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Abstract 
Single cell RNA-sequencing has revolutionized transcriptome analysis. ScRNA-seq provides a 

massive resource for studying biological phenomena at single cell level. One of the most 

important applications of scRNA-seq is the inference of dynamic cell states through modeling of 

transcriptional dynamics. Understanding the full transcriptional dynamics using the concept 

named RNA Velocity enables us to identify cell states, regimes of regulatory changes in cell 

states, and putative drivers within these states. We present scRegulocity that integrates RNA-

velocity estimates with locality information from cell embedding coordinates. scRegulocity 

focuses on velocity switching patterns, local patterns where velocity of nearby cells change 

abruptly. These different transcriptional dynamics patterns can be indicative of transitioning 

cell states. scRegulocity annotates these patterns with genes and enriched pathways and also 

analyzes and visualizes the velocity switching patterns at the regulatory network level. 

scRegulocity also combines velocity estimation, pattern detection and visualization steps.  

Introduction 

 
Single-cell RNA Sequencing has enabled us to study heterogeneous cell populations with single 

cell resolution. Technologies such as 10X Genomics Chromium
1
, inDrop

2
, SMART-seq2

3
, Drop-

Seq
4 

are used to sequence transcripts from thousands of cells that are isolated from a sample of 

interest. Current data analysis pipelines analyzing scRNA-Seq data reveals a static snapshot of 

cellular states. Standard scRNA-seq pipelines focus on quality control
5–9

, cell filtering
 5–9

, 

dimensionality reduction
 5–9

, integration
10–17

, differential expression
18–20

, and clustering of the 

cells
5,8,9

, and assignment of cell types from the samples
21–25

. These are very important steps to 

organize and assess the quality of the single cell datasets and provide an initial analysis of the 

data. As single cell datasets tend to be very large with possibly hundreds of thousands of cells, 

these initial analyses provide important insight into the biological states of the cells and the 

studied conditions. As such, the single cell datasets contain massive amount of information that 
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should be extracted with computational and statistical methods. One of the main challenges is 

that datasets are being generated at a rate that is much faster than the computational methods 

can analyze.  

 

Although scRNA-seq is generated from a single time point, it can be used to estimate the 

transcriptional dynamics of transcriptional states of cells to study, for example, developmental, 

disease, and immunological processes that exhibit large dynamic changes in cells
26–29

. 

Understanding transcriptional states enables us to define cell types and cell-type defining 

markers more coherently. Additionally, it allows us to infer the heterogeneity of tumor samples 

at the single cell level. 

 

One way to infer transcriptional dynamics is through trajectory analysis. The main hypothesis 

for these analyses is that the sample comprise heterogeneous sets of cells from a continuum of 

dynamic states. These states can represent dynamic processes such as differentiation and cell 

cycle
30–35

. These states can be modeled by numerous “trajectories” where the dynamic states 

are connected on a trajectory of states (e.g., Markov processes). Methods that perform 

trajectory analysis assume that the continuum of cellular states are sufficiently observable in 

the single cell RNA-seq sample. The idea is to build parsimonious trajectories that explain the 

changes in the cell types. The trajectory analysis is often coupled with pseudotime analysis
36,37  

to assign relative time units to the dynamic trajectory of the cells. This way, the cells in each of 

the trajectories can be aligned properly.  

 

There are also methods that extract dynamicity information from all the cells at the same time 

by estimating the derivative of gene expression levels. This is performed by concept named 

RNA velocity, that can reliably estimate the relative time derivative of the gene expression 

state. RNA velocity enables us to study cellular transcription kinetics using the ratio of spliced 

and unspliced read counts of each gene across RNA-Seq data
 28,29,38,39

. The underlying 

assumption in this model is that genes are initially transcribed in an unspliced manner and then 

spliced, such that observed intronic reads can be interpreted as corresponding to nascently 

transcribed mRNAs. Transcriptional upregulation of a gene will result in a transient excess of 

nascent (unspliced) transcripts compared with processed (spliced) transcripts, whereas 

transcriptional downregulation results in a relative depletion of nascent (unspliced) transcripts.  

