
Learning to represent continuous variables in heterogeneous

neural networks

Ran Darshan*1 and Alexander Rivkind*2

1Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
2 Weizmann Institute of Science, Rehovot, Israel

*Both authors contributed equally

Manifold attractors are a key framework for understanding how continuous variables, such as po-

sition or head direction, are encoded in the brain. In this framework, the variable is represented along

a continuum of persistent neuronal states which forms a manifold attactor. Neural networks with

symmetric synaptic connectivity that can implement manifold attractors have become the dominant

model in this framework. In addition to a symmetric connectome, these networks imply homogeneity

of individual-neuron tuning curves and symmetry of the representational space; these features are

largely inconsistent with neurobiological data. Here, we developed a theory for computations based

on manifold attractors in trained neural networks and show how these manifolds can cope with diverse

neuronal responses, imperfections in the geometry of the manifold and a high level of synaptic hetero-

geneity. In such heterogeneous trained networks, a continuous representational space emerges from

a small set of stimuli used for training. Furthermore, we find that the network response to external

inputs depends on the geometry of the representation and on the level of synaptic heterogeneity in

an analytically tractable and interpretable way. Finally, we show that a too complex geometry of the

neuronal representation impairs the attractiveness of the manifold and may lead to its destabiliza-

tion. Our framework reveals that continuous features can be represented in the recurrent dynamics of

heterogeneous networks without assuming unrealistic symmetry. It suggests that the representational

space of putative manifold attractors in the brain dictates the dynamics in their vicinity.

1 Introduction

Stimulus-specific neuronal activity is known to persist even in the absence of stimuli (see [Wang, 2001]

for review). Such persistent states of neuronal circuits were hypothesized to be sustained by recurrent

synaptic connections [Hebb, 1949, Durstewitz et al., 2000] and are refereed to as neural attractors [Hop-

field, 1982, Amit, 1992]. In a wide variety of brain systems the variables that are represented by such
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a persistent neuronal activity are continuously-valued [Funahashi et al., 1993, Romo et al., 1999]. In

particular, neurons in the navigation system represent continua of animal’s directional heading [Taube

et al., 1990, Seelig and Jayaraman, 2015], speed [Kropff et al., 2015] and locations [O’Keefe and Dostro-

vsky, 1971, Hafting et al., 2005], while neuronal activity in prefrontal and posterior parietal neocortices

correlates with stimulus orientation [Christophel et al., 2017] and its spatial location [Funahashi et al.,

1993].

The common framework to study such continuous internal representations is the theory of

computations by manifold attractor networks [Amari, 1977, Ben-Yishai et al., 1995, Seung, 1996, Burak

and Fiete, 2009, Wimmer et al., 2014, Hansel and Mato, 2013, Chaudhuri et al., 2019, Gardner et al.,

2021]. Here, the variable of interest is represented as a point in the space of neural activity, with the

continuum of values forming a low dimensional manifold of attractor states in the high dimensional space

of neural firing rates. Neural dynamics converge toward the manifold attractor, and are thus robust to

perturbations that could kick the state away from it. On the other hand, due to the continuum of stable

states, stability is marginal [Ben-Yishai et al., 1995] along the manifold - a perturbation in this direction

does not face either converging nor repelling forces [Durstewitz et al., 2000].

Models of manifold attractors tend to extensively rely on symmetry assumptions [Amari, 1977,

Brody et al., 2003, Machens and Brody, 2008, McNaughton et al., 2006, Burak and Fiete, 2009, Mas-

trogiuseppe and Ostojic, 2018, Beiran et al., 2020]. For example, in models of the head direction system

[Zhang, 1996], or in representations in the primary visual [Ben-Yishai et al., 1995] and prefrontal cortices

[Compte et al., 2000], the connectivity is constructed according to a rotation symmetry principle, in

which recurrent interactions depends only on the distance between the preferred direction of the neu-

rons. As a result, the connectivity profile of all neurons are the same up to a rotation of the angular

feature (Fig.1Ai-ii, see also [Mastrogiuseppe and Ostojic, 2018] for an extension for these connectivity

rules). Under some general conditions on the recurrent interactions, such as short-range excitation and

long-range inhibition, a manifold of attractors appears (Fig.1Aiii). We call these classical models which

are based on a symmetry assumption, symmetric-connectome attractor networks.

The symmetry assumption is highly unlikely in real biological systems, in which heterogeneity

in synaptic connections are abundant [Braitenberg and Schüz, 2013]. Yet, in the aforementioned models

any deviation from perfect symmetry results in shattering of the continuous attractor into a few isolated

attractors and as a result to a fast deterioration of the computational capabilities of the network, such as

the loss of persistent representation [Zhang, 1996, Tsodyks and Sejnowski, 1995, Renart et al., 2003, Itskov

et al., 2011] or imperfect path integration [Burak and Fiete, 2009]. Furthermore, as a direct outcome

of the symmetry in connectivity, the activity profile of neurons in symmetric-connectome models are

identical. This is in sharp contrast to neurons in reality that can show many degrees of diversity [Barak

et al., 2013, Finkelstein et al., 2015, Chaudhuri et al., 2019, Fisher et al., 2019].

Beyond the constraints on the synaptic connections and neuronal tuning profile, symmetric-

connectome models imply, by their construction, a perfect geometry of the high dimensional neuronal
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representation along the manifold. In particular, a one-dimensional manifold will have a perfect circular

shape when projected to the leading principal components of neural activity (Fig.1Aiii) and average

activity which is independent of the location. Evidence of such a perfection of geometry in the brain are

lacking: while recent studies suggest that neuronal representations of continuous features might exhibit

a topology of a ring [Chaudhuri et al., 2019, Rubin et al., 2019] or a torus [Gardner et al., 2021], in

agreement with the manifold attractor hypothesis, there is no evidence for a perfect geometrical symmetry

in these representations. Symmetric-connectome attractor models are thus inconsistent with synaptic

heterogeneity and diverse tuning profiles of neurons and unable to support the imperfect geometries

observed in neural manifolds.

To loosen the aforementioned idealistic assumptions, one may consider a manifold that emerges

as a result of learning rather than via a pre-engineered connectivity. Indeed, trained on a wide variety

of tasks, ranging from integration of evidence [Mante et al., 2013], to path integration [Sorscher et al.,

2020, Cueva et al., 2019] and natural language processing [Maheswaranathan et al., 2019], recurrent

neural networks (RNNs) exhibit manifold attractor dynamics. In these unconstrained setting, where

symmetry in the connectivity is not imposed and when the training is done in the presence of synaptic

heterogeneity, neither the connectivity nor the geometry of the representation is expected to exhibit

a perfect symmetry. However, theoretical understanding of how manifold attractors emerge in these

models and how the neuronal representation in the trained RNNs shapes their dynamical properties and

computational power, remain elusive.

How can a continuum of persistent states co-exists with synaptic heterogeneity and diversity

of neuronal representation observed in experiments? What is the effect of such diversity and of the

manifold’s geometry on the dynamics along the manifold and in its vicinity? We present a minimal and

solvable model of a trained recurrent network that we analyzed analytically in the large network limit

and in which we relax the symmetry assumption in both synaptic connectivity and manifold geometry.

As in real biological systems, tuning curves and connectivity patterns in the model are heterogeneous.

Furthermore, our framework encompasses biological manifolds with non-symmetric geometry, in sharp

contrast to existing theories that can only deal with symmetric manifolds. Finally, we connect the static

properties, such as synaptic heterogeneity and imperfect geometry of the internal representation, to the

computational properties of the attractor network, such as its robustness to perturbation and its response

to external stimulus. Our work thus shows that diversity in synaptic connectivity and imperfections in

neural representation can coexist with the hypothesis of neural manifold attractors, obviating the need

to rely on symmetry principles.

2 Results

We studied networks consisting of N firing rate units:

τ
dx

dt
= −x+ (W + gJ)φ(x) + εu (1)
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where xi is the total input into the i-th neuron, and the recurrent connectivity is decomposed into a

structured connectivity matrix, W , and a random matrix, J . The strength of the external input, u, is

controlled by a parameters ε, and the level of synaptic heterogeneity in the recurrent network is controlled

by a parameter g. We used a sigmoidal transfer function, φ(x), but it is possible to generalize our theory

to other transfer functions.

We will use the term symmetric-connectome network models to refer to the case where the

structured recurrent component is constructed based on symmetry principles, instead of via training, and

in the absence of synaptic heterogeneity (i.e. g = 0, Fig.1A). Indeed, many computational and theoretical

studies use these type of network models to explain the emergence of continuous representations in visual

cortex, continuous and persistent activity in prefrontal cortex and persistent activity and path integration

in the navigation system. In these type of models, a continuous periodic feature, ψ, is encoded in the

network and the recurrent connectivity is invariant to rotations (Fig.1Ai-ii). In the absence of external

inputs, all states are equally stable and form a manifold of attractors, i.e., activity of the neurons lies on

a one dimensional manifold (Fig.1Aiii). Each state is a packet, or a ’bump’ of localized activity. With

external cue in present, the symmetry is broken and an appropriate state is selected from the continuum

of states on the manifold. Figure 1B depicts both update of the memorized feature when the stimulus is

present and periods of persistent activity when it is absent.

In what follows we will show that while symmetric-connectome network models [Ben-Yishai

et al., 1995, Burak and Fiete, 2009, Beiran et al., 2020, Mastrogiuseppe and Ostojic, 2018], such as the

one depicted in Fig.1A, are a possible implementation for computations based on manifold attractors,

they are by far not the only ones.

2.1 Trained manifold attractors

In contrast to symmetric-connectome models, we assume that the structured component is trained rather

than set a priori. We proceed with writing the structured recurrent connectivity in the following form:

W = WfbW
T
out (2)

which allows to interpret this recurrent component as a mapping from the neural activity into a two

dimensional (2D) representation which we denote by z, via Wout:

z = W T
outφ(x) (3)

and Wfb projects it back to the neurons [Jaeger, 2001, Sussillo and Abbott, 2009]. Specifically, we

train the structured connectivity such that the output, z, lies on a desired, predefined, manifold. The

continuous feature ψ is then read out from the network through the angle of the 2D vector z. To clarify

notations we distinguish the manifold of internal states φ ∈ Mφ (Fig1A,Ciii) which is embedded in the

N-dimensional neuronal state, from the pre-defined trained manifold projected in 2D, z ∈ Mz (e.g. see

Fig.1Aiii, Fig.3 and Methods).
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Figure 1: The symmetric-connectome ring attractor network and heterogeneous trained ring attra-

cor network. A-B. Symmetric-connectome ring model. Ai. Cartoon of a ring network architecture. Neurons

are aligned on a ring, in which the connectivity depends solely on the difference between the neuronal preferred

directions, denoted by θ. ii. Rotation symmetry in the connectivity: Connectivity strengths coincide for all

neurons in the network when plotted against the difference between the neuronal preferred directions. iii. The

manifold attractor, denoted by Mφ, projected on the leading PCs of the neural representation (i.e. the tuning

curves). Color indicates the decoded representation of the continuous feature (the angle of the decoder in Eq.(3)).

Note that for a ring manifold the projection on the first two PCs exhibits a circular shape (gray). iv. Tuning

curves of example neurons in the symmetric-connectome model are all identical, up to a symmetry for rotations.

B. Left: Bump’s location on the manifold (in radians) vs. time (in units of membrane time-constant). The

internal representation of the feature (a ’bump’ of activity) evolves when external input is applied (orange areas)

and persists for a long time in the absence thereof (white areas). Right: Continuous internal representation of

the feature. Red lines: position of the bump following initialization at that locations using the external input (in

orange). The state persists in the absence of external inputs. C-D. Same as (A-B), but for a trained heteroge-

neous ring. Connectivity consists of random heterogeneous component, gJij (orange connections) superimposed

with the structured component, Wij (purple); only the latter component is affected by training. Contrary to the

case in panel A, connectivity is not fully determined by difference in preferred directions (ii) and tuning curves

do exhibit diversity (iv). E. Diversity in tuning curves increases with the level of synaptic heterogeneity. Ei-ii.

Examples of distribution of selectivity index (SI), defined as the first Fourier component of the tuning curve (see

Methods) for networks that were trained with different levels of synaptic heterogeneity. See also examples in Civ.

