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Abstract 
 
Background: Genome-wide association studies of prostate cancer have identified >250 significant 
risk loci, but the causal variants and mechanisms for these loci remain largely unknown. Here, we 
sought to identify and characterize risk harboring regulatory elements by integrating epigenomes 
from primary prostate tumor and normal tissues of 27 patients across the H3K27ac, H3K4me3, 
and H3K4me2 histone marks and FOXA1 and HOXB13 transcription factors. 
 
Results: We identified 7,371 peaks with significant allele-specificity (asQTL peaks). Showcasing 
their relevance to prostate cancer risk, H3K27ac T-asQTL peaks were the single annotation most 
enriched for prostate cancer GWAS heritability (40x), significantly higher than corresponding non-
asQTL H3K27ac peaks (14x) or coding regions (14x). Surprisingly, fine-mapped GWAS risk 
variants were most significantly enriched for asQTL peaks observed in tumors, including asQTL 
peaks that were differentially imbalanced with respect to tumor-normal states. These data 
pinpointed putative causal regulatory elements at 20 GWAS loci, of which 11 were detected only 
in the tumor samples. More broadly, tumor-specific asQTLs were enriched for expression QTLs 
in benign tissues as well as accessible regions found in stem cells, supporting a hypothesis where 
some germline variants become reactivated during/after transformation and can be captured by 
epigenomic profiling of the tumor. 
 
Conclusion: Our study demonstrates the power of allele-specificity in chromatin signals to uncover 
GWAS mechanisms, highlights the relevance of tumor-specific regulation in the context of cancer 
risk, and prioritizes multiple loci for experimental follow-up. 
  
Background 
  
Genome-wide association studies (GWAS) have identified >250 known risk loci for prostate 
cancer (PrCa) (Schumacher et al. 2018; Conti et al. 2021; Dadaev et al. 2018). However, 
understanding risk mechanisms remains challenging because most associations map to non-
coding regions and likely influence target gene transcription by modifying regulatory element 
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binding in specific contexts. Several techniques have been developed to connect common non-
coding variants to target genes through integration or colocalization with expression quantitative 
trait loci (eQTLs) (Gusev, Ko, et al. 2016; Gamazon et al. 2015; Barbeira et al. 2018). For 
example, a recent Transcriptome-wide Association Study (TWAS) of prostate cancer used eQTL 
signals to identify 217 putative target genes at 84 independent loci (Mancuso et al. 2018). 
However, such methods do not seek to identify the regulatory element driving the GWAS 
association and typically cannot identify a putative mechanism for the majority of loci. Specific to 
the cancer context, it remains unknown whether risk mechanisms are better captured by QTLs in 
normal tissues, which may miss the appropriate cell type or context of the mechanism, versus 
QTLs in tumors, which may better reflect the cell of origin (Polak et al. 2015).  
  
As with eQTL colocalization, studies of QTLs associated with chromatin activity (cQTLs) present 
an opportunity to understand the link between GWAS SNPs via their effect on cis-regulation 
elements. Recent studies in healthy individuals have identified cQTLs for a variety of epigenetic 
features such as DNA accessibility (Gate et al. 2018), transcription factor (TF) binding (Maurano 
et al. 2015), and histone marks (Waszak et al. 2015; Grubert et al. 2015). The cis-regulatory 
landscape has been shown to be rich with co-regulation and co-operative binding, making it 
harder to connect non-coding disease variants to mechanism (Link et al. 2018). A key limitation 
to cQTL studies has been the large sample size needed to detect such variants. This is because 
cis-genetic effects tend to be small compared to trans-regulatory effects (X. Liu, Li, and Pritchard 
2019) and technical variation between individuals. 
  
