioinformatics addressed to the study of the genome 151 

architecture, we focused our study on Abelian p-groups defined on B  and on gC  isomorphic to the 152 
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groups i
ipα

 , { }2 62 , 2i
ipα ∈ , and on { }A,C,G,T,D+ =B  and { }, , BgC XYZ X Y Z+ += ∈ , 153 

{ }35,5i
ipα ∈ , as presented in references [11,17–20].  154 

Setting different physicochemical restrictions on the definition of groups operations leads to 155 

the 24 possible algebraic representations of the genetic code [17]. In particular,  the Abelian p-group 156 

representations on the set B B BGC = × ×  and  B B BGC + + + += × × ( { }A,C,G,T,D+ =B ,  157 

where D stands for an alternative base, see below) are isomorphic to Abelian groups defined on 2
3
2


158 

and 3
5 , respectively. These group structures lead to 24 (isomorphic) geometrical representations of 159 

the genetic code as cubes inserted in three-dimensional space [11,17,19,20] (Fig 2 and SI Figs 1 and 160 

3). 161 

As shown in reference [11], a group structure isomorphic to the symmetric group of degree 162 

four 4S  (preserving the group operations previously defined on the codon set) can be defined in set 163 

the 24 genetic-code algebraic representations or in the set 24 cubes. Since the definition of a sum 164 

operation over the base set is equivalent to define an order on it, cubes are named according to the 165 

base order on them. For example, the cube shown in Fig 2 is denoted as ACGT, which correspond to 166 

the group operation defined on the ordered set { }A,C,G,T,D=B  (the ‘dual’ cube TGCA is shown 167 

in SI Fig 2 [11]). Simulation of the evolutionary mutational process with the application of genetic 168 

algorithms indicates that fixed mutational events found in different protein populations are very 169 

restrictive in the sense that the optimal evolutionary codon distances are reached for specific models 170 

of genetic-code cube or for specific combination of genetic-code cube models [11]. In the present 171 

work, it will be shown that codon mutational events represented in terms of automorphisms can be 172 

also restrictive for specific genetic-code cube models (section 3.1). 173 

All the Abelian p-group included in the current work are oriented to the study of the mutational 174 

process [11,17–20]. That is, since we are interested in those structures that permit the analysis and 175 

quantitative description of the mutational process in organismal populations, where mutational event 176 

can be represented by means of endomorphisms, automorphisms, and translations on the defined 177 
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group, we do not include algebraic structures designed to study the origin and evolution of the genetic 178 

code [11,18]. The genetic code is taken as currently is, without over-impose any evolutionary 179 

hypothesis on it.  180 

 181 

Fig 2. Geometrical representation of the genetic code as a cube inserted in three-dimensional space. 182 
The 2-group and 5-group representation defined on the sets B B BGC = × × and 183 

B B BGC + + + += × ×  isomorphic to the groups defined on 2
3
2


 and 3
5 , respectively, lead to the 184 

geometrical representations of the genetic code as a cube inserted in three-dimensional space. The 185 
cube corresponding to the base-triplets with coordinates on 2

3
2


(yellow codons) is inserted in the 186 

cube with codon coordinates on 3
5 . The extended base-triplets including the alternative base D (in 187 

black) are located on the cartesian coordinate planes. Codons encoding for amino acids with similar 188 
physicochemical properties are located on the same vertical plane (for more details on the cube 189 
description see also SI Fig 1 and reference [11,17,19,20]). 190 
 191 

A general model also consider Abelian 5-groups that includes a dummy variable (denoted by 192 

letter D), which extends the DNA alphabet to five letters. The usefulness of including a fifth base in 193 

the evolutionary analysis was shown in reference [20], where two evolutionary models, an algebraic 194 

and a stationary Markov (process) models, were applied to phylogenetic analysis reaching (both 195 

models) greater discriminatory power than the (now) classical Tamura-Neil evolutionary (Markov) 196 

model based on four DNA alphabet [27]. Depending on the concrete application, letter “D” will take 197 

a different value. The possible values in the context of the present modeling are: 1) the gap symbol 198 
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“-”, which stands for insertion deletion/mutations in the multiple sequence alignment (MSA) of DNA 199 

sequences, 2) alternative wobble base pairing (e.g., bases such as: inosine (in eukaryotes), agmatine 200 

(in archaea), and lysidine (in bacteria) [17,21,22]), and 3) 5-methylcytosine (Cm) and N-6-201 

methyladenine (Am) when intended for epigenetic studies. 202 

A concrete application of the extended genetic-code cubes over the Galois field GF(5) to the 203 

simulation of the mutational process proposed in reference [11] would be particularly relevant to 204 

predict immunoescape epitope variants originated in populations of pathogenic microorganisms and 205 

viruses. In addition, examples provided (here) on the application of the algebraic model to DNA 206 

methylation (on 5-methylcytosine and on N-6-methyladenine) suggest its importance for epigenetic 207 

studies. The analysis of the fixed mutational events on genes populations revealed that the mutational 208 

process can be described by automorphisms on different cubes or sets of cubes [11]. The best genetic-209 

code cubes describing the mutational process on a given gene population are selected with the 210 

application of an optimization algorithm (evolutionary (genetic) algorithms) using multiple sequence 211 

alignment as raw data [11]. 212 

It is worthy to notice that, for all mentioned Abelian p-groups, the calculus can be 213 

accomplished as symbolic computation on the set of DNA bases or on the set of codons (see e.g., 214 

[18]). However, for practical purposes, we take advantage of the group isomorphisms. That is, after 215 

define group structures on the sets of bases and codons, for the sake of straightforward computation 216 

it is convenient to take advantage of the group isomorphisms with the Abelian p-groups like: 22


, 217 

2
3
2


, 62


, 5 , 35


and 3
5 , which will be used in our study instead of the original groups defined 218 

on the sets of bases and codons (base-triplets). An introductory summary on the mentioned algebraic 219 

structure defined on the set of codons is provided as supporting information in S1. 220 

In the context of genetic-code algebraic structures, by the term “representation” of DNA bases, 221 

codons, genes, and genomic sequences as elements from algebraic structures, we understand the 222 

symbolic representation of the mentioned biomolecules and the physicochemical relationships 223 

between them by means of group operations defined on the given set of biomolecules.  224 
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2.2 Aligned DNA sequences and data sets 225 

All the DNA sequence alignments and data sets used in this work are available within the R package 226 

GenomAutomorphism (version 1.0.0) [28]. In addition, the pairwise sequence alignments of SARS 227 

coronaviruses used the analyses shown in Fig 8a and b are also available at GitHub in: 228 

https://github.com/genomaths/seqalignments/tree/master/COVID-19. The multiple sequence 229 

alignment (MSA) of primate somatic cytochrome c and data description are available on GitHub at: 230 

https://github.com/genomaths/seqalignments/tree/master/CYCS. This MSA includes DNA protein-231 

coding sequences from: human, gorilla, silvery gibbon, white cheeked gibbon, Francois langur, olive 232 

baboon, golden monkey, rhesus monkeys, gelada baboon, and orangutan. The MSA of primate 233 

BRCA1 (transcript variant 4) DNA repair gene used to compute the automorphism shown Fig 8d is 234 

available on GitHub at https://github.com/genomaths/seqalignments/tree/master/BRCA1. The MSA, 235 

coordinates and R script to create the sequence-logo from Fig 4 are given in the Supporting 236 

Information. 237 

2.3 Software applied for the mathematical and statistical analyses 238 

Results shown in Fig 8 and Fig 9 were obtained applying the GenomAutomorphism R package 239 

[28] (version 1.0.0), which is available at Bioconductor (the open source software for Bioinformatics, 240 

version: 3.16) and, also, in GitHub at: https://github.com/genomaths/GenomAutomorphism. The 241 

whole R script pipeline applied in the estimation of automorphisms (Fig 8) and decision tree (Fig 9) 242 

are available as tutorials (vignettes) at the Geno Automorphism website: 243 

https://github.com/genomaths/GenomAutomorphismm. 244 

The estimation of the best fitted probability distribution shown in Fig 8f was accomplished 245 

with R package usefr available at GitHub: https://github.com/genomaths/usefr, and the goodness-of-246 

fit tests are reported in the mentioned tutorials.  247 

The genetic-code cube shown in Fig 2 was obtained from the Wolfram Mathematica Notebook: 248 

Introduction to 5 -Genetic-Code vector space, free available at 249 

https://github.com/genomaths/GenomeAlgebra_SymmetricGroup.  250 
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2.4 Theoretical Model 251 

According to the fundamental theorem of Abelian finite groups (FTAG) [29,30], any finite Abelian 252 

group can be decomposed into a direct sum of homocyclic p-groups [29], i.e., a group in which the 253 

order of every element is a power of a primer number p. Herein, it will be showed that, in a general 254 

scenario, genomic regions and, consequently, whole genome populations from any species or close 255 

related species, can be algebraically represented as a direct sum of Abelian homocyclic groups or 256 

more specifically Abelian p-groups of prime-power order. The multiple sequence alignments (MSA) 257 

of a given genomic region of N base-pair (bp) length can be represented as the direct sum: 258 

( ) ( ) ( )1 2

1 2
1 2

k

k
k

nn n

p p p
G α α α= ⊕ ⊕⋅⋅⋅⊕      (1) 259 

Where { }6 32,5, 2 ,5i
ipα ∈ , in  stands for the number of cyclic groups 

i
ipα


integrating the homocyclic 260 

group ( ) ii

i i i
i i i

n timesn

p p pα α α= ⊕ ⊕   
.  Here, we assume the usual definition of direct sum of groups 261 