Eiii Diversity in tuning curves (SD of SI, see Eii) increases with the heterogeneity level. Theory in Eq.(53)
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Figure 1C shows an example of such a network that was trained in the presence of synaptic het-

erogeneity (g > 0) and without relying on symmetric-connectome. Specifically, we trained the network to

produce a ring manifold, i.e. requiring a circle of radius A in the decoder plane: z(ψ) = A[cos(ψ), sin(ψ)].

As a result of training, the activity in the network persists for a long time and the network memorizes

the angular feature, until the representation gets updated through an external stimulus (Fig.1D). This is

in contrast to models with pre-defined symmetric-connectome [Ben-Yishai et al., 1995, Mastrogiuseppe

and Ostojic, 2018], where both memorization and update capabilities are impaired in presence of hetero-

geneous connectivity (Fig.S1).

The neuronal representation in the trained network is dramatically different from the symmetric-

connectome counterpart. Due to the presence of synaptic heterogeneity, not all states are identical;

both the population activity profile (the ‘bump’), and the tuning curves of neurons in the model are

highly heterogeneous. Figure 1Civ and Fig.S2 exemplifies such highly heterogeneous tuning curves. To

quantify this, we solved the steady state of Eq.(1) and used it to derive the statistics of the tuning curves

in the model (see Methods). The diversity in tuning curves increases monotonically with the level of

synaptic heterogeneity in the network (Fig.1E). The analytical calculations are in good agreement with

the simulations (compare solid line with circles).

Did the learning result in a structured component W that merely compensates for the het-

erogeneous component gJ , such that it restores the rotational symmetry of the synaptic connectivity?

We find that this is not the case. The recurrent connectivity is not solely a function of the distance in

preferred directions, as is the case for the symmetric-connectome models (compare Fig1Aii with Fig1Cii).

This is true also when considering only the structured component of the recurrent interactions, which is

not symmetric (Fig.S2). In fact, it is only after considerable averaging of synaptic inputs across neurons

that we can observe that the connectivity profile depends on the distance in neuronal preferred directions

(Fig.S2). Finally, symmetry is restored only in a specific case in which we train the network in the absence

of any heterogeneity (g = 0).

Figure 1C shows the existence of a manifold attractor without relying on symmetry in the

synaptic interactions or neuronal tuning curves. Yet, in this case due to the circular shape of the manifold

in the 2D plane (z(ψ)) the second order statistics of the neuronal representation is invariant for rotations

and the average population activity is the same at each point on the manifold (black line in Fig.2A).

Consequently, the principal components (PCs) of the neural representation are the spatial Fourier modes

and the projection of the manifold on the leading PCs features a circular shape (note the gray circle

in Fig.1Ciii). However, symmetry in the second order statistics is not necessary for the emergence of

manifolds attractors. Indeed, figure 2 shows an example of a trained manifold which is not circular, the

average population activity varies along the manifold (gray lines in Fig.2A), the distribution of preferred

direction can be non-uniform (Fig.2F), the second order statistics of the representation show no rotation

symmetry (Fig.2G) and the PCs are not pure Fourier modes (not shown). However, similarly to the ring

manifold, these networks can memorize and update the representation of a continuous feature based on

manifold attractor dynamics (Fig.3).
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Figure 2: Neural representations of manifold attractors A. Normalized population activity along the

manifold (Eq.(9)) for a ring manifold (black, B) and the ellipse manifold in E (gray). In a ring manifold the

total population activity is constant at each location of the manifold (up to small fluctuations that arise in small

networks). B. Projection of the neural representation on the top two leading principal components for a ring

manifold (see parametarization of the trained manifold in Methods). The represented feature, ψ, is color coded. C.

Top: Tuning curves of neurons in the trained network. Bottom: distribution of preferred directions in the network.

D. Correlation across population activity at different locations on the manifold, C(ψ,ψ′) = 〈φ(x(ψ))φ(x(ψ′))〉.
For a perfect ring geometry the correlation function exhibits a rotation symmetry (C(ψ,ψ′) = C(ψ − ψ′), i.e.

matrix is circulant). E-F. Same as (B)-(D) but for an ellipse manifold in which there is no rotational symmetry

in the representation
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To conclude, we obtain a family of manifold attractor networks that lack obvious symmetry

by introducing an appropriate structured low-rank component of the form of Eq.(2) on top of synaptic

heterogeneity. The hand-crafted symmetric connectome networks that have been theorized to underlie

computations in the brain is only one specific choice of the structured connectivity W , and without the

heterogeneous part (g = 0), while other, learnable, solutions do not rely on any clear symmetry property.

2.2 Dynamics along the manifold

How does the absence of symmetry affect the properties of such learnable manifold atractors and what

are their functional implications? Will the neuronal system be capable of representing a continuum of

states, e.g. of head directions [Taube et al., 1990]? Will such a continuous manifold of persistent neural

states be robust to perturbations that may push the neural activity out off the manifold and that are

inevitable in biological systems? We find that both on and off manifold properties are affected when

symmetry is lacking.

As a result of the difference in the timescale of the dynamics along the on- and off- manifold

directions, they can be analyzed separately. We first focus on the on manifold direction. In case that

the state is not perfectly persistent due to an external input (ε > 0, Figs.S3F-H and Fig.3), an imperfect

training (Fig.4), or an alteration of the connectivity (Fig.S1), the trajectories quickly converge to the

manifold, and the dynamics along the manifold is governed by the following rule:

dψ(t)

dt
≈ ∆(ψ)τeff (ψ)−1 (4)

which dissects the speed of motion along the manifold into two factors with simple interpretation: τeff

represents the change in the time-constant that governs the dynamics along the manifold, while ∆ reflects

the inconsistency between the current neural state and a perfectly persistent one. This inconsistency,

which we term the tangential error, is quantified via an auxiliary setting, which we refer to as a recurrent

autoencoder (RAE). In such a setting, illustrated in Figure S3A-B, and explained in details in Methods

(Section 5.3), we test if a point on the manifold or in its vicinity is a persistent state of the dynamics.

Steady state points of Eq.(1) obey ∆ = 0, and marginal stability along the manifold is deter-

mined by the condition d∆
dψ ≡ ∆′ = 0 (Fig.S3A). Crucially, the evolution of ψ along the manifold is

assumed to be dramatically slower than the convergence toward the manifold (see below for cases where

this assumption does not hold).

We next proceed with applying the simple dynamical rule of Eq.(4) to analyze the network

response to external stimuli and to study how a continuum of persistent neural states emerges in the

trained networks.
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2.2.1 Response to external input

Assuming that the learning is successful and a manifold attractor emerges in the recurrent network,

the drift along the attractor is negligible (see Section 2.2.2). Upon introduction of external input the

continuum of persistent states collapses to a single fixed point attractor (Fig.3,Fig.S3G-H) and the neural

state, and hence the representation of the feature ψ, begins to evolve according to Eq.(4).

Figure 3A depicts an example in which after training an heterogeneous ring manifold we update

the bump position by introducing a weak stimulus in a direction of ψ1 = π/2. The update dynamics

are in agreement with Eq.(4) (Fig.3B-compare colored points with the theoretical prediction in dashed

lines). Here, the heterogeneity level g only affects dynamics via the effective time constant τeff , and not

via the tangential error, which is given by ∆ = −εA−1 sin(ψ−ψ1) (red curve in Fig.3B, see also Methods

and [Ben-Yishai et al., 1995]). For a ring manifold we calculated the effective timescale and find that it

is given by τeff ≈ τ(1 − β(g))−1, with β(g) accounting for the effects of synaptic heterogeneity. This

factor is connected to the correlation among the individual neuronal gains:

β = g2

〈
sin2(ψ)φ′(xi(ψ))φ′(xi(0))

〉
i,ψ

(5)

with φ′(xi(ψ)) being the gain of the neuron i at location ψ on the manifold and with 〈.〉iψ denoting

average over all locations and all neurons (Methods). In networks lacking heterogeneity, the factor β is

zero and it is monotonically increasing with the heterogeneity level. We therefore find that the larger the

level of synaptic heterogeneity in the trained network, the slower the response to the external input is

(Fig.3C-D).

We next sought to investigate how the dynamics along the manifold is affected by its geometry.

For an arbitrary manifold, in contrast to a ring manifold, the time required to update the internal

representation from one location to another depends on the initial and final locations and not solely

on the difference between them. This is depicted in the example of Figures 3E-G. This dependency

on the specific location on the manifold can be decomposed to the dependency on the geometry of the

manifold and the input, as captured by the tangential error, and on the effective timescale which varies

along the manifold (Fig.3F). Figure 3H shows examples of the calculated timescales along various shape

of manifolds (see derivation in Methods). Interestingly, we find that the effective timescale tend to be

slower at locations along the manifold that are represented by a higher total firing rate (peaks at Fig.3H

and see Fig.2A). This provides a quantitative support to the intuition that the more tuned the internal

representation is (i.e. the larger the amplitude of the bump is), the harder it is to update its location

and, therefore, the slower is its response to external input.
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Figure 3: Translation on manifold attractors in response to external inputs A-D. Trained ring manifold.

A. Projection of the neural activity on the decoder (z plane) for a trained ring manifold with external input at

ψ = π/2 (red circle). All five trajectories (different colors), starting from random locations on the manifold,

converge to ψ = π/2. Trajectories were slightly adjusted to not overlap for illustration purposes. B. Drift velocity

of the trajectories in (A) (same color code) against location on the manifold. Red circle: angle of the external input.

Red curve: Tangential error. Dashed line: Theory (Eqs.(4),(5)). The difference between the tangential error and

the drift velocity is a simple scaling by τeff . C. The effective timescale increases with the level of heterogeneity

in trained ring manifolds. Dashed line: theory from Eq.(5). Gray: S.E.M for 10 network realizations. D. Bump’s

location vs. time for networks that were trained with different levels of synaptic heterogeneity. The external input

is presented at t = 50τ at ψ = π/2. The network’s internal representation rotates towards π/2 with a velocity

that depends on the level of synaptic heterogeneity. E-G. Top: Trained ellipse manifold from Fig.2E-G. Bottom:

another example of a trained manifold (see Methods for parameters). E. Green trajectory: the bump’s location

drifts along the manifold towards the input at ψ = −π/2 (green circle). Yellow trajectory: drift towards the input

which is now at ψ = π (yellow circle). F. Same as (B) but for the two trajectories in (E). Note that both the

predicted and the actual drift velocities are distorted with respect to tangential error. This is because the effective

timescale now depends on the location along the manifold. G. Bump’s location vs. time. Same trajectories as

in (E). H. Effective timescale along the manifold for the three examples in (A-G). Note the increase in timescale

along the corners, that correspond to high firing activity.

2.2.2 Build-up of a continuum of persistent neural states

We next ask how a continuous internal representation emerges from sampling a discrete points on the

manifold. In our model we train the network by sampling M points of the manifold ψ1...ψM , which

enforces these points to become fixed points of the neural dynamics (Fig.4A, Methods). However, the

neural states at unforeseen values of ψ are not persistent and tend to converge to one of the learned

fixed points (Fig.4B-C). While up until here we assumed that the number of sampled points is large

(1�M � N), in this section we consider finite number of sampled points. Specifically, we are interested

to assess how fast the attractiveness of individual points diminishes with more samples added (Fig.4B-

C), prompting emergence of a continuous manifold, and how the heterogeneity level modulates this effect

(Fig.4B-C). According to Eq.(4), this is equivalent to analyze how quickly the slope of the tangential

error at the sampled points approaches zero. We find that interpolation towards a continuum of the

unforeseen values of the feature ψ happens very quickly with the number of samples.

We quantify this by analyzing the trained ring manifold (Fig.1B), which is especially amenable

for a full analytical treatment. Here, it can be shown analytically that the rate in which the on-manifold

dynamics approaches marginal stability, and hence a continuous representation of the feature, depends

on the decay rate of the principal components of the neuronal representation. Specifically, linearizing

Eq.(4) around the sampled points yields that the eigenvalue of the linearized dynamics is:

Λψ ≈ ∆′τ−1
eff ≈ −

(M − 1)CM−1

C1
τ−1
eff (6)

where Ck denotes the k’th score of the neural activity correlation matrix, or, equivalently, variance
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explained (VE) by the k’th PCs of the neuronal representation (see Eq.(76) in Methods for the exact

equation, including small M). We next calculated the decay in VE with the PC number. Figure 4D shows

that the VE decays fast with successive PCs, even for high synaptic heterogeneity. Therefore, as the

factor CM−1

C1
decays fast with M , exponentially in case of smooth correlation functions ( e.g. [Katznelson,

2004]), the derivative of the tangential error gets smaller, and the dynamics along the manifold becomes

marginally stable, with no attractive or repelling forces in present (Λψ ≈ 0, Fig.4B-C,E-F). The analytical

derivation is in good agreement with the simulations (compare solid lines with circles in Fig 4E-F).

