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Abstract 18 

Intracranial tumors are both hard to detect and diagnose, resulting in poor patient outcomes. For that 19 

reason, non-invasive methods enabling detection and discrimination of intracranial tumors have 20 

significant clinical potential. Recently Nassiri et al.1 propose plasma-derived cell-free DNA 21 

methylomes as such a method. Here I show that the results have been misinterpreted, and for many 22 

comparisons, no evidence supporting the conclusions are actually presented. While my analysis 23 

highlights the potential of plasma-derived cell-free DNA methylomes, the evidence provided by 24 

Nassiri et al.1 is simply currently insufficient. 25 

 26 

Introduction 27 

Intracranial tumors are notoriously difficult to detect since most symptoms, such as headaches, are 28 

nonspecific and frequently occur in healthy people2. These tumors, therefore, often go unnoticed, 29 

resulting in late discovery and thereby worse patient outcomes2. When intracranial tumors are 30 

discovered, highly invasive intracranial surgery is needed to confirm and elaborate on the diagnosis1. 31 

Non-invasive diagnosis approaches capable of detecting and discriminating intracranial tumors could 32 

be vital for both screening and diagnosis purposes, ultimately improving patient outcomes. 33 
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 34 

Results 35 

To this end, Nassiri et al.1 recently reported they could detect and discriminate intracranial tumors 36 

using plasma-derived cell-free DNA methylomes. In their study, they created plasma-derived 37 

methylome profiles for 220 patients with various types of intracranial tumors. These methylome 38 

profiles were then combined with previously published methylome profiles from other cancer types 39 

and healthy controls (n=447). Using this dataset, Nassiri et al. test whether gliomas can be 40 

distinguished from extracranial samples and whether intracranial tumors can be distinguished from 41 

each other. In both cases, the analysis is framed as a one-vs-rest classification problem (e.g., glioma 42 

vs. all extracranial samples). Performance was measured on held-out validation data and reported as 43 

Area Under receiver operator Curve (AUC). 44 

 45 

Combining a one-vs-rest framing (e.g., 60 gliomas vs. 447 extracranial samples) and measuring 46 

performance with AUCs is, however, potentially problematic. The problem is that AUCs can be 47 

misleading (or rather, misinterpreted) when applied to a classification problem where the numbers of 48 

samples in one class (e.g., 60 gliomas) is severely outnumbered by the number of samples in the other 49 

class (e.g., 447 extracranial)3. For such an imbalanced dataset, the problem arises because a model 50 

that predicts all samples as the major class (e.g., extracranial) can appear appealing when only using 51 

performance metrics such as accuracy and AUCs. The overall performance will simply seem adequate 52 

as the error caused by the misclassification of the minor group is negligible. But such a model is 53 

naturally not desirable. In the case of the glioma vs. extracranial classification, a model that predicts 54 

all samples as extracranial would have no clinical value. A common approach to avoiding this 55 

problem is to evaluate performance by measuring sensitivity and specificity3. Sensitivity and 56 

specificity, respectively, measure how large a fraction of each class was correctly predicted. It follows 57 

that one of them will be zero for the scenario where no minor class was predicted, whereby these 58 

problematic models can be avoided. 59 

 60 

To investigate if the analysis done by Nassiri et al.1 was robust to the problems caused by their 61 

imbalanced dataset, I re-analyze the predictions made (and provided) by Nassiri et al. using additional 62 

performance metrics. From this, it is clear that the analysis done by Nassiri et al. is currently not 63 

robust to the imbalanced nature of the datasets. 64 

 65 
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The problem with imbalanced datasets is most prominent for the analysis of intracranial samples. 66 

Here Nassiri et al.1 analyze 161 intracranial cancer samples originate from 6 different cancer types: 67 

IDH mutant gliomas (n=41), IDH wild-type gliomas (n=22), 60 meningiomas, 9 68 

hemangiopericytomas, 14 low-grade glial–neuronal tumors, and 15 brain metastases. To determine if 69 

one cancer type can be distinguished from the other cancer types, they use the one-vs-rest approach. 70 

