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Abstract 25 

 Endosymbiotic Wolbachia bacteria infect divergent arthropod and nematode hosts. Many 26 

strains cause cytoplasmic incompatibility (CI) that kills uninfected embryos fertilized 27 

by Wolbachia-modified sperm. Infected embryos are protected from CI, 28 

promoting Wolbachia spread to high equilibrium frequencies balanced by imperfect maternal 29 

transmission. CI strength varies widely in nature and tends to decrease as males age. 30 

Understanding the causes of CI-strength variation is crucial to explain Wolbachia prevalence in 31 

host populations. Here, we investigate how fast and why CI strength decreases with male age in 32 

two model systems: wMel in Drosophila melanogaster and wRi in D. simulans. Average wMel CI 33 

strength decreases rapidly (19%/ day), and wRi CI strength decreases slowly (6%/ day) as 34 

males age; thus, within three days, wMel-infected males do not cause CI, whereas twelve-day-35 

old wRi-infected males still cause minor, yet significant, CI. We tested if reductions in 36 

Wolbachia densities or CI gene expression as males age could explain this pattern. Indeed, wRi 37 

densities and CI gene expression decrease in testes as males age, but wMel densities and CI 38 

gene expression surprisingly increase with male age as CI strength decreases. Phage WO lytic 39 

activity and wMel Octomom copy number—an ampliconic gene region that influences wMel 40 

proliferation—do not explain age-dependent Wolbachia densities. However, the expression of 41 

Relish, an essential gene in the Drosophila immune deficiency pathway, strongly correlates 42 

with wMel densities. Together, these results suggest that testes-wide Wolbachia density and CI 43 

gene expression are insufficient to explain age-dependent CI strength across strains and 44 

that Wolbachia density is variably impacted by male age across Wolbachia-host associations. 45 

We hypothesize that host immunity may underlie variation in age-dependent density dynamics. 46 

More broadly, the rapid decline of wMel CI strength during the first week of D. melanogaster life 47 

likely contributes to wMel frequency variation observed on several continents. 48 

  49 
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Introduction 50 

 Reproductive parasites manipulate host reproduction to facilitate their maternal 51 

transmission. These endosymbiotic microbes may kill or feminize males or induce 52 

parthenogenesis to bias sex ratios in favor of females [1]. More frequently, reproductive parasites 53 

cause cytoplasmic incompatibility (CI) that reduces embryonic viability when aposymbiotic 54 

females mate with symbiont-bearing males (Fig. 1A) [2]. Females harboring a comparable 55 

symbiont are compatible with CI-causing symbiotic males of the same strain, providing symbiont-56 

bearing females a relative advantage that encourages symbiont spread to high frequencies in 57 

host populations [3–6]. Divergent Cardinium [7], Rickettsiella [8], Mesenet [9], and Wolbachia [10] 58 

endosymbionts cause CI. Of these, Wolbachia are the most common, infecting 40-65% of 59 

arthropod species [11,12]. Wolbachia cause CI in at least ten arthropod orders [2], and pervasive 60 

CI directly contributes to Wolbachia spread and its status as one of the most common 61 

endosymbionts in nature. 62 

 Within host populations, Wolbachia frequencies are governed by their effects on host 63 

fitness [13–16], the efficiency of maternal transmission [17–19], and CI strength (% embryonic 64 

death) [3,5]. CI strength varies from very weak to very strong and produces relatively low and high 65 

infection frequencies, respectively. For example, wYak in Drosophila yakuba causes weak CI 66 

(~15%) and tends to occur at intermediate and often variable frequencies (~40-88%) in west 67 

Africa [18,20]. Conversely, wRi in D. simulans causes strong CI (~90%) and occurs at high and 68 

stable frequencies (e.g., ~93% globally) [4,21–23]. In D. melanogaster, wMel CI strength is 69 

relatively weak [24–26], contributing to infection frequencies that vary considerably on multiple 70 

continents [27–31]. In contrast, wMel usually causes complete CI (no eggs hatch) in transinfected 71 

Aedes aegypti mosquitoes [32–35]. Vector control groups use this strong CI to either suppress 72 

mosquito populations through the release of wMel-infected males [36–40] or to drive pathogen-73 

blocking wMel to high and stable frequencies to inhibit pathogen spread [32,41,42]. 74 
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Despite CI’s importance for explaining Wolbachia prevalence in natural systems and 75 

reducing human disease transmission in transinfected mosquito systems, the mechanistic basis 76 

of CI-strength variation remains unresolved. Two hypotheses are plausible. First, the bacterial 77 

density model predicts that CI is strong when bacterial density is high (Fig. 1B) [43]. Indeed, 78 

Wolbachia densities positively covary with CI strength across Drosophila-Wolbachia associations 79 

[44,45] and with variable CI within strains [33,34,46–52]. Second, the CI gene expression 80 

hypothesis predicts that higher CI gene expression contributes to stronger CI (Fig. 1B) [53]. In 81 

Drosophila, two genes (cifA and cifB) associated with Wolbachia’s temperate bacteriophage (WO) 82 

induce CI when expressed in testes [53–57], and one gene (cifA) rescues CI when expressed in 83 

ovaries [56–58]. CI strength covaries with transgenic cif expression in D. melanogaster [53,57], 84 

and natural cif expression covaries with CI strength in Habrobracon ectoparasitoid wasps [59]. 85 

Bacterial density may explain CI strength via cif expression but may not perfectly align with CI 86 

strength since Wolbachia variably express cifs across conditions that impact CI strength [53]. 87 

Thus, the bacterial density and cif expression hypotheses are not mutually exclusive. It remains 88 

unknown if cif expression is responsible for CI-strength variation and if it covaries with Wolbachia 89 

density in natural Drosophila-Wolbachia associations. 90 

 If symbiont density is a crucial factor governing CI strength, what governs the change in 91 

density? There are several plausible drivers of Wolbachia density variation. First, phage WO is a 92 

temperate phage capable of cell lysis in some Wolbachia strains [59–62]. Lytic phage form 93 

particles that burst through the bacterial cell membrane, killing the bacterial host. The phage 94 

density model proposes that as phage densities increase, Wolbachia densities decrease (Fig. 95 

1B) [46]. Temperature-induced phage lysis covaries with lower Wolbachia densities and CI 96 

strength in some parasitoid wasps [46,59], though it is unknown if phage lysis influences 97 

Wolbachia densities in any other systems. Second, wMel Wolbachia have a unique ampliconic 98 

gene region composed of eight genes termed “Octomom” [63,64]. Octomom copy number varies 99 

among wMel Wolbachia between host generations and positively covaries with Wolbachia 100 
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densities (Fig. 1B), but effects of Octomom-dependent Wolbachia densities on CI have not been 101 

investigated. Third, theory predicts that selection favors the evolution of host suppressors [6], as 102 

observed for male killing [65,66]. Indeed, CI strength varies considerably across host 103 

backgrounds [20,25,35,67], supporting a role for host genotype in CI-strength variation. The 104 

genetic underpinnings and mechanistic consequences of host suppression remain unknown, but 105 

two models have been proposed [2]. The defensive model suggests that host CI targets diverge 106 

to prevent interaction with cif products, and the offensive model suggests that host products 107 

directly interfere with Wolbachia density or the proper expression of cif products (e.g., through 108 

immune regulation) (Fig. 1B). Only a taxon-restricted gene of Nasonia wasps has been 109 

functionally determined to contribute to Wolbachia density variation [68]; thus considerable work 110 

is necessary to uncover host determinants of variation in Wolbachia density. Since Wolbachia 111 

densities significantly contribute to several phenotypes [47,69], investigation of the causes of 112 