 

Unlike trajectory analysis, RNA-velocity does not require the cellular composition to be diverse 

enough since each cell is processed by itself and velocity can, in principle, be estimated in each 

cell independently. Although several methods have utilized RNA-velocity for building 

trajectories and estimating cellular dynamics at a sample-wide (or global) level, there is still 

much information to be extracted from “local patterns”, i.e. the interactions of subsets of cells 

have with each other. The “local patterns” can be more concretely described by considering 

embeddings of cells in lower dimensions where the nearby cells in the embeddings are more 

similar to each other in terms of transcriptional states. One example of these is tSNE and UMAP 

based embeddings that are used extensively for visualizing scRNA-seq datasets. The local 

patterns in the embeddings can provide an incredible amount of biological insight. The 

relationship between velocity and the cellular dynamicity at the level of localities in the 
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embeddings is not well-studied. We hypothesize that there is a need to develop new 

computational methods for detecting, summarizing, and visualizing the biological insights of 

dynamicity of cellular states in connection to the embeddings. 

 

In this study, we present the scRegulocity algorithm, for measuring the dynamics of gene 

expression in large numbers of single cells using RNA velocity. Specifically, scRegulocity detects 

genes with velocity switches whereby the gene exhibits a strong velocity difference among cells 

that are nearby in the coordinates of embeddings. The local velocity switching patterns are very 

frequently observed in manual inspection of the estimated velocity distributions on the cells. 

We believe that the genes with velocity switches potentially represent drivers of dynamic 

processes such as cellular differentiation/development and disease progression, and these can 

be instrumental to delineate the drivers of dynamicity of these processes especially in tumors 

and cancers. In particular, these genes exhibit transcriptional dynamics which are detected by 

integrating RNA velocity and expression (to build the embeddings) rather than using expression 

signatures alone.  ScRegulocity also reconstructs gene regulatory networks in transitioning cell 

states using RNA velocity. Our analyses on different single cell RNA-Seq datasets show that 

scRegulocity can recover driver TFs and transcriptional programmes in transitoning cell states 

which can not be easily inferred from whole transcriptome data. We believe that scRegulocity 

will facilitate the study of gene regulation in diverse biological systems. 

 

Compared to other methods, scRegulocity stands out as a “local dynamicity inference” tool, 

whereas the majority of the other tools aim at detecting and describing patterns at a sample-

wide level (or globally). scRegulocity takes standard files as inputs, is flexible and can be 

integrated into scRNA-seq analysis pipelines. 

Results 
scRegulocity Algorithm  
Figure 1 illustrates the scRegulocity algorithm. The input is the aligned RNA-seq reads (e.g., 

SAM/BAM file) and the list of cell ids that will be analyzed. scRegulocity provides an integrated 

and complete pipeline starting from mapped reads and uses a spatial signal processing 

approach to detect the velocity switching patterns on embeddings. A velocity switching pattern 

is defined by an abrupt coordinated increase (or decrease) in velocity between two groups of 

cells that are close in the embeddings. Thus, it is vital for the embedding of cells into lower 

dimensions to provide useful biological information for nearby cells that are close to each 

other. For most of the embeddings that are widely used (such as tSNE, UMAP, and PCA) 

closeness generally implies biological similarity and therefore should be meaningfully usable in 

the context of velocity-switching analysis. In this study, we focus on tSNE and UMAP-based 

dimensionality reduction using the gene expression counts, i.e., the embeddings represent 

similarities in the global transcriptomic profiles. The velocity switching patterns are expected to 

identify the cells that are similar in transcriptional state but harbor opposite dynamic changes 

in expressional states that potentially stem from the regulatory state of the cells. One of the 

motivations for developing scRegulocity is that the velocity switching patterns are frequently 

observed in manual inspection of the expression velocities after they are mapped on the 

embedding coordinates.  
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In order to comprehensively characterize the velocity-switching patterns at the regulatory level, 

we mapped known TF-target interactions onto the genes that exhibit significant velocity 

switching-patterns. Then scRegulocity classifies the concordance or discordance of velocity 

switches with regulatory relations between the TF and target at the velocity-level and/or 

expression-level. Finally, the identified regulatory switches and regulatory information are 

visualized on the embeddings. scRegulocity can generate the popular embeddings of the cells 

after quantifying the expression levels on each cell. However, the user can skip this step if 

he/she has already generated the embedding themselves. We describe the other steps of 

scReguloCity workflow in Methods section. 

