1	Catheterized-bladder environment induces hyphal Candida albicans formation, promoting fungal
2	colonization and persistence.
3	
4	Alyssa A. La Bella, Marissa J. Andersen, Alex Molesan, Peter V. Stuckey, Felipe H. Santiago-
5	Tirado*, & Ana L. Flores-Mireles*
6	
7	Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
8 9 10	*Address correspondence to Ana L. Flores-Mireles (ALFM), <u>afloresm@nd.edu</u> , and Felipe H. Santiago-Tirado(FHST), <u>fsantiago@nd.edu</u>
11 12 13 14	Mailing address: 351 Galvin Life Science Center, Notre Dame, IN 46556, USA. Phone: (574) 631-4964 (ALFM) and (574) 631-4096 (FHST).
15 16	
17	
18	
19	
20	Short title: Candida-fibrinogen interactions are critical for CAUTI
21	
22	
23	Key words: C. albicans; CAUTI; UTI; fibrinogen; fibrin; filamentation; hyphae; biofilm; urine;
24	bladder; catheter; candiduria; fungi;
25	
26	

27 ABSTRACT

Catheter-associated urinary tract infections (CAUTIs) are a serious public health problem and 28 account for approximately 40% of hospital-acquired infections worldwide. Candida spp are a 29 30 major causative agent of CAUTI (17.8%) - specifically Candida albicans- that has steadily increased to become the second most common CAUTI uropathogen¹. Yet, there is poor 31 understanding of the molecular details of how C. albicans attaches, grows in the bladder, forms 32 biofilms, survives, and persists during CAUTI². Understanding of the mechanisms that contribute 33 to CAUTI and invasive fungal infection will give insights into the development of more effective 34 therapies, which are needed due to the spread of antifungal resistance and complex management 35 of CAUTI in patients that require a urinary catheter ³. Here, we characterize the ability of five 36 Candida albicans clinical and laboratory strains to colonize the urinary catheter, grow and form 37 biofilm in urine, and their ability to cause CAUTIs using our mouse model. Analysis of C. albicans 38 strains revealed that growth in urine promotes morphological transition from yeast to hyphae, 39 which is important for invasive infection. Additionally, we found that biofilm formation was 40 dependent on the presence of fibrinogen, a protein released on the bladder to promote bladder 41 healing^{4,5}. Furthermore, deletion of hyphae regulatory genes resulted in defective bladder and 42 catheter colonization and abolished dissemination. These results indicate that novel antifungal 43 therapies preventing the morphological transition of C. albicans from yeast to hyphae have 44 considerable promise for the treatment of fungal CAUTIs. 45

- 46
- 47
- 48
- 49

50 INTRODUCTION

Fungal infections and diseases have become a serious public health concern. Candida, 51 Aspergillus, and Cryptococcus spp. are among the most prominent fungal pathogens contributing 52 to mycoses-related deaths^{6,7}. Of these pathogens, *Candida spp.* is the prevailing opportunistic 53 pathogen in addition to being the fourth most common hospital-acquired bloodstream infection 54 (candidemia) in the United States^{6,8}. More specifically, *Candida albicans* is the main contributor 55 to invasive candidiasis, responsible for 50% to 70% of candidiasis cases^{6,8}. As *Candida spp.* are 56 becoming increasingly resistant to antifungal therapy⁹, the management of this fungal pathogen is 57 a major challenge for the medical community⁸. 58

C. albicans inhabits the gastrointestinal and genitourinary tracts and mucosal membranes 59 along with forming biofilms on dentures, pacemakers, prosthetic joints, and intravenous and 60 urinary catheters¹⁰⁻¹². The 2016 National Healthcare Safety Network (NHSN) review found that 61 Candida spp., specifically Candida albicans, have become the second most prevalent uropathogen 62 causing 17.8% of catheter associated urinary tract infections (CAUTIs)¹. CAUTIs are the most 63 common hospital-acquired infection (HAI) with more than 150 million individuals acquiring such 64 an infection each year^{13,14}. The use of catheters and subsequent infections are not limited to 65 hospital-care settings. In long-term care facilities such as skilled nursing facilities (SNF), 12.6% 66 of admitted patients use an indwelling catheter. Further, in nursing homes, 11.9% of residents use 67 indwelling catheters¹⁵, and ~50% of nursing home residents with indwelling urinary catheters will 68 experience symptomatic CAUTIs¹⁶. Despite *Candida spp.* prevalence in CAUTIs, we lack a clear 69 understanding of the factors required for *Candida* pathogenesis during CAUTIs^{1,2}. 70

C. albicans, among other fungal species, can grow in yeast, pseudohyphal, and hyphal
 morphologies¹⁷⁻¹⁹. The pseudohyphal and hyphal form have a filamentous structure with the

73 pseudohyphae containing constrictions at sites of septation and hyphae having long tube-like filaments with no constrictions at the site of septation. C. albicans' ability to undergo 74 morphological changes is a virulence determinant. The hyphae morphology is critical in the spread 75 76 of infection and results in Candida becoming virulent. When C. albicans is in its hyphae morphology, it can invade epithelial and endothelial cells, resulting in tissue damage and an 77 invasive infection. C. albicans can be converted to its hyphae form via serum, neutral pH, and 78 other environmental conditions such as CO₂, and is controlled by the master regulator Enhanced 79 filamentous growth protein 1 (Efg1), among other transcription factors 20 . 80

The switch between yeast and hyphal forms is essential to pathogenesis and biofilm 81 formation^{10,19-22}. Most C. albicans infections are associated with biofilm formation, making 82 biofilm formation one of the main virulence traits of candidiasis. The biofilm initiates with the 83 84 adherence of yeast cells to a surface, forming microcolonies followed by proliferation of hyphae and pseudohyphae²¹. Maturation of the biofilm occurs when the hyphal scaffold is encased in an 85 extracellular polysaccharide matrix, other carbohydrates, proteins, nucleic acids and lipids^{23,24}. 86 The final step in biofilm formation involves dispersion of non-adherent yeast cells for 87 establishment of colonization and biofilms into the surrounding environment²¹. The resulting 88 biofilm poses a serious threat to the host as the biofilm cells grow increasingly resistant to 89 antifungal therapy and can evade protection from the host defenses²⁴. New antifungal treatments, 90 such as the echinocandins, that target the β -1,3 glucan component of the cell wall have proven to 91 successfully prevent C. albicans biofilms^{11,25}; unfortunately, recently echinocandin-resistant 92 *Candida spp* are emerging 26,27 . 93

94 Candiduria (*Candida* in urine) is primarily associated with patients with predisposing 95 factors including diabetes mellitus, genitourinary structural abnormalities, diminished renal

96 function, renal transplantations, metabolic abnormalities, and indwelling urinary tract catheters or devices²⁸. C. albicans colonization and overgrowth in different infection models have been 97 associated with dysbiosis in the host environment such as alterations in host immunity, stress, and 98 resident microbiota¹⁰. Importantly, urinary catheterization disrupts the bladder homeostasis, 99 mechanically compromising the integrity of the urothelium, inducing inflammation, interfering 100 with normal micturition (voiding)²⁹, and disrupting host defenses in the bladder³⁰⁻³². Hence, we 101 are interested in understanding how these host environment changes, specifically in the bladder, 102 can promote fungal CAUTI. 103

The inflammation response caused by catheterization exposes cryptic epithelial receptors 104 or recruits host factors that can be recognized by the pathogen, enabling microbial colonization, 105 multiplication, and persistence within the urinary tract³⁰⁻³³. We have found that one of these factors 106 107 is fibrinogen (Fg), which is released into the bladder to heal damage tissue and prevent bleeding due to catheter-induced inflammation in both mice and humans^{5,34,35}. However, due to the constant 108 mechanical damage caused by the urinary catheter, Fg accumulates in the bladder and deposits 109 onto the catheter at concentrations that increase with prolonged catheterization^{5,34,36-38}. This Fg is 110 used by Enterococcus faecalis and Staphylococcus aureus for colonization of catheters and the 111 bladder through the adhesins Ebp and ClfB, respectively; blocking this interaction resulted in 112 defective to no colonization^{34,36,39}. Similarly, we have found that in Acinetobacter baumannii and 113 Proteus mirabilis CAUTI, interactions with Fg are important^{40,41}; however, the bacterial factors 114 responsible have not yet been described. Consistently, in an ex vivo study we showed that a C. 115 albicans CAUTI isolate binds to urinary catheters via Fg⁵. This strongly suggests that urine is 116 inducing changes in the expressed Fg-binding adhesins, prompting us to study this interaction 117 118 more carefully in C. albicans.

In this study, we characterized five C. albicans clinical and laboratory strains' growth in 119 urine, biofilm formation, and capability to cause CAUTI. We found that for the C. albicans strains 120 that grew poorly in urine, growth was promoted when supplemented with a nitrogen source. Urine 121 122 itself promoted morphological changes, and biofilm formation was enhanced by the presence of protein and Fg in urine conditions. Furthermore, C. albicans was able to infect the catheterized 123 bladder and form a biofilm on the urinary catheter; importantly, a hyphae-deficient mutant was 124 unable to cause CAUTI, suggesting that filamentation was critical for this infection model. Based 125 on these findings, we conclude that the morphological change of C. albicans, which is promoted 126 127 by urine and the catheterized environment, is crucial to colonize, persist, and cause CAUTIs.

128

129 **RESULTS**

130 *C. albicans* survives and grows in urine.

C. albicans is able to infect a wide range of human sites including oropharyngeal, gastrointestinal, 131 intra-abdominal, skin, genital, and urinary tract, demonstrating its plasticity to survive and 132 replicate in different host environments^{42,10,11,13,14,20}. Since C. albicans has become a prominent 133 CAUTI pathogen, we explored its ability to grow in urine using clinical and laboratory strains. We 134 used three urinary clinical isolates Pt62, Pt65, and PCNL1^{5,43} (obtained from Washington 135 University School of Medicine) and two well-characterized laboratory strains, DAY230 and 136 SC5314 (Table S3). Since hyphal formation is important for promoting disease, we used a hyphae 137 138 defective mutant in the SC5314 background, $efg-1\Delta cph-1\Delta$, to test whether hyphal formation is important in the catheterized bladder environment (Table S3). We tested their ability to grow in a 139 variety of environments ranging from nutrient rich to restrictive conditions. For rich environment, 140 141 we used yeast extract peptone dextrose (YPD) and brain and heart infusion (BHI) in shaking and

142 static conditions; YPD is a standard C. albicans growth media and BHI was used since the clinical strains were isolated on this media. Static growth was used to mimic the bladder environment and 143 shaking growth was used as a comparison with standard lab culture conditions. For restrictive 144 environment, we used human urine and to further mimic the plasma protein extravasation in the 145 catheterized bladder³⁷, urine was supplemented with either 3% human serum or different nitrogen 146 sources including amino acids (AA), bovine serum albumin (BSA), or Fg. Serum albumin and Fg. 147 are two of the most abundant host proteins on catheters retrieved from human and mice and have 148 shown to be used by other uropathogens as a nutrient source^{34,36}. Samples were taken at 0 hours, 149 24 hours, and 48 hours to assess growth by enumeration of colony forming units (CFUs). As 150 expected, C. albicans clinical and laboratory strains grow in higher densities in rich media and 151 aeration while growth in rich media in static conditions was similar to the urine conditions (Fig. 152 153 1). In restrictive environment, C. albicans strains were able to survive and replicate in urine, but it varied widely between the strains and supplementation. Human serum supplementation promoted 154 growth of all strains by 24 hrs with a subsequent decline, possibly because all nutrients were 155 consumed (Fig. 1). The growth of the lab strains and Pt62 was not enhanced, or was inhibited, 156 with BSA or Aa supplementation when compared with urine alone (Fig. 1A, D-F). However, Fg. 157 enhanced growth of all strains, at different magnitudes when compared with urine alone (Fig. 1), 158 except for PNCL1, which already exhibited good growth in urine alone (Fig. 1C). 159

160

161 Urine conditions promotes *C. albicans* hyphal formation.

Environmental conditions induce *C. albicans* morphological changes that are associated with virulence^{10,19}. *C. albicans* can exhibit different morphologies²¹, but the main ones are vegetative yeast, pseudohyphae, and hyphae¹⁹. Hyphae morphology leads to the spread of infection and

increased virulence of the pathogen^{20,22}. Therefore, we wanted to determine how the bladder 165 environment affects C. albicans morphology. To assess the pathogen morphologies, C. albicans' 166 laboratory and clinical strains were grown in urine with 3% human serum to mimic plasma protein 167 extravasation in the catheterized bladder^{37,38}. YPD alone was used as a negative control and when 168 supplemented with serum was used as a positive control for inducing hyphal morphology⁴⁴⁻⁴⁶. 169 Strains were incubated at 37°C with 5% CO₂ for 48 hrs and samples were collected at 0, 24, and 170 48 hours. C. albicans strains were stained with calcofluor white to assess morphology using 171 fluorescence microscopy (Zeiss Axio Observed inverted scope). The cell morphology was 172 analyzed automatically using CellProfiler software (available from the Broad Institute at 173 www.cellprofiler.org)⁴⁷ to quantify the percentages of yeast, pseudophyphal, or hyphal forms 174 based on the circularity value of each outlined cell (Fig. 2G, Table S1). All strains showed 175 176 predominantly yeast morphology in YPD media and YPD with serum induced pseudohyphal and hyphal formation in all strains, except Pt65 and SC5314 efg- $1\Delta cph-1\Delta$. Notably, our analysis 177 showed that urine conditions promote pseudohyphal and hyphal formation in all strains (Fig. 2, 178 Table S1) except SC5314 *efg-1\Deltacph-1\Delta* (Fig. 2F, Table S1). Pseudohyphal and hyphal 179 morphologies were further induced when urine was supplemented with human serum in Pt62, 180 PNCL1, DAY230, and SC45314 but not in Pt65. This suggests that the catheterized environment 181 triggers C. albicans morphological change from the yeast cell form to hyphae. 182

183

184 Fibrinogen enhances *C. albicans*' biofilm formation.

Scanning electron microscopy analyses of *C. albicans* biofilms on urinary catheters from CAUTI
 patients^{2,43} and rats^{48,49} have revealed pseudohyphal and hyphal morphology. During candidiasis,
 C. albicans pseudohyphal and hyphal formation induces expression of virulence genes including

host adhesion factors^{18,21,50,51}. One of those factors is Mp58, a Fg-binding protein^{4,52}. In an *ex-vivo* 188 study, we showed that C. albicans PNCL1 clinical isolate colocalized with Fg-deposited on urinary 189 catheters retrieved from a patient with preoperative negative urine culture⁵. Fg deposition has been 190 shown to be a platform for biofilm formation by diverse uropathogens^{5,34,36,41,53}, suggesting that 191 Fg may be an important factor to promote C. albicans CAUTI pathogenesis. Based on these and 192 our previous findings (Fig. 2), we hypothesized that urine conditions induce factors responsible 193 for Fg-binding and biofilm formation. Thus, we assessed biofilm formation under rich (YPD and 194 BHI) and restrictive conditions (human urine) and compared between BSA- and Fg-coated 195 microplates as we have previously described⁵⁴. At 48 hrs, immunostaining analyses were 196 performed to assess fungal biofilm formation by using anti-Candida antibodies and biofilm 197 biomass was quantified by fluorescence intensity⁵⁴. We found that for the clinical strains, Fg 198 199 promoted biofilm formation in all conditions but Fg-dependent biofilm formation was further 200 enhanced in human urine condition (Fig. 3A-C). For the laboratory strains, we found a similar Fg-dependent biofilm formation in YPD, BHI, and urine, but Fg had no effect in DAY230 when 201 grown in BHI (Fig. 3D and E). In contrast, SC5314 *efg-1* Δ *cph-1* Δ was not able to form biofilms 202 in human urine regardless of the coated surface (Fig. 3F), highlighting the importance of 203 filamentation for biofilms under urine conditions. Notably, we observed that the hyphae-defective 204 mutant was able to form Fg-dependent biofilms in YPD and BHI (Fig. 3F), suggesting that the 205 mechanisms of biofilm formation are different. This difference could be related to adhesins that 206 207 are expressed during yeast form that may contribute to biofilm but not in urine conditions. Therefore, using conditions that closely mimic the *in vivo* environment are important to identify 208 209 physiologically-relevant determinants for biofilm formation.

210

211 Fibrinogen promotes *C. albicans* biofilm formation.

Furthermore, we analyzed the C. albicans strains biofilm by immunofluorescence (IF) microscopy. 212 C. albicans strains' biofilms were grown for 48 hrs in human urine using glass-bottom petri dishes 213 coated with BSA or Fg. Biofilms on BSA were barely monolayers or small aggregates composed 214 of yeast, pseudohyphae, and hyphae (Fig. 3G-K), except for SC5314 *efg-1* Δ *cph-1* Δ , where all 215 216 cells were in yeast form (Fig. 3L). On the other hand, Fg promoted a robust biofilm in all strains when compared with BSA-dependent biofilms (Fig. 3G-K); except for the hyphae-deficient 217 mutant where the colonization was composed of small yeast aggregates similar to the colonization 218 219 on BSA-coated surfaces (Fig. 3L), suggesting filamentation is important for Fg-dependent biofilm formation. 220

Furthermore, in the damaged tissue environment, like the catheterized bladder, Fg is 221 converted into fibrin fibers or nets to stop bleeding and allow healing. Therefore, we explored the 222 fungal-fibrin interactions in vitro. Fibrin fibers and nets were formed in glass-bottom petri dishes 223 224 by adding thrombin to soluble Fg and incubating at 37°C for an hour; then, C. albicans strains 225 were added and incubated for 48 hrs at 37°C in human urine. Visualization of the interaction was done by confocal microscopy and 3D reconstruction at 10x and 40x. We found that most of the 226 cells had a pseudohyphal and hyphal morphology surrounding and going through the fibrin fibers 227 and nets (Fig. 4A-E), except for SC5314 *efg-1* Δ *cph-1* Δ (Fig. 3F). 228

229

230 *C. albicans* hyphal formation is critical for establishment of CAUTI.

Based on our previous results, we hypothesized that a hyphae-deficient mutant of *C. albicans* would have a defective colonization in the catheterized bladder. To test this, we assessed the ability of the clinical and laboratory strains to colonize and form biofilm on the urinary catheter using our

established CAUTI mouse model^{34,36-41,55-57}. Furthermore, to get a better understanding of the 234 contribution of the catheterized bladder environment to C. albicans' colonization, we carried out 235 infections in catheterized and non-catheterized mice. Mice with or without catheters were 236 challenged with 1×10⁶ CFU of each strain grown in YPD media overnight at 37°C under static 237 conditions. After 24 hours post infection (hpi), the mice were euthanized and their organs and 238 catheters (when catheterized) were harvested to quantify colonization by CFU enumeration. The 239 240 results showed that catheterization significantly increased colonization on the bladder of Pt62, 241 Pt65, PNCL1, DAY230 and SC5314 and the catheter and bladder were colonized to the same extent (Fig. 5). Importantly, we found that the hyphae-deficient mutant, SC5314 *efg-1* $\Delta cph-1\Delta$, 242 243 had a significantly defective bladder and catheter colonization when compared with the SC5314 244 wild-type (WT) strain (p-value < 0.005; Fig. 5E). Interestingly, in the absence of a catheter, the 245 hyphae-deficient mutant behaved and colonized to the same extent as the WT strain.

In human infection, the incidence of candidemia and systemic dissemination arising from 246 *Candida* UTI or candiduria *Candida* in urine are relatively low (1-8% of all candidemia cases)⁵⁸. 247 However, the prevalence of candidemia due to candiduria increases in critically ill and 248 immunocompromised patients^{59,60}, especially if the patients are undergoing urinary 249 catheterization⁶¹. Since our mouse model of CAUTI allows us to assess dissemination, we 250 251 analyzed fungal burden of kidneys, spleen, and heart after 24 hpi (Fig. 5). We found that urinary significantly contributes to the fungal spread of DAY230 to the kidneys and 252 catheterization spleens (p-value < 0.05; Fig. 5D) and in SC5314, spreads to the kidneys (p-value < 0.005; Fig. 253 5E). Additionally, colonization of the kidneys by Pt62 and Pt65 was 2-3 logs higher than non-254 255 catheterized mice, trending to significance. Furthermore, the hyphae-deficient mutant, SC5314 *efg-1* Δ *cph-1* Δ , did not show differential dissemination between catheterized and non-catheterized 256

mice (**Fig. 5E**). This data showed that the changes induced by the presence of a catheter are necessary for fungal colonization of the urinary tract and further demonstrate that hyphal morphology as well as pathways regulated by *efg-1* and *cph-1* are crucial for establishment of CAUTI.

261

262 Interactions with fibrinogen and hyphal morphology are important for *C. albicans* 263 colonization the catheterized bladder.