Finally, another indication for convergence to a continuous attractor is a small drift velocity

between the sampled points (see Eq.(4)), This is verified numerically in Fig.S5A, showing that the drift

velocity is small, and also decays exponentially with the number of points.

While it is not straightforward to generalize Eq.(6) to a manifold with arbitrary geometry, like

for example those presented in Fig.3, we find that also in such cases the continuity along the manifold is

obtained very fast, exponential with the number of sampled points (Fig.S5B-C). We thus conclude that

the rate of approaching continuity of feature representation in the trained networks is extremely fast, even

in the presence of heterogeneity in synaptic connectivity and asymmetries in the neural representation.

2.3 Convergence toward the manifold attractor

Neural dynamics must resist perturbations or stimuli that aim to push the neuronal activity away from

the manifold attractor. How does heterogeneous synaptic interactions affect the dynamics in the N-1

dimensions that are orthogonal to the 1D manifold direction and in which stimulus or perturbations should

be suppressed? Here, we distinguish between the neuronal activity that affects the bump’s dynamics, i.e.

its location and amplitude, and the vast majority of activity which is orthogonal to decoder plane and

hence do not affect the bump’s dynamics (Fig5A).

In the case of a heterogeneous ring manifold we find that synaptic heterogeneity stabilizes per-

turbations in the bump’s amplitude. This is exemplified in Figure 5D-E. Here, bump’s amplitude is

perturbed by a noisy external input. In good agreement with theory, both static perturbations and fluc-

tuations are damped more when levels of synaptic heterogeneity are increased. This effect is determined

by the second largest eigenvalue of the linearized dynamics of Eq.(1) (Fig.5C), corresponding to the am-

plitude direction for which simulations and theory are compared in Figure 5E (green line, see Methods).

Qualitatively, this additional stabilization could be attributed to an increase of neuronal activity, causing

more neurons to saturate and become less prone to perturbations. Conversely, the internal dynamics of

the network, which are not observable via bump’s amplitude or angle, become less stable when synaptic

heterogeneity grows and eventually become chaotic (purple line in Fig.5E and [Sompolinsky et al., 1988]).

We continue with exploring how the shape of the manifold affects the stability of the bump’s

magnitude. We demonstrate that the convergent property towards the manifold might be compromised

and even ruined (Fig.6A) by geometry changes, and that these dynamical phenomena can be accurately
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Figure 4: Continuity of manifold quickly emerges in trained heterogeneous ring network. A. Top:

Decoder view of a trained ring manifold when training M=6 equally distributed points on the manifold. Circles:

trained points. Colored lines: trajectories starting from different initial conditions quickly converge towards the

manifold and then drift slowly to one of the trained points. Bottom: The tangential error of the RAE for the

trained network. B. Left: The tangential error against the the bump location. Right: Bump location when

starting from different points on the manifold as function of time. Level of synaptic heterogeneity in the network

is g=0.5. Top: training the network by sampling M=6 points of the manifold. Middle: same but with M=12.

Bottom M=40. C. Same as (B), but with g=1.5. D. Variance explained (VE) against the principal components

number for low (orange) and high (blue) levels of synaptic heterogeneity. Circles: VE as calculated from a

simulated network. Crosses: Theoretical prediction (Eq.(45)). E. Stability along the manifold direction against

the heterogeneity level for M=6, 8 and 12 sample points. Theory: Eq.(6). Note the scale of the y-axis. F. Same as

(E) but against the number of sampled points. Note the exponential decay to marginal stability (zero eigenvalue),

and hence continuity.
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inferred from the static neural representation along the manifold through a dramatic dimensionality

reduction (see Section 5.8).

Figure 6 depicts two families of manifold geometry, parametrized by a continuous parameter

h so that h = 0 corresponds to a perfect ring and positive or negative h implies gradual deformation.

When considering manifolds with involved geometries, instabilities in the amplitude direction may appear

(Figure 6A). Without equivalence between the points in a general manifold, local stability may vary

along the attractor. However, we focus the analysis on points with reflectional symmetry (black circles

in Fig.6B,C), as we find that instability tends to show up at these points (Fig.S6, Methods). Indeed,

figure 6C shows that the amplitude direction destabilizes for various ranges of manifold deformations.

This effect can be non-monotonic in both the complexity of the manifold’s shape (in h, Fig.6C) and in

the level of synaptic heterogeneity in the network (not shown). In what follows, we will provide evidence

for the relation between loss of stability and the geometric complexity.

Crucially, in manifolds in which the amplitude direction approaches instability, such as the

manifold depicted in the top panel of Fig.6C, the separation of timescales, which Eq.(4) is build upon,

no longer holds. Contrarily to the attractor networks in Fig.3, here a weaker attraction, or equivalently

higher susceptibility to input in the amplitude direction, enables input driven trajectories that do not

follow the shape of the unperturbed manifold. Hence, upon introduction of input, the representation

might jump toward the new state rather than rotate smoothly along the manifold (Fig.S4).

To conclude, the convergent dynamics towards the manifold depends both on the heterogeneity

level and the geometry of the manifold. For some cases of complex geometry this convergence is either

partially compromised or completely ruined, resulting in jumps instead of smooth transitions along the

manifold, or even in its complete destabilization. Further insights to this phenomenon are related to the

effective dimensionality of the neural representation and of the resulting dynamics and are described in

the following section.

2.4 The manifold geometry controls the complexity of the dynamics

We conclude the paper by analysing how the complexity of the dynamics in the vicinity of the manifold

depends on the manifold geometry. We quantify this by asking how many PCs of the neural representation

are needed to capture the first few leading modes of local dynamics around the manifold.

While in symmetric-connectome manifold attrators the leading modes of the local dynamics are

determined by the rank of the structured matrix, two dimensional in the case of no heterogeneity in our

model (Methods, [Ben-Yishai et al., 1995, Hansel and Sompolinsky, 1998]), the situation in networks in

which manifold attractors emerge in the presence of heterogeneity is more delicate. Namely, it can formally

be only reduced to dimension 2M (number of sampled points times the rank of the structured interaction

matrix. see Methods and [Rivkind and Barak, 2017]). At first sight, this implies that increasing M results

in a more complex dynamics around the manifold, involving more modes of the dynamics that participate
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Figure 5: The effect of synaptic heterogeneity on the convergence toward the manifold. A.-C.

Illustration of the directions used to determine the stability of the manifold and the expected behavior for each

dynamical direction. A. Linearizing the dynamics around the manifold results in modes that affect the stability

of the manifold (red) and amplitude (green) directions, as well as other modes of the neural dynamics (purple)

that are invisible to the decoder plane and, hence, do not affect the bump’s dynamics. For a ring manifold the

decoder plane is align to the first 2 PCs. B. Projection of the manifold on the decoder plane and illustration of

the amplitude and manifold directions for which we do the linearization. We expect a zero maximal eigenvalue in

the manifold direction (Λψ ≈ 0 for marginal stability, Eq.(6)), and negative maximal eigenvalues in the amplitude

(Λρ) and the other population directions (Λpop). C. Spectrum of the linearized dynamics of Eq.(1) (imaginary

and real parts of the eigenvalues, λ’s, of the stability matrix in Eq.(13)) around the trained points. We denote the

maximal eigenvalue at each direction by Λ. Instability of the dynamics happens when one or more eigenvalues cross

zero (gray area). D.-E. Synaptic heterogeneity stabilizes the amplitude direction. D. Bump amplitude against

time following a perturbation at time 80τ for different levels of synaptic heterogeneity. The larger g is, the more

stable is the amplitude and fluctuations are damped. E. Right: Eigenvalues of the network stability matrix in

the vicinity of the attractor. Left: Second largest eigenvalue of the stability matrix (obtained from simulations)

against the heterogeneity level. Mean+-sd of simulations of 10 network realizations. Green: predicted (largest)

maximal eigenvalue in the amplitude direction ( Λρ, see Methods 5.7.3). Purple: predicted maximal eigenvalue

of the population direction; see Eq.(14) for Λpop. For a ring manifold the projection on the first two leading PCs

coincide with the decoder plane
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Figure 6: Geometry of manifold attractors controls the convergence in the amplitude direction.

A. Destruction of a manifold attractor due to instability of the amplitude direction. Top: A snapshot of the

neural activity, where all points initialized on the trained manifold, projected on the leading PCs. In steady

state all points converge to one of four isolated attractors. Bottom: same as top, but projected on the decoder

plane, z. Black curve: predefined manifold (see parameters in Methods). B. Ellipse manifolds, parametrized as

in Eq.(7), with h = 0 corresponds to a ring manifold. Left: Predefined trained manifolds. Stability is analyzed at

0 radians (black point). Amplitude direction in green and manifold direction in red. Right: Maximal eigenvalue

of the stability matrix along the amplitude direction against the deformation of the manifold, h. Circles: maximal

eigenvalue calculated by the spectrum of the full stability matrix, Eq.(13) (see Methods). Solid lines: theoretical

prediction through the low-dimensional mean field stability matrix (Eq.(93)) with a cutoff at K=2,4 and 6 PCs.

C. Same as (B), but for a different manifold (see Methods for parameters). Note that some manifold geometries

are unstable due to instabilities in the off-manifold direction, as shown in (A) for h=-0.5.
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in the dynamics of the bump. However, further simplification is possible and it can be shown that the

leading modes of the local dynamics can be captured by only K � M � N leading PCs (Methods),

allowing for a dramatic dimensionality reduction of the dynamics from the full N dimensional system to

a low, K-dimensional, local dynamics.

Without a clear symmetry in the second order statistics, as is the case for the trained heteroge-

neous ring manifold (Fig.2), carrying out a complete mean-field analysis for an arbitrary manifold, while

technically doable, turns out to be cumbersome and not necessarily instructive. Instead, we predict the

leading modes of the dynamics by applying the self-consistency mean-field equations using the empirically

obtained K leading PCs of the static neural representation (Methods).

We find that for the special case of a ring geometry, taking K = 2 PCs is enough to predict the

leading modes of the dynamics (Figs.6B,C, Fig.7A ). It is only when considering more involved geometry

of the manifold that the number of required PCs is larger than 2. Indeed, in Fig.6 we show that when

h 6= 0, more than 2 PCs of the manifold are needed to predict the leading dynamical mode of the bump’s

amplitude. However, as long as the deformation of the manifold is small, the dynamics alters continuously

and moderately with h. In particular, in the cases presented in Fig.6C and Fig.7B-C only 4 to 6 PCs

suffice to explain the local dynamic in the vicinity of the manifold, and it is only for more involved

geometries that we find that more PCs are required to predict the modes of the dynamics (Fig.6C and

Fig.7D).

Interestingly, destabilization was typically associated with large K needed to predict instability

(Fig.6C). This offers a clue that destabilization mechanisms and complexity of geometry, as indicated by

large K, are interrelated.

To conclude, we find that it is possible to learn manifold attractors with neither symmetry in

synaptic connectivity, nor symmetry in the shape of the manifold. The dimensionality of the dynamics in

the vicinity of the attractor is determined by the complexity of the attractor geometry, with the special

case of ring geometry being especially amenable to analytical formulation and analysis, but otherwise not

exceptional.

3 Discussion

Hypothesis of computations by manifold attractors relays on idealized symmetry assumption in synaptic

connectivity, which constitute the theoretical backbone for the emergence of such attractors in models and

specifically in non-linear recurrent networks. However, this assumption is inconsistent with heterogeneous

synaptic interactions and single neuron properties, as well as with diverse neural responses that are

widely observed in various brain areas. Furthermore, as a result of the symmetry in the connectivity,

such symmetric-connectome networks can only support limited repertoire of internal representations, as

it requires symmetric geometry thereof. Thus, the validity of the symmetry assumption in real biological

17

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 2, 2021. ; https://doi.org/10.1101/2021.06.01.446635doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.01.446635
http://creativecommons.org/licenses/by-nc-nd/4.0/


-0.2

0.2

0Im
(λ

)

Stability matrix

 K=6

Re(λ)

 K=4

Im
(λ

)

0-1

-0.1

0.1

0

Im
(λ

)

 K=2

-0.5

 K=2

0-1-0.5

0.5

0

 K=2
bad prediction good prediction

0-1

outlier ρ
outlier in ψ

λ

1

 K=6

0-1 -0.50-1 -0.5

-0.1

0.1

0

Im
(λ

)

Re(λ)

0-1 -0.5 0-1 -0.5

 K=20
iii

iii

iii

iii

predicted Λψ
predicted Λρ

predicted Λpop

Decoder plane, Mz

2-2 0

0

2

-2

4-4 0-4

0

4

2-2 0

0

2

-2

A

B

C

ii

ii

ii

ii

D

Z 2 (
a.

u.
)

-2

0

2

2-2 0
Z1(a.u.)