Recent advances in molecular sequencing technology have enabled the identification of QTLs in 
a single individual through measurements of allelic imbalance. Allelic imbalance quantifies the 
difference in reads mapping to a heterozygous variant within an individual, and is indicative of a 
cis-regulatory effect on one of the haplotypes. Methods based on allele-specific reads benefit 
from the ability to remove trans--effects by comparing alleles in the same environment, increasing 
power to detect cis-effects from in vivo samples. Individual-level signals can then be aggregated 
across individuals to identify common germline regulatory variants. This technique has been 
applied to detecting QTLs (Kumasaka, Knights, and Gaffney 2016; van de Geijn et al. 2015) and 
gene-by-environment interactions (Knowles et al. 2017) in healthy samples. Recently, we 
extended this approach to identify differences in allelic imbalance across many individuals 
between their tumor/normal cell states (Gusev et al. 2019). Such state specific QTLs may highlight 
tumor-specific cis-regulatory mechanisms or interactions that would be difficult to observe in 
normal tissues or healthy controls 
  
In this work, we used germline allelic imbalance in epigenomes from prostate tumors and matched 
normal tissue to describe the mechanisms of genetic risk for prostate cancer.  We identified 
thousands of allelically imbalanced cis-regulatory elements at histone marks and transcription 
factors (HMTFs), including hundreds of variants that with significant changes in their regulatory 
effect between the normal/tumor cell states. These cis-regulatory elements were enriched for 
eQTLs, GWAS associations, cell-type specific accessible regions, and complex patterns of 
transcription factor binding, shedding light on mechanisms of prostate cancer risk and 
tumorigenesis. 
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Results 
  
Identification of allelic imbalance in prostate epigenomes 
  
We collected ChIP-seq data from 27 patients in primary prostate cancer tumor samples and 
adjacent normal prostate tissue (Pomerantz et al. 2020, 2015). We assayed epigenomes from 
three histone marks (HM) and two transcription factors (TF) which have previously been 
implicated in prostate cancer development (Pomerantz et al. 2015; Whitington et al. 2016): 
H3K27ac (n=26), H3K4me3 (n=3), H3K4me2 (n=3); FOXA1 (n=5), HOXB13 (n=5) 
(Supplementary Table 1).  Peaks were called using the MACS2 software, and mapping bias was 
corrected using the WASP pipeline (van de Geijn et al. 2015) (see Material and Methods). A 
principal components analysis revealed no clear differences in ChIP-seq signal between tumor 
and normal peaks (Supplementary Figure 1) in contrast to previous studies in other cancers 
(Gusev et al. 2019). 
  
We tested each peak for allelic imbalance across all individuals using a haplotype-based test 
implemented in the stratAS algorithm (Gusev et al. 2019).  Unlike some conventional allelic 
imbalance models, this is a test for consistent allelic effect across multiple individuals, and thus 
captures QTLs in the sampled population. For each individual, reads were first summed across 
all phased heterozygous variants within a ChIP-seq peak to quantify haplotype-specific read 
counts. For each peak, all individuals with haplotype-specific read counts were then tested for 
consistent allelic imbalance at each SNP within 100kb of the peak center using a beta-binomial 
test (Figure 1). The test was run three times using different samples: across all samples 
regardless of cell state (“T+N”); across all normal tissue samples (“N”); across all tumor samples 
(“T”). In addition, a beta-binomial likelihood ratio test was used to identify those SNPs with a 
significant difference in allelic fraction between normal and prostate cancer tissue (“TvsN”). These 
categories are termed as ‘states’ and, in combination with the five histone marks and transcription 
factors (“HMTFs”), yielded 20 independent HMTF-state categories of ChIP-seq peak. After 
testing, a 10% FDR threshold was applied to each HMTF-state group to identify significantly 
imbalanced SNPs. We refer to those peaks which were associated with significant SNPs as 
“asQTL peaks”. Those peaks which were tested (i.e. contained heterozygous variants and 
satisfied the minimum coverage requirements to be testable) but not significantly associated with 
asQTLs were termed ‘balanced’ peaks.  
  