To further understand the C. albicans' morphology, its interaction with Fg, and its spatial 264 colonization in the bladder during CAUTI, we performed histological analyses using hematoxylin 265 and eosin (H&E) staining, and also IF microscopy of 24 hpi implanted and infected bladders with 266 1 x 10⁶ CFU of each C. albicans strain. For the IF analysis, we stained for C. albicans (red), Fg 267 268 (green), and for neutrophils (white) (Fig. 6, merge images; Fig. S1-S6, single channels). We focused on neutrophils for two reasons: we have shown they are highly recruited into the 269 catheterized bladder^{37,38,62} and the fact that neutropenic patients are more susceptible to *C. albicans* 270 and bacterial dissemination from CAUTI^{59,63-65}, suggesting a role in controlling candidemia from 271 candiduria. We found that bladder colonization was so robust that it was visible in the H&E-272 stained whole bladders (blue arrow heads) (Fig. 6). Consistently, our IF analysis showed the 273 presence of C. albicans' hyphal and pseudohyphal morphologies in the lumen of the bladder in all 274 clinical and laboratory strains (Fig 6A-D), except for the hyphal mutant, SC5314 efg-1 Δcph -1 Δ 275 (Fig. 6F). As seen with other uropathogens, including *E. faecalis*, *S. aureus*, *A. baumannii*, and *P.* 276 mirabilis^{5,34,36,40,41,53}, C. albicans cells in the catheterized bladder are found in close association 277 with Fg (Fig. 6 and Fig. S1-S6). 278

279 Importantly, neutrophils were highly recruited into the bladder, specifically in the areas with fungal colonization (Fig. 6 and Fig. S1-S6). We found that C. albicans breached the 280 urothelium, encountering a strong neutrophil response at the site of entry (Fig. 6C-E and Fig. S3-281 282 S4). For example, we found that PNCL1 was able to reach the bladder lamina propria, inducing a massive neutrophil recruitment to contain the infection (Fig. 6C and Fig. S3). Pt62 and Pt65 cells 283 were primarily found on the bladder lumen and the fungal cells were interacting with Fg and 284 neutrophils (Fig. 6A-B and Fig. S3-S4). On the other hand, robust fungal colonization and 285 neutrophil recruitment was not observed in the SC5314 efg- $1\Delta cph-1\Delta$ infected bladder (Fig. 6F 286 287 and Fig. S6). These data demonstrate that in the catheterized bladder, C. albicans is mostly in hyphal and pseudohyphal morphology and it is able to interact with Fg. Furthermore, neutrophils 288 are recruited to control fungal infection. 289

290

291 *C. albicans* interacts with deposited fibrinogen on the catheter during CAUTI.

Based on our *in vitro* Fg-binding results, we assessed if C. albicans-Fg interaction occurs *in vivo* 292 on the catheter during CAUTI. Catheters from mice infected with each strain were retrieved 24 293 hpi and immunostained for C. albicans (red) and Fg (green). Except for the hyphal mutant, we 294 found that all strains form a robust biofilm on the implanted catheter (Fig. 7), colonizing 59% to 295 79% of the surface of the catheter (Table S2). SC5314 WT showed $78.9 \pm 14\%$ colonization of 296 the catheters while SC5314 *efg-1* Δ *cph-1* Δ catheters' colonization was 10.4 \pm 7.5%, exhibiting a 297 298 significant defective colonization (Fig. 7F-G, L; Table S2). Our IF analysis showed that C. albicans strains were preferentially binding onto deposited Fg on the catheter (Fig. 7B-G). We 299 then further quantified the percentage of the catheter-colonizing fungal population that was 300 301 colocalizing with Fg. We found that 75% to 91% of the C. albicans strains' staining was

302	colocalized with deposited Fg (Fig. 7H-L). Moreover, in the SC5314 <i>efg-1</i> Δ <i>cph-1</i> Δ strain, that
303	was only able to colonize 10% of the catheter (Fig. 7G, Table S2), 79% of it was colocalizing
304	with Fg (Fig. 7L). This result further corroborates that hyphal formation is important for a robust
305	biofilm formation during CAUTI and that Fg serves as a platform for catheter colonization in vivo.
306	
307	
308	DISCUSSION
309	In this study, we have shown that hyphal morphology and fungal interactions with Fg and
310	fibrin are critical for establishment of CAUTI. We showed that C. albicans is able to survive and
311	grow in urine and supplementation with 3% serum and Fg promotes growth. Importantly, we found
312	that hyphal formation is induced by urine conditions in vitro and C. albicans strains exhibit
313	pseudohyphal and hyphal morphology in vivo during CAUTI. The presence of Fg and fibrin
314	enhances biofilm formation in vitro and in vivo. Thus, the catheterized bladder (consisting of urine
315	with serum protein and high Fg and fibrin) creates the ideal environment for C. albicans to colonize
316	and persist in the host.
317	Our results showed that hyphal formation was critical for Fg-dependent biofilm formation

in urine conditions but not in YPD and BHI media. This seemingly contradictory result is not surprising since we have observed that laboratory growth media do not fully recapitulate conditions found within the host. For example, several factors critical for bacterial biofilm formation in CAUTI are dispensable in *in vitro* biofilm assays when using conventional laboratory growth media^{34,38,54-56,66}. Moreover, host proteins have been shown to contribute to fungal biofilm formation^{49,67}. A study done by the Andes group found Fg, as well as other host proteins associated with *C. albicans* biofilms in urinary catheters. retrieved from rats²⁴. These results, taken together with our previous data showing that Fg is accumulated in the bladder and deposited on the catheters ^{1,5,13}, and that Fg promotes fungal biofilm formation in urine conditions and during urinary catheterization (**Fig. 3, 5-6**), suggest that expression of Fg binding proteins could mediate fungal biofilm formation in CAUTI.

It has been reported that C. albicans encodes a Fg-binding protein, Mp58, which is 329 expressed during candidiasis^{4,52}. Furthermore, other cell surface adhesins such as Agglutinin-like 330 sequence (ALS) glycoproteins, hyphal regulated gene 1 (Hyr1), and hyphal wall protein 1 (Hwp1) 331 have shown to be important in biofilm formation⁶⁸⁻⁷². From these adhesins, ALS1, ALS3, and 332 ALS9 have been shown to bind to Fg in vitro⁷²⁻⁷⁴ and structural analyses have shown binding to 333 Fg γ -chain via protein-protein interaction, similar to Clf adhesins in S. aureus^{74,75}. However, the 334 role of Mp58, ALSs, Hyr1, and Hwp1 on binding to Fg and their contribution to catheter and 335 bladder colonization during CAUTI have not been described. These adhesins will be explored in 336 further studies. 337

Interestingly, Mp58, ALSs, Hyr1, and Hwp1 are specifically expressed during hyphal 338 formation^{4,52,76-79}. Transition between yeast and hyphae is central to virulence and this shift is 339 responsive to the environment^{10,19,20,22,79}. Our results have shown that urine conditions and the 340 catheterized bladder environment induce hyphal formation, which suggest these adhesins and other 341 virulence factors may be expressed during CAUTI. Importantly, we have shown that SC5314 efg-342 $1\Delta cph$ - 1Δ hyphal mutant exhibited defective biofilm formation and Fg binding in urine condition. 343 344 Furthermore, it displayed deficient catheter and bladder colonization during urinary 345 catheterization. Therefore, Efg1 and Cph1 downstream targets such as Hwp1, Hwp2, Hyr1, ALS8, and secreted aspartyl proteinases (SAP)-4, -5, -6, and $-9^{80,81}$ may play independent roles in C. 346 347 albicans CAUTI pathogenesis. Since the Efg1 and Cph1 regulatory networks are known,

348 dissection of their contributions to fungal infection in the catheterized bladder will be further349 explored.

Hyphal cells are important for the formation of biofilms and tissue invasion^{70,82-84}. This 350 351 correlates with our observation that strains were in primarily hyphal morphology on the biofilms and we observed hyphal invasion of urothelium and lamina propria during CAUTI. Importantly, 352 massive neutrophil recruitment occurred into the areas of fungal tissue invasion; this was not 353 observed in the SC5314 *efg*-1 Δ *cph*-1 Δ hyphal mutant. Studies have shown that neutrophils 354 respond to C. albicans site of entry, responding to epithelial-released cytokines and chemokines 355 in addition to recognizing fungal factors such as SAPs ⁸⁵⁻⁸⁸. Neutrophils are able to phagocytize 356 and kill yeast cells and short hyphae while large hyphae are killed by inducing neutrophil 357 extracellular traps (NETs), which releases DNA, granule enzymes, and antimicrobial peptides 85,88-358 ⁹¹. Furthermore, it has been shown that neutropenic patients developed candidemia from 359 360 candiduria, suggesting that bladder recruited neutrophils are critical to control fungal systemic dissemination⁵⁹. Our future studies will be focused on understanding the immune cell strategies 361 against the fungal CAUTI and their role in containing the fungal infection in the bladder. 362

C. albicans occupies many niches in the human body, and morphological changes are 363 associated with the establishment of diseased states. This is most important in the bladder, since it 364 is an open and dynamic system, where urine is constantly passing through. Therefore, in order to 365 establish a successful colonization, adhesion and biofilm formation on the urinary catheter is 366 essential^{13,34,36,39,92}. Our results are consistent with that, *Candida* biofilms not only ensures 367 colonization but can protect the growing cells from the hostile environment and potentiate 368 establishment of the infection^{93,94}. Targeting these hyphal genes so filamentation cannot occur 369 370 could be a possible therapeutic avenue for preventing C. albicans CAUTIs. Moreover, our results

371	highlight the importance of Fg and fibrin in the process, hence blocking deposition of these
372	proteins onto the catheter might prevent fungal biofilm formation as well. As these fungal
373	pathogens are becoming more commonplace in the healthcare setting, it is essential that the
374	pathogenesis of Candida spp. is better understood in order to decrease the spread of infection and
375	mortality rates. Understanding key characteristics of C. albicans' for CAUTI pathogenesis is the
376	foundation to understanding and subsequently preventing Candida spp. infections.
377	
378	MATERIALS AND METHODS
379	
380	Ethics statement
381	All animal care was consistent with the Guide for the Care and Use of Laboratory Animals
382	from the National Research Council. The University of Notre Dame Institutional Animal Care and
383	Use Committee approved all mouse infections and procedures as part of protocol number 18-08-
384	4792MD. For urine collections, all donors signed an informed consent form and protocols were
385	approved by the Institutional Review Board of the University of Notre Dame under study #19-04-
386	5273.
387	
388	
389	Urine Collection. Human urine from at least two healthy female donors between the ages of 20 -
390	35 were collected and pooled. Donors did not have a history of kidney disease, diabetes, or recent
391	antibiotic treatment. Urine was sterilized with a 0.22 μm filter (VWR 29186-212) and pH was
392	normalized to 6.0-6.5. BSA (VWR 97061-48) supplemented urine was sterilized again using a

0.22 µm filter. When urine was supplemented with Fg (Enzyme Research Laboratories FIB 3), it
was added directly to the sterilized urine and the urine was not sterilized after the addition of Fg.

Fungal Culture Conditions. All strains of *Candida albicans* were cultured at 37 °C with aeration
in 5 mL of YPD (10g/L Yeast Extract (VWR J850-500G), 20g/L Peptone (VWR J636-500G), 20
g/L Dextrose (VWR BDH9230-500G)) broth. For *in vivo* mouse experiments, *C. albicans* strains
were grown static for ~5 hrs in 5 mL of YPD followed by static overnight culture in human urine.

Growth Curve. Growth curves were performed in glass test tubes (Thermo Fisher Scientific 14-401 961-29). Overnight cultures (all in stationary phase; measured using a UV/Vis Spectrophotometer) 402 were normalized to $\sim 1 \times 10^7$ CFU/ml in 1xPBS (Sigma–Aldrich 1002786391). The culture was then 403 404 diluted (1:1000) into human urine (supplemented with 1 mg/mL BSA, 1 mg/mL Fg, 50X amino acids, or 1 mg/mL human serum), BHI (incubated statically or shaking), or YPD (incubated 405 statically or shaking) and were incubated in the test tube at 37°C for 48 hours. At 0, 24, and 48 406 hours, samples of each condition were taken and analyzed by CFU counts. All serum donors signed 407 an informed consent form and protocols were approved by the Institutional Review Board of the 408 University of Notre Dame under study #18-08-4834. 409

410

411 Morphology Assay and CellProfiler Analysis. All strains of *C. albicans* were grown in YPD 412 with or without serum and in human urine with or without serum. At 0, 24, and 48 hours, a sample 413 of each condition was taken, fixed with 10% formalin, and stained with 100 μ g/mL of calcofluor. 414 Samples were viewed under a Zeiss inverted light microscope (Carl Zeiss, Thornwood, NY) with 415 the DAPI fluorescent channel. Random images were taken at 100x magnification and processed

416	with CellProfiler. A pipeline (CellProfiler) was created to identify fungal cells and measure the
417	form factor (circularity) of each outlined cell. Based on the form factor value (form factor of a
418	straight line is 0 and form factor of a perfect circle is 1), each cell was assigned to a particular
419	morphology as follows: form factors <0.25, hypha; 0.25 – 0.5, pseudohypha; >0.5, yeast. Details
420	on the pipeline are provided as supplementary materials. Images (consisting of a 3 x 3 tiled region,
421	i.e. 9 fields of view) were randomly acquired and at least three images were analyzed per condition.
422	The total number of cells per phenotype were summed and divided by the total number of cells to
423	give the overall percentage of each cell type on Microsoft Excel.
424	
425	
426	
427	Antibodies and dyes used in this study.
427 428	Antibodies and dyes used in this study. Primary antibodies: Goat anti-fibrinogen (Sigma-Aldrich F8512), rabbit anti-Candida
428	Primary antibodies: Goat anti-fibrinogen (Sigma-Aldrich F8512), rabbit anti-Candida
428 429	Primary antibodies : Goat anti-fibrinogen (Sigma-Aldrich F8512), rabbit anti- <i>Candida</i> (ThermoFisher Scientific PA1-27158), and rat anti-mouse Ly6G (BD Pharmingen 551459).
428 429 430	Primary antibodies: Goat anti-fibrinogen (Sigma-Aldrich F8512), rabbit anti- <i>Candida</i> (ThermoFisher Scientific PA1-27158), and rat anti-mouse Ly6G (BD Pharmingen 551459). Secondary antibodies: Alexaflour 488-labeled donkey anti-goat (ThermoFisher Scientific SA5-
428 429 430 431	Primary antibodies: Goat anti-fibrinogen (Sigma-Aldrich F8512), rabbit anti- <i>Candida</i> (ThermoFisher Scientific PA1-27158), and rat anti-mouse Ly6G (BD Pharmingen 551459). Secondary antibodies: Alexaflour 488-labeled donkey anti-goat (ThermoFisher Scientific SA5-10086); Alexaflour 594-labeled donkey anti-rabbit (ThermoFisher Scientific SA5-10039);
428 429 430 431 432	Primary antibodies: Goat anti-fibrinogen (Sigma-Aldrich F8512), rabbit anti- <i>Candida</i> (ThermoFisher Scientific PA1-27158), and rat anti-mouse Ly6G (BD Pharmingen 551459). Secondary antibodies: Alexaflour 488-labeled donkey anti-goat (ThermoFisher Scientific SA5- 10086); Alexaflour 594-labeled donkey anti-rabbit (ThermoFisher Scientific SA5-10039); Alexaflour 647-labeled donkey anti-rat (ThermoFisher Scientific SA5-10029); IRDye 800CW
428 429 430 431 432 433	Primary antibodies: Goat anti-fibrinogen (Sigma-Aldrich F8512), rabbit anti- <i>Candida</i> (ThermoFisher Scientific PA1-27158), and rat anti-mouse Ly6G (BD Pharmingen 551459). Secondary antibodies: Alexaflour 488-labeled donkey anti-goat (ThermoFisher Scientific SA5-10086); Alexaflour 594-labeled donkey anti-rabbit (ThermoFisher Scientific SA5-10039); Alexaflour 647-labeled donkey anti-rat (ThermoFisher Scientific SA5-10029); IRDye 800CW donkey anti-goat; and IRDye 680LT donkey anti-rabbit. Alexaflour secondary antibodies were
428 429 430 431 432 433 434	Primary antibodies: Goat anti-fibrinogen (Sigma-Aldrich F8512), rabbit anti- <i>Candida</i> (ThermoFisher Scientific PA1-27158), and rat anti-mouse Ly6G (BD Pharmingen 551459). Secondary antibodies: Alexaflour 488-labeled donkey anti-goat (ThermoFisher Scientific SA5-10086); Alexaflour 594-labeled donkey anti-rabbit (ThermoFisher Scientific SA5-10039); Alexaflour 647-labeled donkey anti-rat (ThermoFisher Scientific SA5-10029); IRDye 800CW donkey anti-goat; and IRDye 680LT donkey anti-rabbit. Alexaflour secondary antibodies were purchased from Invitrogen Molecular Probes and IRDye conjugates secondary antibodies from LI-

437 **Biofilm Formation in 96-well plates.** Biofilm formations were performed in 96 well flat-438 bottomed plates (VWR 10861-562) were coated with 100uL of BSA or Fg (150 μ g/mL) incubated

overnight at 4°C. The various strains were grown as described above and the inoculum normalized 439 to ~1x10⁶ CFU/ml. Cultures were then diluted (1:1000) into YPD, BHI, or human urine. 100uL of 440 the inoculum were incubated in the wells of the 96 well plate at 37°C for 48 hours while static. 441 Following the 48hr incubation, the supernatant was removed from the plate and washed 442 443 three times with 200uL 1x PBS to remove unbound fungi. Plates were fixed with 10% neutralizing formalin (Leica 3800600) for 20 minutes and followed by three washes with PBS containing 444 445 0.05% Tween-20 (PBS-T). Blocking solution (PBS with 1.5% BSA and 0.1% sodium azide (Acros 446 Organics 447811000)) was added to the plate for one hour at room temperature and then washed 447 with PBS-T (3x). Biofilms were incubated with anti-Candida antibodies diluted into dilution buffer (PBS with 0.05% Tween (VWR M147-1L), 0.1% BSA) for two hours. Plates were washed 448 449 three times with PBS-T and incubated for one hour with IRDye 680 LT donkey anti-rabbit 450 secondary antibody solution at room temperature and washed with PBS-T (3x). As a final step, the biofilms were visualized by scanning the plates using the Odyssey Imaging System (LI-COR 451 452 Biosciences) and the analyzed with Image Studio software to obtain the fluorescence intensities (LI-COR Version 5.2, Lincoln, NE). 453

454

BSA or Fg-coated dishes and formation of Fibrin fibers/nets. For these assays No. 0 coverglass glass-bottom 35 mm petri dish with a 14 mm microwell (MatTek P35G-0-14-C) were used. The dishes were coated with 150 μ g/mL of BSA or Fg overnight at 4°C. For fibrin fiber/nets formation, Fg and thrombin (Sigma-Aldrich T6884-250UN) were thawed at 37°C. 100 μ l of 0.5 mg/ml Fg in PBS was added into the microwell glass-bottom and then 10 μ l of 2 U/ml thrombin was added to polymerize Fg into fibrin. Dishes were incubated at 37°C for 1 hour and kept overnight at 4°C

461

462 Visualization of biofilms and fungal-fibrin interaction. The various strains were grown as described above and the inoculum normalized to $\sim 1 \times 10^7$ CFU/ml in PBS. These cultures were then 463 diluted (1:1000) into human urine, added to the BSA-, Fg-, or fibrin coated dishes and then were 464 incubated at 37°C for 48 hours under static conditions. After incubation, dishes were then washed 465 three times with 1x PBS to remove unbound fungi, then dishes were fixed with 10% neutralizing 466 formalin solution for 20 minutes and washed with 1x PBS three times. Dishes were blocked with 467 blocking solution was added for an hour at room temperature as described above. Then BSA- and 468 Fg-coated dishes were incubated in primary antibody (rabbit anti-Candida) and for fibrin-coated 469 470 dishes were incubated with rabbit anti-Candida and goat anti-Fg antibodies. Incubation with the primary antibodies was done for two hours followed by three washes with PBS-T. Then, dishes 471 were incubated for 1 hour with Alexaflour 594-labeled donkey anti-rabbit secondary antibody for 472 473 BSA- and Fg-coated dishes and Alexaflour 594-labeled donkey anti-rabbit and Alexaflour 488labeled donkey anti-goat antibodies for fibrin-coated dishes, followed by three washes with PBS-474 T. BSA- and Fg- coated dishes were visualized with a Zeiss inverted light microscope, and images 475 were taken at different magnifications (10x, 20x, 40x and 100x). Zen Pro and Fiji-ImageJ⁹⁵ 476 softwares were used to analyze the images. For the fungal-fibrin interaction, fibrin-coated dishes 477 were visualized by Nikon A1-R/Multi-Photon Laser Scanning Confocal Microscope and images 478 were analyzed by IMARIS Image Analysis software and ImageJ software⁹⁵. 479

480

In Vivo Mouse Model. Mice used in this study were ~6-week-old female wild-type C57BL/6 mice
purchased from Jackson Laboratory. Mice were subjected to transurethral implantation of a
silicone catheter and inoculated as previously described⁵⁷. Briefly, mice were anesthetized by
inhalation of isoflurane and implanted with a 6-mm-long silicone catheter (BrainTree Scientific

SIL 025). Mice were infected immediately following catheter implantation with 50 μ l of ~1 × 10⁷ CFU/mL in PBS, of one of the fungal strains introduced into the bladder lumen by transurethral inoculation. Mice were sacrificed at 24 hours post infection by cervical dislocation after anesthesia inhalation and catheter, bladder, kidneys, spleen and heart were aseptically harvested for fungal CFU enumeration. A subset of catheters were fixed for imaging as described below and a subset of bladders were fixed and processed for immunofluorescence and histology analysis as described below.