Z 2 (
a.

u.
)

Z 2 (
a.

u.
)

Z 2 (
a.

u.
)

i

i

i

i Internal 
representation, MΦ

PC1

PC2

PC
3

PC1

PC2

PC
3

PC1

PC2

PC
3

PC1

PC2

PC
3

Figure 7: Geometry of manifold attractors controls the complexity of the dynamics in its vicinity.

Ai. Projection of a trained ring manifold onto the leading PCs with color coded for the continuous feature. Gray:

projection onto the 2 leading PCs. Aii. Decoder view of a predefined trained ring manifold. Aiii. Spectrum

of linearized dynamics of the manifold in (ii). Purple: predicted maximal eigenvalue of the population direction;

see Eq.(14) for Λpop. Red and green circles are the predicted eigenvalues according to the low-dimensional mean

field stability matrix (Eq.(93)). Here K = 2 principal components suffice to get good mean field prediction for

the outliers. Grey region corresponds to instability (Reλ > 0) B. Same as (A), but for an ellipse manifold. Here,

prediction of the outliers is improved by increasing the number of principal components used for estimating the

low-dimensional mean field stability matrix C-D. Same as (B) but for different manifolds
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systems is highly speculative, raising the question of the applicability of this hypothesis to real biological

systems.

We argue that symmetry is not required to have an approximately continuous manifold in recur-

rent networks. Instead, training networks results in manifolds of states that can be considered persistent

for any practical purpose, without symmetry in the recurrent interactions or in the neuronal representa-

tion. Specifically, exponential decay of attracting forces along the manifold is predicted analytically for

tractable case and verified numerically to hold for more involved settings. Relatively small number, order

of ten, of learning samples, nulls any motion on the manifold.

Beside ability to maintain persistent state, functional manifold attractor must be responsive to

external input in a tractable way. We found that the response to external input is determined primarily

by attractors geometry, and more specifically by its projection into decoder plane. Namely, to make

a coarse prediction of how the memorized feature will evolve upon introduction of input, one does not

need to know about the internal connectivity of the neural network. For more accurate estimation of the

input driven dynamics another factor is needed, which is an effective timescale that modulates the motion

along the manifold and is expected to affect the ability of the network to perform angular integration

(see below). This factor does depend on internal connectivity and can be devised self-consistently in our

model, leading to a fine and accurate prediction of dynamics (see Fig. 3).

Finally, in contrast to the bump’s location, which must be responsive to stimulus, its amplitude

is expected to remain approximately indifferent to the external input and perturbations [Durstewitz et al.,

2000]. To that extent, we found that amplitude stability is preserved even when symmetry of neuronal

representation is compromised (Fig. 6). However, we do find that destabilization of the bump’s amplitude

is a limiting factor in the emergence of manifold attractors. When geometry of neuronal representation

becomes ”too complex” the bump’s amplitude may become unstable. Such a complexity is associated

with increasing number of dimensions of the neural representations that is required to predict dynamics

in its vicinity (Fig. 6). This result suggests that the geometry of putative manifolds in the brain can be

more involved than a ring, but not too involved for maintaining a stable representation.

3.1 Heterogeneity in networks that memorize and path integrate

Stored spatial information and path integration have been hypothesised to rely on the concept of com-

putations by manifold attractors. Neurons in brain areas that support these computations are known

to be highly heterogeneous [Funahashi et al., 1993, Romo et al., 1999, Finkelstein et al., 2015, Fisher

et al., 2019, Chaudhuri et al., 2019]. Neuronal activity in symmetric-connectome networks, however, are

inconsistent with these studies as neurons in these models do not exhibit any heterogeneity. In fact,

adding heterogeneity to these networks results in a systematic drift of the memory and to a failure to

integrate and accurately respond to external cues (Fig.S1).

A few studies explored the ability of manifold attractors to cope with diversity in neuronal tuning
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and heterogeneity in synaptic connectivity. Two of these studies explored a way to reduce the drift of

the internal representation by adding a slow component to the dynamics, such as short term facilitation

[Itskov et al., 2011, Hansel and Mato, 2013]. In trained networks, such dynamical mechanisms may

account for rapid alterations to connectivity for which training proves too slow. This possibility is left for

future work. In Renart et al.[Renart et al., 2003] the authors showed that homeostatic mechanisms can

homogenize the network despite considerable heterogeneity in single cell and synaptic properties. Our

results indicates that even with heterogeneity overcome, its dynamical consequences persist: Converging

forces towards the manifold in the amplitude direction increases with the level of heterogeneity (e.g.

Fig.5) and the input response exhibits slowdown (Fig.3). Furthermore, the notion of homogenization

becomes irrelevant once the requirement for symmetric geometry is relaxed, and neural states become

manifestly diverse (Fig.2,7).

Instead of relying on rotational symmetry to construct a continuous attractor, a different ap-

proach was taken recently by [Mastrogiuseppe and Ostojic, 2018]. The recurrent connectivity in this

model is based on a Hopfield network [Hopfield, 1982] and symmetry in strength of two attractors trans-

lates into continuity. However, this approach leads to a limited repertoire of tuning curves, differing only

by their amplitude, and does not cope with asymmetry in synaptic connections. Furthermore, adding

randomness to the recurrent connectivity in this model results in shattering of the continuous attractor

[Mastrogiuseppe and Ostojic, 2018]. This shattering can be mitigated by training, and is tractable by

our analysis (see Methods).

In application to systems that track external inputs and integrate angular velocity, such as the

head direction system [Hulse and Jayaraman, 2020], our analysis can be used to obtain the maximal

tracking velocity. As the response to external input slows down in the presence of synaptic heterogeneity,

we expect the maximal tracking velocity to decrease with the level of synaptic heterogeneity in the

network. As heterogeneity is correlated to diversity in tuning curves in our model, our work suggests

that integration is impaired in networks where neuronal responses are too diverse.

In the fly’s head direction system the network supporting the integration of idiothetic and

allothhetic signals is assumed to be on the order of 10-50 neurons [Hulse et al., 2020]. In this and

other [Simony et al., 2008] small networks almost any deviation from a symmetry assumption, such as

heterogeneity in tuning curves and in the connectome, is catastrophic for the computational capabilities

of the network. While here we applied a recurrent autoencoder paradigm (Fig. S3 and Methods) to

analyze manifold attractors in large networks, in which mean-field estimates are obtainable for Eq.(4),

the paradigm itself is valid for networks as small as a few neurons.

Finally, noisy dynamics such as those expected in spiking networks or in chaotic rate networks,

will result in a diffusion of the internal representation along the manifold. Such noise accumulation is

known to be a limiting factor in working memory and in integration systems [Burak and Fiete, 2012],

and is attributed to the marginal stability of the manifold direction. Our analysis implies that not all the

marginally stable manifolds were born equal: we found that both synaptic connectivity and the geometry
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of neuronal representaton affect the drift along the manifold. It will thus be interesting to explore how

these effects generalize to diffusive dynamics.

3.2 Beyond symmetrical geometry in manifold attractors

Symmetric-connectome models can support only the representation of manifolds with symmetry in their

geometry. This is exemplified in Fig.1A, where a symmetric-connectome ring attractor model is depicted.

The tuning curves are identical and the projections on the two leading principal components (PCs) is

circular. However, it is unclear that this is the case for putative manifolds in the brain. For example,

in the head direction system [Rubin et al., 2019, Chaudhuri et al., 2019] leading PCs do not feature

such a perfect circular shape. Same holds for the recently discovered manifolds of torus topology in the

enthorinhal cortex [Gardner et al., 2021]. Notably, the geometry of the manifold can be deformed due to

external inputs. Indeed, recent studies suggest that the manifold’s geometry depends on external signals

like the richness of the environments or locations of learned rewards [Boccara et al., 2019, Low et al.,

2020].

Our work provides a link between the geometry of the manifold and its dynamical properties.

While estimating the geometry of the manifold can be challenging, for example due to small number of

recorded neurons or sampling biases [Rubin et al., 2019, Chaudhuri et al., 2019], our work suggests that

estimating the manifold’s geometry, and not only its topology, is essential for predicting the computational

properties of the network. In particular, our work suggests that the dynamics in the vicinity of locations

which are represented by a higher total firing rates (Fig.2) are less responsive for updates (Fig.3) and

more prune to perturbations (Fig.S 6), with potential implications for computations such as tracking and

integration.

Finally, recent computational works showed that a manifold attractor emerges in networks

with heterogeneous connectivity when training a recurrent network to integrate angular velocity [Cueva

et al., 2019, Sorscher et al., 2020]. Interestingly, the authors in [Sorscher et al., 2020] found a distorted

2D manifold structure when they trained networks to path integrate. Our work provides a theoretical

understanding for the connection between the neuronal representation, such as diversity in neuronal

responses and the geometry of the manifold, and the emergence of a marginal direction and the dynamics

in the vicinity of the attractor in such trained networks.

3.3 Analytical theory of trained neural networks

While continuous attactors were observed numerically [Seung, 1998, Seung et al., 2000, Mante et al.,

2013, Sorscher et al., 2020, Cueva et al., 2019, Maheswaranathan et al., 2019], it is not clear how they

emerge from finite number of training examples. Here we established a link between interpolation capa-

bilities and the spectrum of neuronal activity. Specifically, Eq.(6) connects the decay rate of the PCs of
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neuronal tuning curves to the rate of approaching a marginal stability. From a signal processing perspec-

tive (e.g. [Shannon, 1949]), this result can be interpreted as quantifying frequency aliasing. The ideal

decoder samples the leading Fourier mode (i.e sinψ, cosψ). If a finite number of samples, M , used for

learning, then the M − 1-th spectral component is not orthogonal to the leading mode and it folds on

the desired decoder (Eq. (6)). Interestingly, extrapolation, which is known to be remarkably harder than

interpolation, can be also analysed from this viewpoint: when some restricted interval [ψ1, ψ2] is used for

learning instead of the entire domain [0, 2π), the desired spatial Fourier mode loses its orthogonality to

virtually all other modes and not just to the M − 1-st one, resulting, in poor extrapolation.

Training large neural networks to have a handful of discrete fixed point attractors is known

to results in low dimensional dynamics [Rivkind and Barak, 2017]. On the other hand, it was not

clear how this result generalizes to continuous attractors, and specifically whether the dimension of

dynamics becomes infinitely large at the limit of a large number of training points. Here, we found

that the dynamics in the vicinity of continuous neural manifolds is approximable by a small number of

dynamical modes, much smaller than the number of training points and is related to the leading principal

components of static neural representation along the manifold. Interestingly, we observed numerically

that destabilisation of manifold attractor is attributed to growing number of PCs needed to explain the

dynamics. Future work may focus on solidifying this relation analytically.

Examining the trained recurrent manifold attractor network from an autoencoder perspective

gives an interesting observation on the connection between manifold attractor networks and kernel ap-

proach in machine learning. The autoencoder in our model can be seen as mapping the low dimensional

manifold, z ∈ Mz, to high dimensional feature space Φ and then mapping it back to ẑ using linear

regression. As such, the training of a network with an intermediate layer of infinite size is reminiscent of

the kernel-based linear regression method. The kernel, however, in the trained manifold attractor case

is not one of the classical kernels used in machine learning, like the Gaussian or exponential kernels. It

is given by the correlation (kernel) matrix, and thus determined by the mapping to the feature space, as

well as by the randomness in the recurrent connections. Interestingly, a recent study made a connection

between how fast different modes are learned and the complexity of the neural code [Bordelon et al.,

2020]. Similar methods might apply to our framework and, to this extent, generalizing our theoretical

result on the fast convergence rate toward marginal stability along the manifold to more general topology

could prove especially insightful.

Following these lines, it is also appealing to attribute a regularizing role for synaptic heterogene-

ity in the learning process. As the number of neurons are larger than the sample points, M � N , many

solutions are possible and we choose the least square solution. Increasing the heterogeneity level thus

stabilizes the solution, in a way that is reminiscent of the ridge parameter in ridge regression. Similarly,

another intriguing comparison with the machine learning literature is with denoising and contractive au-

toencoders, methods that are used to capture local manifold structure of data [Alain and Bengio, 2014].