Wolbachia density variation are sorely needed. 113 

 CI strength within Wolbachia-host systems covaries with several factors, including 114 

temperature [25,33,34,46,59], male mating rate [70,71], male development time [72], rearing 115 

density [72], nutrition [73], paternal grandmother age [26], and male age [3,16,23,25,70]. Changes 116 

in CI strength with male age are particularly notable. Older males cause weaker CI in wMel-117 

infected D. melanogaster [25] and wRi-infected D. simulans [3,16,23]. Age-dependent CI seems 118 

particularly strong for wMel [3,16,23,25], although the precise rates of CI-strength decline have 119 

not been estimated. While several factors might contribute to age-dependent CI strength, the 120 

precise mechanistic underpinnings of this phenotype remain unknown. 121 

 Here, we investigate how fast and why Wolbachia densities and CI strengths vary with 122 

male age in two model Wolbachia that diverged 0.6-6 million years ago [74]: wMel in D. 123 

melanogaster and wRi in D. simulans. First, how fast does CI strength decrease with male age? 124 

Second, is Wolbachia density consistently correlated with age-related CI strength, as predicted 125 

by the bacterial density model? If so, does phage WO lysis, Octomom copy number, or host 126 
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immune gene expression correlate with density? Third, does cif expression consistently correlate 127 

with CI strengths and Wolbachia densities, as predicted by the CI gene expression model? This 128 

study is the first to test the cif expression hypothesis in either system with age and is the highest 129 

resolution investigation of Wolbachia density variation across age to date. Our results suggest 130 

that testes-wide Wolbachia densities and cif expression alone do not explain age-dependent CI-131 

strength relationships across Wolbachia-host associations. While phage WO and Octomom copy 132 

number do not covary with the age-dependent Wolbachia density variation we observe, immune 133 

expression in D. melanogaster positively correlates with wMel densities. We discuss how these 134 

data contribute to our understanding of the causes of age-dependent CI strength and Wolbachia 135 

density variation and the consequences for Wolbachia prevalence in nature. 136 

 137 

Figure 1. CI crossing relationships and potential causes of CI-strength variation. (A) CI 138 
causes embryonic death when infected males (filled symbol) mate with uninfected females 139 
(unfilled symbol). Infected females maternally transmit Wolbachia and can rescue CI. (B) 140 
Schematic representation of factors that putatively impact Wolbachia densities, CI gene 141 
expression, and CI strength. 142 

 143 

Results 144 

How much does CI strength vary with age? 145 

 CI manifests as embryonic lethality (Fig. 1A). As such, we measured CI strength as the 146 

percent of embryos that hatch from a mating pair’s clutch of offspring. Our experiments use 147 

males of different ages to test the impact of male age on CI strength. Here, we define age as 148 
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days since eclosion where males paired with females the day they eclosed are considered 0-149 

days-old. For wMel, we measured CI strength daily across the first three days of male age (Fig. 150 

2A) and separately every two days across the first eight days of male age (Fig. 2B). This design 151 

enabled us to determine the rate of CI decline and the ages where males no longer cause 152 

significant CI. Crossing uninfected D. melanogaster females and males yields high levels of 153 

compatibility (Fig. 2A; 95% confidence interval of the mean = 74 - 93%). Young 0-day-old wMel-154 

infected males induce strong CI when mated with uninfected females (95% interval = 9 - 27%). 155 

wMel-infected females significantly rescue CI caused by infected 0-day-old males (95% interval 156 

= 87 - 92%, P = 1.74E-12). Crosses using older 1- (95% interval = 31 - 51%), 2- (95% interval = 157 

53 - 73%), and 3-day-old (95% interval = 69 - 83%) infected males trend toward progressively 158 

weaker CI (Fig. 2A). Average wMel CI strength decreases daily by 19.3%: 22.8% from 0- to 1-159 

day-old males, 21.8% from 1- to 2-day-old, and 13.4% from 2- to 3-day-old. Crosses between 160 

uninfected females and 3-day-old males (95% interval = 69 - 83%) do not cause significant CI, 161 

with egg hatch similar to the compatible uninfected (95% interval = 74 - 93%; P = 0.35) and 162 

rescue (95% interval = 87 - 92%; P = 0.19) crosses. This highlights the rapid decline of wMel CI 163 

strength with D. melanogaster male age. 164 

 In the age group that includes older males (Fig. 2B), the uninfected cross also yields 165 

high compatibility (95% interval = 72 - 88%). 0-day-old infected males cause strong CI when 166 

crossed with uninfected females (95% interval = 8 - 15%), and infected females significantly 167 

rescue 0-day-old CI (95% interval = 83 - 91%; P = 2.51E-12). Older 2- (95% interval = 59 - 168 

73%), 4- (95% interval = 66 - 83%), 6- (95% interval = 76 - 92%), and 8-day-old (95% interval = 169 

77 - 91%) infected males cause weaker CI as males age (Fig 2B). CI crosses using 4-day-old 170 

or older males do not significantly differ in egg hatch from the compatible uninfected cross (P = 171 

1 in all cases). These data suggest that average wMel CI strength decreases by approximately 172 

19.3% each day as D. melanogaster males age, but this rate of decrease slows each day, such 173 

that CI is no longer statistically detectable once males are 3-days-old. 174 
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Next, we assess age-dependent CI in wRi-infected D. simulans (Fig. 2C). As expected, 175 

uninfected D. simulans females and males are compatible (95% interval = 74 - 94%). Young 0-176 

day-old wRi-infected males cause strong CI when mated with uninfected females (95% interval 177 

= 0 - 1%), and infected females significantly rescue 0-day-old CI (95% interval = 59 - 84%; P = 178 

1.83E-10). Older 4- (95% interval = 21 - 39%), 8- (95% interval = 54 - 64%), and 12-day-old 179 

(95% interval = 64 - 82%) infected males induce progressively weaker CI as males age. 180 

Average wRi CI strength decreases by about 6.0% per day: 29.1% (7.3%/ day) from 0-day-old 181 

to 4-day-old males, 29.0% (7.3%/ day) from 4-day-old to 8-day-old, and 14.0% (3.5%/ day) from 182 

8-day-old to 12-day-old. These data support a strong effect of D. simulans male age on wRi CI 183 

strength, but the daily decrease is more than three times slower than what we observe for wMel 184 

CI strength decline as D. melanogaster males age. 185 

 186 
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 187 

Figure 2. CI strength decreases as males age. (A) Hatch rate displaying CI strength with 0-, 188 
1-, 2-, and 3-day-old wMel-infected D. melanogaster males. (B) Hatch rate displaying CI 189 
strength with 0-, 2-, 4-, 6-, and 8-day-old wMel-infected D. melanogaster males. (C) Hatch rate 190 
displaying CI strength with 0-, 4-, 8-, and 12-day-old wRi-infected D. simulans males. Filled and 191 
unfilled sex symbols represent infected and uninfected flies, respectively. Male age is displayed 192 
to the right of the corresponding sex symbol. CI crosses are colored red, rescue crosses are 193 
purple, and uninfected crosses are green. Boxplots represent median and interquartile ranges. 194 
Letters to the right represent statistically significant differences based on α=0.05 calculated by 195 
Kruskal-Wallis and Dunn’s test for multiple comparisons between all groups—crosses that do 196 
not share a letter are significantly different. P-values are reported in Table S1. These data 197 
demonstrate that CI strength decreases with age in two Wolbachia-host associations, and more 198 
slowly in wRi-infected D. simulans. 199 

 200 

What causes CI strength to vary with age? 201 

The bacterial density and CI gene expression hypotheses are both proposed to explain 202 

CI-strength variation. These hypotheses predict that Wolbachia density and/or cif expression 203 
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positively covary with CI strength. To elucidate the causes of declining CI strength with male 204 

age, we test both hypotheses in the context of rapidly declining wMel CI strength and more 205 

slowly declining wRi CI strength in D. melanogaster and D. simulans, respectively. 206 