Catheter Imaging and Analysis. Harvested catheters were fixed for imaging via standard IF 492 procedure as previously described⁵⁴. Briefly, catheters were fixed with formalin, blocked, washed 493 with 1x PBS, and incubated with the appropriate primary antibodies overnight. Catheters were 494 then incubated with secondary antibodies for two hours at room temperature. Catheters were 495 washed with PBS-T and then a final wash with PBS. Catheters were visualized with the Odyssey 496 Imaging System and then analyzed using color pixel counter from Fiji-ImageJ software⁹⁵. The 497 number of pixels of each color was compared to the total number of pixels to identify percent 498 coverage of the catheter. 499

500

Bladder IHC and H&E Staining of Mouse Bladders. Mouse bladders were fixed in 10% formalin overnight, before being processed for sectioning and staining as previously described⁵³. Briefly, bladder sections were deparaffinized, rehydrated, and rinsed with water. Antigen retrieval was accomplished by boiling the samples in Na-citrate, washing in tap water, and then incubating in 1x PBS three times. Sections were then blocked (1% BSA, 0.3% TritonX100 (Acros Organics 21568-2500) in 1x PBS) washed in 1x PBS, and incubated with appropriate primary antibodies diluted in blocking buffer overnight at 4 °C. Next, sections were washed with 1x PBS, incubated

508	with secondary antibodies for 2 h at room temperature, and washed once more in 1x PBS prior to
509	Hoechst dye staining. Secondary antibodies for immunohistochemistry were Alexa 488 donkey
510	anti-goat, Alexa 550 donkey anti-rabbit, and Alexa 650 donkey anti-rat. Hematoxylin and Eosin
511	(H&E) stain for light microscopy was done by the CORE facilities at the University of Notre Dame
512	(ND CORE). All imaging was done using a Zeiss inverted light microscope. Zen Pro and ImageJ
513	software were used to analyze the images.
514	
515	Statistical Analysis. Data from at least 3 experiments were pooled for each assay. Two-tailed
516	Mann-Whitney U tests were performed with GraphPad Prism 5 software (GraphPad Software, San
517	Diego, CA) for all comparisons described in biofilm, CAUTI, and catheter coverage experiments.
518	Values represent means \pm SEM derived from at least 3 independent experiments. *, P<0.05; **,
519	<i>P</i> <0.005; ***, <i>P</i> <0.0005; ns, difference not significant.
520	
521	
522	
523	
524	
525	
526	
527	
528	
529	

530

531 **REFERENCES**

- Flores-Mireles, A., Hreha, T. N. & Hunstad, D. A. Pathophysiology, Treatment, and Prevention of
 Catheter-Associated Urinary Tract Infection. *Top Spinal Cord Inj Rehabil* 25, 228-240,
 doi:10.1310/sci2503-228 (2019).
- 535 2 Fisher, J. F., Kavanagh, K., Sobel, J. D., Kauffman, C. A. & Newman, C. A. Candida urinary tract 536 infection: pathogenesis. *Clin Infect Dis* **52 Suppl 6**, S437-451, doi:10.1093/cid/cir110 (2011).
- R, Y., M, P. S., U, A. B., R, R. & K, B. A. Candiduria: prevalence and trends in antifungal
 susceptibility in a tertiary care hospital of mangalore. *J Clin Diagn Res* 7, 2459-2461,
 doi:10.7860/jcdr/2013/6298.3578 (2013).
- 540 4 Casanova, M. *et al.* Identification of a 58-kilodalton cell surface fibrinogen-binding 541 mannoprotein from Candida albicans. *Infect Immun* **60**, 4221-4229 (1992).
- 542 5 Flores-Mireles, A. L. *et al.* Fibrinogen Release and Deposition on Urinary Catheters Placed during 543 Urological Procedures. *J Urol* **196**, 416-421, doi:10.1016/j.juro.2016.01.100 (2016).
- 5446Pfaller, M. A. & Diekema, D. J. Epidemiology of invasive candidiasis: a persistent public health545problem. Clin Microbiol Rev 20, 133-163, doi:10.1128/cmr.00029-06 (2007).
- 5467Rodrigues, M. L. & Nosanchuk, J. D. Fungal diseases as neglected pathogens: A wake-up call to547public health officials. *PLoS Negl Trop Dis* **14**, e0007964, doi:10.1371/journal.pntd.0007964548(2020).
- Sanguinetti, M., Posteraro, B. & Lass-Flörl, C. Antifungal drug resistance among Candida species:
 mechanisms and clinical impact. *Mycoses* 58 Suppl 2, 2-13, doi:10.1111/myc.12330 (2015).
 Antibiotic resistance threats in the United States, 2019. (2019).
- Nobile, C. J. & Johnson, A. D. Candida albicans Biofilms and Human Disease. *Annu Rev Microbiol*69, 71-92, doi:10.1146/annurev-micro-091014-104330 (2015).
- 55411Tsui, C., Kong, E. F. & Jabra-Rizk, M. A. Pathogenesis of Candida albicans biofilm. Pathog Dis 74,555ftw018, doi:10.1093/femspd/ftw018 (2016).
- Duggan, S., Leonhardt, I., Hunniger, K. & Kurzai, O. Host response to Candida albicans
 bloodstream infection and sepsis. *Virulence* 6, 316-326, doi:10.4161/21505594.2014.988096
 (2015).
- Flores-Mireles, A. L., Walker, J. N., Caparon, M. & Hultgren, S. J. Urinary tract infections:
 epidemiology, mechanisms of infection and treatment options. *Nat Rev Microbiol* 13, 269-284,
 doi:10.1038/nrmicro3432 (2015).
- 56214Maki, D. G. & Tambyah, P. A. Engineering out the risk for infection with urinary catheters. *Emerg*563*Infect Dis* 7, 342-347, doi:10.3201/eid0702.010240 (2001).
- 56415Rogers, M. A. *et al.* Use of urinary collection devices in skilled nursing facilities in five states. J565Am Geriatr Soc **56**, 854-861, doi:10.1111/j.1532-5415.2008.01675.x (2008).
- 56616Montoya, A. & Mody, L. Common infections in nursing homes: a review of current issues and567challenges. Aging health 7, 889-899, doi:10.2217/ahe.11.80 (2011).
- 17 Cleary, I. A. *et al.* Examination of the pathogenic potential of Candida albicans filamentous cells
 in an animal model of haematogenously disseminated candidiasis. *FEMS Yeast Res* 16, fow011,
 doi:10.1093/femsyr/fow011 (2016).
- 57118Mayer, F. L., Wilson, D. & Hube, B. Candida albicans pathogenicity mechanisms. Virulence 4,572119-128, doi:10.4161/viru.22913 (2013).
- 57319Thompson, D. S., Carlisle, P. L. & Kadosh, D. Coevolution of morphology and virulence in Candida574species. Eukaryot Cell 10, 1173-1182, doi:10.1128/EC.05085-11 (2011).
- 575 20 Sudbery, P. E. Growth of Candida albicans hyphae. *Nat Rev Microbiol* **9**, 737-748, doi:10.1038/nrmicro2636 (2011).