Primary prostate tissues harbor thousands of asQTL peaks 
  
We identified 7,371 unique asQTL peaks (at 10% FDR) across the five HMTFs tested (Table 1) 
out of 525,634 peaks tested by stratAS: 5,975 T+N peaks; 2,221 N peaks; 4,006 T peaks; and 
1,606 TvsN peaks. There was a significant correlation between the number of allelic reads in a 
sample and the number of asQTL peaks detected within the sample (Spearman’s rank 
correlation=0.523, p<0.01) as this is the primary determinant of statistical power. Although FOXA1 
and HOXB13 TF activity was measured in fewer samples, these TFs had a greater yield of asQTL 
peaks per reads per base pair than the histone marks (p<0.01 in a linear model) (Figure 2A). 
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There was significant overlap in asQTL peaks across states within a given HMTF as well as 
across different HMTFs. Within a given HMTF, significant asQTL peaks were frequently observed 
in multiple states (Figure 2B). Taking H3K27ac peaks as an example, a minority of asQTL peaks 
were only significant in a single state: 366 (24%) T-asQTL peaks, 100 N-asQTL peaks (8%) and 
51 TvsN-asQTL peaks (7%). For HOXB13 and FOXA1, six (11%) and seven (10%) TvsN-asQTL 
peaks were unique to TvsN-asQTL, respectively. TvsN peaks were evenly divided between those 
with imbalance in favour of the variant in normal tissue samples and those in prostate cancer 
samples (Supplementary Figure 2). 
 
Across HMTFs, asQTL SNPs often exhibited significant correlation in allelic fraction (the measure 
of regulatory effect size) when measured in different HMTFs (Supplementary Table 2). The largest 
positive correlations were observed between FOXA1 and HOXB13 (ρ=0.75, p<0.01), H3K27ac 
and HOXB13 (ρ=0.66, p<0.01); whereas both FOXA1 and HOXB13 exhibited negative 
correlations with H3K4me3 (ρ=-0.14, p<0.01; ρ=-0.24, p<0.01 respectively). Similarly, asQTL 
peaks were generally closer than random to other ChIP-seq peaks, suggestive of coordinated 
histone activity across nearby marks under cis regulatory control (Kumasaka, Knights, and 
Gaffney 2019) (Supplementary Table 3). 
  
asQTL peaks localize PrCa GWAS heritability 
  
PrCa risk loci are enriched in epigenomic features (Gusev, Shi, et al. 2016) and we hypothesized 
this enrichment would be stronger in asQTL peaks that are under cis regulation. We evaluated 
risk variant enrichment using data from a recent large-scale PrCa GWAS study in >140,000 
samples (Schumacher et al. 2018) and multiple enrichment techniques. 
 
First, we partitioned PrCa GWAS heritability across regulatory peaks from our data using stratified 
LD-score regression (S-LDSC) (Supplementary Table 4, Figure 2C; see Materials & Methods). S-
LDSC identifies enrichments in polygenic GWAS effect sizes within a given annotation, while 
accounting for co-incidental background enrichment from a “baseline” model of broad functional 
features. Surprisingly H3K27ac T-asQTL peaks exhibited the most significant enrichment (40x 
s.e. 9.9) which was significantly higher than that of balanced H3K27ac peaks (P=0.01 for 
difference by z-test). T-asQTL, T+N-asQTL and N-asQTL FOXA1 peaks had the largest 
enrichments by magnitude (68x, 59x, 48x respectively) but were not significantly different from 
their respective balanced peak categories, likely due to insufficient power for these small 
annotations (Reshef et al. 2018). For comparison, coding regions were 14x (s.e. 4.1x) enriched 
and evolutionarily conserved regions were 18x (s.e. 4.1x) enriched. Within balanced peaks, 
enrichments were significant across all HMTFs but generally weaker, with the most significant 
enrichment from T+N H3K27ac peaks (15x s.e. 1.8) and highest magnitude of enrichment from N 
FOXA1 peaks (25x s.e. 6.3). A SNP in an imbalanced regulatory region is thus expected to explain 
more PrCa heritability than even a coding variant. 
  
Second, we measured the enrichment of fine-mapped PrCa GWAS SNPs which have a high 
probability of being causal (Dadaev et al. 2018). For each of the 20 HMTF-state combinations of 
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peaks, we calculated the ratio of GWAS SNPs per base pair in all asQTL peaks, to GWAS SNPs 
per base pair in the same number of randomly sampled balanced peaks. We term this the 
enrichment ratio, 𝜂!"#"$%&'()!"#"$%&'. This comparison to randomly sampled balanced peaks was a 
stringent baseline that specifically estimates the enrichment beyond the general enrichment of 
functional variants in epigenetically active regions. We assessed significance by performing 
multiple samplings of balanced peaks and estimating an empirical p-value relative to this null 
distribution (see Materials & Methods). 
 