While synaptic heterogeneity in our setting is a recurrent and correlative noise, it has similar contractive

flavor as those in the denoising and contractive autoencoders, with a higher level of synaptic heterogene-
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ity resulting in an increase in contraction towards the sampled points on the manifold (Eq.(6)), and of

contraction in the direction orthogonal to the manifold (Fig.(5)).

In summary, our work shows that continuous attractors can cope with a large level of synaptic

heterogeneity and asymmetries in the geometry of the attractors, allowing to construct mechanistic models

of manifold attractors in the brain and predict the dynamics from their internal representation.

4 Acknowledgements

We would like to thank Larry Abbott, Ehud Ahissar, Arseny Finkelstein, James Fitzgerald, David Hansel,

Ann Hermundstad, Sandro Romani and Inbar Saraf-Sinik for their valuable feedback. AR is hosted by

Ehud Ahissar for post doctoral training in Weizmann Institute of Science.

References

[Ahmadian et al., 2015] Ahmadian, Y., Fumarola, F., and Miller, K. D. (2015). Properties of networks

with partially structured and partially random connectivity. Physical Review E, 91(1):012820.

[Alain and Bengio, 2014] Alain, G. and Bengio, Y. (2014). What regularized auto-encoders learn from

the data-generating distribution. The Journal of Machine Learning Research, 15(1):3563–3593.

[Amari, 1977] Amari, S.-i. (1977). Dynamics of pattern formation in lateral-inhibition type neural fields.

Biological cybernetics, 27(2):77–87.

[Amit, 1992] Amit, D. J. (1992). Modeling brain function: The world of attractor neural networks.

Cambridge university press.

[Barak et al., 2013] Barak, O., Sussillo, D., Romo, R., Tsodyks, M., and Abbott, L. (2013). From fixed

points to chaos: three models of delayed discrimination. Progress in neurobiology, 103:214–222.

[Beiran et al., 2020] Beiran, M., Dubreuil, A., Valente, A., Mastrogiuseppe, F., and Ostojic, S.

(2020). Shaping dynamics with multiple populations in low-rank recurrent networks. arXiv preprint

arXiv:2007.02062.

[Ben-Yishai et al., 1995] Ben-Yishai, R., Bar-Or, R. L., and Sompolinsky, H. (1995). Theory of orienta-

tion tuning in visual cortex. Proceedings of the National Academy of Sciences, 92(9):3844–3848.

[Boccara et al., 2019] Boccara, C. N., Nardin, M., Stella, F., O’Neill, J., and Csicsvari, J. (2019). The

entorhinal cognitive map is attracted to goals. Science, 363(6434):1443–1447.

[Bordelon et al., 2020] Bordelon, B., Canatar, A., and Pehlevan, C. (2020). Spectrum dependent learning

curves in kernel regression and wide neural networks. In International Conference on Machine Learning,

pages 1024–1034. PMLR.

23

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 2, 2021. ; https://doi.org/10.1101/2021.06.01.446635doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.01.446635
http://creativecommons.org/licenses/by-nc-nd/4.0/
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5 Methods

Simulations All simulations were done using an Euler method with dt = 0.1τ and τ = 1. In some cases

we took dt = 1τ and checked that similar results hold for smaller dt. To train the network we simulated

Eq.(1) for 1000τ and derived the least square solution. To simplify the analytical calculations we chose

the following sigmoidal transfer function φ(x) = erf(x). Due to the symmetry of the transfer function

we then simulated only M/2 points of the manifold: ψm with m = 1/M...π/M .

Manifold parameterization For the predefined manifolds in the decoder plane we chose the

following parametrized closed curve:

f(γ) =
A

1 + h/(a− 1)
[cos(γ +

h

a− 1
cos((a− 1)γ), sin(γ)− h

a− 1
sin((a− 1)γ)] (7)

where the normalization 1/a+ h guarantees that the amplitude is A at 0 radians.

External input In case of non-zero external input, it is given according to Section 5.1, with

ũ(γ) = f(γ)/A.
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Figure S 1: Failure modes of symmetric-connectome ring attractor network in the presence of

synaptic heterogeneity. A. Right: Cartoon of symmetric-connectome ring model in the presence of synaptic

heterogeneity (g=1). The structured part is as in 1Ai and is unlearned. Left: Connectivity strength vs. distance

in POs. B. Tangential error vs bump’s location (left) and the bumps location vs. time (right) for the network

in (A). Due to the heterogeneity the bump drifts toward one of the two stable fixed points in a few time steps.

N = 1000, g = 1, ε = 0. C. Response of the network in (A) to external input. Same as (B), but with ε = 0.04).D.

Mean squared drift velocity, averaged over initial conditions of 160 uniformly sampled points from the manifold, vs.

Mean squared tangential error (see Eq.(4)). Each of 100 points corresponds to a combination of hyperparameters

g, A times five random seeds (Methods). E. Mean squared tangential error vs. heterogeneity level. Theory: Eq.

(107), developed for small g, fits well the simulations for small g and start to deviate from the simulations for

g ≈ 0.4; N = 4000.
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Figure S 3: A Recurrent Auto-Encoder framework (RAE) for analysing manifold attractors. A.

Cartoon of the RAE. The structured recurrent loop (purple lines in Fig1C) is opened and decomposed into an

encoder and decoder. RAE is driven by fixed stimulus on the 2D plane z and the corresponding steady state

output ẑ is decoded. B. The tangential error, between encoded and decoded angles ∆ = ψ̂ − ψ. Fixed point

of the dynamics are points in which ∆ = 0 and stable fixed points (red circles) with ∆′ < 0 (Eq.(4)). C.-H.

Implications of decoding error on network dynamics. C.-E. The trained network in the absence of inputs.D. The

reconstruction error of the RAE. Left: error is shown in 2D z plane. Right: error is superimposed with with 6

randomly initiated trajectories of the full system. Dynamics converge rapidly to the closest point on the manifold

in which the error is negligible. Note the log scale of the error . E. Left: Tangential error ∆ vs. location on the

manifold. Right: Trajectories in (D) plotted against time. F.-H. Same network as in as C-E, but with a weak

external input (ε = 0.01) at π/6 rad. Here, convergence to the manifold is followed by drift to a single stable fixed

point, in which the tangential error vanishes H. Decoded angular feature ψ̂ is recovered via ψ̂ = tan−1(ẑ2/ẑ1).

The reconstruction error, L is defined by L = |ẑ − z|
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Figure S 4: Response to inputs in manifolds for which amplitude direction is not strongly attractive

A.-C. Example manifold where amplitude direction approaches instability (maximal eigenvalue along all points

on the manifold in amplitude direction is Λ = −0.1). Note deviations between theory and simulations due to

the lack in timescale separation between the amplitude and manifold direction. D.-F. Example manifold where

amplitude direction is marginal (maximal eigenvalue along all points on the manifold in amplitude direction is

Λ = −0.002). Note that transitions are no longer along the manifold. G. Effective timescale along the manifold.
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Tangential error in case of external input In the case of 0 < ε � 1 we find that it is

sufficient to approximate the tangential error by

∆(ψ) ≈ atan(
f2 + εũ2

f1 + εũ1
)− atan(f2/f1)

In other words, there is no need to calculate the error using the auxiliary RAE system and it can be

devised solely from the manifold in the decoder plane, f and the the input ũ. Specifically, for ε� 1 we

get ∆(ψ) ≈ − ε
A sin(ψ − ψ1).

Selectivity index and preferred direction Given the tuning curve of.a neuron i, r(θi, ψ),

we calculate the first Fourier component, rk1e
iΨk1 =

∫
dψr(θk, ψ)eiψ, with Ψi

1 being an estimate for the

preferred direction of the neuron and rk1 the selectivity index. Selectivity index of zero corresponds to a

flat tuning curve and is closely related to a circular variance of 1.

Effective timescale With the gain of the RAE in Eq.(80), tangential component is obtained

using Eq.(22) and the effective time scale τeff then follows:

τeff = − d

ds
G
‖
OL(s)|s=0 (8)

Specifically, in the case of a trained ring manifold the effective timescale is given by Eq.(69). In comparison

with simulations in Fig.3C we divided the drift velocity at ψ = π/4 for each level of heterogeneity by the

drift velocity in the absence of heterogeneity.

Calculating spectrum of stability matrix In the case of a ring manifold or at reflection

points we color the outliers of the spectrum of the N×N stability matrix according to their relation with

either the bump’s amplitude (circles in Fig.6B,C and green points in Fig.7A-Diii), or manifold direction

(red points in Fig.7A-Diii). Specifically, we calculate the spectrum of H = −I+(gJ+W fb
µ W

out
µ

T )φ′(x),

for which µ = 1 corresponds to the amplitude of the bump and µ = 2 for the transnational direction.

Parameters for figures Unless written otherwise, the parameters are A = 1.2, g = 1, N =

1000,M = 40, a = 2, h = 0.

• Figure 1: A. g = 0, A = 1.2. C-D.g = 1.2, A = 1.2

• Figure 2: A. Black:h = 0, g = 1. Blue: a = 2, h = 0.2, g = 1. The predefined trained manifold in

E-G is given by Eq.(7), with a = 2, h = 0.2, g = 1. In A N = 16000 and B-I N = 4000.

Norm. pop. rate(ψ) =

√∫
dθφ2(x(θ, ψ))√∫
dθdψφ2(x(θ, ψ))

(9)

• Figure 3: ε = 0.01 A-D. h = 0. E-G. a = 2, h = 0.2, g = 1. C. N=4000.

• Figure 4: A. N = 16000. E-F, N = 4000.

• Figure 6: A. N=4000, a=4,h=-0.5,g=1. B. N=4000, a=2, g=0.2. C. N=4000, a=4, g=1.
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• Figure 7: A. h=0, g=0.8. B. a=2, h=0.5, g=0.2. C. a=2, h=-0.5, g=0.2. D. a=4, h=-0.4, A=0.9.

g=0.2.

• Figure S1: A-C. Symmetric-connectome ring attractor network (Wij ∝ cos(θi−θj), see Methods) in

the presence of a random connectivity with g = 1. C. ε = 0.04. D. Hyper-parameters for the scatter

plot of drift speed vs. error A ∈ {0.5, 1.0, 1.2, 1.5, 2.0}, g ∈ {0.01, 0.1, 0.3, 0.5}, times 5 random seeds

per setting.

• Figure S2: N=1000.

• Figure S3: a = 4, h = −0.15, g = 1, A = 1.2

• Figure S4: A-C,G left a = 4, h = −0.2, g = 1, A = 1.2 D-F,G. righta = 4, h = 0.9, g = 1, A = 1.2

5.1 The network model

We consider a network of N units following the rate dynamics:

τ
x(t)

dt
= −x(t) + (W + gJ)φ(x(t)) + εu(t) (10)

with the neuronal state x ∈ RN representing the neuronal input and the neuronal rate given by φ(xi(t)),

with a symmetric activation function, φ(x) = −φ(−x). The recurrent connectivity consists of two com-

ponents: The random heterogeneous part is represented by i.i.d Gaussian weights Jij ∼ N (0, 1/N) times

strength parameter g [Sompolinsky et al., 1988]. The other recurrent component is a rank-2 structured

part, W = WfbW
T
out, with Wfb,Wout ∈ RN×2. The external input is u(t) = Winũ(t), with ũ ∈ R2,

and where for simplicity we choose Win = Wfb. The decoder is given by z = Woutφ(x), for which the

angular feature is calculated according to ψ = atan(z2/z1). The training goal is to obtain Wout such

that:

z(ψ) = f(ψ) (11)

with target f : [0, 2π) → R2 being a curve in 2D. For example, the particular case of a ring manifold

is given by f(ψ) = A[cos(ψ), sin(ψ)]. Finally, following the symmetric-connectome ring model of [Ben-

Yishai et al., 1995], we choose W fb
1i = cos(θi) and W fb

2i = sin(θi), however other choices such as in

[Mastrogiuseppe and Ostojic, 2018] give similar results (see also Section 5.9).

5.2 Dynamics in the vicinity of a manifold attractor

For a one-dimensional subsetMΦ ⊂ RN to be a continuous attractor it is required that in the vicinity of

any point φ(x) ∈ MΦ, local dynamics will be convergent in N − 1 off-manifold dimensions and remain

marginally stable in the one remaining direction associated with translations on the manifold (Fig 5A).