 207 

Bacterial density differentially covaries with age between species. 208 

We tested the bacterial density hypothesis by dissecting testes from siblings of flies used 209 

in our CI assays above, extracting DNA, and measuring the relative abundance of a single-copy 210 

Wolbachia gene (FtsZ) relative to a single-copy ultraconserved element (UCE) [75] of 211 

Drosophila via qPCR. We selected a random infected sample from the youngest 0-day-old age 212 

group as the reference for all fold change analyses within each experiment. Surprisingly, 0-day-213 

old D. melanogaster testes have low wMel density (Fig. 3A; 95% interval = 0.53 - 1.01), and 214 

older 2- (95% interval = 0.92 - 1.11), 4- (95% interval = 0.96 - 1.72), 6- (95% interval = 1.17 - 215 

1.49), and 8-day-old (95% interval = 1.19 - 1.51) infected testes have progressively higher wMel 216 

densities (Fig. 3A). wMel densities are significantly different among age groups according to a 217 

Kruskal-Wallis test (Fig. 3A; P = 1.1E-03). To test for a correlation between wMel densities and 218 

CI strength, we performed Pearson (rp) and Spearman (rs) correlations on the relationship 219 

between wMel fold change against median hatch rates from the associated age groups. Indeed, 220 

wMel densities are significantly positively correlated with decreasing CI strength (Table S3; rp = 221 

0.75, P = 5.5E-06; rs = 0.77, P = 2.3E-06). wMel densities also covary with age (Fig. S1; P = 222 

0.02) and correlate with decreasing CI strength (Table S3; rp = 0.64, P = 7.7E-04; rs = 0.64, P = 223 

7.4E-04) in the younger 0-, 1-, 2-, and 3-day-old D. melanogaster age group. 224 

Next, we tested the bacterial density model in wRi-infected D. simulans. In contrast to 225 

wMel, wRi-infected 0-day-old (95% interval = 0.82 - 1.36) D. simulans testes have the highest 226 

wRi densities that consistently decrease in 4- (95% interval = 0.41 - 0.83), 8- (95% interval 0.41 227 

- 0.83), and 12-day-old (95% interval = 0.24 - 0.40) testes (Fig. 3B). wRi densities are 228 

significantly different among D. simulans age groups (P = 3.9E-04) and are significantly 229 
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negatively correlated with decreasing CI strength (Table S3; rp = -0.84, P = 2.4E-07; rs = -0.89, 230 

P = 6.9E-09). 231 

In conclusion, these data fail to support the bacterial density hypothesis for age-232 

dependent CI-strength variation in wMel-infected D. melanogaster but support the hypothesis in 233 

wRi-infected D. simulans. Thus, testes-wide Wolbachia densities alone cannot explain age-234 

dependent CI across Wolbachia-host associations, suggesting that other factors must contribute 235 

to these patterns. Next, we investigate if cif expression covaries with age-dependent CI. 236 

 237 

 238 

Figure 3. Testing the bacterial density model for CI-strength variation. Fold change across 239 
male age for the relative expression of (A) wMel FtsZ to D. melanogaster UCE and (B) wRi FtsZ 240 
to D. simulans UCE. Letters above data represent statistically significant differences based on 241 
α=0.05 calculated by Kruskal-Wallis and Dunn’s test for multiple comparisons between all 242 
groups—crosses that do not share a letter are significantly different. Fold change was 243 
calculated as 2-∆∆cq. P-values are reported in Table S1. These data demonstrate that Wolbachia 244 
density differentially covaries with age between Wolbachia-host associations. 245 

 246 

cif expression varies with age, but the direction differs between strains. 247 

 cif expression is the proximal mechanistic force hypothesized to control CI-strength 248 

variation within Wolbachia-host associations [2,53]. cif loci are classified into five different 249 
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phylogenetic clades called ‘Types’ [53,76–78]. wMel has a single pair of Type I cifs, and wRi 250 

has two identical pairs closely related to the wMel copy plus a divergent Type 2 pair [53]. Since 251 

wMel density increases as CI strength decreases, we predicted that cifwMel[T1] expression would 252 

decrease in age relative to the host. Since wMel densities increase with male age, wMel would 253 

need to express cifwMel[T1] at lower levels in older males. Contrary to our first prediction, the 254 

relative expression of cifAwMel[T1] to D. melanogaster β Spectrin (βspec), a Drosophila membrane 255 

protein with invariable expression with age (see Materials and Methods for details), is low in 0-256 

day-old infected males (95% = 1.1 - 1.6) and consistently increases in 2- (95% interval = 1.5 - 257 

3.2), 4- (95% interval = 1.9 - 2.3), 6- (95% interval = 2.1 - 2.8), and 8-day-old (95% interval = 0.9 258 

- 3.8) testes (Fig. 4A). Relative expression of cifAwMel[T1] to βspec significantly varies across 259 

male age (P = 8.4E-03) and is significantly positively correlated with decreasing CI strength 260 

(Table S3; rp = 0.61, P = 6.4E-04; rs = 0.59, P = 9.7E-04). Comparably, relative expression of 261 

cifBwMel[T1] to βspec also significantly increases with male age (Fig. S2A; P = 7.3E-03). 262 

Moreover, analysis of raw quantification cycle (Cq) variation with age supports increased 263 

cifAwMel[T1] (Fig. S2C; P = 3.1E-04) and cifBwMel[T1] (Fig. S2D; P = 1.1E-03) expression; βspec Cq 264 

does not vary with age (Fig. S2E; P = 0.1) and FtsZ Cq significantly decreases with age (Fig. 265 

S2F; P = 1.3E-04). Thus, we report for the first time that testes-wide cif expression is not 266 

sufficient to explain CI-strength variation, leading us to reject the hypothesis that testes-wide 267 

cifwMel[T1] expression can explain age-dependent wMel CI strength. 268 

However, relative expression of cifAwMel[T1] to wMel FtsZ is highest in 0-day-old infected-269 

D. melanogaster testes (95% interval = 0.9 - 1.1), and consistently decreases in 2- (95% interval 270 

= 0.7 - 0.8), 4- (95% interval = 0.7 - 0.9), 6- (95% interval = 0.6 - 0.7), and 8-day-old (95% 271 

interval = 0.4 - 0.9) testes (Fig. 4B). Relative expression of cifAwMel[T1] to wMel FtsZ significantly 272 

varies with age (P = 2.9E-03) and is significantly correlated with decreasing CI strength (Table 273 

S3; rp = -0.8, P = 4.0E-07; rs = -0.7, P = 3.5E-05). Similarly, relative expression of cifBwMel[T1] to 274 

wMel FtsZ does not significantly covary with age (Fig. S2B; P = 0.3), but is significantly 275 
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correlated with decreasing CI strength (Table S3; rp = -0.42, P = 3.7E-02; rs = -0.46, P = 2.2E-276 

02). These data are in line with prior reports that wMel expression of cifAwMel[T1] and cifBwMel[T1] 277 

decrease as males age [53]. 278 

We also tested if the relative expression of cifAwMel[T1] to cifBwMel[T1] varied with age. 279 

Intriguingly, cifA/BwMel[T1] relative expression does not significantly covary with age (Fig. 4C; P = 280 

0.09), but is positively correlated with decreasing CI strength (Table S3; rp = -0.61, P = 1.3E-03; 281 

rs = -0.46, P = 0.021). In summary, these data suggest that cifwMel[T1] expression per wMel 282 

decreases as males age, that cifAwMel[T1] expression decreases marginally faster than cifBwMel[T1], 283 

and that overall cifwMel[T1] expression increases relative to the host as males age and CI strength 284 

decreases. This is the first report that CI strength is decoupled from Wolbachia densities and cif 285 

expression in testes. 286 

 Next, we investigated the cif expression hypothesis in wRi. We predicted that cifwRi[T1] 287 

and/or cifwRi[T2] expression would decrease relative to host expression. Since wRi density 288 

decreases with age, cif expression per wRi would not need to change to accomplish this shift in 289 

relative expression. As predicted, relative expression of cifAwRi[T1] to D. simulans βspec is 290 

highest in infected 0-day-old (95% interval = 0.7 - 1.7) testes, and declines in 4- (95% interval = 291 