[30]. For  { }6 32 ,5j
jpα ∈  the cyclic group j

jpα
 will cover three bases, otherwise only one base (see 262 

examples below). Considering such groups (not necessarily in the order given in Eq. 1) we have:  263 

1 1 ... ...j j j m kN n n n n n+ += + + + + + + + . Throughout the exposition of the theory and 264 

examples given in the next sections, it will be obvious that the group representations can be extended, 265 

starting from small genomic regions till cover whole chromosomes and, consequently, the whole 266 

genome, i.e., the set of all chromosomes. 267 

Let iB  { }( )1,...,i I n∈ =  be a family of subgroups of G , subject to the following two 268 

conditions: 269 

1) iB G=∑ . That is, iB together generate G . 270 

2) For every i I∈ and i j≠ :  0i jB B∩ =∑ . 271 
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Then, it is said that G  is the direct sum of its subgroups iB , which formally is expressed by the 272 

expression: ii
BG ⊕= or 1 nG B B= ⊕ ⊕ . 273 

Genomic DNA sequences from superior organisms are integrated by intergenic regions and 274 

gene regions. The former are the larger regions, while the later includes the protein-coding regions as 275 

subsets. The MSA of DNA and protein-coding sequences reveals allocations of the nucleotide bases 276 

and aminoacids into stretched of strings. The alignment of these stretched would indicate the presence 277 

of substitutions, insertions, and deletion (indel) mutations. As a result, the alignment of homolog 278 

genomic regions or whole chromosome DNA sequences from several individuals from the same or 279 

close-related species can be split into well-defined subregions or domains, and each one of them can 280 

be represented as homocyclic Abelian groups, i.e., as the direct sum of cyclic group of the same 281 

prime-power order (Fig 3). As a result, each DNA sequence is represented as a N-dimensional vector 282 

with numerical coordinates representing bases and codons. 283 

 284 

Fig 3. An illustration of a typical DNA multiple sequence alignment (MSA) including segments of 285 
protein-coding regions. A MSA would include the presence of substitution, insertion, and deletion 286 
mutations (indel mutations). The aligned sequences can be grouped into blocks, which can be 287 
algebraically represented by Abelian groups. A homocyclic group covering a MSA block corresponds 288 
to a sub-classification of the protein-coding region into subregions and, consequently, leading to a 289 
more accurate molecular taxonomy of species. In protein-coding regions cyclic groups 62


and 3

5  290 

are appropriated to study exon regions, while 5  for non-coding intron regions.  As shown in section 291 
1.4, the group representation leads us the analysis of the more frequent mutational events (represented 292 
as endomorphisms and translations) observable in genes from organismal populations.  293 
 294 
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An intuitive mathematical representation of a MSA is implicit in Fig 3, with the following 295 

observations:  296 

a) Bases or codons can be represented as elements of an Abelian group defined on the set of 297 

bases or on the set of codons. In the second block (including gap symbol ‘₋’) each base from 298 

each sequence is represented as an element from the Abelian group defined on the set {A, C, 299 

G, T, D } where ' 'D = − , which is isomorphic to the Abelian p-group defined on the set 5300 

. The extended base triplets (including gaps symbol ‘₋’) from each sequence in the third 301 

aligned block are represented as elements from the Abelian p-group defined on the set of 302 

extended base-triplets (125 element, see SI Table 1) which is isomorphic to the Abelian group 303 

defined on the set 35
 , and so on. 304 

b) Every DNA sequence from the MSA and every subsequence on it can be represented as a 305 

numerical vector with element coordinates defined in an Abelian group. For practical 306 

computational purposes we take advantage of the group isomorphism to work with numerical 307 

representations of DNA bases and codons. For example, codons from the first aligned block 308 

(in blue) can be represented as elements from an Abelian group defined on the set of codons, 309 

which can be isomorphic to 62


 or to 3
5 . That is, since ( ) ( )62

, ,gC + ≅ + , the first five 310 

codons { }ATA, CCC, ATG, GCC, AAC gC∈ from the first DNA sequence from Fig 3, 311 

can be represented by the vector of integers: { }48,21,50,25,1 where each coordinate is an 312 

element from group ( )62
,+  (see Table 1 from reference [18]).  313 

c) Any MSA can be algebraically represented as a symbolic composition of Abelian groups 314 

each one of them is isomorphic to an Abelian group of integers module n. Such a composition 315 

can be algebraically represented as a direct sum of homocyclic Abelian p-groups. For 316 

example, the MSA from Fig 3 can be represented by the direct sum of five homocyclic 317 

Abelian p-groups: 318 

6 3 3
5 8 5 7 4

5 52 5 5
( ) ( ) ( ) ( ) ( )G = ⊕ ⊕ ⊕ ⊕       (2) 319 
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Where the length of each region determines the number of cyclic p-groups in the 320 

corresponding homocyclic Abelian p-group 
1

1pα


 representing each region. For example, in 321 

Eq. 2 we have the homocyclic group: ( )3 3

4 4
15 5i== ⊕  , which is a direct sum of 4 cyclic 322 

5-groups ( ) ( )35
, ,gC ++ ≅ + . Since group G is the direct sum of homocyclic Abelian p-323 

groups of different prime-order, we shall say that G is a heterocyclic group. 324 

In more specific scenario, the MSA from Fig 3 can be represented by only one homocyclic 325 

Abelian 5-group: 326 

57
5( )G =        (3) 327 

But this representation ignores the local variability detected by the MSA algorithm. Hence, preserving 328 

the highlighted features, the MSA can be represented as the direct sum of homocyclic Abelian 5-329 

groups: 330 

3
3 5 8 5 7 3 4
5 5 5 55

( ) ( ) ( ) ( ) ( )G = ⊕ ⊕ ⊕ ⊕        (4) 331 

Although the above direct sums of Abelian p-groups provides a useful compact representation 332 

of a MSA, for application purposes to genomics, we would also consider to use the concept of direct 333 

product (cartesian sum or complete direct sums) [30].  Next, let S be a set of Abelian cyclic groups 334 

identified in a MSA M of length N (i.e., every DNA sequence from M has N bases). Let i the number 335 

of bases or triples of bases covered on M by group iS S∈ where ii
N=∑  .  Hence, each DNA 336 

sequence on the M can be represented by a cartesian product ( )1, , nb b
 where i ib S∈  ( )1,...,i n=  337 

and n S= .  Let iG  be a group defined on the set of all elements ( )0, ,0, ,0, 0ib 
 where i ib S∈  338 

stands on the thi  place and 0 everywhere else. It is clear that i iS ≅G .  In this context, the set of all 339 

vectors ( )1, , nb b
 with equality and addition of vectors defined coordinate-wise becomes a group (340 

G ) named direct product (cartesian sum) of groups iS ( iG ), i.e.: 341 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 22, 2022. ; https://doi.org/10.1101/2021.06.01.446543doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.01.446543
http://creativecommons.org/licenses/by/4.0/


16 

 

i i i iS= ⊗ = ⊕G G     (5) 342 

An illustration of the cartesian sum application was given above in observation a).  343 

3 Results 344 

Results essentially comprise an application of the fundamental theorem of Abelian finite groups 345 

[29,30]. By this theorem, every finite Abelian group G is isomorphic to a direct sum of cyclic groups 346 

of prime-power order of the form: 347 

1 2
1 2

n
npp p

G α α α= ⊕ ⊕⋅⋅⋅⊕       (6) 348 

Or (in short) 1 i
i

n
i p

G α== ⊕  , where the pi’s are primes (not necessarily distinct), iα ∈ and i
ipα

  349 

is the group of integer module i
ipα . The Abelian group representation of the MSA from Fig 3 given 350 

by Eq. 2 correspond to a heterocyclic group that split into a direct sum of homocyclic Abelian 2-351 

groups and 5-groups, each one of them split into the direct sum of cyclic p-groups with same order; 352 

while in Eqs. 3 and 4, the Abelian group G is decomposed into a direct sum of homocyclic Abelian 353 

5-groups [29,30]. 354 

Notice that for a large enough genomic region of fixed length N we can build a manifold of (a 355 

set of various) heterocyclic groups Si, where each one of them can have different decomposition into 356 

p-groups. The set S of all possible Abelian p-group representations iS  of a large genomic region of 357 

fixed length (having numerous different parts, elements, features, forms, etc.) that split into the direct 358 

sum of several heterocyclic groups kG  ( 1
n

i k kS G== ⊕ ) shall be called a heterocyclic-group manifold. 359 

So, each genomic region can be characterized by means of their corresponding heterocyclic-group 360 

manifold.  361 

3.1 Examples of genomic regions group representations 362 

A group representation is particularly interesting for the analysis of DNA sequence motifs, which 363 

typically are highly conserved across the species. As suggested in Fig 3 and 4, there are subregions 364 

of DNA or protein sequences where there are few or not gaps introduced and mostly substitution 365 
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mutations are found. Such subregions conform blocks that can cover complete DNA sequence motifs 366 

targeted by DNA biding proteins like transcription factors (TFs, Fig 4), which are identifiable 367 

applying bioinformatic algorithms like BLAST [31].  368 

 369 

 370 
Fig 4. The DNA sequence motifs targeted by transcription factors usually integrate genomic building 371 
block across several mammal species. a, DNA sequence alignment of the protein-coding sequences 372 
from phospholipase B domain containing-2 (PLBD2) carrying the footprint sequence motif 373 
recognized (targeted) by the Silencing Transcription factor (REST), also known as Neuron-374 
Restrictive Silencer Factor (NRSF) REST (NRSF). b, Sequence logo of the footprint motif recognized 375 
REST (NRSF) on the exons. c, Translation of the codon sequences using the one-letter symbol of the 376 
aminoacids. 377 
 378 