 plasticity in the mammalian host. <i>Nat Rev Microbiol</i> 15, 96-108, doi:10.1038/nrmicro.2016.157 (2017). Pukkila-Worley, R., Peleg, A. Y., Tampakakis, E. & Mylonakis, E. Candida albicans hyphal Formation and Virulence Assessed Using a Caenorhabditis elegans Infection Model. <i>Eukaryotic</i> <i>Cell</i> 8, 1750-1758, doi:10.1128/Ec.00163-09 (2009). Maddirala, A. R. <i>et al.</i> Biphenyl Gal and GalNAC FmIH Lectin Antagonists of Uropathogenic E. coli (UPFC): Optimization through Iterative Rational Drug Design. <i>J Med Chem</i> 62, 467-479, doi:10.1021/acs.jmedchem.8b01561 (2019). Nett, J. E. & Andes, D. R. Contributions of the Biofilm Matrix to Candida Pathogenesis. <i>J Fungi (Basel)</i> 6, doi:10.3390/f6010021 (2020). Wall, G., Montelongo-Jauregui, D., Vidal Bonifacio, B., Lopez-Ribot, J. L. & Uppluri, P. Candida albicans biofilm growth and dispersal: contributions to pathogenesis. <i>Curr Opin Microbiol</i> 52, 1-6, doi:10.1016/j.mib.2019.04.001 (2019). Coste, A. T. <i>et al.</i> Emerging echinocandin-resistant Candida albicans and glabrata in Switzerland. <i>Infection</i> 48, 761-766, doi:10.10107/s1010-020-01475-8 (2020). Pristov, K. E. & Ghannoum, M. A. Resistance of Candida to azoles and echinocandins worldwide. <i>Clinical Microbiology and Infection</i> 25, 792-788, doi:https://doi.org/10.1016/j.min.2019.03.028 Fisher, J. F., Sobel, J. D., Kauffman, C. A. & Newman, C. A. Candida urinary tract infections-treatment. <i>Clin Infect Dis</i> 52 Suppl 6, 5457-466, doi:10.1039/s/cid/cir112 (2011). O'Brien, V. P., Hannan, T. J., Nielsen, H. V. & Hultgren, S. L. Drug and Vaccine Development for the Treatment and Prevention of Urinary Tract Infections. <i>Microbiology spectrum</i> 4, doi:10.1056/nEUM174080012101501 (1974). Norden, C. W., Green, G. M. & Kass, E. H. Antibacterial mechanisms of the urinary bladder. <i>The Journal of Emiclical investigation</i> 47, 2689-2700	577	21	Noble, S. M., Gianetti, B. A. & Witchley, J. N. Candida albicans cell-type switching and functional
 Pukkia-Worley, R., Peleg, A. Y., Tampakakis, E. & Mylonakis, E. Candida albicans Hyphal Formation and Virulence Assessed Using a Caenorhabditis elegans Infection Model. <i>Eukaryotic Cell</i> 8, 1750-1758, doi:10.1128/E.COId63-09 (2009). Maddirala, A. R. <i>et al.</i> Biphenyl Gal and GalNAc FmlH Lectin Antagonists of Uropathogenic E. coli (UPEC): Optimization through Iterative Rational Drug Design. <i>J Med Chem</i> 62, 467-479, doi:10.1021/acs.jmedchem.8b01561 (2019). Nett, J. E. & Andes, D. R. Contributions of the Biofilm Matrix to Candida Pathogenesis. <i>J Fungi (Basel)</i> 6, doi:10.3390/jof6010021 (2020). Wall, G., Montelongo-Jauregui, D., Vidal Bonifacio, B., Lopez-Ribot, J. L. & Uppuluri, P. Candida albicans biofilm growth and dispersal: contributions to pathogenesis. <i>Curr Opin Microbiol</i> 52, 1-6, doi:10.1016/j.mib.2019.04.001 (2019). Coste, A. T. <i>et al.</i> Emerging echinocandin-resistant Candida albicans and glabrata in Switzerland. <i>Infection</i> 48, 761-766, doi:10.1007/s15010-020-01475-8 (2020). Pristov, K. E. & Ghannoum, M. A. Resistance of Candida to azoles and echinocandins worldwide. <i>Clinical Microbiology and Infection</i> 25, 792-798, doi:https://doi.org/10.1016/j.cmi.2019.03.028 (2019). Fisher, J. F., Sobel, J. D., Kauffman, C. A. & Newman, C. A. Candida urinary tract infectionstreatment. <i>Clin Infect Dis</i> 52 Suppl 6, 5457-466, doi:10.1093/cid/cir121 (2011). O'Brien, V. P., Hannan, T. J., Nielsen, H. V. & Hultgren, S. J. Drug and Vaccine Development for the Treatment and Prevention of Urinary Tract Infections. <i>Microbiology spettrum</i> 4, doi:10.1128/microbiolsep.cUTT-0013-2012 (2016). Garibaldi, R. A., Burke, J. P., Dickman, M. L. & Smith, C. B. Factors predisposing to bacterivira during indvelling urethral catheterization. <i>The New England journal of medicine</i> 291, 215-219, doi:10.1056/NEJM197408012910501 (1974). Norden, C. W., Green, G. M. & Kass, E. H. Antibacterial mechanisms of the u	578		plasticity in the mammalian host. <i>Nat Rev Microbiol</i> 15 , 96-108, doi:10.1038/nrmicro.2016.157
 Formation and Virulence Assessed Using a Caenorhabditis elegans Infection Model. <i>Eukaryotic</i> <i>Cell</i> 8, 1750-1758, doi:10.1128/Ec.00163-09 (2009). Maddirala, A. R. <i>et al.</i> Biphenyl Gal and GalNAC FmlH Lectin Antagonists of Uropathogenic E. coli (UPEC): Optimization through Iterative Rational Drug Design. <i>J Med Chem</i> 62, 467-479, doi:10.1021/acs.jmedchem.8b01561 (2019). Nett, J. E. & Andes, D. R. Contributions of the Biofilm Matrix to Candida Pathogenesis. <i>J Fungi</i> <i>(Basel)</i> 6, doi:10.3390/jof6010021 (2020). Wall, G., Montelongo-Jauregui, D., Vidal Bonifacio, B., Lopez-Ribot, J. L. & Uppuluri, P. Candida albicans biofilm growth and dispersal: contributions to pathogenesis. <i>Curr Opin Microbiol</i> 52, 1- 6, doi:10.1016/j.mib.2019.04.001 (2019). Coste, A. T. <i>et al.</i> Emerging echinocandin-resistant Candida albicans and glabrata in Switzerland. <i>Infection</i> 48, 761-766, doi:10.1007/s15010-020-01475-8 (2020). Pristov, K. E. & Ghannoum, M. A. Resistance of Candida to azoles and echinocandins worldwide. <i>Clinical Microbiology and Infection</i> 25, 792-798, doi:https://doi.org/10.1016/j.cmii.2019.03.028 (2019). O'Brien, V. P., Hannan, T. J., Nielsen, H. V. & Hultgren, S. J. Drug and Vaccine Development for the Treatment. <i>Clin Infect Dis</i> 52 Suppl 6, 5457-466, doi:10.1033/cid/cirl12 (2011). O'Brien, V. P., Hannan, T. J., Nielsen, H. V. & Hultgren, S. J. Drug and Vaccine Development for the Treatment and Prevention of Urinary Tract Infections. <i>Microbiology spectrum</i> 4, doi:10.1128/microbiolspec.UTF.0013-2012 (2016). Garibaldi, R. A., Burke, J. P., Dickman, M. L. & Smith, C. B. Factors predisposing to bacteriuria during indwelling urethral catheterization. <i>The New England journal of medicine</i> 291, 215-219, doi:10.1056/NEUM14774080012910501 (1974). Norden, C. W., Green, G. M. & Kass, E. H. Antibacterial mechanisms of the urinary bladder. <i>The Journal of clinical investigation</i>			
 <i>Cell</i> 8, 1750-1758, doi:10.1128/Ec.00163-09 (2009). Maddirala, A. R. <i>et al.</i> Biphenyl Gal and GalNAc FmlH Lectin Antagonists of Uropathogenic E. coli (UPEC): Optimization through Iterative Rational Drug Design. <i>J Med Chem</i> 62, 467-479, doi:10.1021/acs.jmedchem.8b01561 (2019). Nett, J. E. & Andes, D. R. Contributions of the Biofilm Matrix to Candida Pathogenesis. <i>J Fungi</i> (Boscel) 6, doi:10.3390/jof6010021 (2020). Wall, G., Montelongo-Jauregui, D., Vidal Bonifacio, B., Lopez-Ribot, J. L. & Uppuluri, P. Candida albicans biofilm growth and dispersal: contributions to pathogenesis. <i>Curr Opin Microbiol</i> 52, 1-6, d. doi:10.1016/j. imib.2019.04.001 (2019). Coste, A. T. <i>et al.</i> Emerging echinocandin-resistant Candida albicans and glabrata in Switzerland. <i>Infection</i> 48, 761-766, doi::10.1007/s15010-020-01475-8 (2020). Pristov, K. E. & Ghannoum, M. A. Resistance of Candida to azoles and echinocandins worldwide. <i>Clinical Microbiology and Infection</i> 25, 792-798, doi:https://doi.org/10.1016/j.cmi.2019.03.028 (2019). Fisher, J. F., Sobel, J. D., Kauffman, C. A. & Newman, C. A. Candida urinary tract infectionstreatment. <i>Clin Infect Dis</i> 52 Suppl 6, 5457-466, doi:10.1093/cid/cir112 (2011). O'Brien, V. P., Hannan, T. J., Nielsen, H. V. & Hultgren, S. J. Drug and Vaccine Development for the Treatment and Prevention of Urinary Tract Infections. <i>Microbiology spectrum</i> 4, doi:10.1128/microbiolspec.UTI-0013-2012 (2016). Garibaldi, R. A., Burke, J. P., Dickman, M. L. & Smith, C. B. Factors predisposing to bacteriruia during indwelling urethral catheterization. <i>The New England journal of medicine</i> 291, 215-219, doi:10.1156/NEIJM197408012910501 (1974). Norden, C. W., Green, G. M. & Kass, E. H. Antibacterial mechanisms of the urinary bladder. <i>The Journal of Clinical investigation</i> 47, 2689-2700, doi:10.112		22	
 Maddirala, A. R. <i>et al.</i> Biphenyl Gal and GalNAc FmlH Lectin Antagonists of Uropathogenic E. coli (UPEC): Optimization through Iterative Rational Drug Design. <i>J Med Chem</i> 62, 467-479, doi:10.1021/acs.jmedchem.8b01561 (2019). Nett, J. E. & Andes, D. R. Contributions of the Biofilm Matrix to Candida Pathogenesis. <i>J Fungi</i> (<i>Basel</i>) 6, doi:10.3390/jof6010021 (2020). Wall, G., Montelongo-Jauregui, D., Vidal Bonifacio, B., Lopez-Ribot, J. L. & Uppuluri, P. Candida albicans biofilm growth and dispersal: contributions to pathogenesis. <i>Curr Opin Microbiol</i> 52, 1- 6, doi:10.1016/j.mib.2019.04.001 (2019). Coste, A. T. <i>et al.</i> Emerging echinocandin-resistant Candida albicans and glabrata in Switzerland. <i>Infection</i> 48, 761-766, doi:10.1007/s15010-020-01475-8 (2020). Pristov, K. E. & Ghannoum, M. A. Resistance of Candida to azoles and echinocandins worldwide. <i>Clinical Microbiology and Infection</i> 25, 792-798, doi:https://doi.org/10.1016/j.cmi.2019.03.028 (2019). Fisher, J. F., Sobel, J. D., Kauffman, C. A. & Newman, C. A. Candida urinary tract infections treatment. <i>Clin Infect Dis</i> 52 Suppl 6, 5457-466, doi:10.1093/cid/cir121 (2011). O'Brien, V. P., Hannan, T. J., Nielsen, H. V. & Hultgren, S. J. Drug and Vaccine Development for the Treatment and Prevention of Urinary Tract Infections. <i>Microbiology spectrum</i> 4, doi:10.1128/microbiolspec.UTI-0013-2012 (2016). Garibaldi, R. A., Burke, J. P., Dickman, M. L. & Smith, C. B. Factors predisposing to bacteriuria during indwelling urethral catheterization. <i>The New England journal of medicine</i> 291, 215-219, doi:10.1056/NEIM197408012910501 (1974). Norden, C. W., Green, G. M. & Kass, E. H. Antibacterial mechanisms of the urinary bladder. <i>The Journal of clinical investigation</i> 47, 2689-2700, doi:10.1172/iCI105952 (1968). Warren, J. W. Catheter-associated urinary tract infections. <i>Infectious disease clinics of North America</i> 11, 609-622 (1997).<td></td><td></td><td></td>			
 (UPEC): Optimization through Iterative Rational Drug Design. <i>J Med Chem</i> 62, 467-479, doi:10.1021/acs.jmedchem.8b01561 (2019). Nett, J. E. & Andes, D. R. Contributions of the Biofilm Matrix to Candida Pathogenesis. <i>J Fungi</i> (<i>Basel</i>) 6, doi:10.3390/jof6010021 (2020). Wall, G., Montelongo-Jauregui, D., Vidal Bonifacio, B., Lopez-Ribot, J. L. & Uppuluri, P. Candida albicans biofilm growth and dispersal: contributions to pathogenesis. <i>Curr Opin Microbiol</i> 52, 1- 6, doi:10.1016/j.mib.2019.04.001 (2019). Coste, A. T. <i>et al.</i> Emerging echinocandin-resistant Candida albicans and glabrata in Switzerland. <i>Infection</i> 48, 761-766, doi:10.1007/s15010-020-01475-8 (2020). Pristov, K. E. & Ghannoum, M. A. Resistance of Candida to azoles and echinocandins worldwide. <i>Clinical Microbiology and Infection</i> 25, 792-798, doi:<u>https://doi.org/10.1016/j.cmi.2019.03.028</u> (2019). Fisher, J. F., Sobel, J. D., Kauffman, C. A. & Newman, C. A. Candida urinary tract infections treatment. <i>Clin Infect Dis</i> 52 Suppl 6, 5457-466, doi:10.1093/cid/ciri12 (2011). O'Brien, V. P., Hannan, T. J., Nielsen, H. V. & Hutgren, S. J. Drug and Vaccine Development for the Treatment and Prevention of Urinary Tract Infections. <i>Microbiology spectrum</i> 4, doi:10.1128/microbiolspec.UTI-0013-2012 (2016). Garibaldi, R. A., Burke, J. P., Dickman, M. L. & Smith, C. B. Factors predisposing to bacteriuria during indwelling urethral catheterization. <i>The New England journal of medicine</i> 291, 215-219, doi:10.1056/NEIM197408012910501 (1974). Norden, C. W., Green, G. M. & Kass, E. H. Antibacterial mechanisms of the urinary bladder. <i>The</i> <i>Journal of clinical investigation</i> 47, 2689-2700, doi:10.1172/ICI105952 (1968). Warren, J. W. Catheter-associated urinary tract infections. <i>Infectious disease clinics of North</i> <i>America</i> 11, 609-622 (1997). Parsons, C. L. Pathopenesis of urinary tract infections. <i>Infectious disease clinic</i>			
 doi:10.1021/acs.jmedchem.8b01561 (2019). Nett, J. E. & Andes, D. R. Contributions of the Biofilm Matrix to Candida Pathogenesis. <i>J Fungi</i> (<i>Basel</i>) 6, doi:10.3390/jof6010021 (2020). Wall, G., Montelongo-Jauregui, D., Vidal Bonifacio, B., Lopez-Ribot, J. L. & Uppuluri, P. Candida albicans biofilm growth and dispersal: contributions to pathogenesis. <i>Curr Opin Microbiol</i> 52, 1-6, doi:10.1016/j.mib.2019.04.001 (2019). Coste, A. T. <i>et al.</i> Emerging echinocandin-resistant Candida albicans and glabrata in Switzerland. <i>Infection</i> 48, 761-766, doi:10.1007/s15010-020-01475-8 (2020). Cristo, K. E. & Ghannoum, M. A. Resistance of Candida to azoles and echinocandins worldwide. <i>Clinical Microbiology and Infection</i> 25, 792-798, doi:https://doi.org/10.1016/j.cmi.2019.03.028 (2019). Fisher, J. F., Sobel, J. D., Kauffman, C. A. & Newman, C. A. Candida urinary tract infections-treatment. <i>Clin Infect Dis</i> 52 Suppl 6, 5457-466, doi:10.1093/cid/cir112 (2011). O'Brien, V. P., Hannan, T. J., Nielsen, H. V. & Hultgren, S. J. Drug and Vaccine Development for the Treatment and Prevention of Urinary Tract Infections. <i>Microbiology spectrum</i> 4, doi:10.1128/microbiolspec.UTI-0013-2012 (2016). Garibaldi, R. A., Burke, J. P., Dickman, M. L. & Smith, C. B. Factors predisposing to bacteriuria during indwelling urethral catheterization. <i>The New England journal of medicine</i> 291, 215-219, doi:10.1056/NEIM1970408012910501 (1974). Norden, C. W., Green, G. M. & Kass, E. H. Antibacterial mechanisms of the urinary bladder. <i>The Journal of clinical investigation</i> 47, 2689-2700, doi:10.1172/JC1105952 (1968). Warren, J. W. Catheter-associated urinary tract infections. <i>Bacterial adherence</i>, bladder defense mechanisms. <i>The Urologic Clinics of North America</i> 13, 563-568 (1986). Parsons, C. L. Pathogenesis of urinary tract infections. Bacterial adherence, bladder defense mechanisms. <i>The Urologic Clinisof Nort</i>		23	
 Nett, J. E. & Andes, D. R. Contributions of the Biofilm Matrix to Candida Pathogenesis. <i>J Fungi</i> (<i>Basel</i>) 6, doi:10.3390/jof6010021 (2020). Wall, G., Montelongo-Jauregui, D., Vidal Bonifacio, B., Lopez-Ribot, J. L. & Uppuluri, P. Candida albicans biofilm growth and dispersal: contributions to pathogenesis. <i>Curr Opin Microbiol</i> 52, 1- 6, doi:10.1016/j.mib.2019.04.001 (2019). Coste, A. T. <i>et al.</i> Emerging echinocandin-resistant Candida albicans and glabrata in Switzerland. <i>Infection</i> 48, 761-766, doi:10.1007/s15010-020-01475-8 (2020). Pristov, K. E. & Ghannoum, M. A. Resistance of Candida to azoles and echinocandins worldwide. <i>Clinical Microbiology and Infection</i> 25, 792-798, doi:<u>https://doi.org/10.1016/j.cmi.2019.03.028</u> (2019). Fisher, J. F., Sobel, J. D., Kauffman, C. A. & Newman, C. A. Candida urinary tract infections- treatment. <i>Clin Infect Dis</i> 52 Suppl 6, S457-466, doi:10.1093/cid/cir112 (2011). O'Brien, V. P., Hannan, T. J., Nielsen, H. V. & Hultgren, S. J. Drug and Vaccine Development for the Treatment and Prevention of Uninary Tract Infections. <i>Microbiology spectrum</i> 4, doi:10.1128/microbiolspec.UTI-0013-2012 (2016). Garibaldi, R. A., Burke, J. P., Dickman, M. L. & Smith, C. B. Factors predisposing to bacteriuria during indwelling urethral catheterization. <i>The New England journal of medicine</i> 291, 215-219, doi:10.1056/NEIM197408012910501 (1974). Norden, C. W., Green, G. M. & Kass, E. H. Antibacterial mechanisms of the urinary bladder. <i>The Journal of clinical investigation</i> 47, 2689-2700, doi:10.1172/JCI105952 (1968). Warren, J. W. Catheter-associated urinary tract infections. <i>Infectious disease clinics of North America</i> 11, 609-622 (1997). Parsons, C. L. Pathogenesis of urinary tract infections. Bacterial adherence, bladder defense mechanisms. <i>The Urologic clinics of North America</i> 13, 563-568 (1986). Flores-Mireles, A. L. <i>et al.</i> Anttibody-Based Th			
 (Basel) 6, doi:10.3390/jof6010021 (2020). Wall, G., Montelongo-Jauregui, D., Vidal Bonifacio, B., Lopez-Ribot, J. L. & Uppuluri, P. Candida albicans biofilm growth and dispersal: contributions to pathogenesis. <i>Curr Opin Microbiol</i> 52, 1-6, doi:10.1016/j.mib.2019.04.001 (2019). Coste, A. T. <i>et al.</i> Emerging echinocandin-resistant Candida albicans and glabrata in Switzerland. <i>Infection</i> 48, 761-766, doi:10.1007/S15010-020-01475-8 (2020). Pristov, K. E. & Ghannoum, M. A. Resistance of Candida to azoles and echinocandins worldwide. <i>Clinical Microbiology and Infection</i> 25, 792-798, doi:https://doi.org/10.1016/j.cmi.2019.03.028 (2019). Fisher, J. F., Sobel, J. D., Kauffman, C. A. & Newman, C. A. Candida urinary tract infectionstreatment. <i>Clin Infect Dis</i> 52 Suppl 6, S457-466, doi:10.1093/cid/cir112 (2011). O'Brien, V. P., Hannan, T. J., Nielsen, H. V. & Hultgren, S. J. Drug and Vaccine Development for the Treatment and Prevention of Urinary Tract Infections. <i>Microbiology spectrum</i> 4, doi:10.1128/microbiolspec.UTI-0013-2012 (2016). Garibaldi, R. A., Burke, J. P., Dickman, M. L. & Smith, C. B. Factors predisposing to bacteriuria during indwelling urethral catheterization. <i>The New England journal of medicine</i> 291, 215-219, doi:10.1056/NEIM197408012910501 (1974). Norden, C. W., Green, G. M. & Kass, E. H. Antibacterial mechanisms of the urinary bladder. <i>The Journal of clinical investigation</i> 47, 2689-2700, doi:10.1172/JCI105952 (1968). Warren, J. W. Catheter-associated urinary tract infections. <i>Infectious disease clinics of North America</i> 11, 609-622 (1997). Parsons, C. L. Pathogenesis of urinary tract infections. <i>Bacterial</i> adherence, bladder defense mechanisms. The <i>Urologis of Unitary tract</i> infections. <i>Bacterial</i> adherence, bladder defense mechanisms. <i>The Urologis of Unitary tract</i> infections. J. 563-688 (1986). Flores-Mireles, A. L. <i>et al.</i> Antibody-Based Therap			
 Wall, G., Montelongo-Jauregui, D., Vidal Bonifacio, B., Lopez-Ribot, J. L. & Uppuluri, P. Candida albicans biofilm growth and dispersal: contributions to pathogenesis. <i>Curr Opin Microbiol</i> 52, 1- 6, doi:10.1016/j.mib.2019.04.001 (2019). Coste, A. T. <i>et al.</i> Emerging echinocandin-resistant Candida albicans and glabrata in Switzerland. <i>Infection</i> 48, 761-766, doi:10.1007/s15010-020-01475-8 (2020). Pristov, K. E. & Ghannoum, M. A. Resistance of Candida to azoles and echinocandins worldwide. <i>Clinical Microbiology and Infection</i> 25, 792-798, doi:<u>https://doi.org/10.1016/j.cmi.2019.03.028</u> (2019). Fisher, J. F., Sobel, J. D., Kauffman, C. A. & Newman, C. A. Candida urinary tract infections- treatment. <i>Clin Infect Dis</i> 52 Suppl 6, S457-466, doi:10.1093/cid/cir112 (2011). O'Brien, V. P., Hannan, T. J., Nielsen, H. V. & Hultgren, S. J. Drug and Vaccine Development for the Treatment and Prevention of Urinary Tract Infections. <i>Microbiology spectrum</i> 4, doi:10.1128/microbiolspec.UTI-0013-2012 (2016). Garibaldi, R. A., Burke, J. P., Dickman, M. L. & Smith, C. B. Factors predisposing to bacteriuria during indwelling urethral catheterization. <i>The New England journal of medicine</i> 291, 215-219, doi:10.1056/NEJM197408012910501 (1974). Norden, C. W., Green, G. M. & Kass, E. H. Antibacterial mechanisms of the urinary bladder. <i>The Journal of clinical investigation</i> 47, 2689-2700, doi:10.1172/JCI105952 (1968). Warren, J. W. Catheter-associated urinary tract infections. <i>Infectious disease clinics of North America</i> 11, 609-622 (1997). Parsons, C. L. Pathogenesis of urinary tract infections. Bacterial adherence, bladder defense mechanisms. <i>The Urologic clinics of North America</i> 13, 563-568 (1986). Flores-Mireles, A. L. <i>et al.</i> Antibody-Based Therapy for Enterococcal Catheter-Associated Urinary Tract Infections. <i>Mbio</i> 7, doi:10.1128/mBio.01653-16 (2016). Flores-Mireles, A. L. <i>et al.</i>		24	
 albicans biofilm growth and dispersal: contributions to pathogenesis. <i>Curr Opin Microbiol</i> 52, 1-6, doi:10.1016/j.mib.2019.04.001 (2019). Coste, A. T. <i>et al.</i> Emerging echinocandin-resistant Candida albicans and glabrata in Switzerland. <i>Infection</i> 48, 761-766, doi:10.1007/s15010-020-01475-8 (2020). Pristov, K. E. & Ghannoum, M. A. Resistance of Candida to azoles and echinocandins worldwide. <i>Clinical Microbiology and Infection</i> 25, 792-798, doi:https://doi.org/10.1016/j.cmi.2019.03.028 (2019). Fisher, J. F., Sobel, J. D., Kauffman, C. A. & Newman, C. A. Candida urinary tract infections treatment. <i>Clin Infect Dis</i> 25 Suppl 6, 5457-466, doi:10.1093/cid/cir112 (2011). O'Brien, V. P., Hannan, T. J., Nielsen, H. V. & Hultgren, S. J. Drug and Vaccine Development for the Treatment and Prevention of Urinary Tract Infections. <i>Microbiology spectrum</i> 4, doi:10.1128/microbiolspec.UTI-0013-2012 (2016). Garibaldi, R. A., Burke, J. P., Dickman, M. L. & Smith, C. B. Factors predisposing to bacteriuria during indwelling urethral catheterization. <i>The New England journal of medicine</i> 291, 215-219, doi:10.0156/NEJM197408012910501 (1974). Norden, C. W., Green, G. M. & Kass, E. H. Antibacterial mechanisms of the urinary bladder. <i>The Journal of clinical investigation</i> 47, 2689-2700, doi:10.1172/JCl105952 (1968). Warren, J. W. Catheter-associated urinary tract infections. <i>Infectious disease clinics of North America</i> 11, 609-622 (1997). Parsons, C. L. Pathogenesis of urinary tract infections. Bacterial adherence, bladder defense mechanisms. <i>The Urologic clinics of North America</i> 13, 563-568 (1986). Flores-Mireles, A. L. <i>et al.</i> Antibody-Based Therapy for Enterococcal Catheter-Associated Urinary Tract Infections. <i>Mbio</i> 7, doi:10.1128/mBio.01653-16 (2016). Flores-Mireles, A. L. <i>et al.</i> Antibody-Based Therapy for Enterococcal Catheter-Associated Urinary Tract Infections. <i>Mbio</i> 7, doi			
 6, doi:10.1016/j.mib.2019.04.001 (2019). Coste, A. T. <i>et al.</i> Emerging echinocandin-resistant Candida albicans and glabrata in Switzerland. <i>Infection</i> 48, 761-766, doi:10.1007/s15010-020-01475-8 (2020). Pristov, K. E. & Ghannoum, M. A. Resistance of Candida to azoles and echinocandins worldwide. <i>Clinical Microbiology and Infection</i> 25, 792-798, doi:https://doi.org/10.1016/j.cmi.2019.03.028 (2019). Fisher, J. F., Sobel, J. D., Kauffman, C. A. & Newman, C. A. Candida urinary tract infections treatment. <i>Clin Infect Dis</i> 52 Suppl 6, S457-466, doi:10.1093/cid/cir112 (2011). O'Brien, V. P., Hannan, T. J., Nielsen, H. V. & Hultgren, S. J. Drug and Vaccine Development for the Treatment and Prevention of Urinary Tract Infections. <i>Microbiology spectrum</i> 4, doi:10.1128/microbiolspec.UTI-0013-2012 (2016). Garibaldi, R. A., Burke, J. P., Dickman, M. L. & Smith, C. B. Factors predisposing to bacteriuria during indwelling urethral catheterization. <i>The New England journal of medicine</i> 291, 215-219, doi:10.1056/NEIM197408012910501 (1974). Norden, C. W., Green, G. M. & Kass, E. H. Antibacterial mechanisms of the urinary bladder. <i>The Journal of clinical investigation</i> 47, 2689-2700, doi:10.1172/JCI105952 (1968). Warren, J. W. Catheter-associated urinary tract infections. <i>Infectious disease clinics of North America</i> 11, 609-622 (1997). Parsons, C. L. Pathogenesis of urinary tract infections. Bacterial adherence, bladder defense mechanisms. <i>The Urologic clinics of North America</i> 13, 563-568 (1986). Flores-Mireles, A. L., Pinkner, J. S., Caparon, M. G. & Hultgren, S. J. EbpA vaccine antibodies block binding of Enterococcus faecalis to fibrinogen to prevent catheter-associated bladder infection in mice. <i>Sci Transl Med</i> 6, 254ra127, doi:10.1126/scitransImed.3009384 (2014). Flores-Mireles, A. L. <i>et al.</i> Antibody-Based Therapy for Enterococcal Catheter-Associated Urinary Tract Infect		25	
 26 Coste, A. T. <i>et al.</i> Emerging echinocandin-resistant Candida albicans and glabrata in Switzerland. <i>Infection</i> 48, 761-766, doi:10.1007/s15010-020-01475-8 (2020). 27 Pristov, K. E. & Ghannoum, M. A. Resistance of Candida to azoles and echinocandins worldwide. <i>Clinical Microbiology and Infection</i> 25, 792-798, doi:https://doi.org/10.1016/j.cmi.2019.03.028 (2019). 28 Fisher, J. F., Sobel, J. D., Kauffman, C. A. & Newman, C. A. Candida urinary tract infections treatment. <i>Clin Infect Dis</i> 52 Suppl 6, 5457-466, doi:10.1093/cid/cir112 (2011). 29 O'Brien, V. P., Hannan, T. J., Nielsen, H. V. & Hultgren, S. J. Drug and Vaccine Development for the Treatment and Prevention of Urinary Tract Infections. <i>Microbiology spectrum</i> 4, doi:10.1128/microbiolspec.UTI-0013-2012 (2016). 30 Garibaldi, R. A., Burke, J. P., Dickman, M. L. & Smith, C. B. Factors predisposing to bacteriuria during indwelling urethral catheterization. <i>The New England journal of medicine</i> 291, 215-219, doi:10.1056/NEIM197408012910501 (1974). 31 Norden, C. W., Green, G. M. & Kass, E. H. Antibacterial mechanisms of the urinary bladder. <i>The Journal of clinical investigation</i> 47, 2689-2700, doi:10.1172/JCI105952 (1968). 32 Warren, J. W. Catheter-associated urinary tract infections. <i>Infectious disease clinics of North America</i> 11, 609-622 (1997). 33 Parsons, C. L. Pathogenesis of urinary tract infections. Bacterial adherence, bladder defense mechanisms. <i>The Urologic clinics of North America</i> 13, 563-568 (1986). 34 Flores-Mireles, A. L., Pinkner, J. S., Caparon, M. G. & Hultgren, S. J. EbpA vaccine antibodies block binding of Enterococcus faecalis to fibrinogen to prevent catheter-Associated bladder infection in mice. <i>Sci Transl Med</i> 6, 2547127, doi:10.1126/scitransImed.3009384 (2014). 55 Flores-Mireles, A. L. <i>et al.</i> Antibody-Based Therapy for Enterococcal Catheter-Associated Urinary Tract Infections.			
 Infection 48, 761-766, doi:10.1007/s15010-020-01475-8 (2020). Pristov, K. E. & Ghannoum, M. A. Resistance of Candida to azoles and echinocandins worldwide. <i>Clinical Microbiology and Infection</i> 25, 792-798, doi:https://doi.org/10.1016/j.cmi.2019.03.028 (2019). Fisher, J. F., Sobel, J. D., Kauffman, C. A. & Newman, C. A. Candida urinary tract infections treatment. <i>Clin Infect Dis</i> 52 Suppl 6, S457-466, doi:10.1093/cid/cir112 (2011). O'Brien, V. P., Hannan, T. J., Nielsen, H. V. & Hultgren, S. J. Drug and Vaccine Development for the Treatment and Prevention of Urinary Tract Infections. <i>Microbiology spectrum</i> 4, doi:10.1128/microbiolspec.UTI-0013-2012 (2016). Garibaldi, R. A., Burke, J. P., Dickman, M. L. & Smith, C. B. Factors predisposing to bacteriuria during indwelling urethral catheterization. <i>The New England journal of medicine</i> 291, 215-219, doi:10.1056/NEJM197408012910501 (1974). Norden, C. W., Green, G. M. & Kass, E. H. Antibacterial mechanisms of the urinary bladder. <i>The Journal of clinical investigation</i> 47, 2689-2700, doi:10.1172/JCl105952 (1968). Warren, J. W. Catheter-associated urinary tract infections. <i>Infectious disease clinics of North America</i> 11, 609-622 (1997). Parsons, C. L. Pathogenesis of urinary tract infections. Bacterial adherence, bladder defense mechanisms. <i>The Urologic clinics of North America</i> 13, 563-568 (1986). Flores-Mireles, A. L. <i>et al.</i> Antibody-Based Therapy for Enterococcal Catheter-Associated Urinary Tract Infections. <i>Mbio</i> 7, doi:10.1128/mBio.01653-16 (2016). Flores-Mireles, A. L. <i>et al.</i> Antibody-Based Therapy for Enterococcal Catheter-Associated Urinary Tract Infections. <i>Mbio</i> 7, doi:10.1128/mBio.01653-16 (2016). Guiton, P. S., Hannan, T. J., Ford, B., Caparon, M. G. & Hultgren, S. J. Enterococcus faecalis overcomes foreign body-mediated inflammation to establish urinary tract infections. <i>Infect</i> <i>Immu</i> 81, 329-339, do			•
 Pristov, K. E. & Ghannoum, M. A. Resistance of Candida to azoles and echinocandins worldwide. <i>Clinical Microbiology and Infection</i> 25, 792-798, doi:<u>https://doi.org/10.1016/j.cmi.2019.03.028</u> (2019). Fisher, J. F., Sobel, J. D., Kauffman, C. A. & Newman, C. A. Candida urinary tract infections treatment. <i>Clin Infect Dis</i> 52 Suppl 6, S457-466, doi:10.1093/cid/cir112 (2011). O'Brien, V. P., Hannan, T. J., Nielsen, H. V. & Hultgren, S. J. Drug and Vaccine Development for the Treatment and Prevention of Urinary Tract Infections. <i>Microbiology spectrum</i> 4, doi:10.1128/microbiolspec.UTI-0013-2012 (2016). Garibaldi, R. A., Burke, J. P., Dickman, M. L. & Smith, C. B. Factors predisposing to bacteriuria during indwelling urethral catheterization. <i>The New England journal of medicine</i> 291, 215-219, doi:10.1056/NEJM197408012910501 (1974). Norden, C. W., Green, G. M. & Kass, E. H. Antibacterial mechanisms of the urinary bladder. <i>The Journal of clinical investigation</i> 47, 2689-2700, doi:10.1172/JCI105952 (1968). Warren, J. W. Catheter-associated urinary tract infections. <i>Infectious disease clinics of North America</i> 11, 609-622 (1997). Parsons, C. L. Pathogenesis of urinary tract infections. Bacterial adherence, bladder defense mechanisms. <i>The Urologic clinics of North America</i> 13, 563-568 (1986). Flores-Mireles, A. L., Pinkner, J. S., Caparon, M. G. & Hultgren, S. J. EbpA vaccine antibodies block binding of Enterococcus faecalis to fibrinogen to prevent catheter-associated Urinary tract Infections. <i>Mbio</i> 7, doi:Antibody-Based Therapy for Enterococcal Catheter-Associated Urinary Tract Infections. <i>Mbio</i> 7, doi:ARTN e01653-16 (2016). Flores-Mireles, A. L. <i>et al.</i> Antibody-Based Therapy for Enterococcal Catheter-Associated Urinary Tract Infections. <i>Mbio</i> 7, doi:ARTN e01653-16 (2016). Guiton, P. S., Hannan, T. J., Ford, B., Caparon, M. G. & Hultgren, S. J. Enterococcus faecalis overcomes for		26	
 <i>Clinical Microbiology and Infection</i> 25, 792-798, doi:https://doi.org/10.1016/j.cmi.2019.03.028 (2019). Fisher, J. F., Sobel, J. D., Kauffman, C. A. & Newman, C. A. Candida urinary tract infections treatment. <i>Clin Infect Dis</i> 52 Suppl 6, 5457-466, doi:10.1093/cid/cir112 (2011). O'Brien, V. P., Hannan, T. J., Nielsen, H. V. & Hultgren, S. J. Drug and Vaccine Development for the Treatment and Prevention of Urinary Tract Infections. <i>Microbiology spectrum</i> 4, doi:10.1128/microbiolspec.UTI-0013-2012 (2016). Garibaldi, R. A., Burke, J. P., Dickman, M. L. & Smith, C. B. Factors predisposing to bacteriuria during indwelling urethral catheterization. <i>The New England journal of medicine</i> 291, 215-219, doi:10.1056/NEJM197408012910501 (1974). Norden, C. W., Green, G. M. & Kass, E. H. Antibacterial mechanisms of the urinary bladder. <i>The Journal of clinical investigation</i> 47, 2689-2700, doi:10.1172/JCI105952 (1968). Warren, J. W. Catheter-associated urinary tract infections. <i>Infectious disease clinics of North America</i> 11, 609-622 (1997). Parsons, C. L. Pathogenesis of urinary tract infections. Bacterial adherence, bladder defense mechanisms. <i>The Urologic clinics of North America</i> 13, 563-568 (1986). Flores-Mireles, A. L., Pinkner, J. S., Caparon, M. G. & Hultgren, S. J. EbpA vaccine antibodies block binding of Enterococcus faecalis to fibrinogen to prevent catheter-associated bladder infection in mice. <i>Sci Transl Med</i> 6, 254ra127, doi:10.1126/scitranslmed.3009384 (2014). Flores-Mireles, A. L. <i>et al.</i> Antibody-Based Therapy for Enterococcal Catheter-Associated Urinary Tract Infections. <i>Mbio</i> 7, doi:10.1128/mBio.01653-16 (2016). Flores-Mireles, A. L. <i>et al.</i> Antibody-Based Therapy for Enterococcal Catheter-Associated Urinary Tract Infections. <i>Mbio</i> 7, doi:20.1128/MBio.01653-16 (2016). Guiton, P. S., Hannan, T. J., Ford, B., Caparon, M. G. & Hultgren, S. J. E			
 (2019). (2019). Fisher, J. F., Sobel, J. D., Kauffman, C. A. & Newman, C. A. Candida urinary tract infections treatment. <i>Clin Infect Dis</i> 52 Suppl 6, S457-466, doi:10.1093/cid/cir112 (2011). O'Brien, V. P., Hannan, T. J., Nielsen, H. V. & Hultgren, S. J. Drug and Vaccine Development for the Treatment and Prevention of Urinary Tract Infections. <i>Microbiology spectrum</i> 4, doi:10.1128/microbiolspec.UTI-0013-2012 (2016). Garibaldi, R. A., Burke, J. P., Dickman, M. L. & Smith, C. B. Factors predisposing to bacteriuria during indwelling urethral catheterization. <i>The New England journal of medicine</i> 291, 215-219, doi:10.1056/NEJM197408012910501 (1974). Norden, C. W., Green, G. M. & Kass, E. H. Antibacterial mechanisms of the urinary bladder. <i>The Journal of clinical investigation</i> 47, 2689-2700, doi:10.1172/JCI105952 (1968). Warren, J. W. Catheter-associated urinary tract infections. <i>Infectious disease clinics of North America</i> 11, 609-622 (1997). Parsons, C. L. Pathogenesis of urinary tract infections. Bacterial adherence, bladder defense mechanisms. <i>The Urologic clinics of North America</i> 13, 563-568 (1986). Flores-Mireles, A. L., Pinkner, J. S., Caparon, M. G. & Hultgren, S. J. EbpA vaccine antibodies block binding of Enterococcus faecalis to fibrinogen to prevent catheter-associated bladder infection in mice. <i>Sci Transl Med</i> 6, 254ra127, doi:10.1126/scitranslmed.3009384 (2014). Flores-Mireles, A. L. <i>et al.</i> Antibody-Based Therapy for Enterococcal Catheter-Associated Urinary Tract Infections. <i>Mbio</i> 7, doi:201128/mBio.01653-16 (2016). Guiton, P. S., Hannan, T. J., Ford, B., Caparon, M. G. & Hultgren, S. J. Enterococcus faecalis overcomes foreign body-mediated inflammation to establish urinary tract infections. <i>Infect Immu</i> 81, 329-339, doi:10.1128/MBio.01653-16 (2016). Guiton, P. S., Hannan, T. J., Ford, B., Caparon, M. G. & Hultgren, S. J. Enterococcus faecalis overcomes foreign bod		27	
 Fisher, J. F., Sobel, J. D., Kauffman, C. A. & Newman, C. A. Candida urinary tract infections treatment. <i>Clin Infect Dis</i> 52 Suppl 6, S457-466, doi:10.1093/cid/cir112 (2011). O'Brien, V. P., Hannan, T. J., Nielsen, H. V. & Hultgren, S. J. Drug and Vaccine Development for the Treatment and Prevention of Urinary Tract Infections. <i>Microbiology spectrum</i> 4, doi:10.1128/microbiolspec.UTI-0013-2012 (2016). Garibaldi, R. A., Burke, J. P., Dickman, M. L. & Smith, C. B. Factors predisposing to bacteriuria during indwelling urethral catheterization. <i>The New England journal of medicine</i> 291, 215-219, doi:10.1056/NEJM197408012910501 (1974). Norden, C. W., Green, G. M. & Kass, E. H. Antibacterial mechanisms of the urinary bladder. <i>The Journal of clinical investigation</i> 47, 2689-2700, doi:10.1172/JCI105952 (1968). Warren, J. W. Catheter-associated urinary tract infections. <i>Infectious disease clinics of North America</i> 11, 609-622 (1997). Parsons, C. L. Pathogenesis of urinary tract infections. Bacterial adherence, bladder defense mechanisms. <i>The Urologic clinics of North America</i> 13, 563-568 (1986). Flores-Mireles, A. L., Pinkner, J. S., Caparon, M. G. & Hultgren, S. J. EbpA vaccine antibodies block binding of Enterococcus faecalis to fibrinogen to prevent catheter-associated bladder infection in mice. <i>Sci Transl Med</i> 6, 254ra127, doi:10.1126/scitranslmed.3009384 (2014). Flores-Mireles, A. L. <i>et al.</i> Antibody-Based Therapy for Enterococcal Catheter-Associated Urinary Tract Infections. <i>Mbio</i> 7, doi:20.1128/mBio.01653-16 (2016). Flores-Mireles, A. L. <i>et al.</i> Antibody-Based Therapy for Enterococcal Catheter-Associated Urinary Tract Infections. <i>Mbio</i> 7, doi:20.1128/JAI.00856-12 (2013). Guiton, P. S., Hannan, T. J., Ford, B., Caparon, M. G. & Hultgren, S. J. Enterococcus faecalis overcomes foreign body-mediated inflammation to establish urinary tract infections. <i>Infect</i> <i></i>			
 treatment. <i>Clin Infect Dis</i> 52 Suppl 6, S457-466, doi:10.1093/cid/cir112 (2011). O'Brien, V. P., Hannan, T. J., Nielsen, H. V. & Hultgren, S. J. Drug and Vaccine Development for the Treatment and Prevention of Urinary Tract Infections. <i>Microbiology spectrum</i> 4, doi:10.1128/microbiolspec.UTI-0013-2012 (2016). Garibaldi, R. A., Burke, J. P., Dickman, M. L. & Smith, C. B. Factors predisposing to bacteriuria during indwelling urethral catheterization. <i>The New England journal of medicine</i> 291, 215-219, doi:10.1056/NEJM197408012910501 (1974). Norden, C. W., Green, G. M. & Kass, E. H. Antibacterial mechanisms of the urinary bladder. <i>The Journal of clinical investigation</i> 47, 2689-2700, doi:10.1172/JCI105952 (1968). Warren, J. W. Catheter-associated urinary tract infections. <i>Infectious disease clinics of North America</i> 11, 609-622 (1997). Parsons, C. L. Pathogenesis of urinary tract infections. Bacterial adherence, bladder defense mechanisms. <i>The Urologic clinics of North America</i> 13, 563-568 (1986). Flores-Mireles, A. L., Pinkner, J. S., Caparon, M. G. & Hultgren, S. J. EbpA vaccine antibodies block binding of Enterococcus faecalis to fibrinogen to prevent catheter-associated bladder infection in mice. <i>Sci Transl Med</i> 6, 254ra127, doi:10.1126/scitranslmed.3009384 (2014). Flores-Mireles, A. L. <i>et al.</i> Antibody-Based Therapy for Enterococcal Catheter-Associated Urinary Tract Infections. <i>Mbio</i> 7, doi:20.1128/mBio.01653-16 (2016). Flores-Mireles, A. L. <i>et al.</i> Antibody-Based Therapy for Enterococcal Catheter-Associated Urinary Tract Infections. <i>Mbio</i> 7, doi:20.1128/MBio.01653-16 (2016). Guiton, P. S., Hannan, T. J., Ford, B., Caparon, M. G. & Hultgren, S. J. Enterococcus faecalis overcomes foreign body-mediated inflammation to establish urinary tract infections. <i>Infect</i> <i>Immun</i> 81, 329-339, doi:10.1128/IAI.00856-12 (2013). Guiton, P. S., Hannan, T. J., Ford, B., Caparon, M. G. & Hultgren, S. J. Enterococcal biofi			
 O'Brien, V. P., Hannan, T. J., Nielsen, H. V. & Hultgren, S. J. Drug and Vaccine Development for the Treatment and Prevention of Urinary Tract Infections. <i>Microbiology spectrum</i> 4, doi:10.1128/microbiolspec.UTI-0013-2012 (2016). Garibaldi, R. A., Burke, J. P., Dickman, M. L. & Smith, C. B. Factors predisposing to bacteriuria during indwelling urethral catheterization. <i>The New England journal of medicine</i> 291, 215-219, doi:10.1056/NEJM197408012910501 (1974). Norden, C. W., Green, G. M. & Kass, E. H. Antibacterial mechanisms of the urinary bladder. <i>The Journal of clinical investigation</i> 47, 2689-2700, doi:10.1172/JCI105952 (1968). Warren, J. W. Catheter-associated urinary tract infections. <i>Infectious disease clinics of North America</i> 11, 609-622 (1997). Parsons, C. L. Pathogenesis of urinary tract infections. Bacterial adherence, bladder defense mechanisms. <i>The Urologic clinics of North America</i> 13, 563-568 (1986). Flores-Mireles, A. L., Pinkner, J. S., Caparon, M. G. & Hultgren, S. J. EbpA vaccine antibodies block binding of Enterococcus faecalis to fibrinogen to prevent catheter-associated bladder infection in mice. <i>Sci Transl Med</i> 6, 254ra127, doi:10.1126/scitransImed.3009384 (2014). Flores-Mireles, A. L. <i>et al.</i> Antibody-Based Therapy for Enterococcal Catheter-Associated Urinary Tract Infections. <i>Mbio</i> 7, doi:10.1128/mBio.01653-16 (2016). Flores-Mireles, A. L. <i>et al.</i> Antibody-Based Therapy for Enterococcal Catheter-Associated Urinary Tract Infections. <i>Mbio</i> 7, doi:10.1128/mBio.01653-16 (2016). Guiton, P. S., Hannan, T. J., Ford, B., Caparon, M. G. & Hultgren, S. J. Enterococcus faecalis overcomes foreign body-mediated inflammation to establish urinary tract infections. <i>Infect</i> <i>Immun</i> 81, 329-339, doi:10.1128/IAI.00856-12 (2013). Guiton, P. S., Hung, C. S., Hancock, L. E., Caparon, M. G. & Hultgren, S. J. Enterococcus laecalis overcomes foreign body-mediated inflammation to establish urinary tract infections.		28	
 the Treatment and Prevention of Urinary Tract Infections. <i>Microbiology spectrum</i> 4, doi:10.1128/microbiolspec.UTI-0013-2012 (2016). Garibaldi, R. A., Burke, J. P., Dickman, M. L. & Smith, C. B. Factors predisposing to bacteriuria during indwelling urethral catheterization. <i>The New England journal of medicine</i> 291, 215-219, doi:10.1056/NEJM197408012910501 (1974). Norden, C. W., Green, G. M. & Kass, E. H. Antibacterial mechanisms of the urinary bladder. <i>The Journal of clinical investigation</i> 47, 2689-2700, doi:10.1172/JCI105952 (1968). Warren, J. W. Catheter-associated urinary tract infections. <i>Infectious disease clinics of North America</i> 11, 609-622 (1997). Parsons, C. L. Pathogenesis of urinary tract infections. Bacterial adherence, bladder defense mechanisms. <i>The Urologic clinics of North America</i> 13, 563-568 (1986). Flores-Mireles, A. L., Pinkner, J. S., Caparon, M. G. & Hultgren, S. J. EbpA vaccine antibodies block binding of Enterococcus faecalis to fibrinogen to prevent catheter-associated Urinary Tract Infections. <i>Mico</i> 3009384 (2014). Flores-Mireles, A. L. <i>et al.</i> Antibody-Based Therapy for Enterococcal Catheter-Associated Urinary Tract Infections. <i>Mbio</i> 7, doi:10.1128/mBio.01653-16 (2016). Flores-Mireles, A. L. <i>et al.</i> Antibody-Based Therapy for Enterococcal Catheter-Associated Urinary Tract Infections. <i>Mbio</i> 7, doi:10.1128/mBio.01653-16 (2016). Flores-Mireles, A. L. <i>et al.</i> Antibody-Based Therapy for Enterococcal Catheter-Associated Urinary Tract Infections. <i>Mbio</i> 7, doi:ARTN e01653-1610.1128/mBio.01653-16 (2016). Guiton, P. S., Hannan, T. J., Ford, B., Caparon, M. G. & Hultgren, S. J. Enterococcus faecalis overcomes foreign body-mediated inflammation to establish urinary tract infections. <i>Infect Immun</i> 81, 329-339, doi:10.1128/IAI.00856-12 (2013). Guiton, P. S., Hung, C. S., Hancock, L. E., Caparon, M. G. & Hultgren, S. J. Enterococcus biofilm formation			
 doi:10.1128/microbiolspec.UTI-0013-2012 (2016). Garibaldi, R. A., Burke, J. P., Dickman, M. L. & Smith, C. B. Factors predisposing to bacteriuria during indwelling urethral catheterization. <i>The New England journal of medicine</i> 291, 215-219, doi:10.1056/NEJM197408012910501 (1974). Norden, C. W., Green, G. M. & Kass, E. H. Antibacterial mechanisms of the urinary bladder. <i>The Journal of clinical investigation</i> 47, 2689-2700, doi:10.1172/JCI105952 (1968). Warren, J. W. Catheter-associated urinary tract infections. <i>Infectious disease clinics of North</i> <i>America</i> 11, 609-622 (1997). Parsons, C. L. Pathogenesis of urinary tract infections. Bacterial adherence, bladder defense mechanisms. <i>The Urologic clinics of North America</i> 13, 563-568 (1986). Flores-Mireles, A. L., Pinkner, J. S., Caparon, M. G. & Hultgren, S. J. EbpA vaccine antibodies block binding of Enterococcus faecalis to fibrinogen to prevent catheter-associated bladder infection in mice. <i>Sci Transl Med</i> 6, 254ra127, doi:10.1126/scitranslmed.3009384 (2014). Flores-Mireles, A. L. <i>et al.</i> Antibody-Based Therapy for Enterococcal Catheter-Associated Urinary Tract Infections. <i>Mbio</i> 7, doi:10.1128/mBio.01653-16 (2016). Flores-Mireles, A. L. <i>et al.</i> Antibody-Based Therapy for Enterococcal Catheter-Associated Urinary Tract Infections. <i>Mbio</i> 7, doi:0.1128/mBio.01653-16 (2016). Flores-Mireles, A. L. <i>et al.</i> Antibody-Based Therapy for Enterococcal Catheter-Associated Urinary Tract Infections. <i>Mbio</i> 7, doi:0.1128/mBio.01653-16 (2016). Guiton, P. S., Hannan, T. J., Ford, B., Caparon, M. G. & Hultgren, S. J. Enterococcus faecalis overcomes foreign body-mediated inflammation to establish urinary tract infections. <i>Infect</i> <i>Immun</i> 81, 329-339, doi:10.1128/IAI.00856-12 (2013). Guiton, P. S., Hung, C. S., Hancock, L. E., Caparon, M. G. & Hultgren, S. J. Enterococcal biofilm formation and virulence in an optimized murine model of foreign body-associated urinary tract<td></td><td>29</td><td></td>		29	
 Garibaldi, R. A., Burke, J. P., Dickman, M. L. & Smith, C. B. Factors predisposing to bacteriuria during indwelling urethral catheterization. <i>The New England journal of medicine</i> 291, 215-219, doi:10.1056/NEJM197408012910501 (1974). Norden, C. W., Green, G. M. & Kass, E. H. Antibacterial mechanisms of the urinary bladder. <i>The</i> <i>Journal of clinical investigation</i> 47, 2689-2700, doi:10.1172/JCI105952 (1968). Warren, J. W. Catheter-associated urinary tract infections. <i>Infectious disease clinics of North</i> <i>America</i> 11, 609-622 (1997). Parsons, C. L. Pathogenesis of urinary tract infections. Bacterial adherence, bladder defense mechanisms. <i>The Urologic clinics of North America</i> 13, 563-568 (1986). Flores-Mireles, A. L., Pinkner, J. S., Caparon, M. G. & Hultgren, S. J. EbpA vaccine antibodies block binding of Enterococcus faecalis to fibrinogen to prevent catheter-associated bladder infection in mice. <i>Sci Transl Med</i> 6, 254ra127, doi:10.1126/scitransImed.3009384 (2014). Flores-Mireles, A. L. <i>et al.</i> Antibody-Based Therapy for Enterococcal Catheter-Associated Urinary Tract Infections. <i>Mbio</i> 7, doi:10.1128/mBio.01653-16 (2016). Giton, P. S., Hannan, T. J., Ford, B., Caparon, M. G. & Hultgren, S. J. Enterococcus faecalis overcomes foreign body-mediated inflammation to establish urinary tract infections. <i>Infect</i> <i>Immun</i> 81, 329-339, doi:10.1128/IAI.00856-12 (2013). Guiton, P. S., Hung, C. S., Hancock, L. E., Caparon, M. G. & Hultgren, S. J. Enterococcal biofilm formation and virulence in an optimized murine model of foreign body-associated urinary tract 			
 during indwelling urethral catheterization. <i>The New England journal of medicine</i> 291, 215-219, doi:10.1056/NEJM197408012910501 (1974). Norden, C. W., Green, G. M. & Kass, E. H. Antibacterial mechanisms of the urinary bladder. <i>The Journal of clinical investigation</i> 47, 2689-2700, doi:10.1172/JCI105952 (1968). Warren, J. W. Catheter-associated urinary tract infections. <i>Infectious disease clinics of North America</i> 11, 609-622 (1997). Parsons, C. L. Pathogenesis of urinary tract infections. Bacterial adherence, bladder defense mechanisms. <i>The Urologic clinics of North America</i> 13, 563-568 (1986). Flores-Mireles, A. L., Pinkner, J. S., Caparon, M. G. & Hultgren, S. J. EbpA vaccine antibodies block binding of Enterococcus faecalis to fibrinogen to prevent catheter-associated Urinary Tract Infections. <i>Mbio</i> 7, doi:10.1128/mBio.01653-16 (2016). Flores-Mireles, A. L. <i>et al.</i> Antibody-Based Therapy for Enterococcal Catheter-Associated Urinary Tract Infections. <i>Mbio</i> 7, doi:ARTN e01653-1610.1128/mBio.01653-16 (2016). Giton, P. S., Hannan, T. J., Ford, B., Caparon, M. G. & Hultgren, S. J. Enterococcus faecalis overcomes foreign body-mediated inflammation to establish urinary tract infections. <i>Infect</i> Guiton, P. S., Hung, C. S., Hancock, L. E., Caparon, M. G. & Hultgren, S. J. Enterococcal biofilm formation and virulence in an optimized murine model of foreign body-associated urinary tract 			• • • •
 doi:10.1056/NEJM197408012910501 (1974). Norden, C. W., Green, G. M. & Kass, E. H. Antibacterial mechanisms of the urinary bladder. <i>The</i> <i>Journal of clinical investigation</i> 47, 2689-2700, doi:10.1172/JCI105952 (1968). Warren, J. W. Catheter-associated urinary tract infections. <i>Infectious disease clinics of North</i> <i>America</i> 11, 609-622 (1997). Parsons, C. L. Pathogenesis of urinary tract infections. Bacterial adherence, bladder defense mechanisms. <i>The Urologic clinics of North America</i> 13, 563-568 (1986). Flores-Mireles, A. L., Pinkner, J. S., Caparon, M. G. & Hultgren, S. J. EbpA vaccine antibodies block binding of Enterococcus faecalis to fibrinogen to prevent catheter-associated bladder infection in mice. <i>Sci Transl Med</i> 6, 254ra127, doi:10.1126/scitranslmed.3009384 (2014). Flores-Mireles, A. L. <i>et al.</i> Antibody-Based Therapy for Enterococcal Catheter-Associated Urinary Tract Infections. <i>Mbio</i> 7, doi:10.1128/mBio.01653-16 (2016). Flores-Mireles, A. L. <i>et al.</i> Antibody-Based Therapy for Enterococcal Catheter-Associated Urinary Tract Infections. <i>Mbio</i> 7, doi:ARTN e01653-1610.1128/mBio.01653-16 (2016). Guiton, P. S., Hannan, T. J., Ford, B., Caparon, M. G. & Hultgren, S. J. Enterococcus faecalis overcomes foreign body-mediated inflammation to establish urinary tract infections. <i>Infect</i> <i>Immun</i> 81, 329-339, doi:10.1128/IAI.00856-12 (2013). Guiton, P. S., Hung, C. S., Hancock, L. E., Caparon, M. G. & Hultgren, S. J. Enterococcal biofilm formation and virulence in an optimized murine model of foreign body-associated urinary tract 		30	
 Norden, C. W., Green, G. M. & Kass, E. H. Antibacterial mechanisms of the urinary bladder. <i>The</i> <i>Journal of clinical investigation</i> 47, 2689-2700, doi:10.1172/JCI105952 (1968). Warren, J. W. Catheter-associated urinary tract infections. <i>Infectious disease clinics of North</i> <i>America</i> 11, 609-622 (1997). Parsons, C. L. Pathogenesis of urinary tract infections. Bacterial adherence, bladder defense mechanisms. <i>The Urologic clinics of North America</i> 13, 563-568 (1986). Flores-Mireles, A. L., Pinkner, J. S., Caparon, M. G. & Hultgren, S. J. EbpA vaccine antibodies block binding of Enterococcus faecalis to fibrinogen to prevent catheter-associated bladder infection in mice. <i>Sci Transl Med</i> 6, 254ra127, doi:10.1126/scitranslmed.3009384 (2014). Flores-Mireles, A. L. <i>et al.</i> Antibody-Based Therapy for Enterococcal Catheter-Associated Urinary Tract Infections. <i>Mbio</i> 7, doi:10.1128/mBio.01653-16 (2016). Flores-Mireles, A. L. <i>et al.</i> Antibody-Based Therapy for Enterococcal Catheter-Associated Urinary Tract Infections. <i>Mbio</i> 7, doi:20.1128/mBio.01653-16 (2016). Guiton, P. S., Hannan, T. J., Ford, B., Caparon, M. G. & Hultgren, S. J. Enterococcus faecalis overcomes foreign body-mediated inflammation to establish urinary tract infections. <i>Infect</i> <i>Immun</i> 81, 329-339, doi:10.1128/IAI.00856-12 (2013). Guiton, P. S., Hung, C. S., Hancock, L. E., Caparon, M. G. & Hultgren, S. J. Enterococcal biofilm formation and virulence in an optimized murine model of foreign body-associated urinary tract 			
 Journal of clinical investigation 47, 2689-2700, doi:10.1172/JCI105952 (1968). Warren, J. W. Catheter-associated urinary tract infections. Infectious disease clinics of North America 11, 609-622 (1997). Parsons, C. L. Pathogenesis of urinary tract infections. Bacterial adherence, bladder defense mechanisms. The Urologic clinics of North America 13, 563-568 (1986). Flores-Mireles, A. L., Pinkner, J. S., Caparon, M. G. & Hultgren, S. J. EbpA vaccine antibodies block binding of Enterococcus faecalis to fibrinogen to prevent catheter-associated bladder infection in mice. Sci Transl Med 6, 254ra127, doi:10.1126/scitranslmed.3009384 (2014). Flores-Mireles, A. L. et al. Antibody-Based Therapy for Enterococcal Catheter-Associated Urinary Tract Infections. Mbio 7, doi:10.1128/mBio.01653-16 (2016). Flores-Mireles, A. L. et al. Antibody-Based Therapy for Enterococcal Catheter-Associated Urinary Tract Infections. Mbio 7, doi:10.1128/mBio.01653-16 (2016). Guiton, P. S., Hannan, T. J., Ford, B., Caparon, M. G. & Hultgren, S. J. Enterococcus faecalis overcomes foreign body-mediated inflammation to establish urinary tract infections. Infect Immun 81, 329-339, doi:10.1128/IAI.00856-12 (2013). Guiton, P. S., Hung, C. S., Hancock, L. E., Caparon, M. G. & Hultgren, S. J. Enterococcal biofilm formation and virulence in an optimized murine model of foreign body-associated urinary tract 			
 Warren, J. W. Catheter-associated urinary tract infections. <i>Infectious disease clinics of North</i> <i>America</i> 11, 609-622 (1997). Parsons, C. L. Pathogenesis of urinary tract infections. Bacterial adherence, bladder defense mechanisms. <i>The Urologic clinics of North America</i> 13, 563-568 (1986). Flores-Mireles, A. L., Pinkner, J. S., Caparon, M. G. & Hultgren, S. J. EbpA vaccine antibodies block binding of Enterococcus faecalis to fibrinogen to prevent catheter-associated bladder infection in mice. <i>Sci Transl Med</i> 6, 254ra127, doi:10.1126/scitranslmed.3009384 (2014). Flores-Mireles, A. L. <i>et al.</i> Antibody-Based Therapy for Enterococcal Catheter-Associated Urinary Tract Infections. <i>Mbio</i> 7, doi:10.1128/mBio.01653-16 (2016). Flores-Mireles, A. L. <i>et al.</i> Antibody-Based Therapy for Enterococcal Catheter-Associated Urinary Tract Infections. <i>Mbio</i> 7, doi:ARTN e01653-1610.1128/mBio.01653-16 (2016). Guiton, P. S., Hannan, T. J., Ford, B., Caparon, M. G. & Hultgren, S. J. Enterococcus faecalis overcomes foreign body-mediated inflammation to establish urinary tract infections. <i>Infect</i> <i>Immun</i> 81, 329-339, doi:10.1128/IAI.00856-12 (2013). Guiton, P. S., Hung, C. S., Hancock, L. E., Caparon, M. G. & Hultgren, S. J. Enterococcal biofilm formation and virulence in an optimized murine model of foreign body-associated urinary tract 		31	
 America 11, 609-622 (1997). Parsons, C. L. Pathogenesis of urinary tract infections. Bacterial adherence, bladder defense mechanisms. <i>The Urologic clinics of North America</i> 13, 563-568 (1986). Flores-Mireles, A. L., Pinkner, J. S., Caparon, M. G. & Hultgren, S. J. EbpA vaccine antibodies block binding of Enterococcus faecalis to fibrinogen to prevent catheter-associated bladder infection in mice. <i>Sci Transl Med</i> 6, 254ra127, doi:10.1126/scitranslmed.3009384 (2014). Flores-Mireles, A. L. <i>et al.</i> Antibody-Based Therapy for Enterococcal Catheter-Associated Urinary Tract Infections. <i>Mbio</i> 7, doi:10.1128/mBio.01653-16 (2016). Flores-Mireles, A. L. <i>et al.</i> Antibody-Based Therapy for Enterococcal Catheter-Associated Urinary Tract Infections. <i>Mbio</i> 7, doi:ARTN e01653-1610.1128/mBio.01653-16 (2016). Guiton, P. S., Hannan, T. J., Ford, B., Caparon, M. G. & Hultgren, S. J. Enterococcus faecalis overcomes foreign body-mediated inflammation to establish urinary tract infections. <i>Infect</i> <i>Immun</i> 81, 329-339, doi:10.1128/IAI.00856-12 (2013). Guiton, P. S., Hung, C. S., Hancock, L. E., Caparon, M. G. & Hultgren, S. J. Enterococcal biofilm formation and virulence in an optimized murine model of foreign body-associated urinary tract 			
 Parsons, C. L. Pathogenesis of urinary tract infections. Bacterial adherence, bladder defense mechanisms. <i>The Urologic clinics of North America</i> 13, 563-568 (1986). Flores-Mireles, A. L., Pinkner, J. S., Caparon, M. G. & Hultgren, S. J. EbpA vaccine antibodies block binding of Enterococcus faecalis to fibrinogen to prevent catheter-associated bladder infection in mice. <i>Sci Transl Med</i> 6, 254ra127, doi:10.1126/scitranslmed.3009384 (2014). Flores-Mireles, A. L. <i>et al.</i> Antibody-Based Therapy for Enterococcal Catheter-Associated Urinary Tract Infections. <i>Mbio</i> 7, doi:10.1128/mBio.01653-16 (2016). Flores-Mireles, A. L. <i>et al.</i> Antibody-Based Therapy for Enterococcal Catheter-Associated Urinary Tract Infections. <i>Mbio</i> 7, doi:2010.1128/mBio.01653-16 (2016). Guiton, P. S., Hannan, T. J., Ford, B., Caparon, M. G. & Hultgren, S. J. Enterococcus faecalis overcomes foreign body-mediated inflammation to establish urinary tract infections. <i>Infect</i> <i>Immun</i> 81, 329-339, doi:10.1128/IAI.00856-12 (2013). Guiton, P. S., Hung, C. S., Hancock, L. E., Caparon, M. G. & Hultgren, S. J. Enterococcal biofilm formation and virulence in an optimized murine model of foreign body-associated urinary tract 		32	
 mechanisms. <i>The Urologic clinics of North America</i> 13, 563-568 (1986). 34 Flores-Mireles, A. L., Pinkner, J. S., Caparon, M. G. & Hultgren, S. J. EbpA vaccine antibodies block binding of Enterococcus faecalis to fibrinogen to prevent catheter-associated bladder infection in mice. <i>Sci Transl Med</i> 6, 254ra127, doi:10.1126/scitranslmed.3009384 (2014). 613 35 Flores-Mireles, A. L. <i>et al.</i> Antibody-Based Therapy for Enterococcal Catheter-Associated Urinary Tract Infections. <i>Mbio</i> 7, doi:10.1128/mBio.01653-16 (2016). 615 36 Flores-Mireles, A. L. <i>et al.</i> Antibody-Based Therapy for Enterococcal Catheter-Associated Urinary Tract Infections. <i>Mbio</i> 7, doi:ARTN e01653-1610.1128/mBio.01653-16 (2016). 617 37 Guiton, P. S., Hannan, T. J., Ford, B., Caparon, M. G. & Hultgren, S. J. Enterococcus faecalis overcomes foreign body-mediated inflammation to establish urinary tract infections. <i>Infect</i> <i>Immun</i> 81, 329-339, doi:10.1128/IAI.00856-12 (2013). 620 38 Guiton, P. S., Hung, C. S., Hancock, L. E., Caparon, M. G. & Hultgren, S. J. Enterococcal biofilm formation and virulence in an optimized murine model of foreign body-associated urinary tract 			
 Flores-Mireles, A. L., Pinkner, J. S., Caparon, M. G. & Hultgren, S. J. EbpA vaccine antibodies block binding of Enterococcus faecalis to fibrinogen to prevent catheter-associated bladder infection in mice. <i>Sci Transl Med</i> 6, 254ra127, doi:10.1126/scitranslmed.3009384 (2014). Flores-Mireles, A. L. <i>et al.</i> Antibody-Based Therapy for Enterococcal Catheter-Associated Urinary Tract Infections. <i>Mbio</i> 7, doi:10.1128/mBio.01653-16 (2016). Flores-Mireles, A. L. <i>et al.</i> Antibody-Based Therapy for Enterococcal Catheter-Associated Urinary Tract Infections. <i>Mbio</i> 7, doi:ARTN e01653-1610.1128/mBio.01653-16 (2016). Guiton, P. S., Hannan, T. J., Ford, B., Caparon, M. G. & Hultgren, S. J. Enterococcus faecalis overcomes foreign body-mediated inflammation to establish urinary tract infections. <i>Infect</i> <i>Immun</i> 81, 329-339, doi:10.1128/IAI.00856-12 (2013). Guiton, P. S., Hung, C. S., Hancock, L. E., Caparon, M. G. & Hultgren, S. J. Enterococcal biofilm formation and virulence in an optimized murine model of foreign body-associated urinary tract 		33	
 block binding of Enterococcus faecalis to fibrinogen to prevent catheter-associated bladder infection in mice. <i>Sci Transl Med</i> 6, 254ra127, doi:10.1126/scitranslmed.3009384 (2014). Flores-Mireles, A. L. <i>et al.</i> Antibody-Based Therapy for Enterococcal Catheter-Associated Urinary Tract Infections. <i>Mbio</i> 7, doi:10.1128/mBio.01653-16 (2016). Flores-Mireles, A. L. <i>et al.</i> Antibody-Based Therapy for Enterococcal Catheter-Associated Urinary Flores-Mireles, A. L. <i>et al.</i> Antibody-Based Therapy for Enterococcal Catheter-Associated Urinary Flores-Mireles, A. L. <i>et al.</i> Antibody-Based Therapy for Enterococcal Catheter-Associated Urinary Guiton, P. S., Hannan, T. doi:ARTN e01653-1610.1128/mBio.01653-16 (2016). Guiton, P. S., Hannan, T. J., Ford, B., Caparon, M. G. & Hultgren, S. J. Enterococcus faecalis overcomes foreign body-mediated inflammation to establish urinary tract infections. <i>Infect</i> <i>Immun</i> 81, 329-339, doi:10.1128/IAI.00856-12 (2013). Guiton, P. S., Hung, C. S., Hancock, L. E., Caparon, M. G. & Hultgren, S. J. Enterococcal biofilm formation and virulence in an optimized murine model of foreign body-associated urinary tract 			
 infection in mice. <i>Sci Transl Med</i> 6, 254ra127, doi:10.1126/scitranslmed.3009384 (2014). Flores-Mireles, A. L. <i>et al.</i> Antibody-Based Therapy for Enterococcal Catheter-Associated Urinary Tract Infections. <i>Mbio</i> 7, doi:10.1128/mBio.01653-16 (2016). Flores-Mireles, A. L. <i>et al.</i> Antibody-Based Therapy for Enterococcal Catheter-Associated Urinary Tract Infections. <i>Mbio</i> 7, doi:ARTN e01653-1610.1128/mBio.01653-16 (2016). Guiton, P. S., Hannan, T. J., Ford, B., Caparon, M. G. & Hultgren, S. J. Enterococcus faecalis overcomes foreign body-mediated inflammation to establish urinary tract infections. <i>Infect</i> <i>Immun</i> 81, 329-339, doi:10.1128/IAI.00856-12 (2013). Guiton, P. S., Hung, C. S., Hancock, L. E., Caparon, M. G. & Hultgren, S. J. Enterococcal biofilm formation and virulence in an optimized murine model of foreign body-associated urinary tract 		34	
 Flores-Mireles, A. L. <i>et al.</i> Antibody-Based Therapy for Enterococcal Catheter-Associated Urinary Tract Infections. <i>Mbio</i> 7, doi:10.1128/mBio.01653-16 (2016). Flores-Mireles, A. L. <i>et al.</i> Antibody-Based Therapy for Enterococcal Catheter-Associated Urinary Tract Infections. <i>Mbio</i> 7, doi:ARTN e01653-1610.1128/mBio.01653-16 (2016). Guiton, P. S., Hannan, T. J., Ford, B., Caparon, M. G. & Hultgren, S. J. Enterococcus faecalis overcomes foreign body-mediated inflammation to establish urinary tract infections. <i>Infect</i> <i>Immun</i> 81, 329-339, doi:10.1128/IAI.00856-12 (2013). Guiton, P. S., Hung, C. S., Hancock, L. E., Caparon, M. G. & Hultgren, S. J. Enterococcal biofilm formation and virulence in an optimized murine model of foreign body-associated urinary tract 			
 Tract Infections. <i>Mbio</i> 7, doi:10.1128/mBio.01653-16 (2016). Flores-Mireles, A. L. <i>et al.</i> Antibody-Based Therapy for Enterococcal Catheter-Associated Urinary Tract Infections. <i>Mbio</i> 7, doi:ARTN e01653-1610.1128/mBio.01653-16 (2016). Guiton, P. S., Hannan, T. J., Ford, B., Caparon, M. G. & Hultgren, S. J. Enterococcus faecalis overcomes foreign body-mediated inflammation to establish urinary tract infections. <i>Infect</i> <i>Immun</i> 81, 329-339, doi:10.1128/IAI.00856-12 (2013). Guiton, P. S., Hung, C. S., Hancock, L. E., Caparon, M. G. & Hultgren, S. J. Enterococcal biofilm formation and virulence in an optimized murine model of foreign body-associated urinary tract 			
 Flores-Mireles, A. L. <i>et al.</i> Antibody-Based Therapy for Enterococcal Catheter-Associated Urinary Tract Infections. <i>Mbio</i> 7, doi:ARTN e01653-1610.1128/mBio.01653-16 (2016). Guiton, P. S., Hannan, T. J., Ford, B., Caparon, M. G. & Hultgren, S. J. Enterococcus faecalis overcomes foreign body-mediated inflammation to establish urinary tract infections. <i>Infect</i> <i>Immun</i> 81, 329-339, doi:10.1128/IAI.00856-12 (2013). Guiton, P. S., Hung, C. S., Hancock, L. E., Caparon, M. G. & Hultgren, S. J. Enterococcal biofilm formation and virulence in an optimized murine model of foreign body-associated urinary tract 		35	
 Tract Infections. <i>Mbio</i> 7, doi:ARTN e01653-1610.1128/mBio.01653-16 (2016). Guiton, P. S., Hannan, T. J., Ford, B., Caparon, M. G. & Hultgren, S. J. Enterococcus faecalis overcomes foreign body-mediated inflammation to establish urinary tract infections. <i>Infect</i> <i>Immun</i> 81, 329-339, doi:10.1128/IAI.00856-12 (2013). Guiton, P. S., Hung, C. S., Hancock, L. E., Caparon, M. G. & Hultgren, S. J. Enterococcal biofilm formation and virulence in an optimized murine model of foreign body-associated urinary tract 			
 Guiton, P. S., Hannan, T. J., Ford, B., Caparon, M. G. & Hultgren, S. J. Enterococcus faecalis overcomes foreign body-mediated inflammation to establish urinary tract infections. <i>Infect</i> <i>Immun</i> 81, 329-339, doi:10.1128/IAI.00856-12 (2013). Guiton, P. S., Hung, C. S., Hancock, L. E., Caparon, M. G. & Hultgren, S. J. Enterococcal biofilm formation and virulence in an optimized murine model of foreign body-associated urinary tract 		36	
618overcomes foreign body-mediated inflammation to establish urinary tract infections. Infect619Immun 81, 329-339, doi:10.1128/IAI.00856-12 (2013).62038Guiton, P. S., Hung, C. S., Hancock, L. E., Caparon, M. G. & Hultgren, S. J. Enterococcal biofilm621formation and virulence in an optimized murine model of foreign body-associated urinary tract			
 619 <i>Immun</i> 81, 329-339, doi:10.1128/IAI.00856-12 (2013). 620 38 Guiton, P. S., Hung, C. S., Hancock, L. E., Caparon, M. G. & Hultgren, S. J. Enterococcal biofilm 621 formation and virulence in an optimized murine model of foreign body-associated urinary tract 		37	
62038Guiton, P. S., Hung, C. S., Hancock, L. E., Caparon, M. G. & Hultgren, S. J. Enterococcal biofilm621formation and virulence in an optimized murine model of foreign body-associated urinary tract			
621 formation and virulence in an optimized murine model of foreign body-associated urinary tract			
		38	
622 infections. <i>Infect Immun</i> 78 , 4166-4175, doi:10.1128/IAI.00711-10 (2010).			
	622		infections. <i>Infect Immun</i> 78 , 4166-4175, doi:10.1128/IAI.00711-10 (2010).