0.1 - 0.4), 8- (95% interval = 0.3 - 0.7), and 12-day-old (95% interval = 0.2 - 0.3) testes (Fig. 292 

4D). Relative expression of cifAwRi[T1] to D. simulans βspec significantly covaries with age (P = 293 

1.2E-03) and is significantly correlated with decreasing CI strength (Table S3; rp = -0.76; rs = -294 

0.88). Similarly, relative expression of cifBwRi[T1] (Fig. S3A; P = 2.3E-03), cifAwRi[T2] (Fig. S3C; P = 295 

1.9E-03), and cifBwRi[T2] (Fig. S3E; P = 1.2E-03) to D. simulans βspec also decreases with age 296 

and each are significantly correlated with decreasing CI strength (Table S3). As with wMel-297 

infected D. melanogaster testes, relative expression of cifAwRi[T1] to wRi FtsZ significantly 298 

covaries with male age (Fig. 4E; P = 4.1E-02) and is significantly correlated with decreasing CI 299 

strength (Table S3; rp = -0.47, P = 0.032; rs = -0.47, P = 0.033). However, 0- (95% interval = 0.9 300 

- 1.2), 4- (95% interval = 0.9 - 1.2), and 8-day-old (95% interval = 0.8 - 1.2) testes have similar 301 
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expression patterns, suggesting that expression in 12-day-old (95% interval = 0.5 - 0.9) testes 302 

drives this significant difference; however, a Dunn’s test was unable to identify significantly 303 

different pairs (Fig. 4E). Conversely, cifBwRi[T1] (Fig. S3B; P = 0.6), cifAwRi[T2] (Fig. S3D; P = 0.2), 304 

and cifBwRi[T2] (Fig. S3F; P = 0.2) expression relative to wRi FtsZ did not vary with age or 305 

decreasing CI strength (Table S3). 306 

Finally, as with wMel, we investigated the relationship between cifA and cifB expression 307 

in wRi across age and found similar results where cifAwRi[T1] expression relative to cifBwRi[T1] 308 

expression does not significantly vary with male age (Fig. 4F; P = 0.2) but does significantly 309 

correlate with decreasing CI strength (Table S3; rp = -0.44, P = 0.045; rs = -0.46, P = 0.035). 310 

Relative expression of cifAwRi[T1] to cifAwRi[T2] expression does not covary with age (Fig. S3G; P = 311 

0.6) or decreasing CI strength (Table S3; rp = 0.01, P = 0.96; rs = -0.05, P = 0.84). Analysis of 312 

raw Cq values supports decreasing cifAwRi[T1] (Fig. S3H; P = 1.0E-03), cifBwRi[T1] (Fig. S3I; P = 313 

8.1E-04), cifAwRi[T2] (Fig. S3J; P = 1.8E-03), and cifBwRi[T2] (Fig. S3K; P = 1.7E-03) expression 314 

with male age; D. simulans βspec Cq does not vary with age (Fig. S3L; P = 0.6) and wRi FtsZ 315 

Cq significantly increases with age (Fig. S3M; P = 8.9E-04). In summary, cifwRi expression 316 

significantly decreases with age in wRi testes, cifAwRi[T1] expression decreases marginally faster 317 

than cifBwRi[T1] expression, and there is a small decrease in cifAwRi[T1] expression relative to wRi 318 

but other cifwRi loci do not follow similar trends. 319 

In conclusion, we find that wMel cif expression does not explain age-dependent CI-320 

strength variation. More specifically, wMel’s expression of cif genes decreases with age [53], 321 

relative wMel and wRi cifA-to-cifB expression varies marginally with age, and cif expression 322 

dynamics vary considerably across male age and differ between wMel- and wRi-infected hosts. 323 
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 324 

Figure 4. Testing the cif expression hypothesis for CI-strength variation. Fold change 325 
across male age for the relative expression of (A) cifAwMel[T1] to D. melanogaster βspec, (B) 326 
cifAwMel[T1] to wMel FtsZ, (C) cifAwMel[T1] to cifBwMel[T1], (D) cifAwRi[T1] to D. simulans βspec, (E) 327 
cifAwRi[T1] to wRi FtsZ, and (F) cifAwRi[T1] to cifBwRi[T1]. Letters above data represent statistically 328 
significant differences based on α=0.05 calculated by Kruskal-Wallis and Dunn’s test for multiple 329 
comparisons between all groups—crosses that do not share a letter are significantly different. 330 
Fold change was calculated as 2-∆∆cq. P-values are reported in Table S1.These data 331 
demonstrate that age-dependent cif expression is variably related to host expression, that 332 
cifwMel[T1] expression decreases per Wolbachia with age, and that cifA/B relative expression only 333 
marginally decreases with age in both systems. 334 

 335 

What causes Wolbachia density to vary with age? 336 
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We find that testes-wide Wolbachia density significantly increases with male age in 337 

wMel-infected D. melanogaster and significantly decreases with male age in wRi-infected D. 338 

simulans. The causes of age-dependent Wolbachia density variation have not been explored. 339 

We test three plausible hypotheses. Namely, that phage lytic activity, Octomom copy number, or 340 

host immune expression may govern age-dependent Wolbachia densities. 341 

 342 

Phage density does not covary with age-dependent Wolbachia density. 343 

The phage density model predicts that Wolbachia density negatively covaries with phage 344 

lytic activity [46]. Since phage lysis corresponds with increased phage copy number [46,59], we 345 

tested the phage density model by measuring the relative abundance of phage to Wolbachia 346 

FtsZ using qPCR. wMel and wRi each harbor a unique set of phage haplotypes: wMel has two 347 

phages (WOMelA and WOMelB), and wRi has four (WORiA-C, WORiB is duplicated) [79]. We 348 

monitored WOMelA and WOMelB of wMel simultaneously using primers that target homologs 349 

present in a single copy in each phage. Conversely, we monitored WORiA, WORiB, and 350 

WORiC separately since shared homologs are too diverged to make suitable qPCR primers that 351 

match multiple phage haplotypes. 352 

First, we evaluate the phage density model for wMel. We predicted the relative 353 

abundance of WOMelA/B to decrease with D. melanogaster male age since wMel density 354 

increases with age. However, there is no change in WOMelA/B abundance relative to wMel 355 

FtsZ as males age (Fig. 5A; P = 0.3), while WOMelA/B abundance relative to D. melanogaster 356 

UCE increases similar to wMel density (Fig. S4A; P = 3.0E-04). Relative phage abundance is 357 

not significantly correlated with decreasing wMel CI strength (Table S3; rp = -0.065, P = 0.75; rs 358 

= 0.17, P = 0.39). Similarly, WOMelA/B significantly varies with age relative to UCE (Fig. S4B; P 359 

= 0.049) but not wMel FtsZ (Fig. S4C; P = 0.15) in the 0-, 1-, 2-, and 3-day-old age experiment. 360 

Next, we predicted that WORi phage abundance would increase with decreasing wRi 361 

densities across D. simulans male age if governed by the phage density model. As with wMel in 362 
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D. melanogaster, relative WORiB to wRi FtsZ abundance does not significantly covary with 363 

male age (Fig. 5B; P = 0.053) or correlate with decreasing CI strength (Table S3; rp = 0.032, P 364 