The case of group representation on a TF binding motif is exemplified in Fig 4, where an exon 379 

region from the enzyme phospholipase B domain containing-2 (PLBD2) simultaneously encodes 380 

information for several aminoacids and carries the footprint to be targeted by the transcription factor 381 

REST. Herein, the case of double encoding called our attention, where the DNA sequence 382 

simultaneously encodes the information for transcription enhancer target motif and for a codon 383 

sequence (base-triplets) encoding for aminoacids. These types of double-coding regions are also 384 

called duons [32–34].  385 
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Four group representations for this exon subregion are suggested in the top of the Fig 4 (panel 386 

a). However, the MSA’s sequence logo (panel b) suggests that this transcription factor binding-motif 387 

is a highly conserved codon sequence in mammals (with no indel mutations on it) and, in this case, 388 

the Abelian group ( ) ( )62
, ,gC + ≅ +  defined on the standard genetic code is the appropriated model 389 

to represent these motifs (Fig 4). The homocyclic group representation of conserved and biological 390 

relevant DNA sequence motifs, illustrated in Figs. 3 and 4, stablish the basis for the study of the 391 

molecular evolutionary process in the framework of group endomorphisms and automorphisms as 392 

suggested in [18,20] (section 1.4).  393 

In Fig 5, two different protein-coding (gene) models from two different genome populations 394 

can lead to the same direct sum of Abelian p-groups and to the same final aminoacids sequence 395 

(protein). 396 

 397 

Fig 5. Two different protein-coding (gene) models can lead to the same Abelian group representation 398 
and the same protein sequence. A dummy intron was drawn carrying the typical sequence motif 399 
targeted by the spliceosome the donor (GUR) and acceptor (YmAG) sites, where { }A,GR∈  (purines) 400 

and { }C, UY ∈ , X stands for any base, and n and m indicate the number of bases present in the 401 
corresponding sub-sequences (pyrimidines). a, A gene model based on a dummy consensus sequence 402 
where gaps representing base D from the extended genetic code were added to preserve the coding 403 
frame, which naturally is restored by splicing soon after transcription. b, A gene model where both 404 
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exons, 1 and 2, carries a complete set of three codons (base-triplets). Both gene models, from panels 405 
a and b, share a common group representation as direct sum of Abelian 5-groups. 406 

 407 

The respective exon regions have different lengths and gaps (“₋”, representing base D in the 408 

extended genetic code) were added to exons 1 and 2 (from panel a) to preserve the reading frame in 409 

the group representation (after transcription and splicing gaps are removed). Both gene models, from 410 

panel a and b, share a common direct sum of Abelian 2-groups and 5-groups:411 

( ) ( ) ( ) ( ) ( ) ( )
3 37 2 83 6 3

5 5 2 5 5 5
n n m n+ + + +⊕ ⊕ ⊕ ⊕ ⊕      . The analysis of theses gene 412 

models suggests that DNA sequences sharing a common group representation as direct sum of 413 

Abelian p-groups would carry the same or similar, or close related biological information.  However, 414 

it does not imply that the architecture of these protein-coding regions is the same. The gene model in 415 

panel b permits the direct sum representation: 416 

( ) ( ) ( ) ( ) ( ) ( )6 6

3 37 2 86
5 2 5 52 2

n n m n+ + + +⊕ ⊕ ⊕ ⊕ ⊕      , which is no possible for the 417 

gene model from panel a. That is, the heterocyclic-group manifold from the gene model in panel a is 418 

different from the one in panel b. The difference of group representation just captures the obvious 419 

fact that these gene models are different and, consequently, their gene architectures are different.  420 

At this point we shall introduce the concept of equivalent class of genomic region. We shall 421 

say that two genomic regions belong to same equivalent class of genomic region if they hold the same 422 

heterocyclic-group manifold (and, consequently, they hold same architecture). Under this definition, 423 

the region architecture of the protein-coding regions from Fig 5a and b are not equivalent. The 424 

concept of equivalent class of genomic region is relevant for further applications of the group 425 

representation on the taxonomy study of organismal populations.  426 

Taxonomy is the study of the scientific classification of biological organisms into groups based 427 

on shared characteristics. Mathematically, this is a way to split biological organisms into classes of 428 

equivalences. Numerical taxonomy is a well-established application of multivariate statistics on the 429 

analysis of plant germplasm banks. The group representations of genomic regions will lead to a higher 430 

accuracy in the taxonomy study of organismal populations. 431 
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No matter how complex a genomic region might be, it has an Abelian group representation. A 432 

further application of group theory would unveil more specific decomposition of small genomic 433 

regions into Abelian groups. For example, the set of base-triplets found in a typical sequence motif 434 

targeted by the spliceosome donor, GTR (Figs. 5 and 6), is in the vertical line GTZ (GUZ) of the 435 

vertical plane XTZ (XUZ) from the cube ACGU shown in Fig 2 (see also SI Fig 3).  436 

 437 

Fig 6. The Abelian group representation of a given genome only depend on our current knowledge 438 
on its annotation. a, the alternative splicing specified for an annotated gene model does not alter the 439 
Abelian group representation and only would add information for the decomposition of the existing 440 
cyclic groups into subgroups. b, a more complex gene model including detailed information on the 441 
promoter regions. A GC box (G5MG4CU) motif is located upstream of a TATA box (TATAWAW) 442 
motif in the promoter region.  The GC box is commonly the binding site for Zinc finger proteins, 443 
particularly, Sp1 transcription factors. A putative GC box was included in exon 2, which is an atypical 444 
scenario, but it can be found, e.g., in the second exon from the gene encoding for sphingosine kinase 445 
1 (SPHK1), transcript variant 2 (NM_182965, CCDS11744.1). In this group representation, the 446 
spliceosome donor GTR can be represented by the elements from a quotient group (see main text). 447 
 448 

Since purine bases (R: A and G) are the only accepted variants at the third codon position, it is 449 

convenient to model these base-triples with the group defined on the cube AGCU [11] (SI Fig 3). 450 

Next, following analogous reasoning as in [19], it turns out that the set of base-triplets GTR is a coset 451 
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from the quotient group ( ) AAG, /GC G+ , where here ( ) ( )6
2, ,GC + ≅ +  is the additive group from 452 

the genetic code Galois field GF(64) reported in reference [35] and { }( )AAG AAA,AAG ,G = +  is a 453 

subgroup from the Klein four group defined on the set { }AAA,AAG,AAC,AAU  (see operation 454 

table in the SI Table 2), i.e., AAGGT GTAR G= +  (SI Fig 3).  455 

There exists strong evolutionary pressure on splicing donor site to keep the base-triplet GTR 456 

in the vertical line GTZ (GUZ) vertical line (coset). As shown in the clinical report [36] mutational 457 

variants, located in different cube’s vertical lines (different cosets, SI Fig 3) GCZ and CTZ (CUZ), 458 

within intron 3 have led to four aberrant RNAs transcripts that causes rare X-chromosome-linked 459 

congenital deafness. As will be shown below (in section 3.1) the strong connection between DNA 460 

sequences and non-disrupting mutational events is mathematically (and accurately) modeled by the 461 

strong relationship between a group representation and the endomorphism ring on it. 462 

An example considering changes on the gene-body reading frames as those observed in 463 

alternative splicing is shown in Fig 6. Gene-bodies with annotated alternative splicing can easily be 464 

represented by any of the groups ( )3
5

n
  or ( )35

n
  (Fig 6a). The splicing can include enhancer 465 

regions as well (Fig 6b) [37].  Enhancers are key regulator of differential gene expression programs. 466 

As commented in the introduction, cytosine DNA methylation is implicitly included in 467 

extended base-triple group representation. Typically, the analysis of methylome data is addressed to 468 

identify methylation changes induced by, for example, environmental changes, lifestyles, age, or 469 

diseases. So, in this case the letter D stands for methylated adenine and cytosine ( mD C= ), since 470 

only epigenetic changes are evaluated. 471 

Concrete examples of adenine in bacteria linked to the regulation of pyelonephritis-associated 472 

pilus (pap) expression by DNA methylation on the Escherichia coli operon (locus X14471) and 473 

cytosine methylation in two (humans) genes from patients with pediatric acute lymphoblastic 474 

leukemia (PALL) are presented in Fig 7. On protein-coding regions methylation change can be 475 

analyzed on the homocyclic groups composed by the cyclic group 3
5  or 35


 (Fig 7c and d). Notice 476 
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that adenine methylation is found in humans as well and, usually, it plays a very specific regulatory 477 

role [38,39]. 478 

 479 

Fig 7. Vector representation of differentially methylated gene regions. a and b, regulation of 480 
pyelonephritis-associated pilus (pap) expression by DNA methylation on the Escherichia coli operon 481 
(locus X14471). c and d, exons regions from genes EGEL7 and P2RY1 from patients with pediatric 482 
acute lymphoblastic leukemia (PALL). In panel a, two 5’-GATC-3’ DNA adenine methyltransferase 483 
(Dam) methylation sites in the middle of each set of the leucine-responsive regulatory protein (Lrp) 484 
binding sites (in blue). In the inactive state, panel b, a Lrp octamer is bound to the three proximal Lrp 485 
3’ sites, while the GATCdist site in Lrp site 5 is fully methylated, and the system remains in phase 486 
OFF (Pili -) with regard to pilus expression. In the active state, the adenine from the GATCprox is 487 
methylated permitting to bend the DNA to recruit CRP to activate transcription of papBA genes (Pili 488 
+). Pap pili are multisubunit fibers essential for the attachment of uropathogenic Escherichia coli to 489 
the kidney (see [40]). In panel c, a segment of exon-6 from gene EGFL7 located at chromosome 9: 490 
139,563,008-139,563,124 is shown. On average, this gene is hypo-methylated in the control group 491 
with respect to PALL group. d. Segment of exon-1 from gene P2RY1. Methylated cytosines are 492 
highlighted in yellow background. In PALL patients, gene EGEL7 mostly hypomethylated and gene 493 
P2RY1 mostly hypermethylated in respect to healthy individuals (WT). The encoded aminoacid 494 
sequence is given using the one letter symbols. Both genes, EGEL7 and P2RY1, were identified in 495 
the top ranked list of differentially methylated genes integrating clusters of hubs in the protein-protein 496 
interaction networks from PALL reported in reference [41]. The integer number at the top and bottom 497 
of panel c and d stand for the codon coordinates in 35