 

Accuracy of velocity estimates using sci-fate data 
We first applied scRegulocity algorithm on cortisol response dataset generated from a method 

named sci-fate
40

. Sci-fate method is a combined single-cell combinatorial indexing and mRNA 

labelling to profile the  ‘older’ and ‘newer’ transcripts based on their splicing status in single cell 

resolution. In this study, researchers identified regulatory elements and transcriptional drivers 

in cortisol response using the newly synthesized expression values. The newly synthesized 

expression values in scifate-study is the ground truth for the RNA Velocity values. Therefore we 

validated our scRegulocity algorithm using the cortisol response dataset and detected similar 

transcriptional programs reported in the scifate study.  

In order to show the similarity of velocity and newly synthesized expression, we first 

calculated the correlation of velocity with newly synthesized and whole-transcriptome data for 

each gene separately. Figure 2A shows the distribution of correlation for each gene.  We have 

detected a higher mean correlation with velocity and newly synthesized data compared to 

whole-transcriptome data (Figure 2A). We also checked the correlation of velocity of TF with TF 

target genes reported in sci-fate study (Figure 2B). We observed a higher correlation between 

velocity of TF with its target gene velocity values. Thus, we can infer the TF target regulatory 

network more accurately using RNA velocity values.  

We next identified genes that have uniform direction of the velocity switch vectors in a 

subset of cells in order to define driver genes in cell state transitions. The velocity of cell cycle 

TFs such as POLR2A, NF1, BRCA1 and GR response TFs such as TEAD1 were highly correlated 

with the levels of velocity, more so than overall target gene mRNAs (Figure 2C).  

scRNA-seq of Chromaffin differentiation 
We next applied our scRegulocity algorithm on a Chromaffin differentiation dataset studied 

in velocyto paper
41

. Researchers detected a movement of the differentiating cells towards a 

chromaffin fate using RNA Velocity.  We first detected genes with velocity switches among 

different cell states and types. ScRegulocity identified Serpine2 having a significant velocity 

switching pattern among SCP (schwann cell precursor) cells and Differentiation cells (Figure 3A). 

We next clustered genes using velocity values and identified different velocity switching 

patterns (Figure 3B). Then we performed enrichment analysis on the genes within each cluster. 

We next sought the TFs that drive the progression of chromaffin fate differentiation, and 

inferred TF target regulatory network using RNA velocity values (Figure 3C). Chromaffin 

differentiation related TFs, such as Gata3, Tcf7l2, Sox6 and Tcf4, were identified using 
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scRegulocity and the TF velocity values of these TFs were highly correlated with the mean TF 

target velocity values (Figure 3D). 

 

Single-cell RNASeq Meningioma 
We also applied our algorithm on our scRNA-Seq meningioma dataset. In total, after filtering 

low quality cells we have n=12244 cells from n=2 NF2 mutant recurrent meningioma tumors. 

We first clustered our scRNA-Seq data using the Louvain community detection algorithm. This 

generated a total of n=16 clusters.  We next annotated the clusters with cell types using singleR 

algorithm and well-established cell type markers. We identified monocyte, macrophage, T-cell 

and tumor cells (Figure 4A).   We next identified large scale CNV events using CaSpER
42

 to 

elucidate the effect of CNVs on velocity (Supplementary Figure 1). We noticed the tumor cluster 

0 and 8 not harboring chr11p and chr18q deletion. We believe that these cells represent less 

aggressive cell clones within the tumor compared to other tumor cell clusters. We supported 

our hypothesis by calculating an aggressiveness score for each cell using gene signatures of 

aggressive and non-aggressive tumors identified from our previously published bulk RNA-Seq 

expression data
43

. We have observed that cluster 0 and cluster 8 got a higher score for non-

aggressive meningioma tumors.   We next inferred RNA velocity in our scRNA-Seq meningioma 

data and projected the velocities on to our previously defined UMAP embeddings. We observed 

a similar finding that non-aggressive meningioma cells are moving towards aggressive 

meningioma cells in velocity based trajectory analysis (Figure 4B).  

We next applied our scRegulocity algorithm on our single cell meningioma data. We 

observed that hypoxia related TFs such as DDIT3 and NR3C1 have repressed transcriptional 

dynamics in less aggressive tumor cells. Similarly, TCF7L1 which is a mediator of the Wnt 

signaling pathway
44

, and CDK2AP1 which epigenetically regulates embryonic stem cell 

differentiation
45

, have increased transcriptional dynamics in more aggressive tumor cells 

(Figure 4C).  