In the case of the dynamics of Eq.(10), this implies that linearized system:

τ
dδx(t)

dt
= Hδx(t) + εu(t) (12)

34

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 2, 2021. ; https://doi.org/10.1101/2021.06.01.446635doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.01.446635
http://creativecommons.org/licenses/by-nc-nd/4.0/


with the stability matrix

H = −I + (W + gJ)diag(φ′(x)) (13)

will have a spectrum {λi}Ni=1 in which λ1 = 0 and <(λj) < 0 ∀j 6= 1. Extending the approach of [Rivkind

and Barak, 2017] we argue that training the structured rank-two connectivity matrix affects only a small

number of dynamical modes while the rest of the spectrum consists of a bulk of eigenvalues that are

associated with random connectivity and are not affected by the structured component (red and green

circles in Fig. 5C,E,6). The latter are confined to a circle of radius (purple in Figs. 5C, 7, [Ahmadian

et al., 2015]):

Λpop = g
√
〈φ′(xi)2〉i (14)

with xi calculated self-consistently (see below) and 〈.〉i average over all neurons.

5.3 Recurrent Autoencoder setting

To analyze the dynamics of continuous attractor networks we consider the dynamics of an auxiliary

setting, which we call Recurrent Autoencoder (RAE) (Fig.S3A):

τ
dx(t)

dt
= −x(t) + gJφ(x(t)) +Wfbz(ψ) + εu(t) (15)

ẑ(ψ, t) = W T
outφ(x(t))

where we unfold the structured component of the recurrent connectivity from Eq.(1) (Fig.1Ci), and test

what would be the decoded output of the RAE, ẑ, when externally enforcing its input through the encoder,

Wfb, to be z.

The dynamics of the RNN (Eq.(1)) is governed by the discrepancy between the input and the

output of the auxiliary system, L = ||ẑ − z||2. Namely, given a point x on the attractor, and its

corresponding low-D projection z, the dynamics of Eq.(1) should regenerate the same point persistently.

In the RAE setting, this regeneration coincide with having ẑ = z. Conversely, a point x in the vicinity

of the attractor would not be regenerated perfectly, resulting in a flow in the dynamics of Eq.(1).

As a result of the difference between dynamics along the on- and off- manifold directions, any

neural trajectory in the vicinity of the manifold will first converge in the N-1 dimensions orthogonal to

the 1D manifold, followed by slower dynamics along the manifold itself. Consequently, it is useful to

consider the tangential error of the RAE. This error is given by projecting the 2D error vector, ẑ− z, on

the tangent to the manifold at point ψ and is approximated by:

∆(ψ) ≈ ψ̂(ψ)− ψ (16)

It measures the difference between the angle of the reconstructed point of the RAE, ψ̂ = tan−1(ẑ2/ẑ1)

and the input angle ψ (Fig.S3A,G).
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5.4 The gain of the RAE

Linearizing Eq.(15) around a putative fixed point, x(ψ) yields:

(1 + sτ)X(ψ, s) = gJdiag(φ′(x(ψ)))X(ψ, s) +WfbZ(ψ, s) (17)

Ẑ(ψ, s) = W T
outφ

′(x)X(ψ, s) (18)

where X(ψ, s) is the Laplace transform of the linearized state. The gain of the (open loop) RAE is

defined as:

Ẑ(s) = GOL(s)Z(s) (19)

and can be computed as:

GOL(s) = W T
outdiag(φ′(x))[(1 + sτ)I − gJdiag(φ′(x))]−1Wfb (20)

By closing the loop, i.e. by setting Z(ψ, s) = Ẑ(ψ, s) in Eq. (17), we obtain the gain of the fully recurrent

network:

G(s) = (I −GOL(s))−1GOL(s) (21)

G(s) is a 2 × 2 matrix of N degree polynomial ratios and the poles of its determinant correspond to a

subset of eigenvalues of the stability matrix of Eq.(13). In large N limit this degree is vastly reduced

as the majority of linear dynamical modes become not observable via readout Z, and it is only a small

number of modes that persist in (19) and hence in (21). Specifically, these are the eigenvalues that

appear due to the structured component of the connectivity and the bulk of remaining eigenvalues are

not affected and obey circular law (Fig.5A and Fig.7).

A marginal stability emerges when det(G) has a pole at s = 0. Equivalently, it follows from

Eq.(21) that GOL(s = 0) must have an eigenvalue one, with the eigenvector being the tangent vector,

t̂ =
dzψ
dψ ||

dzψ
dψ ||

−1. To analyze the dynamics it is convenient to consider the gain of the RAE in the

coordinates of the tangent and normal directions, with the normal direction, n̂, defined by a clockwise

rotation of t̂ by π/2. We define the gain in the tangent direction to the manifold as

G
‖
OL(s) = t̂GOL(s)t̂ (22)

and similarly in the gain in the normal direction as G⊥OL(s) = n̂GOL(s)n̂. The conditions for a

stable manifold are then that G⊥OL(s) obey stability conditions of a scalar feedback system, (e.g. Nyquist

criterion [Nyquist, 1932]), while G
‖
OL(s) is required to obey marginality:

G
‖
OL(s = 0) = 1 (23)

In the sequel we argue that the local dynamics along the manifold in this case can be approximated by

first order differential equation, even for large g (see Section 5.7.3). Consequently it must have a form:

G
‖
OL(s) ≈ 1

1 + τeffs
(24)
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Finally, we note that small and slow translations along the manifold does not induce displacement

at the normal direction, implying n̂GOL(s = 0)t̂ = 0. The second cross term t̂GOL(s = 0)n̂ is non-

vanishing in general case, however, by symmetry considerations, it vanishes if the manifold features

reflection symmetry around n̂. In particular, this condition holds at any point for ring geometry and for

reflection points in the parameterized manifolds of Fig.6-7.

5.5 Drift and connection to RAE framework

We assume that the dynamics in the N-1 directions orthogonal to the 1D manifold, Mφ, is convergent,

and that the tangential error following training is small (or conversely ε� 1 in the case of external input),

such that translations on the manifold are slower than the dynamics in the N-1 orthogonal directions.

Under this separation of timescale assumption, we can link the drift along the manifold to the tangential

error, as shown in the main text (Eq.(4)).

We start by considering the linearized RAE in the transnational direction. Adding a constant

error ∆(ψ, t) = ∆(ψ) yields:

ψ̂(s) = G
‖
OL(s)ψ(s) + δ(s)∆(ψ) (25)

where δ is Dirac delta function. Closing loop ψ̂(s) = ψ(s):

δ(s)∆(ψ) = (1−G‖OL(s))ψ(s) (26)

Assuming we can write the gain in the transnational direction as in Eq.(24) we get:

ψ(s) =
(
1 + (τeffs)

−1
)
δ(s)∆(ψ) (27)

Recalling that the factor s−1 in Laplace domain translates into integral in the time domain, we get:

ψ(t) = (1 + τ−1
eff t)∆(ψ) (28)

The drift along the manifold then follows:

ψ̇ = ∆(ψ)τ−1
eff (29)

recapitulating Eq.(4) in the main text. Linerazing Eq.(29) around a fixed point:

ψ̇ =
d∆(ψ)

dψ
ψτ−1

eff (30)

and:

Λψ =
d∆(ψ)

dψ
τ−1
eff (31)

with stability achieved for Λψ < 0, and marginality for Λψ = 0. Here we assumed (without loss of

generality) that the fixed point is located at ψ = 0.
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5.6 Trained manifold attractors

We train the network by sampling M � N points of a pre-defined manifold, z(ψm) ∈ M2, with m =

1...M , ψm = 2π mM and run the dynamics in an open loop RAE setting (Eq.(15),Fig.S3) with ε = 0

until the recurrent dynamics converges [Jaeger, 2001, Sussillo and Abbott, 2009]. We obtain M states

{φ(xm)}0≤m≤M−1 and train the decoder by minimizing the reconstruction error:

L(Wout) = |ẑ(ψ,A)− z(ψ,A)|22 (32)

with ẑ = W T
outφ(x). The least square (LS) solution yields:

Wout = ΦC−1z̄ (33)

where here z̄ ∈ RM×2(z̄ = z(ψm)), the fixed point solution of Eq.(15) are

Φim = φ(x(θi, ψm)) (34)

and the correlation between the rates is:

C = ΦTΦ (35)

A point on the manifold can thus be written using the correlation matrix:

ẑ(A,ψ) =
M−1∑
m=0

z(A,ψm)C(A;ψm, ψ) (36)

We next consider the singular value decomposition (SVD) of Φ:

Φ = vD1/2η (37)

where η ∈ RM×M and v ∈ RN×N are the right and left singular vectors. The matrix D1/2 ∈ RN×M is

the singular value (SV) matrix with
√
Cm, m = 1..M , being the SVs and Cm being the elements of the

spectrum of the correlation matrix of Eq.(35). The decoder is then:

Wout = vD−1/2ηf (38)

Due to stability requirements (Fig.5A and Section5.2), the above training procedure does not guarantee

the emergence of a manifold attractor. First, a translational mode needs to emerge from sampling only a

finite set of M points (red arrow in Fig.5A). Second, amplitude direction needs to be stabilized (green ar-

row in Fig.5A). Finally, spontaneous activity must be suppressed [Rajan et al., 2010, Mastrogiuseppe and

Ostojic, 2018] (purple arrow in Fig.5A). To assess that, we developed a mean field approach, calculated

the steady state mean field solution of Eq.(10), and analyzed its stability.

5.7 Heterogeneous trained ring attractor model

To train a ring manifold on top of heterogeneous connectivity (g > 0 in Eq. (1)) we apply the least

square learning rule from Eq. (33) to M samples z0..M−1 from the ring curve Mz:

z(ψ) = A[cos(ψ), sin(ψ)] (39)

38

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 2, 2021. ; https://doi.org/10.1101/2021.06.01.446635doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.01.446635
http://creativecommons.org/licenses/by-nc-nd/4.0/


We will argue in the sequel (Eq. (45)) that in the limit of large N and for any M the correlation

matrix is circulant. Consequently z(ψ) is an eigenvector of C and the LS solution is of a particularly

simple form:

Wout =
1

C1
Φz̄ (40)

Remarkably, as depicted in Fig.1E and as quantified by Eq.(53), circulant property of correlation matrix

does not imply symmetry between individual neuronal representations. Consequently, the structured

part of the recurrent interactions, W , is not symmetric any more: while feedback weights are assumed

to be W fb
i = [cos(θi), sin(θi)] as in the symmetric-connectome model, this is not the case for the learned

readout weights: W out
,i 6= w[cos(θi), sin(θi)] for any factor w.

To assess dynamical properties of the putative manifold, we now turn to developing a mean field

estimate for the open loop RAE gain (19).

5.7.1 Mean field solution for the neural representation of the manifold

To obtain the mean field solution in real space we decompose the steady state solution of Eq.(15) into

its deterministic and stochastic parts [Rajan et al., 2010, Rivkind and Barak, 2017]:

xi(ψm) = x0
i (ψm) + x1

i (ψm) (41)

where the deterministic part, independent of disordered connectivity J , is

x0
i (ψm) = A cos(θi − ψm) (42)

and the quenched disorder is given by:

x1
i (ψm) = g

∑
j

Jijφj(ψm) (43)

In the large N limit, x1
i is replaced by a Gaussian r.v., σy, with y being a mean zero and unit Gaussian

r.v. and the variance, σ2, that needs to be evaluated self-consistently:

σ2 = g2

∫
dθ

2π

∫
Dyφ2(σy +A cos(θ)) (44)

with Dy = e−y
2/2dy
2π . Importantly, due to the rotational symmetry in the deterministic part of Eq.(42),

σ is independent of θ and ψm in the large N limit. Moreover, since we assumed that φ(−x) = −φ(x),

there is no bias term in Eq.(44).