623	39	Walker, J. N. et al. Catheterization alters bladder ecology to potentiate Staphylococcus aureus
624	39	infection of the urinary tract. <i>Proc Natl Acad Sci U S A</i> 114 , E8721-E8730,
625		doi:10.1073/pnas.1707572114 (2017).
626	40	Di Venanzio, G. <i>et al.</i> Urinary tract colonization is enhanced by a plasmid that regulates
627	-	uropathogenic Acinetobacter baumannii chromosomal genes. Nat Commun 10 , doi:ARTN
628		276310.1038/s41467-019-10706-у (2019).
629	41	Gaston, J. R. <i>et al.</i> Enterococcus faecalis Polymicrobial Interactions Facilitate Biofilm Formation,
630		Antibiotic Recalcitrance, and Persistent Colonization of the Catheterized Urinary Tract.
631		Pathogens 9, doi:ARTN 83510.3390/pathogens9100835 (2020).
632	42	Alves, R. et al. Adapting to survive: How Candida overcomes host-imposed constraints during
633		human colonization. Plos Pathog 16, doi:ARTN e100847810.1371/journal.ppat.1008478 (2020).
634	43	Walker, J. N. et al. High-resolution imaging reveals microbial biofilms on patient urinary
635		catheters despite antibiotic administration. World J Urol 38, 2237-2245, doi:10.1007/s00345-
636		019-03027-8 (2020).
637	44	Bar-Yosef, H., Vivanco Gonzalez, N., Ben-Aroya, S., Kron, S. J. & Kornitzer, D. Chemical inhibitors
638		of Candida albicans hyphal morphogenesis target endocytosis. Sci Rep 7, 5692,
639		doi:10.1038/s41598-017-05741-y (2017).
640	45	Watanabe, H., Azuma, M., Igarashi, K. & Ooshima, H. Relationship between cell morphology and
641		intracellular potassium concentration in Candida albicans. J Antibiot 59, 281-287, doi:DOI
642		10.1038/ja.2006.39 (2006).
643	46	Feng, Q. H., Summers, E., Guo, B. & Fink, G. Ras signaling is required for serum-induced hyphal
644		differentiation in Candida albicans. Journal of Bacteriology 181, 6339-6346, doi:Doi
645		10.1128/Jb.181.20.6339-6346.1999 (1999).
646	47	Kamentsky, L. et al. Improved structure, function and compatibility for CellProfiler: modular
647		high-throughput image analysis software. <i>Bioinformatics</i> 27 , 1179-1180,
648		doi:10.1093/bioinformatics/btr095 (2011).
649	48	Nett, J. E. <i>et al.</i> Rat indwelling urinary catheter model of Candida albicans biofilm infection.
650	40	Infect Immun 82 , 4931-4940, doi:10.1128/IAI.02284-14 (2014).
651	49	Nett, J. E. <i>et al.</i> Host contributions to construction of three device-associated Candida albicans
652 (52	50	biofilms. Infect Immun 83 , 4630-4638, doi:10.1128/IAI.00931-15 (2015).
653	50	Schaller, M., Borelli, C., Korting, H. C. & Hube, B. Hydrolytic enzymes as virulence factors of
654 655	51	Candida albicans. <i>Mycoses</i> 48 , 365-377, doi:10.1111/j.1439-0507.2005.01165.x (2005).
656	51	Carlisle, P. L. <i>et al.</i> Expression levels of a filament-specific transcriptional regulator are sufficient to determine Candida albicans morphology and virulence. <i>P Natl Acad Sci USA</i> 106 , 599-604,
657		doi:10.1073/pnas.0804061106 (2009).
658	52	Sepulveda, P. <i>et al. Candida albicans</i> fibrinogen binding mannoprotein: expression in clinical
659	52	strains and immunogenicity in patients with candidiasis. International microbiology : the official
660		journal of the Spanish Society for Microbiology 1 , 209-216 (1998).
661	53	Walker, J. N. <i>et al.</i> Catheterization alters bladder ecology to potentiate Staphylococcus aureus
662		infection of the urinary tract. <i>P Natl Acad Sci USA</i> 114 , E8721-E8730,
663		doi:10.1073/pnas.1707572114 (2017).
664	54	Colomer-Winter, C., Lemos, J. A. & Flores-Mireles, A. L. Biofilm Assays on Fibrinogen-coated
665		Silicone Catheters and 96-well Polystyrene Plates. <i>Bio Protoc</i> 9 , doi:10.21769/BioProtoc.3196
666		(2019).
667	55	Colomer-Winter, C. et al. Manganese acquisition is essential for virulence of Enterococcus
668		faecalis. <i>Plos Pathog</i> 14, e1007102, doi:10.1371/journal.ppat.1007102 (2018).