(see SI Table 1). 498 

 499 

It is obvious that the MSA from a whole genome derives from the MSA of every genomic 500 

region, from the same or closed related species. At this point, it is worthy to recall that there is not, 501 
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for example, just one human genome or just one from any other species, but populations of human 502 

genomes and genomes populations from other species. Since every genomic region can be represented 503 

by the direct sum of Abelian homocyclic groups of prime-power order, then the whole genome 504 

population from individuals from the same or closed related species can be represented as an Abelian 505 

group, which will be, in turns, the direct sum of Abelian homocyclic groups of prime-power order. 506 

Hence, results lead us to the representation of genomic regions from organismal populations from the 507 

same species or close related species (as suggested in Fig 3 to 7) by means of direct sum of their 508 

group representation into Abelian cyclic groups. A general illustration of this modelling would be, 509 

for example: 510 

1 1 2 2
3 6 3 3 6

2
25 2 5 5 2

( ) ( ) ( ) ... ( ) ... ( ) ( )p p

motifmotif domaindomain

n mn m n mG = ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
 

 

       (7) 511 

That is, Eq. 7 expresses that any large enough genomic region can be represented as direct sum of 512 

homocyclic Abelian groups of prime-power order. In other words, the fundamental theorem of 513 

Abelian finite groups (FTAG) has an equivalent in genomics. 514 

Theorem 1. The genomic architecture from a genome population can be quantitatively represented 515 

as an Abelian group isomorphic to a direct sum of homocyclic Abelian groups of prime-power order. 516 

The proof of this theorem is self-evident across the discussion and examples presented here. 517 

Basically, group representations of the genetic code lead to group representations of local genomic 518 

domains in terms of cyclic groups of prime-power order, for example, ( ) ( )62
,,+gC ≅ + , 519 

( ) ( )3
5 ,,+GC + ≅ +  or ( ) ( )35

, ,gC + + ≅ + , till covering the whole genome. As for any finite Abelian 520 

group, the Abelian group representation of genome populations can be expressed in terms of a direct 521 

sum of Abelian homocyclic groups of prime-power order. Any new discovering on the annotation of 522 

a given genome population will only split an Abelian group, already defined on some genomic 523 

domain/region, into the direct sum of Abelian subgroups ■. 524 

The application of the FTAG in terms of the group representation of genomic regions G, as 525 

given in Eq. 7, establishes the basis to the study the molecular evolutionary process in terms of 526 
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endomorphisms. That is, fixed mutational events in the organismal population can be modeled as 527 

homomorphism: endomorphisms and automorphisms, all elements of the endomorphism ring ( )R G  528 

on G (see next section). In the context of comparative evolutionary genomics, the analysis of the 529 

endomorphism ring ( )R G  is an intermediate step for the further application of methods from 530 

Category theory, which has the potential to unveil unsuspected features of the genome architecture, 531 

hard to be inferred from the direct experimentation. 532 

3.2 The endomorphism ring 533 

A biologically relevant application of the theory presented here relies on the fact that if a finite group 534 

G is written as a direct sum of subgroups iG , as given in Eq. 7, then endomorphism ring ( )End G  is 535 

isomorphic to the ring matrices ( )ijA , where ( ),ij i jA Homo G G∈  (homomorphism between iG and 536 

jG ), with the usual matrix operations [30]. In the case of genomic regions from the species or closed 537 

related genomic regions from distinct species, the endomorphism that transform the DNA aligned 538 

sequence α into β (α, β ∈ G) is represented by a matrix with only non-zero elements in the principal 539 

diagonal. These diagonal elements are sub-matrices ( )ii iA End G∈  or ( )ii iA Aut G∈ . In other 540 

words, mutational events fixed in gene/genome populations can be quantitatively described as 541 

endomorphisms and automorphisms.  542 

In the Abelian p-group defined on i
ipα

 , the endomorphisms ( )i
i

i p
End αη ∈ 

 are described 543 

as functions ( )  mod i
if x k x pα= , where k and x are elements from the set of integers modulo i

ipα . 544 

For example, in the cube ACGT the sequence ATACCCATGGCCAAC (blue block in Fig. 3) 545 

represented by the vector ( ) ( )6

5

2
48,21,50,25,1 ∈ 

 is transformed into the sequence 546 
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ACACCCATGACCAAC, represented by the vector  ( ) 62
16,21,50,17,1 ∈ , by the automorphism: 547 

3 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 57 0
0 0 0 0 1

 
 
 
 
 
 
  

, i.e.:  ( )

3 0 0 0 0 16
0 1 0 0 0 21

48,21,50,25,1 mod 640 0 1 0 0 50
0 0 0 57 0 17
0 0 0 0 1 1

   
  
  
   =
  
  
     

. 548 

Now, it is not difficult to realize that the set of all endomorphisms ( )i
i

i p
End αη ∈ 

 hold the ring 549 

axioms mentioned in the Introduction. That is, the set of all endomorphisms ( )i
i

i p
End αη ∈ 

 forms 550 

a ring on 
i

ipα


 that we shall denote as ( )R i
ipα



. 551 

As shown in reference [30], if  1 2 nG G G G= ⊕ ⊕ is a direct decomposition with fully invariant 552 

summands, then : 553 

 ( ) ( ) ( ) ( )1 2 nEnd G End G End G End G= ⊕ ⊕    (8) 554 

In this modeling, mutational events are represented as endomorphisms ( )i
i

i p
End αη ∈ 

 on 
i

ipα


555 

.  This fact permits the study of the genome architecture through the study of the evolutionary 556 

(mutational) process in a genome population. Moreover, the decomposition of the endomorphism ring 557 

into subgroups, quotient groups, and cosets can lead to a deterministic algebraic taxonomy of the 558 

species based on their genome architecture, which is not limited by our current biological knowledge. 559 

Particularly relevant for the evolutionary comparative genomics is Baer-Kaplansky theorem: If G 560 

and H are p-groups such that ( ) ( )R RG H≅ , then G H≅  ([29,42]). That is, two Abelian finite 561 

groups are isomorphic if, and only if, their endomorphism rings are isomorphic [42]. In other words, 562 

genomic regions experiencing mutational events representable by isomorphic rings are algebraically 563 

represented by isomorphic Abelian groups and, consequently, have similar genome architecture.  564 

Application of Baer-Kaplansky theorem implies that two gene-body regions encoding exactly for 565 

the same polypeptide but with different region architecture (Fig 5) are under different evolutionary 566 

pressure. That is, if the group representations of two gene-body regions are not isomorphic, then their 567 
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endomorphism rings are not isomorphic either and, consequently, they will be under different 568 

evolutionary pressure, experiencing different subsets of mutational events, which are represented as 569 

endomorphisms from their corresponding endomorphism ring. This scenario is typically found in 570 

some isoforms, which are proteins that are similar to each other and perform similar roles within cells 571 

[43]. This is the case where two or more closely related genes are responsible for the same translated 572 

protein, illustrated in Fig 5. They can be simply duplicated, or paralogous genes, where both paralogs 573 

can remain similar (paralog isoforms) if an increased production of the protein is advantageous or if 574 

a dosage balance occurs in conjunction with other gene products or where different transcripts can 575 

lead to different subcellular localization [44]. 576 

A screening of mutational events on subsets of aligned genes suggests that the decomposition 577 

of protein-coding regions is tractable, conforming Eq. 8.  Results with the alignments of several 578 

protein-coding regions are shown in Fig 8.  In this example, we searched for automorphisms on the 579 

groups of dual cubes [11]: ACGT – TGCA and CATG – GTAC on 62


, which comprise four of the 580 

24 possible algebraic representations of the standard genetic code [17] isomorphic to 62


.  581 

The analysis of the frequency of mutational events (automorphisms, COVID: human vs bat 582 

strains) by mutation types is shown in Fig 8a. Results are consistent with the well-known observation 583 

highlighted by Crick: the highest mutational rate is found in the third base of the codon, followed by 584 

the first base, and the lowest rate is found in the second one [45]. However, estimations on different 585 

gene sets suggest that the evolutionary pressure on each codon position depends on the 586 

physicochemical properties (annotated according to IUPAC nomenclature [36]) of DNA bases. For 587 

example, in Fig 8a pyrimidine (Y) transitions on the third codon position (HHY) are, by far, the most 588 

frequent observed mutational events. While, in BRCA1 gene (SI Fig 2), the frequency of purine 589 

(HHR) transitions is followed by pyrimidine (HHY) transitions.  590 

The analysis on the pairwise alignment of protein-coding regions of SARS and Bat SARS-like 591 

coronaviruses is presented in Fig 8b an c. Most of the mutational events distinguishing human SARS 592 

from Bat SARS-like coronaviruses can be described by automorphism on cube ACGT. This 593 

observation was confirmed in primate somatic cytochrome c (Fig 8c) and BRCA1 DNA repair gene 594 
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(Fig 8d). Since automorphisms transform the null element (gap-triplet DDD/---) into itself, insertion-595 

deletion mutational events cannot be described by automorphisms but as translations on the groups 596 