Correlation between the inputs to the neurons on the manifold c(ψm, ψm′) = 〈xi(ψm)xi(ψm′)〉
can be computed self consistently as well. This is done by projecting Eq.(43) for ψm onto the same

equation but with ψm′ . In the specific case of a ring geometry, the latter only depends on the difference
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ψm − ψm′ so to simplify notations we assume ψm′ = 0 and obtain:

c(ψm) = g2C(ψm) = g2

∫
dθ

2π

∫
Dy

(∫
Dy1φ

(√
σ2 − |c(ψm)|y1 +

√
|c(ψm)|y +A cos(θ)

)
(45)∫

Dy2φ
(√

σ2 − |c(ψm)|y2 + sign(c(ψm))
√
|c(ψm)|y +A cos(θ − ψm)

))
such that c(0) = σ2 and where we denote by capital latter the the correlations among the rates of the

neural state:

C(ψm) = 〈φ(xi(ψm))φ(xi(ψ0))〉 (46)

5.7.2 Representation in Fourier space

Instead of mean field estimate in real space, we can also write the fixed point of the dynamics by the

singular value decomposition of Eq.(37). This turns out to be handy when considering the stability

analysis, as we can write the decoder using the SVD. Using Eq.(37), the quenched disorder is

x1
im = x1

i (ψm) ≡
M∑
n=1

gC1/2
n aniηn(ψm) (47)

where ani =
∑
j Jijvnj are Gaussian r.v. with zero mean and unit variance (and we assume 1

N

∑
v2
nj = 1)

and the spectrum of the correlation function is:

Cn =
∑
m

cos(nψm)C(ψm) (48)

In the case of the ring attractor, the correlation matrix is circulant (Fig.2A). As a result, the SVs are

simply the spatial Fourier modes. In this case we denote the coefficients of even (resp. odd) modes

corresponding to cos (resp. sin) functions by a (resp. b), as opposed to a case of general principal

component decomposition where we do not make such a distinction (see Section 5.8). Eq.(47) thus

yields:

x1(θ, ψm) ≡
M∑
n=1

√
cn(an(θ) cosnψm + bn(θ) sinnψm) (49)

where we took the limit of N →∞ such that ani, bni = an(θ), bn(θ) and where we define

cm = 2

∫
dψ

2π
cos(mψ)c(ψm)

We can thus write the fixed point solution using the Gaussian r.v. an, bn:

c(ψm) = g2

∫
dθ

2π
ΠM
n=1

∫
Dan

∫
Dbnφ(

M∑
n=1

√
cn(an(θ) cosnψm + bn(θ) sinnψm) +A cos(θ − ψm))(50)

× φ(
M∑
n=1

√
cnan(θ) +A cos θ)

and as before, with σ2 = c(0). Thus the statistics of the neuronal activity is fully specified in large N

limit. In principle, to estimate Eq.(50), one would need to integrate over a large number, 2M , of random

40

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 2, 2021. ; https://doi.org/10.1101/2021.06.01.446635doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.01.446635
http://creativecommons.org/licenses/by-nc-nd/4.0/


variables an, bn. In practice, however, one can get a very good approximation for the correlation and

the variance by using a rather small number of random variables. This is because as the spectrum of

the correlation function decreases rapidly when n is increased, the amplitude of the higher frequency

components in the quenched disorder is increasingly small. We thus write the approximate MF soultion

in Fourier space by taking the approximation

x̂1(θ, ψm) ≡
K∑
n=1

√
cn(an(θ) cosnψm + bn(θ) sinnψm) (51)

and where we defined the cut-off frequency, K (K < M).

At this point we can also estimate the diversity of tuning curves. Tuning curves are calculated

when changing ψ per neuron:

r(θi, ψ) = φ(A cos(θi − ψ) + x̂1(θi, ψ))

We can thus use the Gaussian statistics of x1(θi, ψ) to generate tuning curves. Again, in principle this

would require 2M random variables per one neuron, but in practice K = 5 is enough. We define the

selectivity index of a neuron i as:

SIk = rk1 =

∣∣∣∣ ∫ dψeiψφ(xk(ψ)))

∣∣∣∣ (52)

and we can further calculate the SD of the selectivity index, yielding:

SD2
SI = 〈SI2

k〉k − 〈SIk〉2k =

∫
dθ

2π

∣∣∣∣ ∫ Da

∫
Db

∫
dψeiψφ(A cos(θ − ψ) + x̂1(a, b, ψ))

∣∣∣∣2 (53)

−
{∫

dθ

2π

∣∣∣∣ ∫ Da

∫
Db

∫
dψeiψφ(A cos(θ − ψ) + x̂1(a, b, ψ))

∣∣∣∣}2

5.7.3 Dynamics in the vicinity of the attractor - mean field solution

Equipped with the mean field solution for the neuronal state on the attractor, we are now set to explore

the dynamics in its vicinity by evaluating Eq.(19) and (21). Rather than applying Eq.(20) directly, we

estimate the elements GµνOL of 2x2 matrix GOL by the mean field approximations of Ẑµ (Eq.(18)) driven

by the appropriate input Zν(s) = êν (with êν a unity vector id the direction ν). Recalling that according

to Eq.(33), the linear decoder Wout is spanned by rate-states φ(xi(ψm)):

W out
µ =

M−1∑
m=0

qµmφ(x(ψm)) (54)

where ν, µ ∈ {1, 2} denote directions in the decoder plane, z. The terms of the RAE gain matrix (19)

are then:

GµνOL(s) =
M−1∑
m=0

qµm〈φ(xi(ψm))φ′(xi(ψ0))Xiν(ψ0, s)〉 (55)
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Similarly to Eq.(41), we decompose the linearized response:

Xiν(ψ0, s) = X0
iν(ψ0, s) +X1

iν(ψ0, s) (56)

(1 + s)X0
iν(ψ0, s) = W fb

iν (57)

(1 + s)X1
iν(ψ0, s) = g

∑
Jijφ

′(xi(ψ0))Xjν(ψ0, s) (58)

multiplying Eq.(58) by Eq.(43) and project on the right singular vectors, ηnm, we obtain:

(1 + s)
M−1∑
m=0

ηnm〈x1
i (ψm)X1

iν(ψ0)〉 = g2
M−1∑
m=0

ηnm〈φ(xi(ψm))φ′(xi(ψ0))Xiν(ψ0)〉 (59)

The RHS of Eq.(59) is closely related to the gain of the RAE. In fact, due to circulant property

of C in the case of a ring geometry, the Fourier modes are the principal components of Φ, and qlm takes a

particularly simple form (Eq.(40)): qµm = 1
C1
ηµm (µ ∈ {1, 2}). It is thus convenient to solve the problem

in the Fourier domain with respect to ψ. For the sake of convenience, we focus on the point ψ = 0. We

express X in the corresponding spatial basis:

Xiν(s) =
W fb
iν

1 + s
+
∑
k

√
ck(α⊥k (s)aki + α

‖
k(s)bki) (60)

where we omit the argument ψ0 to simplify notations and α⊥(s) (resp. α‖(s)) are coordinates of X(s) in

the ak (resp. bk) basis. Here, µ, ν = 1 correspond to the direction normal to the manifold and µ, ν = 2

corresponds to the tangential direction. We start by analysing the tangential direction, and we use the

symbol ‖ as shorthand for indexes 2 and 2, 2 (and similarly ⊥, for 1 and 1, 1). Projecting Eq.(49) on

Eq.(60) and using Eq.(59) yields a self-consistent equations for the projections in the tangential direction:

(1 + s)cnα
‖
n(s) = g2 β

‖0
n

1 + s
+ g2

K∑
n′=1

β
‖1
nn′α

‖
n′(s) (61)

with

β‖0n =
K∏
k=1

∫
DakDbk

∫
dψ

π

∫
dθ

2π
sin(nψ)φ(A cos(θ − ψ) + x̂1(ψ))φ′(A cos(θ) +

K∑
k=1

√
ckak) sin(θ) (62)

β
‖1
nn′ =

K∏∫
DakDbk

∫
dψ

π

∫
dθ

2π
sin(nψ)φ(A cos(θ − ψ) + x̂1(ψ))φ′(A cos(θ) +

K∑
k=1

√
ckak)

√
cnbn′ (63)

where we took the limit M → ∞ (assuming M � N) and x̂1 is given by Eq.(51), an approximation of

Eq.(49) up to K-th order.

To obtain the gain of the RAE we note that α⊥1 is closely related to the tangential gain. Indeed,

from Eq.(61) and (59) the gain of the autoencoder in the manifold direction now follows:

G
‖
OL(s) = (1 + s)

A

g2C1
c1α
‖
1(s) = Aα

‖
1(s)(1 + s) (64)
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and α
‖
1 is the first element of vector α‖:

α‖(s) =
g2

1 + s

(
(1 + s)diag(c)− g2β‖1

)−1

β‖0 (65)

How many terms K are needed to estimate α‖(s) and hence G
‖
OL(s)? Using Stein’s lemma, we

write Eq.(63) as

β
‖1
nn′ = cn′〈sin(nψ) sin(n′ψ)φ′(xi(ψ))φ′(xi(0))〉 (66)

this implies an exponential decay with frequency difference n − n′. Furthermore, it can be shown that

for s = 0 the solution of (65) is given by α
‖
n = n. Such a linear growth of elements of α

‖
n can not

overcome decay of (66) and taking K = 1 is enough. Numerical simulations also point that first order

approximation K = 1 is accurate for all the relevant ranges of s (not shown).

We can now recover the effective timescale τeff that governs the dynamics along the manifold

(Eq.(4)). By assuming first order ansatz for the gain of the RAE we get:

G
‖
OL(s) =

Aβ
‖0
1

C1(1 + s)− β‖111

(67)

Reorganizing the above equation and recalling that the gain of the RAE at zero frequency is unity (see

Eq.(23), yielding
1− 1

C1
β
‖1
11

A
C1
β
‖0
1

≈ 1) gives:

G
‖
OL(s) ≈ 1

1 + τeffs
(68)

with the effective timescale given by:

τeff = τ(AC−1
1 β

‖0
1 )−1 ≈ τ(1− C−1

1 β
‖1
11)−1 = τ(1− β)−1 (69)

and where using Eq.(66) we get Eq.(5) in the main text:

β = g2〈sin(ψ)2φ′(xi(ψ))φ′(xi(0))〉i,ψ

Following the same analysis, similar equations control the gain in the amplitude direction, but

with:

β⊥0
n =

K∏
k=1

∫
DakDbk

∫
dψ

π

∫
dθ

2π
cos(nψ)φ(A cos(θ − ψ) + x̂1(ψ))φ′(A cos(θ) +

∑
k

√
ckak) cos(θ) (70)

β⊥1
nn′ =

K∏
k=1

∫
DakDbk

∫
dψ

π

∫
dθ

2π
cos(nψ)φ(A cos(θ−ψ)+ x̂1(ψ))φ′(A cos(θ)+

∑
k

√
ckak)

√
cn′an′ (71)

Here, by using stein lemma we get

β⊥1
nn′ = cn′

[
〈cos(nψ) cos(n′ψ)φ′(xi(ψ))φ′(xi(0))〉+ 〈cos(nψ)φ(xi(ψ))φ′′(xi(0))〉

]
(72)

the gain G⊥OL is computed similarly to Equations (64), (65) with leading eigenvalue Λρ of the full system

corresponding to the leading pole of the closed loop gain G⊥(s) = G⊥OL(s)(1−G⊥OL(s))−1.
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5.7.4 Finite sampling effect

As M < N , the tangential error is zero at the learned points. Nevertheless, as long as M is finite, the

derivative of the tangential error is not zero. Due to the symmetry between the sampled points in the

large N limit we can calculate the derivative of the tangential error at only one of the sampled points.

Without loss of generality, we calculate the derivative at ψ0 = 0. The angular tangential error at ψ0 = 0

is given by ẑ2(ψ0)−z2(ψ0)
A . Substituting into (40) we obtain:

∆(ψ0,M) =
1

C1

∑
m

sin(ψm)〈φ(θ, ψm)φ(θ, ψ0)〉 − ψ0 (73)

yielding:

∆(ψ0,M) =
1

C1

M−1∑
m=0

sin(ψm)C(ψm − ψ0)− ψ0 (74)

To obtain the derivative of the tangential error we define the continuous correlation function, C(ψ). In

this sense, the notation C ′(ψm) refers to dC(ψ)
dψ |ψ=ψm . We expand the (continuous) correlation function,

which is an even function of ψ, in Fourier series as C(ψ) =
∑∞
k=0 Ck cos(kψ) and write the derivative of

the tangential error at the sampled points:

∆′(ψ0,M) =

∑M−1
m=0 sin(ψm)C ′(ψm)

C1
− 1 =

∑∞
k=0

∑M−1
m=0 kCk sin(ψm) sin(kψm)∑∞

k=0

∑M−1
m=0 Ck cos(ψm) cos(kψm)

− 1 (75)

First, it is now obvious from RHS of (75) that limM→∞∆′ = 0. Furthermore, correction due to finite M

is expressible via spectrum of C. Namely:

∆′(ψ0,M) =
1− C−1

1

∑∞
k′=1

(
(Mk′ − 1)CMk′−1 − (Mk′ + 1)CMk′+1

)
1 + C−1

1

∑∞
k′=1

(
CMk′−1 + CMk′+1

) − 1 (76)

In case of a fast decaying spectrum of the correlation function, such that Ck � Ck′ for k′ > k, as in cases

shown in Fig. 4D, Eq.(76) can be approximated by:

∆′(ψ0,M) ≈ −(M − 1)
CM−1

C1
(77)

We can now plug this result, along with the effective time constant from (69) into (31) to obtain mean-field

estimate for the maximal eigenvalue in the translational direction:

Λψ ≈ −(M − 1)
CM−1

C1
τ−1
eff (78)

and conclude that translational direction is recovered exponentially fast with the number of sampes M .