669	56	Colomer-Winter, C., Flores-Mireles, A. L., Kundra, S., Hultgren, S. J. & Lemos, J. A. (p)ppGpp and
670	50	Cody Promote Enterococcus faecalis Virulence in a Murine Model of Catheter-Associated
671		Urinary Tract Infection. <i>mSphere</i> 4 , doi:10.1128/mSphere.00392-19 (2019).
672	57	Conover, M. S., Flores-Mireles, A. L., Hibbing, M. E., Dodson, K. & Hultgren, S. J. Establishment
673	57	and Characterization of UTI and CAUTI in a Mouse Model. J Vis Exp. e52892, doi:10.3791/52892
674		(2015).
675	58	Peman, J. & Ruiz-Gaitan, A. Candidemia from urinary tract source: the challenge of candiduria.
676	20	Hosp Pract (1995) 46 , 243-245, doi:10.1080/21548331.2018.1538623 (2018).
677	59	Pappas, P. G. <i>et al.</i> Clinical Practice Guideline for the Management of Candidiasis: 2016 Update
678	29	by the Infectious Diseases Society of America. <i>Clin Infect Dis</i> 62 , e1-50, doi:10.1093/cid/civ933
679		
	60	(2016).
680	60	Huang, P. Y. <i>et al.</i> Molecular concordance of concurrent Candida albicans candidemia and
681	61	candiduria. <i>Diagn Micr Infec Dis</i> 76 , 382-384, doi:10.1016/j.diagmicrobio.2013.03.015 (2013).
682	61	Kauffman, C. A. <i>et al.</i> Prospective multicenter surveillance study of funguria in hospitalized
683	62	patients. <i>Clinical Infectious Diseases</i> 30 , 14-18, doi:Doi 10.1086/313583 (2000).
684	62	Rousseau, M. et al. Bladder catheterization increases susceptibility to infection that can be
685		prevented by prophylactic antibiotic treatment. <i>Jci Insight</i> 1 , doi:ARTN
686	~~	e8817810.1172/jci.insight.88178 (2016).
687	63	Conway, L. J., Carter, E. J. & Larson, E. L. Risk Factors for Nosocomial Bacteremia Secondary to
688		Urinary Catheter-Associated Bacteriuria: A Systematic Review. Urol Nurs 35, 191-203 (2015).
689	64	Greene, M. T. et al. Predictors of hospital-acquired urinary tract-related bloodstream infection.
690		Infect Control Hosp Epidemiol 33 , 1001-1007, doi:10.1086/667731 (2012).
691	65	Nicolle, L. E. Catheter associated urinary tract infections. <i>Antimicrob Resist Infect Control</i> 3 , 23,
692		doi:10.1186/2047-2994-3-23 (2014).
693	66	Guiton, P. S. et al. Contribution of autolysin and Sortase a during Enterococcus faecalis DNA-
694		dependent biofilm development. Infect Immun 77, 3626-3638, doi:10.1128/IAI.00219-09 (2009).
695	67	Zarnowski, R. et al. Novel entries in a fungal biofilm matrix encyclopedia. Mbio 5, e01333-01314,
696		doi:10.1128/mBio.01333-14 (2014).
697	68	Dwivedi, P. et al. Role of Bcr1-activated genes Hwp1 and Hyr1 in Candida albicans oral mucosal
698		biofilms and neutrophil evasion. PLoS One 6, e16218, doi:10.1371/journal.pone.0016218 (2011).
699	69	Nobile, C. J., Nett, J. E., Andes, D. R. & Mitchell, A. P. Function of Candida albicans adhesin Hwp1
700		in biofilm formation. <i>Eukaryot Cell</i> 5, 1604-1610, doi:10.1128/EC.00194-06 (2006).
701	70	Nobile, C. J. et al. Critical role of Bcr1-dependent adhesins in C. albicans biofilm formation in
702		vitro and in vivo. <i>Plos Pathog</i> 2 , e63, doi:10.1371/journal.ppat.0020063 (2006).
703	71	Oh, S. H. et al. Agglutinin-Like Sequence (ALS) Genes in the Candida parapsilosis Species
704		Complex: Blurring the Boundaries Between Gene Families That Encode Cell-Wall Proteins.
705		Frontiers in Microbiology 10 , doi:ARTN 78110.3389/fmicb.2019.00781 (2019).
706	72	Hoyer, L. L. & Cota, E. Candida albicans Agglutinin-Like Sequence (Als) Family Vignettes: A
707		Review of Als Protein Structure and Function. Front Microbiol 7, 280,
708		doi:10.3389/fmicb.2016.00280 (2016).
709	73	Hoyer, L. L., Green, C. B., Oh, S. H. & Zhao, X. Discovering the secrets of the Candida albicans
710		agglutinin-like sequence (ALS) gene familya sticky pursuit. Med Mycol 46, 1-15,
711		doi:10.1080/13693780701435317 (2008).
712	74	Salgado, P. S. et al. Structural basis for the broad specificity to host-cell ligands by the
713		pathogenic fungus Candida albicans. Proc Natl Acad Sci U S A 108 , 15775-15779,
714		doi:10.1073/pnas.1103496108 (2011).
715	75	Lin, J. et al. The peptide-binding cavity is essential for Als3-mediated adhesion of Candida
716		albicans to human cells. <i>J Biol Chem</i> 289 , 18401-18412, doi:10.1074/jbc.M114.547877 (2014).