(denoted as Trnl in Fig 8). The representation of conserved genomic regions with homocyclic p-group 597 

is straightforward. However, their frequency in the genome architecture exponentially decreases with 598 

the size of the region (Fig 8f and SI Fig 4).  599 

 600 

Fig 8. Analysis of mutational events in terms of automorphisms on DNA protein-coding regions 601 
represented as homocyclic groups on 64

. In the Abelian group defined on 64
, automorphisms are 602 

described as functions f (x) = k x mod 64, where k and x are elements from the set of integers modulo 603 
64.  a, Frequency of mutational events (automorphisms) according to their mutation type. That is, 604 
every single base mutational event across the MSA was classified according IUPAC nomenclature 605 
[46]: 1) According to the number of hydrogen bonds (on DNA/RNA double helix): strong S={C, G} 606 
(three hydrogen bonds) and weak W={A, U} (two hydrogen bonds). According to the chemical type: 607 
purines R= {A, G} and pyrimidines Y= {C, U}. 3). According to the presence of amino or keto groups 608 
on the base rings: amino M= {C, A} and keto K= {G, T}.  Constant (hold) base positions were labeled 609 
with letter H. So, codon positions labeled as HKH means that the first and third bases remains constant 610 
and mutational events between bases G and T were found in the MSA. b and c, Bar plots showing the 611 
frequency of automorphisms found on the group of dual cubes (see [11]): ACGT – TGCA  and CATG 612 
– GTAC on 64

between SARS coronavirus GZ02 and bat SARS-like coronaviruses: a, isolate 613 
Rs7327 (GenBank: KY417151.1, protein-coding regions) and c, isolate bat-SL-CoVZC45 (GenBank: 614 
MG772933.1:265-1345513455-21542, nonstructural polyprotein). d, frequency of automorphisms 615 
between human somatic cytochrome c and other nine primates (monkeys). e, frequency of 616 
automorphisms between human BRCA1 DNA repair gene and other seven primates (see Material and 617 
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Method section). f, Distribution of the conserved COVID-19 genomic regions according to their size. 618 
The graphics result from the analysis SARS coronavirus GZ02 versus the two mentioned bat strains. 619 
The best fitted probability distribution turned out to be the generalized gamma distribution. 620 

 621 

Next, under the assumption that Eq. 8 holds, different protein-coding regions must experience 622 

“preference” for specific type of automorphisms. To illustrating the concept, an analysis based on the 623 

application of Theorem 1 and Eq. 8 on gene/genome population studies, an application of decision 624 

tree algorithms was conducted on primate BRCA1 genes. Results for the analysis with Chi-squared 625 

Automated Interaction Detection (CHAID) is presented in Fig 9. It is important to keep in mind that 626 

this is only an illustrative example with small sample size, and that definite conclusions related to 627 

BRCA1 genes can only be derived with larger sample size from humans and non-human primate 628 

sequences. In this algorithmic approach, for each compound category consisting of three or more of 629 

the original categories, the algorithm finds the most significant binary split for a node (split-variable) 630 

based on a chi-squared test [47]. 631 

For a given MSA of protein-coding regions, the resulting decision tree leads to stochastic-632 

deterministic logical rules (propositions) permitting a probabilistic estimation of the best model 633 

approach holding Eq. 8. For example, since only one mutational event human-to-human from class 634 

A3 is reported in the right side of the tree (Fig 9), with high probability the proposition: “(A4 ˅ (A3 635 

˄ ¬ HRH) → ¬ human” is true.  That is, with high probability only non-humans hold the last rule.  636 

Due to graphic printing limitations not all tree details are shown in Fig 9 (calculations details are 637 

given in the tutorials links provided at SI). 638 

Results shown in Fig 9 are only for the purpose to illustrate the application of the theory, since 639 

for the sake of visualization and simplicity, were limited to small sample data set and to the 640 

application of a relatively “modest” (unsupervised) machine-learning approach which, however, is 641 

sufficient to illustrate the concepts.  Next, let us suppose that the decision tree from Fig 9 holds on a 642 

large enough sample-size (to minimize the classification error) of primate BRCA1-gene populations. 643 

Then, with high probability the logical rule: “A1 ˄ R3 ˄ (YHH ˅ HHY) → human” is true. That is, 644 

with high probability transitions mutations (T ↔ C) on region R3 from BRCA1 gene (specifically at 645 
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positions 323 and 333, Fig 9) in the first and third codon positions, represented by automorphisms 646 

with coefficient between 0 and 15, are not observed in primates other than humans. 647 

 648 

Fig 9. Decision tree based on automorphisms estimated on primate BRCA1 genes.  Symbols R0 to 649 
R8 denote the protein regions as given in UniProt plus inter regions segments (see 650 
https://www.uniprot.org/uniprot/P38398#family_and_domains). Only regions experiencing fixed 651 
mutational events are included in the analysis.  The range of automorphism coefficients k (f (x) = k x 652 
mod 64) are denoted after the isomorphism between the genetic-code cyclic group defined in the set 653 
of codons and the Abelian group defined on 64

. For the sake of graphic comprehension, the 654 
coordinates of human-to-human mutations were added. Every branch (path) from the top to the leaf 655 
node is equivalent to a stochastic-determinist logical rule defining the automorphism preference for 656 
each protein region in the subset of analyzed primate BRCA1 genes. For example, with high 657 
probability the rule: “(A4 ˅ (A3 ˄ ¬ R1)) → ¬ human” is true (see Supporting Information). 658 
 659 

Obviously, the predictive power of the stochastic rules depends on the size of the samples from 660 

the populations under scrutiny. A larger data set including 41 variants of the BRCA1 gene and a rough 661 

estimation of the (encoded) mutational cost given in the term of a quasichemical energy of aminoacid 662 

interactions in an average buried environment [11,48] (data included in the GenomAutomorphism R 663 

package [28]) allow reach more robust rules after the application of decision tree algorithms. 664 

Likewise, an estimation of mutational cost can be given in terms of distances between aminoacids 665 

based on codon distances defined on a specific genetic-code cube model or on a combination of  two 666 

models [11,49]. Examples of stochastic some mutational rules are given in Table 1. 667 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 22, 2022. ; https://doi.org/10.1101/2021.06.01.446543doi: bioRxiv preprint 

https://www.uniprot.org/uniprot/P38398#family_and_domains
https://doi.org/10.1101/2021.06.01.446543
http://creativecommons.org/licenses/by/4.0/


30 

 

 668 

Table 1. Examples of stochastic mutational rules found in aligned DNA sequences from primate 669 
BRCA1 genes. 670 

Mutational cost (MC) Stochastic Rule3 

Aminoacid contact potential1 

MC(0.03) → ¬ human 
MC(-0.47) ˄  R4 ˄  A4 → human 
MC(-0.47) ˄  (R0 ˅  R0. ˅ R3 ˅ R5 ) → bonobos 
MC(0.08) → bolivian_monkey 

Aminoacid distance based on 
genetic-code codon 

distances2 

MC(1.34) ˄  R0 → ¬ human 
MC(1.36) → gorilla  
MC(0.28) ˄  R4 ˄  A4 → human 
(MC(0.12) ˅  MC(0.12)) ˄  (R1 ˅  R5) → silvery gibbon 
MC(0.26) ˄  (A1 ˅ A2) ˄ ¬ R4 ˄  ¬ HHW → human 
MC(0.99) ˄  HHS ˄  (R7 ˅  R4) → golden monkey 

1Aminoacid contact potentials are given in reference [48]. 2Aminoacid distance based on the codon distance are given in 671 
reference [49] and applied (together with the concept of encoded mutational cost) in reference [11]. 3 The decision trees 672 
using CHAID algorithm are given in the Supporting Information (also available in the tutorials at 673 
https://genomaths.github.io/genomautomorphism). 674 
 675 

Our results provides supporting evidence to the previous finding reported in [11] about that the 676 

selection of the genetic-code cube model cannot be arbitrary, since the automorphisms and the 677 

estimation of mutational costs (as defined in [11]) on different local DNA protein-coding regions 678 

shows clear “preference” for specific models. Obviously, the mathematical model is only a tool (a 679 

representation of the physicochemical relationships given between molecules) applied to uncovering 680 

the existence of specific evolutionary constraints. 681 

3.3 Future theoretical developments 682 

In this section we want to highlight a direction of future theoretical development. A full coverage of 683 

this topic is out of the limits of the current work. Nevertheless, a sketch on a future direction is 684 

presented here. Our goal will be the description of mutational process on protein-coding regions in 685 

terms of homomorphisms of different algebraic structures. 686 

Genomic regions represented as an Abelian group decomposable into homocyclic Abelian p-687 

groups, e.g. 6 62 2
⊕ ⊕  

n times
, can be studied  as R-algebras [18], which in particular is a R-module 688 

and after considering only the sum operation of the ring 62


, it is also a G-module. Recall that our 689 

modeling just takes advantage of the group isomorphism: (ℤ64 ,+) ≅ �𝐶𝐶𝑔𝑔 ,+� (for the sake of 690 
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simplicity we are using the same sum operation symbol in both groups, ℤ64 and 𝐶𝐶𝑔𝑔). Thus, the  ℤ64-691 

algebra of the group ( )( ) ( ) ( )
 

, , ,= + = + ⊕ ⊕ +

n times
n

g g gS C C C  over the ring  ℤ64 can be defined 692 

[18].  693 

In our current case (considering the codon coordinate level), we are interested on heterocycle 694 

groups 𝑆𝑆 = ⨁𝐺𝐺𝑖𝑖 of gC and gC + (𝐺𝐺𝑖𝑖 ∈ {𝐶𝐶𝑔𝑔 ,𝐶𝐶𝑔𝑔+}), as suggested in Fig. 1, which permits the analysis 695 

of multiple sequence alignments including insertion-deletion (indel) mutations. It is not hard to notice 696 

that the collection of all the 𝑅𝑅-Module of groups 𝑆𝑆 over the ring 𝑅𝑅 = ⨂𝑅𝑅𝑖𝑖, (𝑅𝑅𝑖𝑖 ∈ {ℤ64,ℤ125}) together 697 

with 𝑅𝑅-Module homomorphisms conform to a category of R-Modules, also denoted as R-Mod. Let 698 