Importantly, it must be acknowledged that the result relies on approximating G
‖
OL by a first order in

term. While this approximation matches the numerical simulations, it is not immediately clear why

approximation remains valid for estimating exponentially small quantities such as (78), that may be

potentially sensitive to small terms that were neglected in (24).
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5.8 General 1D manifold attractor

Similarly to the case of the ring manifold, we write the steady state mean field solution and stability

equations for the dynamics in Eq.(10) for a general 1D manifold. In contrast to the case of a ring

manifold, in manifolds with general geometry the correlation matrix is no longer circulant and therefore

the eigenvectors are not the Fourier modes. Still, similar analysis and mean-field equations control the

stability.

For a general curve f : [0, 2π) → R2 and z(ψ) = f(ψ), we follow Section 5.7.3 and write the

correlation function in the singular vectors domain:

c(ψm, ψ0) = g2

∫
dθ

2π
ΠM
n=1

∫
Danφ(

M∑
n=1

√
cnan(θ)ηn(ψm) +A cos(θ)f1(ψm) +A sin(θ)f2(ψm))

× φ(
M∑
n=1

√
cnan(θ)ηn(ψ0) +A cos θ)

Next, stability is calculated based on Eq.(59), with the only difference that the decoder is

spanned by more than two singular vectors. Recall that

W out
µi =

∑
k

fµ(ψm)C−1
k ηk(ψm)

∑
m′

ηk(ψm′)φi(ψm′) (79)

So that

GµνOL(s) =
∑
i

W out
µi φ

′
iX

ν
i (s) = (80)

K∑
k=1

M∑
m=1

M∑
m′=1

N∑
i=1

fµmηmkC
−1
k ηm′kφi(ψm′)φ

′
iXνi(s) = (81)

(1 + s)
K∑
k=1

M∑
m=1

∑
i

fµmηmkα
ν
k(s) = (82)

(1 + s)
K∑
k=1

q̃µkα
ν
k(s) (83)

where we defined

q̃µm =
∑
n

fµnηnm (84)

Following the derivation of Section 5.7.3, with

Xiν(s) =
W fb
iν

1 + s
+
∑
k

√
ck(ανk(s)aki) (85)

we get to the same self-consistent equation for the order parameters ανn(s) as in Eq.(61), but with

βν0
n =

K∏
k=1

∫
DakDbk

∫
dψ

π

∫
dθ

2π
ηn(ψ)φ(

∑
µ′

W fb
µ′ (θ)fµ′(ψ)+x̂1(ψ))φ′(

∑
l

W fb
µ′ (θ)fµ′(ψ0)+

K∑
k=1

√
ckak)W fb

ν (θ)

(86)
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β1
nn′ =

K∏
k=1

∫
DakDbk

∫
dψ

π

∫
dθ

2π
ηn(ψ)φ(

∑
µ′

W fb
µ′ (θ)fl(ψ)+x̂1(ψ))φ′(

∑
µ′

W fb
µ′ (θ)fµ′(ψ0)+

K∑
k=1

√
ckak)

√
cnbn′

(87)

with ψ0 denoting the point at the manifold for which the gain is computed. Here, once again, we define

the cut-off K < M . The coefficients β0
nn′ depend on the input index ν, while coefficients β1

nn′ do not. A

notable difference from the ring geometry where gain matrix is the same for all points on the manifold,

up to rotation transformation, is that in case of a general geometry the gain varies qualitatively with ψ.

Destabilization may occur for some values of ψ, while other regions remain stable. Another difference

with general geometry is that in case of manifolds with large deformations, taking a cutoff at K=1 is

not enough and the anzats of Eq.(24) does not longer hold (Fig.6-7). Indeed, as the decoder is now

spanned by a mixture of several singular vectors, different from the two leading singular vectors for the

ring geometry, the stability is determined by several of the order parameters ανn(s).

Instead of calculating the RAE gain directly and obtain the closed loop gain, we take here a

different approach and close the loop directly on the order parameters αn(s). Which we now define to

be:

Xi(s) =
∑
ν′

W fb
iν′

1 + s
Zν
′

OL(s) +
∑
k

√
ck(αk(s)aki) (88)

Specifically, given our system with input ZOL(s), rather that with unity input that was assumed

in an open loop system, we have α given by:

(1 + s)cnαn = g2
∑
m

β1
nmαm + g2

∑
ν′

βν
′0
n

1 + s
Zν
′

OL(s) (89)

and the readout ẐOL(s) can be obtained from (83) as:

ẐµOL(s) = (1 + s)
K∑
k=1

qµkαk(s) (90)

closing loop is done by requiring ZOL(s) = ẐOL which turns (83) into:

(1 + s)cnαn = g2
∑
k

β1
nkαk + g2

K∑
k=1

2∑
ν′=1

β0,ν′

n

1 + s
q̃ν
′

k (1 + s)αk(s) (91)

this can be re-written in a form:

sα = Hα (92)

where the K ×K mean-field stability matrix is:

Hnm = g2c−1
n

( 2∑
ν′=1

β0,ν′

n q̃ν′,m + β1
nm

)
− δn,m (93)
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K eigenvalues of the mean-field stability matrices H corresponds to the change in 2K eigenvalues of the

spectrum of the stability matrix H (Eq.(13)) as a result of adding the trained structured matrix W to

the random matrix gJ .

In points with reflectional symmetry in the target function f , further simplification is possible.

The matrix H in such cases is decomposable into blocks of odd and even principal components with no

interaction in between them. The block of even principal components H‖ will describe the stability in the

normal (amplitude) direction while the block of odd modes H⊥ will account for the tangential direction.

Obviously this is the case for perfect ring geometry, for which such an even-odd dissection presented in

Eq. (60) and the even and odd modes are given by cos(kψ) and sin(kψ) respectively. Furthermore, this

is also the case for the minima and maxima of amplitude in the manifolds that were analysed here (Fig.

7).

5.8.1 Transfer function

To simplify the MF calculations we choose the error function. While this function is very similar to the

commonly used tanh, in the case of integrations with Gaussian integrals it simplifies calculations and

gives an analytical expression for quantities such as the correlation function. Specifically, we use:

φ(x) = erf

(
x√
2

)
(94)

where the error function is defined as erf(y) = 2√
π

∫ y
0
e−t

2

dt. We then use the following identity:∫
Dzφ(a+ bz) = φ(

a√
1 + b2

)

in Eq.(45) and then we only need to numerically integrate over θ and y.

5.9 Symmetric-connectome ring model- revisit in RAE setting

For completeness we apply the RAE analysis for the classical, symmetric connectome ring attractor model

[Ben-Yishai et al., 1995, Mastrogiuseppe and Ostojic, 2018]. This case corresponds in our framework to

taking W T
outWfb ∝ I and g = 0. Thus, when we unfold the structured component of the connectivity the

RAE becomes a simple feedforward autoencoder. Furthermore, the strength of the structured recurrent

loop is determined by w = Tr W T
fbWout = |W l

fb|2|W l
out|2 with l = 1, 2 and it equals w = J2 in the

original model of [Ben-Yishai et al., 1995].

Following [Ben-Yishai et al., 1995], one example for such a choice is W fb
1i = cos(θi) and W fb

2i =

sin(θi), with θi = 2πi/N (see [Mastrogiuseppe and Ostojic, 2018] for a different choice of orthogonal

vectors). The decoder is then normalized such that W out
1i = 2w

N cos(θi),W
out
2i = 2w

N sin(θi), yielding the

cosine connectivity profile: Wij = 2w
N cos(θi − θj). The parameter w thus controls the amplitude of the
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bump through the self-consistent equation:

m1 =
1

N

∑
i

cos(θi)φ(wm1 cos(θi)) (95)

To follow the recurrent autoencoder framework, the representation in 2D plane of the RAE needs to

be obtained. Specifically, we need to compute A of Eq.(11). On the one hand, since every point on

the manifold attractor is a fixed point, we get that for ψ = 0 (as well as for any other 0 ≤ ψ < 2π)

) z1(0) = W 1
outφ(x(ψ = 0)) = w

N

∑
j cos θjφ(W 1j

fbz1(0)) = w
N

∑
j cos θjφ(cosθjz1(0)), and together with

Eq.(95) yields z1(0) = wm1. On the other hand, according to notation of Eq.(11) z1(ψ = 0) = A.

Consequently:

A = wm1 (96)

We are now set to evaluate local dynamics and, consequently, the drift velocity: It follows from

(17), that for unity input in the ψ̂ direction Z(s) = (0; 1) linearized state is given by

Xi =
W fb

2i

1 + τs
(97)

and the transnational gain is hence of a form:

G
‖
OL(ω) =

∑
i

W out
2i φ′(xi)Xi =

∑
iW

out
2i W fb

2i φ
′(AW fb

1i )

1 + τs
(98)

Approximating sum by integral, and integrating by parts we obtain:∑
i

W out
2i W fb

2i φ
′(AW fb

1i ) =

∫
dθ

2π
w sin2 θφ′(A cos θ) =

∫
dθ

2π
wA−1φ(A cos θ) cos θ = A−1wm1 = 1 (99)

that is, we recovered the general formula (24): albeit with τeff = τ .

After obtaining the gain of the autodecoder, we continue with the response of the symmetric-

connectome network to external inputs. We assume that Win = Wfb and that input of a strength ε is

introduced at direction ψ1 to a system located at ψ0 = 0. We then have ∆z ≈ ε(cos(ψ1) sin(ψ1)). In case

of ψ0 = 0 we have z0 = (A, 0) and the tangential RE is ∆ψ ≡ ∆ = ε
A sinψ1. By the virtue of (29) the

rotation speed is:

ψ̇ =
ε

τwm1
sinψ1 (100)

Analysing the gain in the amplitude direction yields:

G⊥OL(ω) =
a

1 + iτω
(101)

with a = w〈φ′(x)〉 − 1 and λ = τ−1(a− 1) = τ−1(w〈φ′(x)〉 − 2).

To conclude, in the classical symmetric-connectome ring attractor model the linearized dynamics

around the manifold is given by a simple, first order, ODE.

48

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 2, 2021. ; https://doi.org/10.1101/2021.06.01.446635doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.01.446635
http://creativecommons.org/licenses/by-nc-nd/4.0/


5.10 Adding noise to unlearned ring

Given structured connectivity J2 the amplitude m2 can be computed self-consistently as:

m2 =

∫
dθ

2π
cos θθφ(A cos θ) (102)

with A = J2m2. If synaptic noise is added then along with m2, the ”membrane potential” noise σ2 needs

to be found self consistently:

m2 =
∫
dθ
2π cos θφ(A cos θ + σz) (103)

σ2 = g2
∫
Dz
∫
dθ
2πφ

2(A cos θ + σz) (104)

to estimate the mean squared drift velocity we can use equation (29) and note that in case of small g we

have τeff ≈ τ . It remains to estimate the mean squared error. This can be done by explicitly computing

variance of readout:

〈(zsinol )2〉 =
J2

2

N

∫
dθ

2π
sin2 θ

(∫
φ2(A cos θ + σz)Dz −

(∫
φ(A cos θ + σz)Dz

)2
)

(105)

In case of small g and consequently small σ we can linearize the above variance and use:

〈(zsinol )2〉 ≈ J2
2σ

2

N

∫
dθ

2π
sin2 θφ′2(A cos θ) (106)

to obtain ∆ we normalize error z by amplitude A and get:

〈∆2〉 = m−1
2 〈(zsinol )2〉 ≈ m−1

2 N−1σ2

∫
dθ

2π
sin2 θφ′2(A cos θ) (107)

which can be compared to [Itskov et al., 2011].
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