717 76 Nantel, A. et al. Transcription profiling of Candida albicans cells undergoing the yeast-to-hyphal 718 transition. Mol Biol Cell 13, 3452-3465, doi:10.1091/mbc.e02-05-0272 (2002). 719 77 Kadosh, D. & Johnson, A. D. Induction of the Candida albicans filamentous growth program by 720 relief of transcriptional repression: a genome-wide analysis. Mol Biol Cell 16, 2903-2912, 721 doi:10.1091/mbc.e05-01-0073 (2005). 722 78 Carlisle, P. L. & Kadosh, D. A genome-wide transcriptional analysis of morphology determination 723 in Candida albicans. Mol Biol Cell 24, 246-260, doi:10.1091/mbc.E12-01-0065 (2013). 724 79 Witchley, J. N. et al. Candida albicans Morphogenesis Programs Control the Balance between Gut Commensalism and Invasive Infection. Cell Host Microbe 25, 432-443 e436, 725 726 doi:10.1016/j.chom.2019.02.008 (2019). 727 80 Felk, A. et al. Candida albicans hyphal formation and the expression of the Efg1-regulated 728 proteinases Sap4 to Sap6 are required for the invasion of parenchymal organs. Infect Immun 70, 729 3689-3700, doi:10.1128/iai.70.7.3689-3700.2002 (2002). 730 81 Leng, P., Lee, P. R., Wu, H. & Brown, A. J. Efg1, a morphogenetic regulator in Candida albicans, is 731 a sequence-specific DNA binding protein. J Bacteriol 183, 4090-4093, 732 doi:10.1128/JB.183.13.4090-4093.2001 (2001). 733 82 Chandra, J. et al. Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. J Bacteriol 183, 5385-5394, doi:10.1128/jb.183.18.5385-734 735 5394.2001 (2001). 736 Nobile, C. J. & Mitchell, A. P. Regulation of cell-surface genes and biofilm formation by the C. 83 737 albicans transcription factor Bcr1p. Curr Biol 15, 1150-1155, doi:10.1016/j.cub.2005.05.047 738 (2005).739 Heilmann, C. J. et al. Hyphal induction in the human fungal pathogen Candida albicans reveals a 84 740 characteristic wall protein profile. Microbiology (Reading) 157, 2297-2307, 741 doi:10.1099/mic.0.049395-0 (2011). Rubin-Bejerano, I., Fraser, I., Grisafi, P. & Fink, G. R. Phagocytosis by neutrophils induces an 742 85 743 amino acid deprivation response in Saccharomyces cerevisiae and Candida albicans. Proc Natl 744 Acad Sci U S A 100, 11007-11012, doi:10.1073/pnas.1834481100 (2003). Gabrielli, E. et al. In vivo induction of neutrophil chemotaxis by secretory aspartyl proteinases of 745 86 Candida albicans. Virulence 7, 819-825, doi:10.1080/21505594.2016.1184385 (2016). 746 747 Weindl, G. et al. Human epithelial cells establish direct antifungal defense through TLR4-87 748 mediated signaling. The Journal of clinical investigation 117, 3664-3672, doi:10.1172/JCI28115 749 (2007). 750 Naglik, J. R., Konig, A., Hube, B. & Gaffen, S. L. Candida albicans-epithelial interactions and 88 751 induction of mucosal innate immunity. Curr Opin Microbiol 40, 104-112, 752 doi:10.1016/j.mib.2017.10.030 (2017). 753 89 Urban, C. F., Reichard, U., Brinkmann, V. & Zychlinsky, A. Neutrophil extracellular traps capture 754 and kill Candida albicans yeast and hyphal forms. Cell Microbiol 8, 668-676, doi:10.1111/j.1462-755 5822.2005.00659.x (2006). 756 90 Urban, C. F. et al. Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex 757 involved in host defense against Candida albicans. Plos Pathog 5, e1000639, 758 doi:10.1371/journal.ppat.1000639 (2009). 759 91 Kenno, S., Perito, S., Mosci, P., Vecchiarelli, A. & Monari, C. Autophagy and Reactive Oxygen 760 Species Are Involved in Neutrophil Extracellular Traps Release Induced by C. albicans 761 Morphotypes. Front Microbiol 7, 879, doi:10.3389/fmicb.2016.00879 (2016). Nielsen, H. V. et al. Pilin and sortase residues critical for endocarditis- and biofilm-associated 762 92 763 pilus biogenesis in Enterococcus faecalis. J Bacteriol 195, 4484-4495, doi:10.1128/JB.00451-13 764 (2013).

765 766	93	Cavalheiro, M. & Teixeira, M. C. Candida Biofilms: Threats, Challenges, and Promising Strategies. <i>Front Med (Lausanne)</i> 5 , 28, doi:10.3389/fmed.2018.00028 (2018).
767	94	Flemming, H. C. <i>et al.</i> Biofilms: an emergent form of bacterial life. <i>Nat Rev Microbiol</i> 14 , 563-
768	51	575, doi:10.1038/nrmicro.2016.94 (2016).
769	95	Schindelin, J. <i>et al.</i> Fiji: an open-source platform for biological-image analysis. <i>Nat Methods</i> 9 ,
770		676-682, doi:10.1038/nmeth.2019 (2012).
771		
772		
773		
774		
775		
776		
777		
778		
779		
780	Ackn	owledgments We thank members of the A.L.F.M. and F.H.S.T. laboratories for their helpful
781	sugge	stions and insightful comments. Especial thank you to Dr. Michael G. Caparon for his
782	comm	nents. Funding: This work was supported by institutional funds from the University of Notre
783	Dame	e (to A.L.F.M. and F.H.S.T). Author contributions A.L.F.M., and F.H.S.T designed the
784	exper	iments. A.L.L., M.J.A., A.M., P.S. performed the studies. A.L.L., A.L.F.M, and F.H.S.T.
785	wrote	the paper. Competing interests: The authors declare no competing financial interests.

786

787	Figures:
-----	-----------------

- 788
- 789

Figure 1. *C. albicans* grows and survives in urine. Growth curves of *C. albicans* Pt. 62 (A), Pt. 65 (B), PNCL1 (C), DAY230 (D), SC5314 (E), and SC5314 *efg-1\Deltacph-1\Delta* (F), grown in YPD, BHI, human urine conditions alone, or urine conditions supplemented with 3% human serum (serum), fibrinogen (Fg), bovine serum albumin (BSA), or amino acids (AA). Fungal growth was determined by CFUs enumeration after 0, 24, and 48 hours. Except when indicated, all strains were grown under static conditions. Data presented shows the mean and standard error derived from three independent experiments with five technical replicates.

798

Figure 2. Urine conditions prompt hyphal *C. albicans* to take on a morphology. The morphology of *C. albicans* strains were evaluated after 0, 24, and 48 hours of growth in urine and YPD with or without 3% human serum. Imaging of a population of ~300 cells/per field of view (at least 3 random field of views for each strain) were analyzed using CellProfiler to identify yeast cells and classify them based on the circularity (see Materials and Methods) of each cell as follows: hyphal (<0.25), pseudohyphal (0.25 – 0.5), or yeast (>0.5) (G).

805 806

Figure 3. Fibrinogen enhances *C. albicans*' biofilm formation. (A-F) Immunostaining analysis of biofilm formation on BSA- or Fg- coated microplates by *C. albicans* strains when grown in YPD, BHI, or human urine. At 48 hrs, *C. albicans*' biofilm was measured by fluorescence intensity by using anti-*Candida* antibodies. Data presented shows the mean and standard error derived from three independent experiments with 24 technical replicates. Differences between groups were tested for significance using the Mann-Whitney U test. ****, P<0.0001; ns, not statistically

different. (G-L) Microscopically visualization of 48 hrs *C. albicans* 'biofilms biomass on BSA- or
Fg-coated glass bottom petri dishes grown in urine using anti-*Candida* antibodies.

- 815
- 816 817

Figure 4. *C. albicans*-interaction with fibrin fibers/nets in urine conditions. (A-F) Microscopically visualization and 3D reconstruction of 48 hrs *C. albicans* ' biofilms on fibrin fibers/nets grown in human urine using antibodies against Fg (anti-Fg; green) and *C. albicans* (anti–Candida; red). Scale bars: 100 μ m for 10x and 500 μ m for 40x. White squares represent the zoom-in area used for the higher magnification (x).

823

Figure 5. In vivo infection shows hyphal formation is required for CAUTI. Mice were 824 implanted with catheters and infected with 1×10^6 CFU of one of the six C. albicans strains. After 825 24 hours, the organs (bladder, kidneys, spleen, and heart) and catheter were recovered and 826 subjected to analysis by CFUs. (A-D) Mice experienced a high fungal burden on the harvested 827 organs and catheter. (E) Mice infected with SC5314 efg- $l\Delta$ showed significantly less 828 colonization of the bladder, catheter, and kidneys as opposed to the SC5314 WT strain. Values 829 represent means \pm SEM. The Mann-Whitney U test was used; *, P < 0.05 was considered 830 statistically significant. **, P < 0.005; ns, values were not statistically significantly different. The 831 horizontal bar represents the median value. The horizontal broken line represents the limit of 832 detection of viable bacteria. LOD; limit of detection. 833

834

Figure 6. Hyphal *C. albicans* cells invade the lumen of the catheterized bladder. Mice were
implanted and infected with 1x 10⁶ CFU with the corresponding strain and at 24 hpi, bladders
tissues and catheters were recovered. Bladder were subjected to analysis by H&E and IF staining.
For the IF analysis antibody staining was used to detect Fg (anti-Fg; green), *C. albicans* (anti-

839	Candida; red), and neutrophils (anti-Ly6G; white). Antibody staining with DAPI (blue) delineated
840	the urothelium and cell nuclei (representative images). The white broken line separates the bladder
841	lumen (L) from the urothelium surface (U), the lamina propria (LP), and muscularis (M). H&E
842	stained bladder scale bars, 700 μ m. White squares represent a zoom in done for the next
843	magnification (x). Blue arrow heads indicate C. albicans colonization.
844 845 846 847	Figure 7. Colocalization of <i>C. albicans</i> strains with deposited fibrinogen on catheters during
848	CAUTI. Catheterized mice were challenged with 1×10^6 CFU of the indicated <i>C. albicans</i> strain.
849	Then implanted catheters were retrieved 24hpi stained with antibodies to detect Fg (anti-Fg; green)
850	and C. albicans (anti-Candida; red) (B-G). Quantification of fungal colocalization with deposited
851	Fg on the catheter (H-L). The Mann-Whitney U test was used to analyze catheter colonization
852	between SC5314 WT and hyphal mutant; *, P < 0.05; Values represent the means \pm standard
853	deviation derived from co-localization of the catheter segments. Non-implanted catheters were
854	used a negative control (A).
 855 856 857 858 859 860 861 862 863 864 865 866 867 868 862 	
869 870	