Methods 
 

Intron/Exon Read Quantification. The velocity estimation starts by quantifying the intron/exon 

read counts. The basic idea is that genes that exhibit increase (decrease) in expression will 

harbor more (less) reads on the introns compared to the baseline exonic reads. This basic idea 

is used to estimate and assign expression velocity estimates to each gene. scRegulocity contains 

a module that counts intronic (unspliced) and exonic (spliced) read counts for each gene in each 

sample. and normalize the counts using total number of reads in each sample. scRegulocity has 

a specific module to perform read quantifications in an integrated manner so that there is no 

dependence on the other packages. Specifically, scRegulocity makes use of the “CB:Z” tags in 

the reads to first assign each read to a cell then identified whether the read belong to an intron, 

exon, or an intron-exon junction, i.e., unspliced reads. scRegulocity keeps track of 3 different 

counters (��,�
�����	, ��,�

�
�����	, ��,�
�
�����	

, corresponding to exonic, intronic and boundary read 

counts for cell at index �, and the gene at index �) for each gene � and concurrently keeps 

track of these counts while quantification is being performed. After quantification is finished, 

the count matrix (genes in the rows, cells in the columns) is saved in a tab-delimited file. The 
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C++ code for quantification, can be downloaded from GitHub 

at https://github.com/harmancilab/IntrExtract/. Our method takes a bam file as an input and 

outputs 3 matrices where the rows are the genes and the columns are exons, introns or 

ambigious reads. 

 

Velocity Estimation. scRegulocity includes a flexible and integrated velocity estimation module 

that can be parametrized by the user. The velocity estimation takes the intron/exon read 

counts matrix as input. The number of reads mapping to the introns and intron-exon 

boundaries are generally 1-2 orders of magnitude smaller than that of reads mapping to the 

exons. This is expected since exonic reads dominate the transcripts that are sequenced in RNA-

seq protocols. For velocity estimation, it is necessary to obtain a robust estimate of the ratio of 

reads that are mapping on introns (and intron/exon boundaries) and the exonic reads, which is 

proportional to the expression velocity. To provide an estimate of this ratio, scRegulocity 

performs a linear regression between the unspliced (��,�
�
�����	

) and spliced read counts of all 

genes (��,�
�����	

), as it is currently a well-established approach to estimate velocity 
28,29

: ��,�
�
�����	 � � � ��,�

�����	 � 	 � 
�,� 

where intronic read counts are modeled as an ordinary linear model of the exonic read counts, � indicates the slope, 	 represents a random noise term to include technical noise, and 
��� 

represents the velocity of the expression. From this model, the general linear trend between 

unspliced and spliced reads quantifies a gene-specific spliced/unspliced read counts. This effect 

represents mostly a technical component (see above) whereby the highly expressed genes will 

contain more reads on the introns and is removed by subtracting the linear component from 

the spliced/unspliced ratios of the genes. The residual intronic (unspliced) read counts are used 

as the final velocity estimates for all genes. To make the estimate more robust, the linear model 

uses extremes of the spliced/unspliced ratios, specifically the upper and lower quantiles, which 

is set to %� � 0.05 by default, an approach similar to the velocyto workflow
 46

. This 

parameter can be changed to make the linear trend removal more stringent or more relaxed. 

To test for other factors that may bias velocity estimates, we have tested the model by 

including covariates such as read-mappability and GC content. We observed that these 

covariates do not significantly improve velocity estimates and therefore are by default not 

explicitly included in the velocity estimation module of scRegulocity. The final velocity 

estimation step will yield a matrix of RNA velocity estimates where each row represents a gene 

and column represents cells.  