= 0.88; rs = 0.12, P = 0.58). Relative WORiB to D. simulans UCE abundance increases with 365 

age, similar to wRi density (Fig. S4D; P = 4.4E-04). Comparably, WORiA (Fig. S4E; P = 0.3) 366 

and WORiC (Fig. S4F; P = 0.4) abundance relative to wRi did not vary with male age. These 367 

data suggest that phage WO is unrelated to age-dependent Wolbachia density variation in wMel 368 

and wRi. 369 

 370 

Octomom does not vary with age-dependent wMel density. 371 

The relative abundance of Octomom to Wolbachia genes positively covaries with wMel 372 

density [64,80]. We tested if Octomom copy number variation correlates with age-dependent 373 

wMel density variation using qPCR. Only wMel encodes all eight Octomom genes, and 374 

Octomom amplification is rapid and unstable, commonly changing between generations. We 375 

found that the relative abundance of an Octomom gene (WD0509) to wMel FtsZ does not 376 

covary with male age (Fig. 5C; P = 0.53) or correlate with decreasing CI strength in the older 377 

age group (Table S3; rs = -0.19, P = 0.36; rs = 0.1, P = 0.61). Similar results were observed in 0-378 

, 1-, 2-, and 3-day-old wMel-infected males (Fig. S5; Table S3). We conclude that Octomom 379 

copy number is unrelated to the age-dependent increase in wMel densities. 380 

 381 

Relish expression is positively correlated with age-dependent wMel, but not wRi, densities.   382 

Theory predicts that natural selection favors the evolution of host genes that suppress CI 383 

[6]. Manipulation of Wolbachia densities is one mechanism that may drive CI suppression [2]. 384 

Since the immune system is designed to control bacterial loads, we investigated the role of the 385 

host immune system in Wolbachia density variation across male age. The immune deficiency 386 

(Imd) pathway is broadly involved in defense against gram-negative bacteria like Wolbachia 387 

[81]. Bacteria activate the Imd pathway by interacting with peptidoglycan recognition proteins 388 
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which start a signal cascade that results in the expression of the NF-κB transcription factor 389 

Relish (Rel). Relish then activates antimicrobial peptide production. 390 

We predicted that D. melanogaster Relish expression and wMel density would be 391 

correlated if the Imd pathway is involved in wMel density regulation. Indeed, relative expression 392 

of Relish to βspec is lowest in 0-day-old (95% interval = 0.9 - 1.1) infected testes and 393 

consistently increases in 2- (95% interval = 1.1 - 1.8), 4- (95% interval = 1.3 - 1.7), 6- (95% 394 

interval = 1.9 - 2.3), and 8-day-old (95% interval = 1.5 - 3.9) testes (Fig. 5D). Relative 395 

expression of Relish to βspec significantly varies among age groups (P = 6.1E-4) and is 396 

significantly positively correlated with wMel FtsZ to βspec within testes samples (Fig. 5E; rp = 397 

0.77, P = 2.5E-06; rs = 0.87, P = 1.4E-06). 398 

Conversely, relative expression of D. simulans Relish to βspec does not significantly 399 

covary with age (Fig. 5F; P = 0.7), but remains positively correlated with the relative expression 400 

of wRi FtsZ to βspec within testes samples according to Pearson, but not Spearman, analyses 401 

(Fig. 5G; rp = 0.55, P = 0.012; rs = 0.13, P = 0.59). In summary, Relish expression is positively 402 

correlated with age-dependent wMel densities in D. melanogaster, but less so in wRi-infected D. 403 

simulans, supporting a role for the Imd pathway in the regulation of at least wMel density 404 

variation. Importantly, since wMel and wRi density are differentially associated with immune 405 

expression, Imd activity may represent a novel mechanism separating the age-dependent 406 

density dynamics in these systems. These data highlight that age-dependent Wolbachia density 407 

variation may have multiple mechanistic underpinnings. 408 

 409 

 410 
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 411 

Figure 5. Testing the phage density, Octomom, and host immunity hypotheses for age-412 
dependent Wolbachia density variation. Fold change across male age for the relative 413 
abundance or expression of (A) WOMelA/B to wMel FtsZ, (B) WORiB to wRi FtsZ, (C) 414 
Octomom gene WD0509 to wMel FtsZ, (D) D. melanogaster Rel to Bspec, and (F) D. simulans 415 
Rel to Bspec. Correlation between the relative expression of Rel to Bspec and FtsZ to Bspec for 416 
(E) wMel and (F) wRi. Letters above data represent statistically significant differences based on 417 
α=0.05 calculated by Kruskal-Wallis and Dunn’s test for multiple comparisons between all 418 
groups—crosses that do not share a letter are significantly different. (E, G) Pearson (top) and 419 
Spearman (bottom) correlations are reported. Fold change was calculated as 2-∆∆cq. P-values 420 
are reported in Table S1. These data demonstrate that age-dependent Wolbachia densities are 421 
not controlled by phage WO lysis or Octomom copy number, but are correlated with Rel 422 
expression in D. melanogaster and less so in D. simulans. 423 

 424 
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Discussion 425 

  Within Wolbachia-host systems, several factors influence CI strength 426 

[25,26,33,34,46,59,70–73], but male age can be particularly impactful [3,16,23,25]. Our results 427 

elucidate how fast and why CI strength declines as males age. First, we estimate that CI-428 

strength decreases rapidly for wMel-infected D. melanogaster (19%/ day), becoming statistically 429 

insignificant when males reach three days old. In contrast, wRi causes intense CI that declines 430 

more slowly (6%/ day), resulting in statistically significant CI through at least the first 12 days of 431 

D. simulans male life. Second, testes-wide Wolbachia densities and cif expression increase in 432 

wMel-infected D. melanogaster and decrease in wRi-infected D. simulans as males age and CI 433 

weakens, indicating that testes-wide bacterial density and CI gene expression cannot fully 434 

account for age-dependent CI strength across host-Wolbachia associations. Third, while WO 435 

phage activity and Octomom copy number cannot explain Wolbachia density variation, D. 436 

melanogaster immune expression covaries with wMel densities, suggesting the host immune 437 

system may contribute to age-dependent Wolbachia density in D. melanogaster, but much less 438 

so in D. simulans. We discuss how our discoveries inform the basis of age-dependent CI-439 

strength variation, how multiple mechanistic underpinnings likely govern age-dependent 440 

Wolbachia densities, and how age-dependent CI may contribute to Wolbachia frequency 441 

variation observed in nature. 442 

 443 

Testes-wide Wolbachia density and CI gene expression do not fully explain age-444 

dependent CI-strength variation. 445 

Since CI strength decreases with age for both wMel-infected D. melanogaster and wRi-446 

infected D. simulans, we predicted that Wolbachia densities and cif expression would also 447 

decrease with age. Indeed, wRi densities and cif expression are highest in young males and 448 

decrease significantly with age, supporting both the bacterial density and cif expression 449 

hypotheses for wRi. However, the opposite is true for wMel—both wMel densities and cif 450 
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expression increase with male age as CI strength decreases, indicating that testes-wide 451 

Wolbachia density and cif expression are insufficient to explain age-dependent CI-strength 452 

variation in wMel-infected D. melanogaster. Despite support that CI strength is linked to 453 

Wolbachia density and cif expression across and within systems [33,34,44–47,53,59], these 454 

observations add to a growing body of literature suggesting Wolbachia densities in adult testes 455 

[26,72] and, for the first time, cif expression, are insufficient to explain CI-strength variation 456 

broadly. We discuss three hypotheses to explain the disconnect between testes-wide Wolbachia 457 

density, cif expression, and CI strength with male age. 458 

First, the localization and density of Wolbachia and cif products within specific cells in 459 

testes may more accurately predict CI strength. Indeed, the proportion of infected spermatocyte 460 

cysts covaries with CI strength in natural and transinfected combinations of CI-inducing 461 

Wolbachia and D. melanogaster, D. simulans, D. yakuba, D. teissieri, and D. santomea [44,45]. 462 