871

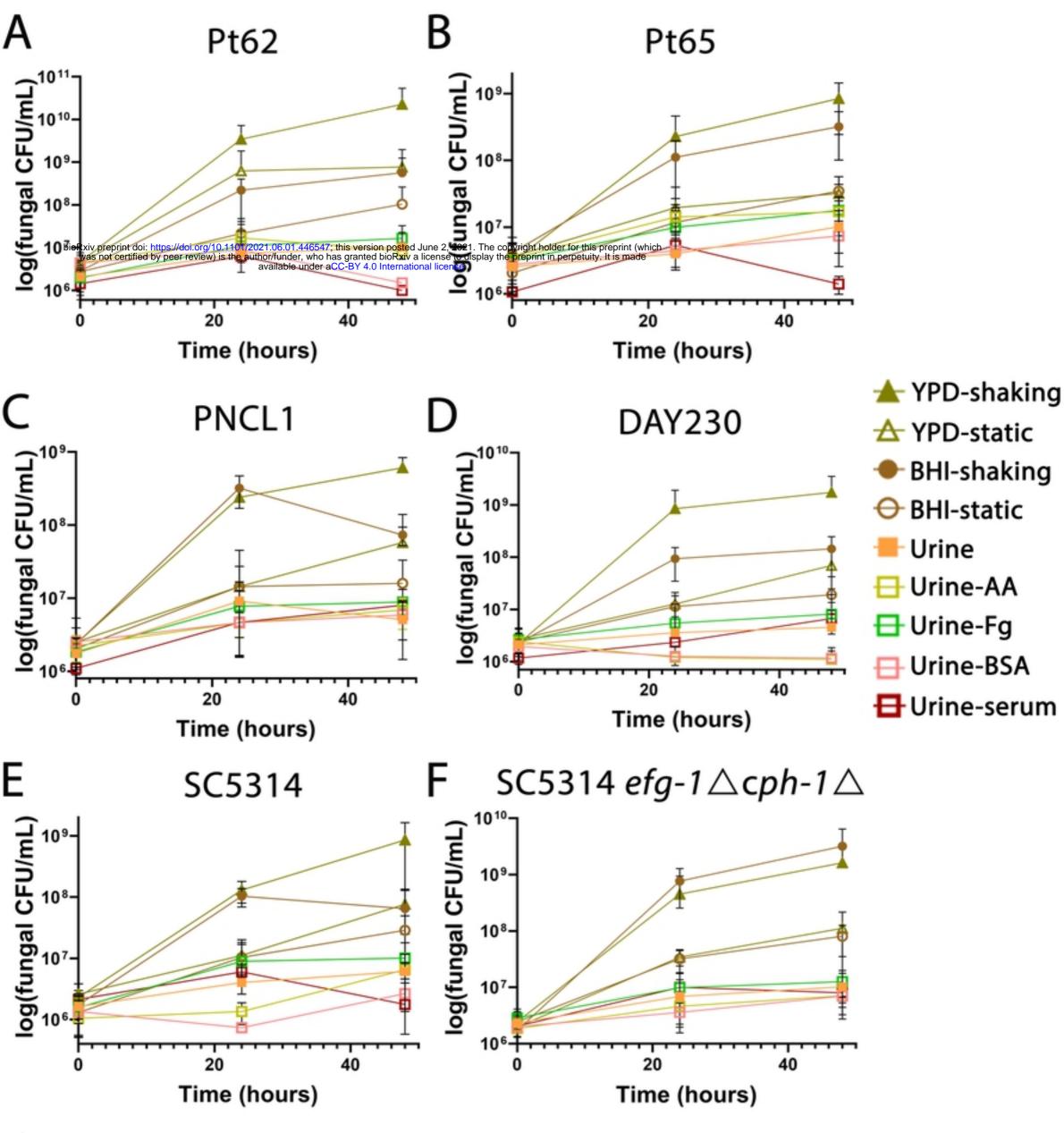


Figure 1

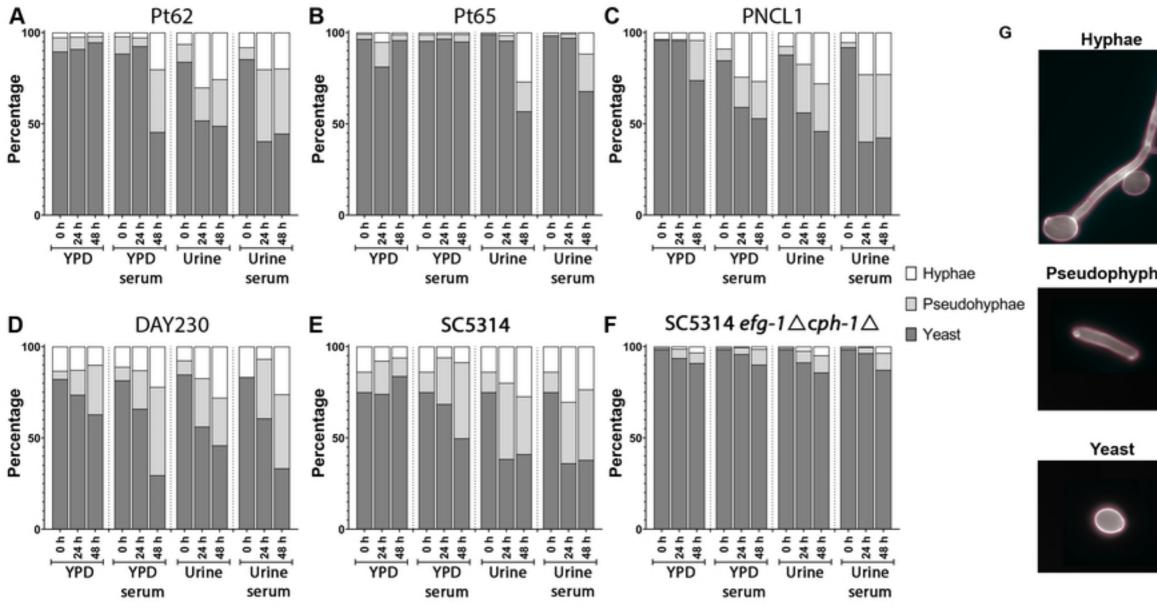
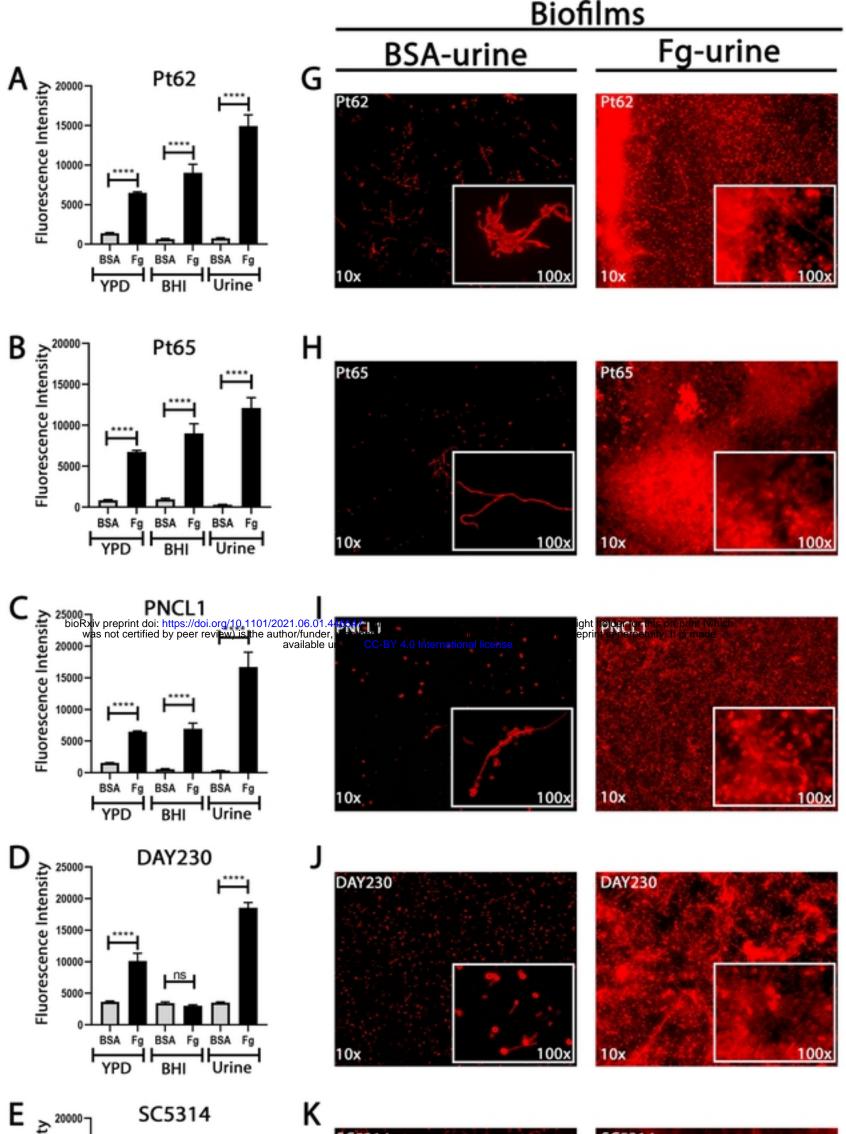
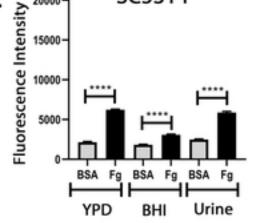
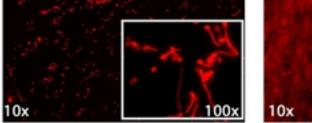
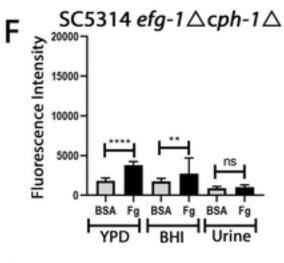



Figure 2


Pseudophyphae




SC5314

SC5314

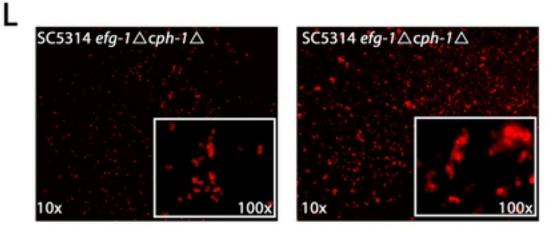
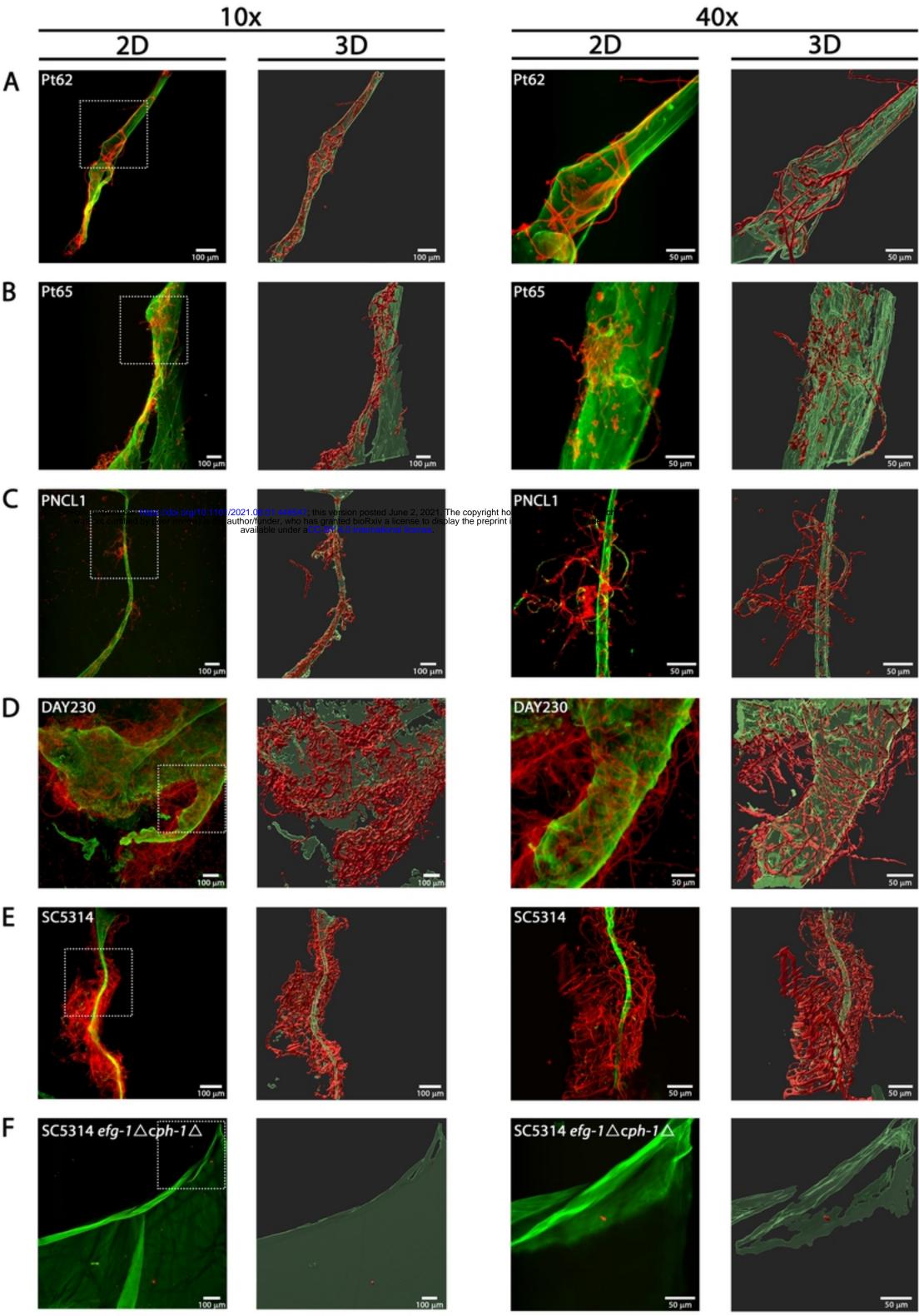



Figure 3

15000

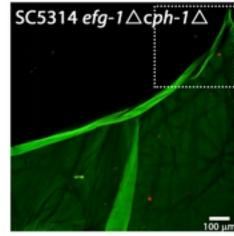
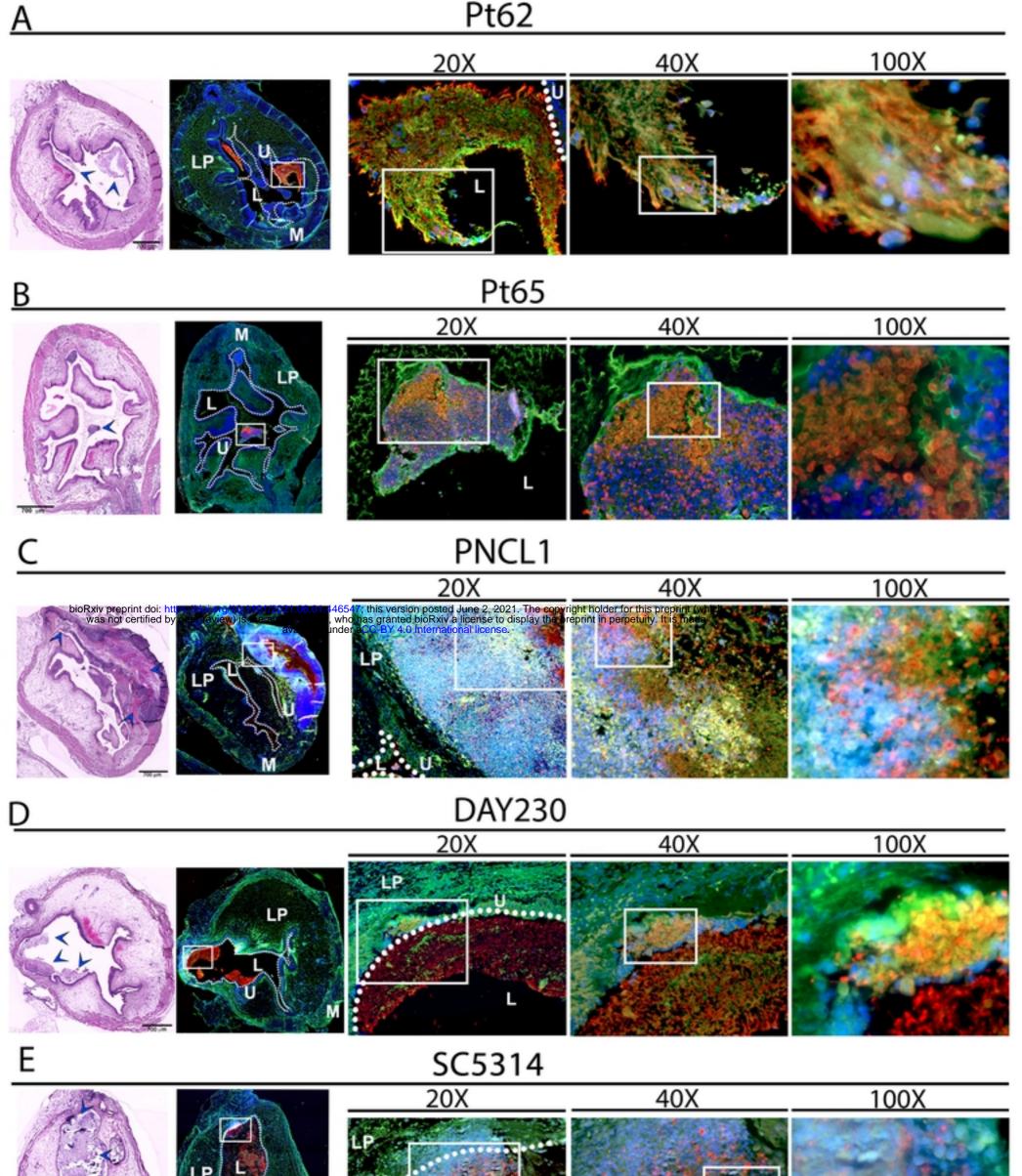
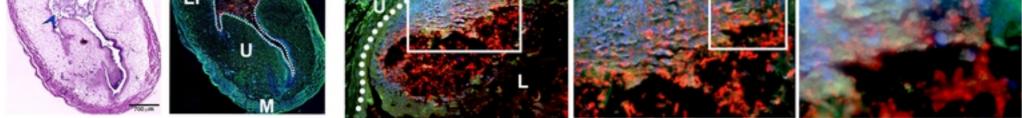
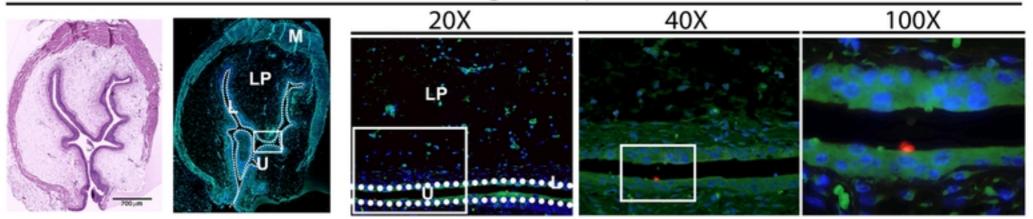





Figure 4

SC5314 efg-1 \triangle cph-1 \triangle

Figure 6

F

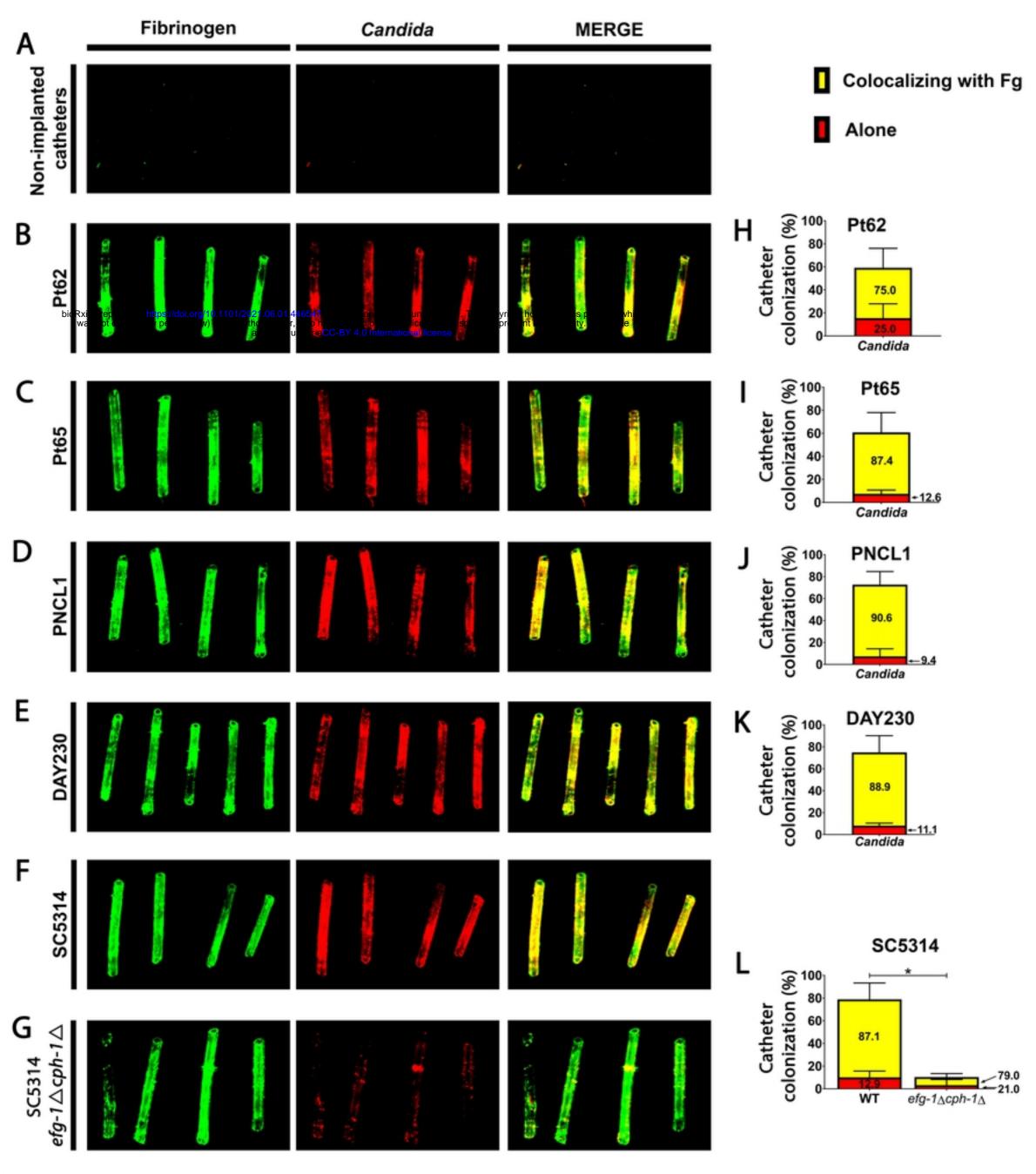


Figure 7

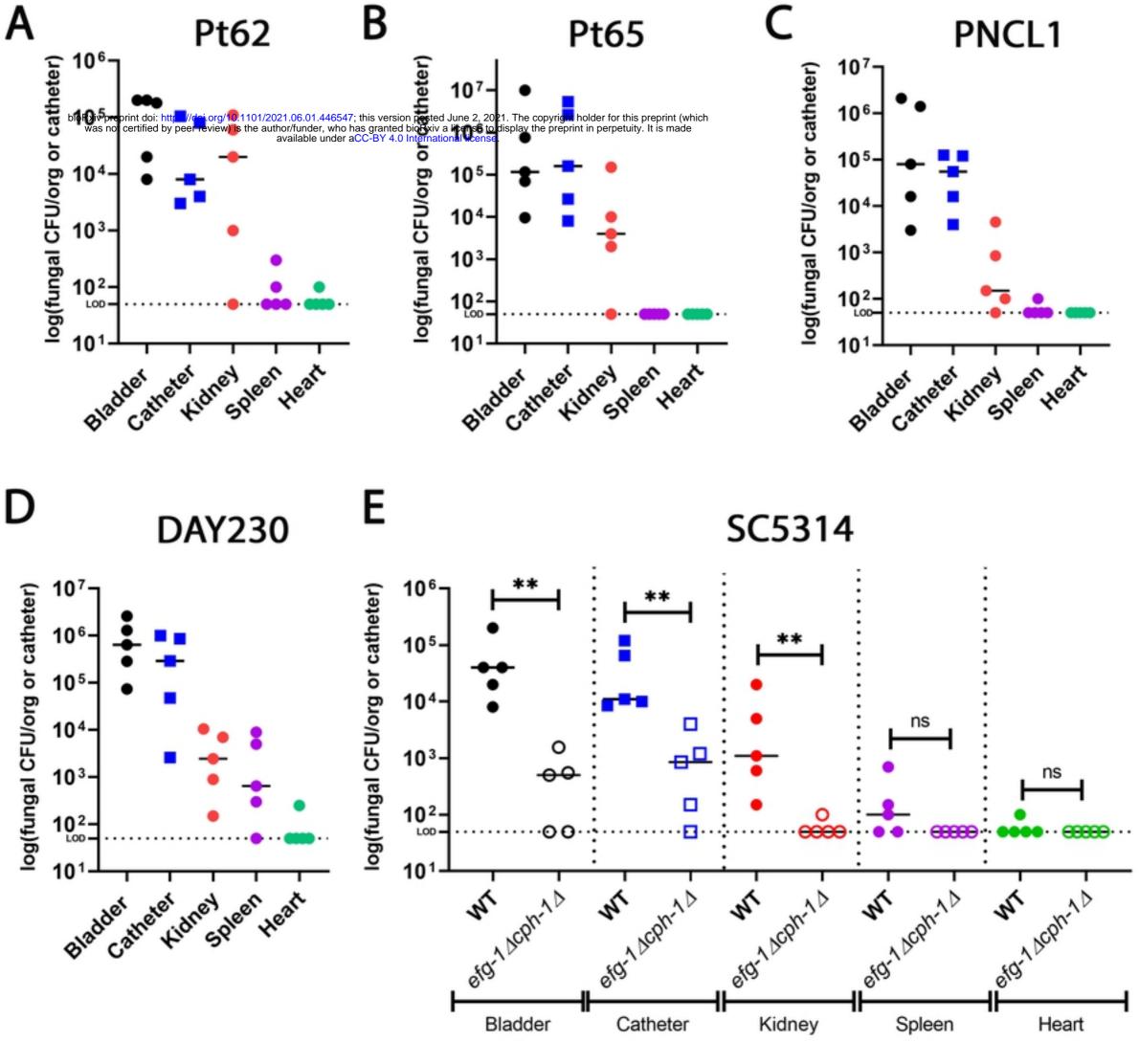


Figure 5