 

Building the Cell-Cell Gradient Graph. scRegulocity identifies the velocity switching patterns 

using a graph-based approach. The target is to identify two sets of cells that are neighboring in 

the embedding such that there is a coordinated switch in the expression velocities of all cells 

from one set of cells to the other set of cells. In other words, we would like to identify a strong 

coordinated gradient between two sets of neighboring cells such that the velocities are 

switched between the two sets of cells. First, the embedding coordinates of the cells are 

analyzed and a pairwise cell-cell distance matrix is generated. Given a K-dimensional 

embedding, this can be simply computed by: 
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Δ�,� � �� � ���,� � ��,���
�����

� 

Where ��,�  denotes the embedding coordinates of cell � at coordinate �. Based on the cell-cell 

distance matrix, scRegulocity uses a neighborhood parameter ��  that denotes the largest radius 

at which cells are deemed as neighbors of each other. For each neighborhood, scRegulocity 

forms a graph where the nodes are placed on cells and edges are placed between cells that are 

in each other’s ��-neighborhoods. For each edge, we assign a weight based on the absolute 

value of velocity difference between the cells that are connected by the edge. Given the 

velocity estimates for the gene �,  ��,���	 � ���,� � 
�,��; ��,  ; Δ�,� " ��  

where ��,���	 represents the weight of the edge that connects cells � and  , which are in the ��-

neighborhood of each other. The edges are also assigned directions based on the sign of 

difference between the velocities of the cells. In this representation, the edges represent 

discrete units of velocity gradients that will be used to detect concordant velocity-switches. 

However, we observed that most of the edges do not provide useful information as they 

represent random and weak gradient vectors between cells. In addition, processing of the cell-

cell network with all the edges increases computational cost. To overcome this, the edges are 

pruned with respect to the weight threshold, ��
�,  weights so that the weak gradients are 

excluded from analysis, i.e., for a gene �, the edges ��,���	 # ��
� are retained from edge 

filtering. Currently, ��
� � 2 is used by default as a stringent weight threshold that also 

provides enough power to identify velocity switching patterns. After the edges are filtered, the 

weakly connected components of the graph (all cells are connected to each other without 

regard to the direction of edges) are identified using breadth-depth first search algorithm
47

. We 

refer to these components as candidate velocity switching subnetworks because they contain 

the sets of cells where the velocity switching events take place. For a gene �, Each candidate is 

defined by the connected cell-cell edge subnetwork with the filtered edges:  %

��	 � &'�,  , ��,���	() , ��,���	 # ��
�, nodes in %


��	 are weakly connected  
where %


��	
 denotes 8�� subnetwork for gene �. 

Detection of Velocity-Switching Patterns. The cell-cell gradient information in each network is 

expected to correspond to one velocity switching pattern. In order to detect abrupt changes in 

velocity, the candidate subnetworks are tested to identify whether there is a significant velocity 

switching pattern in them. The first test checks for concordance of the gradient in the 

subnetwork. For this, scRegulocity computes the directions of the gradients defined by each 

edge. The orientation of the gradient vectors are assigned using the coordinates of the cells 

that they are connecting. Given the %

��	

, the list of all edges in the 8�� cell-cell subnetwork, the 

direction and weights of all the edges in the subnetwork are extracted: 

Ω '%

��	( � :;��,���	, arctan ;��,� � ��,���,� � ��,�

<<= 

where Ω '%

��	( denotes pairs of edge weights and the edge orientation angle, which is 

computed using inverse tangent (i.e., arctan) of the height/width ratio of the rectangle formed 
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on the embedding coordinates of the cells at the ends of edge.  scRegulocity also uses the 

orientation and weights of the edge to compute the aggregated gradient vector, which is used 

in visualization: 

> '%�
��	( � � ��,���	 ? �sin�@� , cos�@��

��,�,�
�,�
����

, @ � arctan ;��,� � ��,���,� � ��,�
< 

This vector is a 2-element vector of embedding coordinates that is vector summation of the 

unit vectors along each gradient vector after the unit vectors are multiplied by the weight of 

the corresponding edge.  Ω '%

��	( contains the direction and strength information of the cell-

cell velocity gradients. scRegulocity uses this information to statistically test whether there is an 

enrichment of high weighted cell-cell gradients along the same orientation. For this, Rayleigh 

test, which performs a statistical test of whether the sample of orientations are different from a 

random distribution that are sampled uniformly over the unit circle. Rayleigh test also considers 

the weights naturally to weigh each orientation so that the gradient vectors with higher weights 

contribute more on the test statistic. For a subnetwork %

��	

, we input Ω '%

��	( into the 

Rayleigh test to assess the significance of whether the weighted edges are distributed 

uniformly. The subnetworks are filtered with respect to the p-value threshold. As a further test 

of the significance of a gradient pattern on the subnetwork, scRegulocity computes the spatial 

correlation using moranI test on RNA velocity gradient vectors between the cells near the 

velocity switch. This test takes as input the embedding coordinates of the cells and the velocity 

values on each cell, i.e., ��,�. The significance of the pattern on the embedding are computed 

with respect to a null model where the velocities are randomly distributed.  

scRegulocity uses the p-value of the moranl test to filter out subnetworks that do not 

exhibit significant spatial patterns. After this step, the subnetworks are scored and filtered and 

we have the final set of velocity switching patterns at the cells that are contained in the filtered 

subnetworks. For each gene, a number of subnetworks are identified. 