𝒞𝒞𝑁𝑁 be the category Ab with the Abelian groups of the DNA sequences of length ≤N as objects and 699 

group homomorphisms as morphisms (see Appendix A). Fredy’s theorem states that every Abelian 700 

category is a subcategory of some category of modules over a ring [50]. Mitchell has reinforced 701 

Fredy’s result, proving that every Abelian category is a full subcategory of a category of modules 702 

over a ring [51].  703 

At codon coordinate level, the group defined on the set of codon is a subgroup of the group 704 

defined on the set of extended base-triplets ( g gC C +⊂ ) and the ℤ125-Module of group gC  is a 705 

submodule of the ℤ125-Module of group gC +  over the ring ℤ125. The triplet of gaps ‘---' corresponds 706 

to the identity element of group gC + , which is mapped into 35
0∈  by ( )35

,gHom C +  . A 707 

homomorphism always maps the identity element from the domain of group, say 
gC0 , into the identity 708 

element from the codomain 
gC +

0 , which in gC + is 0 ' '---
gC +
= . 709 

The following example illustrates a possible sequence of attainable analytical steps with 710 

concrete computational biology application. Let A = GACAGAGCAGTATTAGCTTCACAC and B 711 

= GAAAACGTATTATCAAAG DNA sequence segments represented as elements from the groups: 712 

ACGT TGCA ACGT 6( )= ⊕ ⊕A g g gG C C C  and ACGT TGCA ACGT 4( )B g g gG C C C= ⊕ ⊕ , respectively, where X
gC713 

is the Abelian p-group defined on the set of 64 codons and base orders (cubes): 𝑋𝑋 = {ACGT,TGCA}. 714 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 22, 2022. ; https://doi.org/10.1101/2021.06.01.446543doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.01.446543
http://creativecommons.org/licenses/by/4.0/


32 

 

Groups AG  and BG are elements of the Ab category 𝒞𝒞𝑁𝑁 defined on the collection of heterocyclic 715 

group ( )NX
gC  defined on the set of DNA sequences (of codons) with length N ≤ 8. 716 

Since the triplet of gaps cannot be arbitrary allocated in the sequence, the alignment of DNA 717 

sequence is an essential step required for the application of this modeling preserving the biological 718 

meaning. The pairwise alignment of the corresponding aminoacid sequences from A and B yields: 719 

DRAVLASQ
EN-VL-SN , which corresponds to the DNA sequence alignment: aln720 

( )= GACAGAGCAGTATTAGCTTCACAC
GAAAAC---GTATTA---TCAAAG . That is, to preserve the reading frame, a robust alignment is 721 

accomplished translating the codon sequence into aminoacid sequence alignment. 722 

Sequences A and B’ = GAAAAC---GTATTA---TCAAAG can also be represented as elements 723 

from group: 724 

ACGT TGCA ACGT ACGT 2 ACGT ACGT 2
' ( ) ( )A g g g g g gG C C C C C C+ += ⊕ ⊕ ⊕ ⊕ ⊕  725 

This group is an element of the Ab category 𝒞𝒞𝐴𝐴′, which is a subcategory of the 𝑹𝑹𝑨𝑨′-Mod category 726 

over the ring ( ) ( ) ( )6 3 6 3 6

2 2 2

2 5 2 5 2A'R = ⊗ ⊗ ⊗ ⊗     . The group isomorphism ':B B BF G G→727 

is the functor that maps DNA sequences from group B NG ∈ into an element from group 'B RG ∈728 

(see Appendix B). That is, for all element 1 2 3 4 5 6( , , , , , )b X X X X X X=  ( Bb G∈ ) there is a unique 729 

element ' ' ' ' ' '
1 2 3 4 5 6' ( , ,0, , ,0, , )b X X X X X X=  ( '

i iX X=  and '' Bb G∈ ).  730 

Also, there is an injective morphism ':A A AF G G→  that transforms each element  731 

1 2 3 4 5 6 7 8( , , , , , , , )a X X X X X X X X=  ( Aa G∈ ) into a unique element 732 

' ' ' ' ' ' ' '
1 2 3 4 5 6 7 8' ( , , , , , , , )a X X X X X X X X=  ( '' Aa G∈ ), which is evident since g gC C +⊂  and, 733 

consequently, codons are preserved, i.e., '
i iX X=  and AG  is isomorphic to the image ( )A AF G . The 734 

homomorphism ' ':A A AF G G→  is also a functor which maps elements from the 𝑹𝑹𝑨𝑨-Mod category 735 

over the ring 68 2AR = ⊗ 
into the 𝑹𝑹𝑨𝑨′-Mod category. Notice that ( )BF B  is a subgroup of ( )AF A . 736 
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In practice, for the sake of computational genomics implementations, the aligned DNA 737 

sequences A and B can be represented by the numerical vectors a 𝑎𝑎 = (9,32,24,56,60,27,28,5) and 738 

𝑏𝑏 = (8,1,56,60,28,1), respectively, with coordinates on ℤ26 . The application of the morphisms AF  739 

and BF  permits the new representations: 𝑎𝑎′ = �(9,32)∈ ℤ26 , 66 ∈ ℤ53 ,(56,60) ∈ ℤ26 , 69 ∈740 

ℤ53 , (28,5) ∈ ℤ26� and 𝑏𝑏′ = �(8,1)∈ ℤ26 , 0 ∈ ℤ53 , (56,60)∈ ℤ26 , 0 ∈ ℤ53 ,(28,1)∈ ℤ26�, 741 

respectively. The group homomorphism φ with matrix representation with diagonal elements 742 

�(8,2)∈ ℤ26 , 0 ∈ ℤ53 , (1,1) ∈ ℤ26 ,0 ∈ ℤ53 , (1,1)∈ ℤ26� maps sequence 𝑎𝑎′ into 𝑏𝑏′, i.e., ( )' 'a bϕ =743 

: 744 

( )

8 0 0 0 0 0 0 0 8
0 2 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 569,32,66,56,60,69,28,5 0 0 0 0 1 0 0 0 60
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 28
0 0 0 0 0 0 0 13 1

   
  
  
   =   
  
  
     

 745 

Where the third and sixth rows are computed modulo 125 and the rest modulo 64. The group 746 

homomorphism ': B Ah G G→ that accomplish the mapping ( )' 'h b a= is computed as: 747 

( )

58 0 0 0 0 0 0 0 9
0 32 66 0 0 0 0 0 32
0 0 0 0 0 0 0 0 66
0 0 0 1 0 0 0 0 568,1,0,56,60,0,28,1 0 0 0 0 1 0 0 0 60
0 0 0 0 0 0 0 0 69
0 0 0 0 0 0 1 0 28

57 0 0 0 0 69 0 5 5

   
  
  
   =   
  
  
     

 748 

Or by means of the affine transformation: 749 

( )

58 0 0 0 0 0 0 0 118 9
0 32 0 0 0 0 0 0 0 32
0 0 0 0 0 0 0 0 66 66
0 0 0 1 0 0 0 0 0 568,1,0,56,60,0,28,1  mod 64 +  mod 1250 0 0 0 1 0 0 0 0 60
0 0 0 0 0 0 0 0 69 69
0 0 0 0 0 0 1 0 0 28
0 0 0 0 0 0 0 5 0 5

      
     
     
      =     
     
     

           

 750 
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In summary, a future theoretical development in the framework of category theory opens new 751 

horizons for the analysis of the mutational process in a wider computational genomic scenario not 752 

previously studies in molecular evolutionary biology. 753 

4 Discussions 754 

The encoding of the physicochemical relationships between nucleotides (nitrogenous bases) in the 755 

DNA double helix in terms of group operations permits a mathematical representation of genome 756 

architecture interpretable in a molecular evolutionary context.  The group representations of the 757 

genetic code are logically extended from protein-coding DNA regions to the entire genome. As shown 758 

in Fig 1, the Abelian group representation of genomic regions into the direct sum of Abelian p-group 759 

is only one of several steps addressed to get better understanding on how genomes are built. 760 

The advantage on using group representations is that there exists a well-established 761 

mathematical development that leads to an objective study of the genome architecture in a molecular 762 

evolutionary context, through the analysis of mutational events in terms of group homomorphisms: 763 

endomorphisms, automorphisms, and translations. On this scenario the analysis of group 764 

homomorphisms permits us the uncovering of stochastic rules constraining the local architecture on 765 

genes and genomic regions.  The goal is unveiling hidden genomic architecture and rules hard to be 766 

detected by current experimental approaches. All the information required can be retrieved from the 767 

MSA of DNA sequences, which is particularly relevant for poorly annotated genomes. 768 

Examples shown in Figs 3 to 4 indicates that whatever would be the genomic architecture for 769 

given species, the observed variations in the individual populations and in populations from closed 770 

related species, it can be quantitatively described as the direct sum of Abelian cyclic groups. The 771 

discovering/annotation of new genomic features will only lead to the decomposition of previous 772 

known Abelian homocyclic or cyclic groups representing a genomic subregion into direct sums of 773 

subgroups. In such algebraic representation DNA sequence motifs for which only substitution 774 

mutations happened are specifically represented by the Abelian group ( ) ( )64, ,gC + ≅ + , in protein 775 
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coding regions, and by any combination of groups ( ) ( )2
2, ,B + ≅ + , ( ) ( )2 4