Intriguingly, two wRi-infected D. simulans strains whose Wolbachia cause variable CI did not 463 

have different Wolbachia densities according to qPCR, but the number of infected sperm cysts 464 

covaries with CI between strains [82]. Thus, testes-wide Wolbachia densities may not reflect the 465 

cyst infection frequency, but it is unknown how generalizable this discrepancy is across or within 466 

Wolbachia-host associations with variable CI strengths. It seems plausible that while wMel 467 

densities increase in the testes as males age, the proportion of infected spermatocytes could 468 

decrease. Notably, since wMel infections increase drastically as males age, a considerable shift 469 

in localization and density dynamics would be necessary. Microscopy assays are required for 470 

future work to test if Wolbachia and cif localization explains wMel age-dependent CI-strength 471 

variation. 472 

Second, age-dependent CI may be governed by developmental constraints of CI-473 

susceptibility. For instance, the paternal grandmother age effect, where sons of older virgin 474 

females cause stronger CI than sons of younger females, covaries with Wolbachia densities in 475 

embryos but not in adult males [26]. Intriguingly, temperature-sensitive CI-strength variation in 476 
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Cardinium-infected Encarsia wasps is also decoupled from symbiont densities, but CI strongly 477 

correlates with pupal development time [83,84]. Cardinium CI effectors likely have more time to 478 

interact with host targets at critical stages of pupal development when slowed by cool 479 

temperatures, despite lower Cardinium density [83,84]. These studies suggest that sperm are 480 

modified in spermatogenesis before adult eclosion, and that variation in symbiont densities 481 

during early development can contribute to CI-strength variation. If modified sperm are primarily 482 

produced during pupal or larval development, then younger adult males would have a higher 483 

proportion of CI-modified sperm than older males in their seminal vesicle since older males 484 

continue to produce sperm as adults. Since CI strength decreases faster in D. melanogaster 485 

than in D. simulans, this hypothesis predicts that adult D. simulans sperm production is slower 486 

and/or that CI modification occurs for an extended time. Functional work is necessary to 487 

determine if CI modification is developmentally restricted. 488 

Finally, age-dependent CI may be related to the availability of CI-effector targets with 489 

male age and not the abundance of cif products. Indeed, the number of genes transcribed by D. 490 

melanogaster increases from 7,000 in embryos to over 12,000 in adult males, and nearly a third 491 

of genes are not expressed until 3rd instar [85]. As adult males age, the number of transcribed 492 

genes continues to vary, though less so than during metamorphosis [85]. These data support 493 

the possibility that host targets of CI may vary in abundance as males age. However, since 494 

transgenic cif expression can significantly enhance CI strength above wild-type levels [53], there 495 

are circumstances when natural cif expression is not high enough to saturate all targets—it is 496 

unknown if similar experimental approaches can strengthen age-dependent CI. More work will 497 

be necessary to determine the host genes that modify CI and how those factors vary in 498 

expression relative to CI strength. 499 

 500 

Age-dependent bacterial density covaries with immune expression, not phage or 501 

Octomom. 502 
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 We report a strong relationship between male age and Wolbachia densities that differ 503 

between systems: densities decrease in wRi-infected D. simulans and increase in wMel-infected 504 

D. melanogaster. These findings add to a growing body of literature reporting age-dependent 505 

variation in Wolbachia densities across age in different tissues and sexes [44,86], but the basis 506 

of this variation remains unexplored. We investigated the cause(s) of this variation for the first 507 

time. First, we tested whether phage or Octomom covary with Wolbachia densities. Despite 508 

prior reports that phage WO of Nasonia and Habrobracon Wolbachia can regulate temperature-509 

dependent Wolbachia densities [46,59] and that Octomom copy number correlates with wMel 510 

densities [64,80], we found that neither covaries with age-dependent Wolbachia densities in 511 

testes. 512 

 We next asked whether host genes regulate age-dependent Wolbachia densities. 513 

Wolbachia are gram-negative bacteria and encode the genes necessary to synthesize 514 

peptidoglycan, which can activate the host Imd pathway to produce antimicrobial peptides 515 

(AMPs) for immune defense [87,88]. Thus, host immune genes were attractive candidates for 516 

the regulation of Wolbachia densities. Here, we report that Relish expression, which activates 517 

AMP production in the Imd pathway [81], increases with D. melanogaster male age and strongly 518 

correlates with increased wMel densities. Conversely, Relish does not vary with D. simulans 519 

male age and is only very weakly correlated with wRi densities. Relish expression is the only 520 

factor we investigated that differentiates the density dynamics of these strains and is an exciting 521 

candidate gene for host manipulation of Wolbachia density dynamics. To our knowledge, this is 522 

the first report that host immunity covaries with Wolbachia density. We propose two non-523 

exclusive hypotheses to explain the relationship between wMel densities and Relish expression. 524 

First, wMel rapidly proliferates as males age and elicit an immune response proportional 525 

to their infection density. Since established Wolbachia are bound in host-derived membranes 526 

[89], wMel may largely evade the host immune response [11]. Indeed, AMP gene expression 527 

only covaries with infection state in transinfected [90–93], and not established infections [94–528 
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97], suggesting that Wolbachia can be targeted by Imd but adapt to avoid its effects. Thus, the 529 

Drosophila immune system may be attempting, but unable, to control age-dependent Wolbachia 530 

densities. This hypothesis does not explain differences between wMel and wRi densities since it 531 

assumes age-dependent wMel densities increase independent of Imd expression. Thus, an 532 

alternative mechanism unrelated to immune expression may contribute to variation in age-533 

dependent Wolbachia densities across species. 534 

Second, Imd expression increases independent of Wolbachia infection but impacts 535 

Wolbachia densities. Indeed, aging in D. melanogaster is associated with increased expression 536 

of AMPs, Relish, and other immune genes [98–104], and age covaries with increased gut 537 

microbial loads [98–100,105–107]. Why gut bacterial loads increase with D. melanogaster age 538 

remains unknown; but age-dependent immune expression may damage the epithelium, lead to 539 

dysbiosis through differential effects on gut microbial members, alter gut tissue renewal and 540 

differentiation, and/or cause cellular inflammation [81,108]. To our knowledge, we report the first 541 

case where endosymbiont densities increase with age-dependent immune expression, 542 

suggesting that the cause(s) of age-dependent bacterial proliferation apply to more than gut 543 

microbes. Such age-dependent immune expression may be host restricted since Relish 544 

expression was essentially invariable with age in D. simulans males and only weakly correlated 545 

with wRi densities. Functional and cell biological assays are needed to reinforce the relationship 546 

between host immunity, other novel host factors, and age-dependent Wolbachia densities. 547 

Mapping additional host factors that modulate Wolbachia densities will be particularly useful. 548 

 549 

Age-dependent CI strength could contribute to Wolbachia frequency variation in nature. 550 

We can consider our estimates of age-dependent CI strength in the context of an 551 

idealized discrete-generation model of Wolbachia frequency dynamics first proposed by 552 

Hoffmann et al. (1990). This model incorporates imperfect maternal transmission (μ), Wolbachia 553 

effects on host fitness (F), and the proportion of embryos that hatch in a CI cross relative to 554 
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compatible crosses (H) [3]. Across all experiments, CI strength (sh = 1 - H) progressively 555 

decreases as males age (Table S2): wMel CI strength decreases quickly (Day 0 sh = 0.860; Day 556 

8 sh = -0.007) and wRi CI strength decreases relatively slowly (Day 0 sh = 0.991; Day 8 sh = 557 

0.244). Small negative values of sh indicate that the CI cross has a slightly higher egg hatch 558 

than the compatible crosses. 559 

wRi occurs globally at high and relatively stable infection frequencies, consistent with 560 

generally strong CI [4,22], while wMel varies in frequency on several continents. In eastern 561 