Clustering of genes with respect to velocity switch patterns. We cluster genes based on 

velocity switch patterns. For this scRegulocity build a velocity direction matrix for each 

subnetwork for each gene. The matrix entries contain the positive (+1) and negative (-1) values 

indicating the direction of velocity in all cells. The matrix contains genes in the rows and cells in 

the columns. The genes are clustered with respect to similarity of the (discretized) velocity 

direction values using Euclidean distance matrix with partitioning around medoids clustering 

method
48

.  We hypothesize that the genes that share the velocity switch pattern on same cells 

exhibit similar abrupt coordinated changes in the gene regulatory processes. To uncover this, 

scRegulocity performs pathway enrichment analysis on the set of genes within each cluster 

using enrichR R package
49

. 

Transcription Factor (TF)-Target Velocity Regulation. For each TF gene with at least one 

significant velocity switching pattern, scRegulocity evaluates the targets (via motif and 

regulatory-network databases 
50

. Next, the expression levels and velocities of the targets are 

checked for correlation with the regulator’s expression levels and velocities. These are 

visualized in a network view at the velocity and expression level.  

Visualization. scRegulocity contains visualization modules that automatically take the outputs 

of the algorithm as input and generate visualizations of (1) the significant velocity switching 
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patterns with a directional distribution of gradients on subnetworks, (2) gene-clusterings, and 

(3) TF-target networks are output and visualized by scRegulocity so that the results can be 

easily interpreted and assessed in terms of biological significance with respect to the tested 

hypotheses. 

 

Discussion  
 
We present an algorithm, scRegulocity, for identification and visualization of driver genes and 

regulatory networks within transient cell states and types.  We demonstrated that scRegulocity 

can deconvolute the transcriptional drivers using RNA Velocity with our graph based algorithm. 

We present several examples where scRegulocity effectively complements the existing set of 

RNA Velocity analysis tools and gives insight into the understanding of cell-state transitions in 

diverse systems. ScRegulocity can extend the utility of RNA-seq datasets beyond just 

transcriptional profiling. 

 

In conclusion, scRegulocity is a method that generates RNA Velocity from single cell RNA-seq 

data and infers driver transcription factors and transcriptional modules to guide the discovery 

and understanding of the cellular states. Our results show that scRegulocity can more 

accurately recover dynamic transcription factor (TF) modules compared to whole transcriptome 

single cell expression RNA data.  
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Figure Legends 
 
Figure 1. Overview of scRegulocity algorithm 

Figure 2. A) Correlation of velocity with newly synthesized and whole-transcriptome data for 

each gene separately B) Correlation of velocity of TF with TF target genes reported in sci-fate 

study C) RNA Velocity of cell cycle TFs such as POLR2A, NF1, BRCA1 and GR response TFs such as 

TEAD1 were highly correlated with the levels of velocity. 

Figure 3. A) ScRegulocity identified Serpine2 having a significant velocity switching pattern 

among SCP (schwann cell precursor) cells and Differentiation cells B) velocity switching patterns 

identified by ScRegulocity C) identified TF target regulatory network using RNA velocity values 

D) Chromaffin differentiation related TFs, such as Gata3, Tcf7l2, Sox6 and Tcf4, were identified 

using scRegulocity and the TF velocity values of these TFs were highly correlated with the mean 

TF target velocity values. 

Figure 4. A) scRNA-Seq meningioma clustering and annotation B) trajectory of scRNA-Seq 

meningioma data using RNA Velocity and aggressiveness score for each cell using gene 

signatures of aggressive and non-aggressive tumors C) TCF7L1 which is a mediator of the Wnt 

signaling pathway, and CDK2AP1 which epigenetically regulates embryonic stem cell 

differentiation, have increased transcriptional dynamics in more aggressive tumor cells. 
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