This means they train a model to distinguish the 14 low-grade glial–neuronal tumors from all the 147 71 

other cancer samples (8.7% vs. 91.3%). As reported in Nassiri et al.1, the average resulting AUC for 72 

this comparison is 0.93. When inspected more thoroughly it the high AUC originate from classifying 73 

all samples as ‘other’. In other words, no samples were actually classified as low-grade glial–neuronal 74 

tumors (Figure 1, leftmost plot). I find this exact pattern for four of the six cancer types (Figure 1), 75 

meaning these results have no clinical potential. The only cancer type with some performance was 76 

Meningioma, where 68% of Meningioma samples were correctly classified. While this result is 77 

probably still too low for any clinical applications, it indicates the potential of the data. Unfortunately, 78 

Nassiri et al.1 currently does not provide the evidence to conclude that plasma-derived cell-free DNA 79 

methylomes enable discrimination of intracranial tumors. 80 

 81 

Apart from the intracranial analysis, Nassiri et al.1 also seek to determine if intracranial tumors can 82 

be distinguished from extracranial samples. Here a one-vs-rest approach is used to compare glioma 83 

samples to a dataset containing both other cancer types and healthy controls. This corresponds to 84 

comparing 60 gliomas samples (11.8%) to 447 non-gliomas samples (88.2%), meaning it is also an 85 

imbalanced dataset. As reported in Nassiri et al.1, this comparison yields an average AUROC is 0.99, 86 

which considering a score of 1 indicates perfect classification, could seem very impressive. Such a 87 

conclusion would, however, be a misinterpretation of the AUROC values. When analyzed with 88 

additional performance metrics, the analysis has a median sensitivity of 0.818 (Figure 2A). The 89 

corresponding False Negative Rate (FNR) indicates that approximately 1 in 5 glioma patients would 90 

not be identified (Figure 2A). While the sensitivity indicates a clear potential, it still means Nassiri et 91 

al.1 currently provide insufficient evidence to conclude plasma-derived cell-free DNA methylomes 92 

enable detection of intracranial tumors. 93 

 94 

Another potential problem with the analysis of gliomas vs. extracranial samples is that Nassiri et al.1 95 

combine three distinct datasets originating from different laboratories (and distinct points in time). 96 

The joining of the datasets potentially results in batch effects where systematic variation between 97 
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samples is introduced because of differences in the laboratory conditions (e.g., temperature), 98 

personnel, etc.4. We know batch effects exist in the data analyzed by Nassiri et al. as they point to 99 

batch effects as the reason the data is analyzed as two individual cohorts (instead of one combined)1. 100 

It is, however, currently unclear how Nassiri et al. have corrected other potential batch effects as this 101 

is not described in the method section. It does, however, appear that batch effects have not been 102 

adequately handled as the glioma samples appear as two distinct clusters in a PCA analysis (Figure 103 

2B) (also seen from Figure 1G in Nassiri et al.1). This clustering could result from a batch effect - a 104 

hypothesis supported by the clusters not being explained by the available clinical meta-data (Figure 105 

2C). 106 

 107 

Conclusion 108 

In summary, due to both poor classification performance and potential batch effects, Nassiri et al.1 109 

currently provide insufficient evidence to conclude that plasma-derived cell-free DNA methylomes 110 

enable detection and discrimination of intracranial tumors. 111 

 112 

Methods 113 

The processed data, the scripts created, and the classification predictions made by Nassiri et al. were 114 

downloaded from their Zenodo repository (www.doi.org/10.5281/zenodo.3715312). A Rmarkdown 115 

document reproducing the analysis presented here can be found on Figshare 116 

(http://doi.org/10.6084/m9.figshare.14406866.v1). Performance metrics were calculated as defined 117 

defined in Saito et al.3. 118 
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Figure 1: Distinguishing intracranial tumors. For each tumor type (sub-plots), the number of samples (y-axis) 
tested and the number of samples correctly classified (x-axis) for the 50 iterations of prediction on held-out data 
provided by Nassiri et al.
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Figure 2: Detecting intracranial tumors. A) The x-axis indicates the different performance metrics calculated 
directly from the predictions provided in Nassiri et al. Y-axis indicates the performance for the 50 iterations of 
prediction on held-out data provided by Nassiri et al.. B) PCA plots of the 25,000 most informative methylated 
regions show the clustering of glioma and extracranial samples. Samples are colored by type, and a red ellipse 
highlights the glioma outliers. C) Correlation between glioma outlier status (as defined in B) and clinical metada-
ta. OS: Overall Survival. PFS: Progression Free Survival.
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