Australia, wMel frequencies range from ~90% in the tropical north to ~30% in the temperate 562 

south [30]. While the factors that maintain this cline are unresolved, mathematical modeling 563 

suggests clinal differences in CI strength likely contribute [30]. For example, CI must be 564 

essentially nonexistent (sh << 0.05) to explain relatively low wMel frequencies observed in 565 

temperate Australia, assuming little imperfect transmission (μ = 0.01 - 0.026) [109]. Conversely, 566 

with μ = 0.026 and similarly low-to-nonexistent CI (sh ≤ 0.055), large and positive wMel effects 567 

on host fitness (F ~ 1.3) are required to explain higher wMel frequencies observed in the tropics. 568 

Though, explaining higher tropical frequencies becomes easier with stronger CI (sh > 0.05) or 569 

more reliable wMel maternal transmission (μ < 0.026) (Kriesner et al. 2016). 570 

So what is wMel CI strength in nature? Field-collected males from near the middle of the 571 

Australian cline to the northern tropics cause very weak (sh ~ 0.05) to no CI (Hoffmann et al. 572 

1998). These, and other data from the middle of the cline [25], led Kriesner et al. (2016) to 573 

conjecture that the plausible range of sh in subtropical/tropical Australian populations is sh = 0 - 574 

0.05, but < 0.1. In our study, only 6- (sh = -0.006) and 8-day-old (sh = -0.007) wMel-infected 575 

males exhibited CI weaker than sh = 0.1, suggesting that field-collected males causing little or 576 

no CI [109] are older than 4 days. Though, interactions among male age, temperature, 577 

remating, and other factors likely contribute to weaker CI in younger males 578 

[25,33,34,46,59,70,71]. Future analyses aimed at disentangling the contributions of male age 579 

and other factors to CI-strength variation are sorely needed. These estimates, along with 580 
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estimates of Wolbachia transmission rate variation across genetic and abiotic contexts [18], are 581 

ultimately required to better understand Wolbachia frequency variation in host populations 582 

[18,20,30,110,111]. 583 

 584 

Conclusions. 585 

Our results highlight that testes-wide Wolbachia densities and cif expression are 586 

insufficient to explain age-dependent CI strength and that no single mechanism is likely to 587 

explain age-dependent Wolbachia densities. While age-dependent CI strength in wRi aligns with 588 

the bacterial density and CI gene expression hypotheses without the need to consider other 589 

factors, wMel CI strength cannot be explained by either of these hypotheses. We propose that 590 

localization, development, and/or host genetic variation contribute to this relationship. Moreover, 591 

wMel densities increase and wRi decrease as their respective hosts age. Neither phage WO nor 592 

Octomom explain age-dependent Wolbachia density, but variation in these systems covaries 593 

with the expression of the immune gene Relish. This represents the first report that the host 594 

immune system may contribute to variation in Wolbachia density in a natural Wolbachia-host 595 

association. This work motivates an extensive analysis of Wolbachia and cif expression in the 596 

context of localization and development, and a thorough investigation of the relationship 597 

between host genes and Wolbachia density and CI phenotypes. Finally, Incorporating the age-598 

dependency of CI into future modeling efforts may help improve our ability to explain temporally 599 

and spatially variable Wolbachia infection frequencies, as incorporating temperature effects on 600 

wMel-like Wolbachia transmission has [18,20,112]. Ultimately this will help explain Wolbachia’s 601 

status as the most prevalent endosymbionts in nature. 602 

 603 
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Materials and Methods 604 

Fly lines 605 

 All fly lines used in this study are listed in Table S4. Uninfected flies were derived via 606 

tetracycline treatment in prior studies [14,53]. Tetracycline cleared lines were used in 607 

experiments over a year after treatment, avoiding the effects of antibiotic treatment on 608 

mitochondria [113]. We regularly confirmed infection status by using PCR to amplify the 609 

Wolbachia surface protein (wsp). An arthropod-specific 28S rDNA was also amplified and 610 

served as a control for DNA quality [20,74]. DNA was extracted for infection checks using a 611 

squish buffer protocol. Briefly, flies were homogenized in 50 uL squish buffer per fly (100mL 1M 612 

Tris-HCL, 0.0372g EDTA, 0.1461g NaCl, 90 mL H2O, 150uL Proteinase K), incubated at 65oC 613 

for 45m, incubated at 94oC for 4m, centrifuged for 2m, and the supernatant was used 614 

immediately for PCR. 615 

 616 

Fly care and maintenance 617 

 Flies were reared in vials with 10mL of food made of cornmeal (32.6%), dry corn syrup 618 

(32%), malt extract (20.6%), inactive yeast (7.8%), soy flour (4.5%), and agar (2.6%). Fly stocks 619 

were maintained at 23oC between experiments. Flies used for virgin collections were reared at 620 

25oC, virgin flies were stored at 25oC, and experiments were performed at 25oC. Flies were 621 

always kept on a 12:12 light:dark cycle. Flies were anesthetized using CO2 for virgin collections 622 

and dissections. During hatch-rate assays, flies were mouth aspirated between vials. 623 

 624 

Hatch-rate assays 625 

 CI manifests as embryonic death. We measured CI as the percentage of embryos that 626 

hatch into larva. Flies used in hatch rates were derived from vials where flies were given ~24hr 627 

to lay to control for rearing density [72]. In the morning, virgin 6-8 day females were added 628 
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individually to vials containing a small ice cream spoon filled with fly food. Spoon fly food was 629 

prepared as described above, but with blue food coloring added, 0.1g extra agar per 100mL of 630 

food, and fresh yeast smeared on top. After 4-5hr of acclimation, a single virgin male was added 631 

to each vial. The age of virgin males varied by experiment and cross. Paternal grandmother age 632 

was not controlled, but paternal grandmothers were non-virgin when setting up vials for fathers. 633 

Since Wolbachia densities associated with older paternal grandmothers are reduced upon 634 

mating [26], we do not expect variation in paternal grandmother Wolbachia densities across 635 

experiments or conditions. Vials with paired flies were incubated overnight at 25oC. Flies were 636 

then aspirated into new vials with a fresh spoon. Vials were incubated for another 24hr before 637 

flies were removed via aspirating. Embryos were counted on spoons immediately after flies 638 

were removed. After 48hr, the number of remaining unhatched eggs were counted. The 639 

percentage of embryos that hatched was calculated. 640 

 641 

Relative abundance assays 642 

 Siblings from hatch-rate assays were collected for DNA extractions. Virgin males were 643 

anesthetized and testes were dissected in chilled phosphate-buffered saline (PBS). Five pairs of 644 

testes were placed into a single 1.5mL Eppendorf tube and stored at -80oC until processing. All 645 

tissue was collected the day after the hatch-rate setup. Tissue was homogenized using a pestle, 646 

and the DNeasy Blood and Tissue kit (Qiagen) was used to extract and purify DNA. 647 

 qPCR was used to measure the relative abundance of the host, Wolbachia, phage WO, 648 

and Octomom products. Samples were tested in triplicate using Powerup SYBR Green Master 649 

Mix (Applied Biosystems), which contains a ROX passive reference dye. Unless otherwise 650 

noted, all primers were designed using Primer3 v2.3.7 in Geneious Prime [114]. Host primers 651 

target an ultraconserved element (UCE) Mid1 identified previously [75]. Phage genes were also 652 

identified from prior works [79]. Primers for wMel’s phages target both WOMelA (WD0288) and 653 

WOMelB (WD0634), while those for wRi are unique to a single phage haplotype. WORiA, 654 
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WORiB, and WORiC were measured with wRi_012460, wRi_005590/wRi_010250, and 655 

wRi_006880 primers, respectively. Only wMel has all eight Octomom genes (WD0507-WD0514) 656 