2, ,B + ≅ +  or some 776 

quotient group like ( )GGA 2 ,GC G ≅ +

 in non-protein coding regions. 777 

Notably, the genetic code Abelian group ( ) ( )3
5 ,,+GC + ≅ +  is enough for an algebraic 778 

representation of the genome population from the same species or close related species. However, 779 

such a decomposition leads to a poor description of local architecture that, as suggested in Figs. 3 to 780 

6, can mask relevant biological features. Figure 3 to 6 illustrate the basic Abelian group 781 

representations for further analysis of genome architecture through the study of the mutational events, 782 

as essential transformations inherent to the molecular evolutionary process, in terms of 783 

endomorphisms and automorphisms, elements of the endomorphism ring.  784 

For the sake of reader’s comprehension, the examples on the group representation of genomic 785 

regions presented here are simple. However, the analysis demands for the development of novel 786 

computational algebraic approaches to study the genomic architecture. Unlike to traditional 787 

computational algebra, we can take advantage of the group isomorphisms, which permits decreasing 788 

the computational complexity by avoiding symbolic computation.  Nevertheless, results presented 789 

here show that the architecture of genome region in an entire population can be quantitively studied 790 

in the framework of Abelian group theory. 791 

From several examples provided here, it is clear that there exists a language for the genome 792 

architecture unveiled when represented it in terms of sums of finite Abelian groups, which can be 793 

further studied with the application of methods from category theory, the potential success of which 794 

has been proven in programming languages and in linguistic [52]. The future developments of 795 

genome annotation from several species can certainly lead to the discovery of logical rules from such 796 

a language, finding the viable variations in the populations. The identification of quotient groups (at 797 

larger scale) can permit the stratification of large genome population into equivalence classes 798 

(quotient subgroups) corresponding to individual subpopulations, each one of them carrying 799 

particular viable variations of species genome architecture. 800 
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As indicated in reference [18], natural genomic rearrangement like DNA recombination and 801 

translocation at structural and functional domain can be represented as group automorphisms and 802 

endomorphisms. Biologically, such description corresponds to the fact that the new genetic 803 

information is recreated, simply, by way of reorganization of the genetic material in the chromosomes 804 

of living organisms [5,53].  The analysis and discussion on the application of the endomorphism ring 805 

theory to describe the dynamics of genome population is a promising subject for further studies. 806 

Particularly promising is the application of the genomic Abelian groups on epigenomic studies, 807 

which results from the model where base D stands for the methylated cytosine and adenine. As 808 

suggested in Fig 7a and b, a precise decomposition of methylation motif into the direct sum of Abelian 809 

finite groups can lead to their classification into unambiguous equivalence classes. The group 810 

structure of the methylation regulatory regions: GATCTTTTATGC and GGTTAAAAGATC, both 811 

represented by the homocyclic group on ( )43
5 , breaks from the monotone homocyclic group 812 

representation of the region in terms of cyclic groups on 4  (Fig 7a and b). The group representation 813 

of protein-coding regions (or base-triplet sequences) as numerical vectors with coordinates on 35
  814 

(Fig 7c and d) facilitates the analysis of methylation changes represented as group 815 

endomorphism/automorphisms of the cyclic group on 35
 . 816 

Results indicate that, as a consequence of the genetic code constraints and the evolutionary 817 

pressure on protein-coding regions, stochastic-deterministic logical rules can be inferred on a large 818 

enough sample-size from a gene/genomic-region population. Such a stochastic-deterministic rules 819 

lead to specific applications of Theorem 1 and Eq.8, consequently, the analysis of mutational process 820 

on each group, subgroup, and coset. For example, mutational events on a MSA column (identified) 821 

from class YHH (with discriminatory classification power as shown in Fig 8) where the second and 822 

third DNA bases remain invariant (H) and the first base are pyrimidines (Y) experiencing transition 823 

mutations (across individuals sequences) are represented by automorphisms on a subgroup (from the 824 

genetic code Abelian subgroup ( ),GC + ) defined on the set {THH,CHH} isomorphic to ( )2 ,+
 [20]. 825 
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Figure 9 provides illustrative example that motivates further applications of based machine-826 

learning bioinformatic approaches to unveil the subjacent logic to the genome architecture and its 827 

association with the DNA cytosine/adenine methylation patterning found on individual populations 828 

and the changes (repatterning) induced by, e.g., environmental changes, aging process and diseases, 829 

which is of particular interest in genomic medicine [54]. Machine learning applications on MSA 830 

involving large sample size of genomic regions from populations of different species can unveil 831 

further decompositions into the direct sum of Abelian groups, which do not depend on our current 832 

knowledge of the annotated genomes. As suggested in Fig 9, we can expect that most of the hiding 833 

genomic DNA sequence motif can be unveiled by studying the molecular evolutionary (mutational) 834 

process in a genome population through the lens of the endomorphism ring. In other words, as a 835 

consequence of the injective relationship: DNA sequence → 3D chromatin architecture [3,4,6], fixed 836 

mutational events (in organismal populations) on DNA sequence motifs involved in the 3D chromatin 837 

architecture are under evolutionary pressure, biophysically and biochemically constrained to preserve 838 

the chromatin biological functions. 839 

Results shown in Figs. 8 and 9 also suggest deep implications of Baer-Kaplansky theorem on 840 

the genome architecture unknown by the current knowledge and understanding of genome annotation, 841 

which currently relies on the DNA sequence itself.  Concretely, on an evolutionary context, the fact 842 

that two genomic regions from two different species are almost identical and, event would encode for 843 

the same functional protein, does not necessarily imply that they hold to the same genome 844 

architecture. The evolutionary pressure in both such hypothetical regions must be same, which 845 

implies that the regions experience the same type of mutational events in terms of 846 

automorphism/endomorphism representations.  847 

For example, let’s suppose that the results shown in Fig 9 were derived from a large sample 848 

size (large enough to derive statistically significant rules), then the rule “A1 ˄ R3 ˄ (YHH ˅ HHY) 849 

→ human” (Fig 9) implies that the gene regions of BRCA1 from human and non-human primates do 850 

not belong to the same equivalent class of genomic region. In particular, since the endomorphism 851 

rings ( )BRCA1
humanGR  and ( )BRCA1

non humanG −R  on the Abelian groups BRCA1
humanG and BRCA1

non humanG − defined on the 852 
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human and non-human primates BRCA1 genes, respectively, are not isomorphic, then according to 853 

the Baer-Kaplansky theorem groups BRCA1
humanG  and BRCA1

non humanG − are also not isomorphic. Hence, region 854 

architectures of BRCA1 gene in human and non-human primates are (in this hypothetical scenario) 855 

implicitly different, which is not obvious to human eyes from their MSA (see supporting information).  856 

Results presented here would have considerable positive impact on current molecular 857 

evolutionary biology, which heavily relies on subjective evolutionary null hypotheses about the past.  858 

As suggested in reference [11], the genomic Abelian groups open new horizons for the study of the 859 

molecular evolutionary stochastic processes (at genomic scale) with relevant biomedical applications, 860 

founded on a deterministic ground, which only depends on the physicochemical properties of DNA 861 

bases and aminoacids. In this scenario, the only molecular evolutionary hypothesis needed about the 862 

past is a fact, the existence of the genetic code. 863 

Remarkably, further studies applying the theory presented here do not require for special 864 

experimental datasets but for the DNA sequences of the genomic regions under scrutiny. Although 865 

the accuracy of the predictions depends on the sample size, the number of sequenced genomes stored 866 

in the databases grows year-after-year. Large samples of DNA sequences (from homolog genomic 867 

regions) from at least two or more species facilitate application of Baer-Kaplansky theorem and 868 

further studies applying methods of Categorical theory to unveil the grammar embedded in the DNA 869 

sequences. 870 

The theory and concretes examples provided here make explicit the basic foundation for a 871 

further unprecedented application of the last advances in Abelian group theory incorporating methods 872 

from Category theory, where groups and group homomorphisms (in our context: mutational events) 873 

are the main players, which have the potential to discover unsuspected features of the genome 874 

architecture, opening new horizon to the genomic taxonomy of species in accordance with the state-875 

of-the-art in mathematics, logic, and computational sciences. In other words, these applications have 876 

the potential to elevate the genomic studies from the current descriptive level to the vanguard level 877 

marked in the frontier of science by mathematics, physics, and computational sciences. 878 
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5 Conclusions 879 

Results to date indicate that the genetic code and the physicochemical properties of DNA bases on 880 

which the genetic code algebraic structure are defined, has a deterministic effect, or at least partially 881 

rules on the current genome architectures, in such a way that the Abelian group representations of the 882 

genetic code are logically extended to the whole genome. In consequence, the fundamental theorem 883 

of Abelian finite groups can be applied starting from genomic regions till cover whole chromosomes. 884 

This result opens new horizons for further genomics studies with the application of the Abelian group 885 

theory, which currently is well developed and well documented [30,55].  886 

Results suggest that the architecture of current population genomes is quite far from 887 

randomness and obeys stochastic-deterministic rules. The nexus between the Abelian finite group 888 

decomposition into homocycle Abelian p-groups and the endomorphism ring paved the ways to 889 

unveil unsuspected stochastic-deterministic logical propositions ruling the ensemble of genomic 890 

regions and sets the basis for a novel algebraic taxonomy of the species, which is not limited by our 891 

current biological knowledge. 892 

In the context of evolutionary comparative genomics, the theory presented here open new 893 

horizons for the application of Group theory including methods of Category theory, which have the 894 

potential to unveil hidden features and rules inherent to the genome architecture, leading to an 895 

unprecedented understanding on how genomes are built.  896 

We believe that the mathematical formalism proposed here sets the theoretical ground for a 897 

further development in genomics, transitioning the field from a fully empirical science to a predictive 898 

science, where the theoretical and empirical research coexist in a tight positive feedback loop, a 899 

development stage only reached so far in the field of physics.  900 

All the above claims are feasible, only limited by our computational power and the availability 901 

of samples of sequenced genomes from the same species and from multiple species. 902 