[63]. We measured wMel Octomom copy number using primers targeting WD0509. Primer 657 

sequences and PCR conditions are listed in Table S5. Fold difference was calculated as 2-∆∆Ct 658 

for each comparison. A random sample in the youngest age group was selected as the 659 

reference. 660 

 661 

Gene expression assays 662 

Siblings from hatch-rate assays were collected for RNA extractions. Virgin males were 663 

anesthetized, and testes were dissected in chilled RNase-free PBS. Fifteen pairs of testes were 664 

placed into a single 2mL tube with 200 uL of Trizol and four 3 mm glass beads. Tissue was kept 665 

on ice between dissections. Samples were then homogenized using a TissueLyser II (Qiagen) 666 

at 25Hz for 2m, centrifuged, and stored at -80oC until processing. All tissue was collected the 667 

day after the hatch-rate setup. 668 

Samples were thawed, 200uL of additional Trizol was added, and tissue was further 669 

homogenized using a TissueLyser II at 25Hz for 2m. RNA was extracted using the Direct-Zol 670 

RNA Miniprep kit (Zymo Research) following the manufacturer’s recommendations, but with an 671 

extra wash step. On-column DNase treatment was not performed. The ‘rigorous’ treatment 672 

protocol from the DNA-free kit (Ambion) was used to degrade DNA in RNA samples. Samples 673 

were confirmed DNA-free using PCR and gel electrophoresis for an arthropod-specific 28S 674 

rDNA [20,74]. The Qubit RNA HS Assay Kit (Invitrogen) was used to measure RNA 675 

concentration. Samples within an experiment were diluted to the same concentration. RNA was 676 

converted to cDNA using SuperScript IV VILO Master Mix (Invitrogen) with either 200ng or 677 

500ng of total RNA per reaction depending on the experiment. qRT-PCR was performed using 678 

1ng of cDNA per reaction using Powerup SYBR Green Master Mix (Applied Biosystems). All 679 

samples were tested in triplicate. 680 
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Primers for expression included host reference, Wolbachia reference, cif, and host 681 

immune genes. Primers to Drosophila genes for qRT-PCR were selected from FlyPrimerBank 682 

[115]. Since Drosophila expression patterns change with age [85], a host gene that is invariable 683 

with male age was selected to act as a reference gene for relative expression analyses. We 684 

selected an invariable gene using the Drosophila Gene Expression Tool (DGET) to retrieve 685 

modENCODE gene expression data for ribosome and cytoskeletal genes [116]. DGET reports 686 

expression as Reads Per Kilobase of transcript, per million mapped reads (RPKM), and 687 

included data for adult males 1, 5, and 30 days after eclosion. β-spec (1 Day = 81 RPKM, 5 Day 688 

= 80, 30 Day = 79) was selected because it is largely invariable across age. Our results confirm 689 

invariable expression across male age (Fig. S2E; Fig. S3L). D. melanogaster and D. simulans 690 

are identical across βspec primer binding sequences. All other primers were designed using 691 

Primer3 in Geneious Prime [114] and are listed in Table S5. Fold difference was calculated as 692 

2-∆∆Ct for each comparison. A random sample in the youngest age group was selected as the 693 

reference. 694 

 695 

Statistical analyses 696 

 All statistics were performed in R [117]. Hatch rate, relative abundance, and expression 697 

assays were analyzed using a Kruskal-Wallis followed by a Dunn’s multiple comparisons test. 698 

Kruskal-Wallis and Dunn’s P-values are reported in Table S1. Correlations between hatch rate 699 

and expression or relative abundance measures were performed using Pearson and Spearman 700 

correlations in GGPubR [118]. Correlation statistics are reported in Table S3. 95% confidence 701 

intervals were calculated using the classic MeanCI function in DescTools [119]. 95% BCa 702 

intervals were calculated using boot.ci in boot [120]. Samples with fewer than ten embryos laid 703 

were excluded from hatch-rate analyses. Samples with a Cq standard deviation exceeding 0.4 704 

between triplicate measures were excluded from qPCR and qRT-PCR analyses. Figures were 705 
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created using GGPlot2 [121], and figure aesthetics were edited in Affinity Designer 1.8 (Serif 706 

Europe, Nottingham, UK). 707 

  708 

Data availability 709 

 All data are made publicly available in the supplement of this manuscript. 710 
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Supporting Information 1043 

 1044 

 1045 

 1046 

Figure S1. Testing the bacterial density model for CI strength variation in young wMel-1047 
infected D. melanogaster. Fold change across male age for wMel FtsZ relative to D. 1048 
melanogaster UCE. Letters above data represent statistically significant differences based on 1049 
α=0.05 calculated by Kruskal-Wallis and Dunn’s test for multiple comparisons between all 1050 
groups—crosses that do not share a letter are significantly different. Fold change was 1051 
calculated as 2-∆∆cq. P-values are reported in Table S1. 1052 
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 1055 

Figure S2. Testing the cif expression hypothesis for wMel CI strength variation. Fold 1056 
change across male age for the relative expression of (A) cifBwMel[T1] to D. melanogaster βspec 1057 
and (B) cifBwMel[T1] to wMel FtsZ. Raw Cq values for (C) cifAwMel[T1], (D) cifBwMel[T1], (E) D. 1058 
melanogaster βspec, and (D) wMel FtsZ. Letters above data represent statistically significant 1059 
differences based on α=0.05 calculated by Kruskal-Wallis and Dunn’s test for multiple 1060 
comparisons between all groups—crosses that do not share a letter are significantly different. 1061 
Fold change was calculated as 2-∆∆cq. P-values are reported in Table S1. 1062 
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 1064 

Figure S3. Testing the cif expression hypothesis for wRi CI strength variation. Fold 1065 
change across male age for the relative expression of (A) cifBwRi[T1] to D. simulans βspec, (B) 1066 
cifBwRi[T1] to wRi FtsZ, (C) cifAwRi[T2] to D. simulans βspec, (D) cifAwRi[T2] to wRi FtsZ, (E) cifBwRi[T2] 1067 
to D. simulans βspec, (F) cifBwRi[T2] to wRi FtsZ, and (G) cifAwRi[T1] to cifAwRi[T2]. Raw Cq values for 1068 
(H) cifAwRi[T1], (I) cifBwRi[T1], (J) cifAwRi[T2], (K) cifBwRi[T2], (L) D. simulans βspec, and (M) wRi FtsZ. 1069 
Letters above data represent statistically significant differences based on α=0.05 calculated by 1070 
Kruskal-Wallis and Dunn’s test for multiple comparisons between all groups—crosses that do 1071 
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not share a letter are significantly different. Fold change was calculated as 2-∆∆cq. P-values are 1072 
reported in Table S1. 1073 

 1074 

 1075 

Figure S4. Testing the phage density model for Wolbachia density variation. Fold change 1076 
across male age for the relative abundance of (A) WOMelA/B to D. melanogaster UCE in the 1077 
old age cohort, (B) WOMelA/B to D. melanogaster UCE in the young age cohort, (C) WOMelA/B 1078 
to wMel FtsZ in the young age cohort, (D) WORiB to D. simulans UCE, (E) WORiA to wRi FtsZ, 1079 
and (F) WORiC to wRi FtsZ. Letters above data represent statistically significant differences 1080 
based on α=0.05 calculated by Kruskal-Wallis and Dunn’s test for multiple comparisons 1081 
between all groups—crosses that do not share a letter are significantly different. Fold change 1082 
was calculated as 2-∆∆cq. P-values are reported in Table S1. 1083 
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 1085 

Figure S5. Testing the Octomom copy number hypothesis for wMel density variation in 1086 
young wMel-infected D. melanogaster. Fold change across male age for the relative 1087 
abundance of Octomom gene WD0509 to wMel FtsZ in the young cohort. Letters above data 1088 
represent statistically significant differences based on α=0.05 calculated by Kruskal-Wallis and 1089 
Dunn’s test for multiple comparisons between all groups—crosses that do not share a letter are 1090 
significantly different. Fold change was calculated as 2-∆∆cq. P-values are reported in Table S1. 1091 
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