At this point we emphasize that an accurate understanding of the genome architecture and 903 

population’s structure, on a formal mathematical framework, is as essential for the future of genetic 904 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 22, 2022. ; https://doi.org/10.1101/2021.06.01.446543doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.01.446543
http://creativecommons.org/licenses/by/4.0/


40 

 

engineering and genome editing as the physics of architecture is to the design of sturdy and stable 905 

energy-efficient building.  906 

6 Appendix A. Genetic code algebraic structures defined on the base and 907 

codon sets 908 

An Abelian group structure ( ),B +  is a set B together with  a binary operation ‘+’ that combines any 909 

two elements a B∈ and b B∈  to form another element of c B∈ , denoted a b c+ = , which satisfy 910 

the following axioms: 911 

1) Associativity. For all , ,a b c B∈ , the equality ( ) ( )a b c a b c+ + = + +  holds. 912 

2) Identity. There exists an element e B∈  named identity element of B, such that for any 913 

a B∈ , the equality a e a+ =  holds. 914 

3) Commutativity. For all ,a b B∈ , the equality a b b a+ = +  915 

The Abelian groups considered here are finite cyclic groups ( ),G +  isomorphic to the Abelian 916 

group defined on the set of integers modulo n, denoted as n ( / n 
). That is, the integers 917 

1, 2,3, , 1n − form a cyclic group of order n under addition (modulo n) and 0 as the identity element. 918 

This group will be denoted as ( ),n +

. However, for the sake of simplicity in the figures it will be 919 

denoted simply as n , i.e., without making distinction between the set n and group structure 920 

defined on it. The particular interest for the current work is the Abelian p-group derived when n pα=  921 

where p is a prime number and 𝛼𝛼 an integer. The group operations defined on the set of bases or on 922 

the codon set are associated to physicochemical properties of DNA bases (see the next sections).  923 

 924 

Homomorphisms and isomorphisms 925 

In modern algebra, a group homomorphism is a map : →f A B  between two group structures ( ),A  926 

and ( ),B such that for all , ∈a b A holds: ( ) ( ) ( )1 2 1 2 1 2α α α α β β= =  f f f , where 927 
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1 2,β β ∈B . A group isomorphism is a one-to-one correspondence (mapping) between two sets that 928 

preserves binary relationships between elements of the sets. That is, an isomorphism is a 929 

homomorphism holding the inverse mapping: ( ) ( ) ( )1 1 1
1 2 1 2 1 2β β β β α α− − −= =  f f f . For 930 

example, since there exists only one cyclic group with four elements up to isomorphism, for each one 931 

of the 24 cyclic group ( )B,+b defined on the set of bases { }A,C G TB , ,=  ([17,18]) there exists  a 932 

one-to-one mapping f  such that for each base Bβ ∈ there is an integer 4ι ∈ such that ( )f β ι=  933 

and: 934 

1. ( ) ( ) ( )1 2 1 2 1 2bf f fβ β β β ι ι+ = + = + , 1 2, Bβ β ∈  and 1 2 4,ι ι ∈ . 935 

2. The inverse mapping ( ) ( ) ( )1 1 1
1 2 1 2 1 2b bf f fι ι ι ι β β− − −+ = + = +  936 

To highlight the fact that the sum operations are defined on different ways on the sets B and 4 , we 937 

have used the symbols ‘ b+ ’ and ‘+’, respectively. However, for sake of brevity of the symbolic 938 

notation, such knowledge will be considered implicit, writing simply ‘+’.  Then, we said that groups 939 

( )B,+b  and ( )4 ,+
 are isomorphic; in symbols ( ) ( )4 ,B,+b ≅ +

. f and its inverse 1f −  are 940 

called isomorphisms. If f  (and its inverse 1f − ) is a mapping from a group into itself, then f is called 941 

an automorphism. A mapping g , not necessarily one-to-one, of the elements from a group into itself 942 

is called a group endomorphism. An endomorphism that is also an isomorphism is an automorphism. 943 

A ring algebraic structure is obtained when together with the sum operation “+” (as defined 944 

above) a new operation “∙” is defined on the set B holding the properties: 945 

1. Associativity: ( ) ( )a b c a b c⋅ ⋅ = ⋅ ⋅  for all , ,a b c B∈  946 

2. Multiplication is distributive with respect to addition: 947 

a. ( ) ( ) ( )a b c a c b c+ ⋅ = ⋅ + ⋅  for all , ,a b c B∈   (right distributivity). 948 

b. ( )c a b c a c b⋅ + = ⋅ + ⋅  for all , ,a b c B∈   (left distributivity). 949 
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As it is shown in the next section, these algebraic structures have been defined on the genetic code. 950 

In particular, the ring ( )62
, .+ ⋅  and endomorphism ring (section 3.1) has been defined and studied 951 

on the genetic code [18]. 952 

Appendix B. Category  953 

Category theory is a general mathematical theory of structures and of systems of structures that 954 

occupy a central position in contemporary mathematics, theoretical computer science, and linguistics 955 

[56]. 956 

Definition: A category 𝒞𝒞 can be described as a collection of objects 𝒪𝒪 satisfying the 957 

following three conditions: 958 

1) Morphism: For every pair X, Y of objects, there is a set 𝐻𝐻𝐻𝐻𝐻𝐻(𝑋𝑋,𝑌𝑌) called the 959 

morphisms from X to Y in 𝒞𝒞. If f is a morphism from, we write 𝑓𝑓:𝑋𝑋 → 𝑌𝑌. 960 

2) Identity: For every object X, there exists a morphism 𝑖𝑖𝑖𝑖𝑋𝑋 in 𝐻𝐻𝐻𝐻𝐻𝐻(𝑋𝑋,𝑌𝑌), called the 961 

identity on X (also denoted as 1𝑋𝑋). 962 

3) Composition: For every triple X, Y, and Z of objects, there exists a partial binary 963 

operation from 𝐻𝐻𝐻𝐻𝐻𝐻(𝑋𝑋, 𝑌𝑌) × 𝐻𝐻𝐻𝐻𝐻𝐻(𝑌𝑌, 𝑍𝑍) to 𝐻𝐻𝐻𝐻𝐻𝐻(𝑋𝑋 ,𝑍𝑍), called the composition of 964 

morphisms in 𝒞𝒞. If 𝑓𝑓: 𝑋𝑋 → 𝑌𝑌 and 𝑔𝑔:𝑌𝑌 → 𝑍𝑍, this composition is written as the 965 

mapping (𝑔𝑔 ∘ 𝑓𝑓): 𝑋𝑋 → 𝑍𝑍. 966 

Identity, morphisms, and composition satisfy two axioms: 967 

Associativity: If 𝑓𝑓:𝑋𝑋 → 𝑌𝑌, 𝑔𝑔:𝑌𝑌 → 𝑍𝑍, and ℎ: 𝑍𝑍 → 𝑊𝑊, then ℎ ∘ (𝑔𝑔 ∘ 𝑓𝑓) = (ℎ ∘ 𝑔𝑔) ∘ 𝑓𝑓. 968 

Identity: If 𝑓𝑓: 𝑋𝑋 → 𝑌𝑌, then 𝑓𝑓𝑋𝑋 ∘ 𝑓𝑓 = 𝑓𝑓 and 𝑓𝑓 ∘ 𝑓𝑓𝑋𝑋 = 𝑓𝑓. 969 

 970 

Definition: A functor F is a function between two categories 𝒞𝒞 and 𝐷𝐷 which maps objects to 971 

objects and morphisms to morphisms. That is: 972 

• For each 𝑋𝑋 ∈ 𝒞𝒞 there is an object 𝐹𝐹(𝑌𝑌) ∈ 𝐷𝐷 973 
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• For each morphism 𝑓𝑓: 𝑋𝑋 → 𝑌𝑌 in 𝒞𝒞 there is morphism 𝐹𝐹(𝑓𝑓) :𝐹𝐹(𝑋𝑋) → 𝐹𝐹(𝑌𝑌) in 𝐷𝐷 such 974 

that the following conditions hold: 975 

i. 𝐹𝐹(𝑔𝑔 ∘ 𝑓𝑓) = 𝐹𝐹(𝑔𝑔) ∘ 𝐹𝐹(𝑓𝑓) for all morphisms 𝑓𝑓:𝑋𝑋 → 𝑌𝑌 and g: 𝑋𝑋 → 𝑌𝑌 in 𝒞𝒞 976 

ii. 𝐹𝐹(𝑖𝑖𝑖𝑖𝑋𝑋) = 𝑖𝑖𝑖𝑖𝐹𝐹(𝑋𝑋) for all 𝑋𝑋 ∈ 𝒞𝒞. 977 

7 Supporting Information 978 

A summary with the reported genetic code Abelian groups relevant for the current study is provided 979 

as supporting information in a file named: Supporting_Information.docx. 980 

All the data, computational and statistical analyses can be reproduced following the R scripts 981 

provided in tutorials available at the GenomAutomorphism R package website 982 

https://genomaths.github.io/genomautomorphism/. In particular, data and R scripts used in the 983 

computation of automorphisms and the decision tree from Fig 9 are available within 984 

GenomAutomorphism R package and in a tutorial at:  985 

https://genomaths.github.io/genomautomorphism/articles/automorphism_and_decision_tree.html. 986 
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