Of the 20 HMTF-state combinations, 3 were significantly enriched for GWAS fine-mapped SNPs 
compared to balanced peaks (empirical p-value < 0.05): H3K27ac T-asQTL peaks (8.5x, empirical 
p-value<0.001), H3K27ac TvsN-asQTL peaks (8.3x, p<0.001) and H3K27ac T+N-asQTL, peaks 
(5.5x, p<0.001) (Figure 3, Table 2). All three significant enrichments involved measurements from 
tumors, and H3K27ac N-asQTL peaks were not significantly enriched (1.83x, p=0.20). As a check, 
we carried out the same enrichment procedure with a background of randomly selected genomic 
intervals instead of balanced peaks (termed 𝜂*"$'+)()!"#"$%&'), which yielded substantially higher 
enrichments across all categories as expected, including 38.2x for TvsN-asQTL H3K27ac peaks 
and 10.0x for N-asQTL H3K27ac peaks (Supplementary Figure 3, Supplementary Table 5). 
H3K27ac asQTLs in tumors and specific to tumors are thus significantly more likely to harbor 
causal PrCa variants than random H3K27ac peaks. 
  
asQTL peaks implicate specific regulatory mechanisms at PrCa GWAS loci 
  
We quantified how many GWAS loci contained a fine-mapped SNP within an asQTL peak, and 
thus had a putative regulatory mechanism. We defined 71 contiguous regions within 1MB of a 
genome-wide significant variant. In total, 20 out of 71 genome-wide significant regions contained 
fine-mapped SNPs that overlapped an asQTL peak (Figure 2D). For comparison, a recent TWAS 
of the same GWAS data using gene expression from 483 prostate tumor samples (20x larger than 
our study) identified a significant association at 12/71 GWAS loci (Mancuso et al. 2018). Across 
states, 11/20 loci overlapped T-asQTL or TvsN-asQTL peaks but did not overlap N-asQTL peaks, 
highlighting the utility of profiling tumors and suggesting a sizeable fraction of risk mechanisms 
may be unobservable in normal tissues of comparable sample size, consistent with our previous 
tumor-specific heritability enrichments and previous hypotheses (Mancuso et al. 2018; Gusev, 
Shi, et al. 2016; Geeleher et al. 2018). Across HMTFs, H3K27ac asQTL peaks overlapped fine-
mapped SNPs in the greatest number of GWAS loci (14), followed by FOXA1 (6) and HOXB13 
(3). TF asQTL peaks overlapped 8 unique loci, of which 4 did not overlap HM asQTL peaks 
(Supplementary Table 6). These findings highlight the utility of TF ChIP-seq to identify potential 
risk mechanisms not implicated by broader histone marks (Benaglio et al. 2019). 
  
As a specific example, we investigated the TMPRSS2 risk locus, which acquires a somatic 
TMPRSS2-ERG fusion in >50% of prostate tumors in men of European ancestry (Tomlins et al. 
2005), and is suspected to harbor germline-somatic interactions (Emami et al. 2019).  The locus 
contained a distal HOXB13 T+N-asQTL peak overlapping three fine-mapped variants in close 
proximity, which was flanked by H3K27ac T-asQTL peaks (Figure 4). These three variants resided 
within an active tumor-specific Androgen Receptor (AR) binding site (Pomerantz et al. 2020), 
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further supporting their role as the likely causal variants. The locus additionally contained a group 
of 9 TvsN-asQTL H3K27ac peaks ~10kb downstream and overlapping the TMPRSS2 promoter, 
possibly co-active with the distal regulatory element. These overlaps with tumor and tumor-
specific peaks further support the hypothesis of germline-somatic interactions at this locus and 
showcase the utility of asQTLs to localize the putative causal mechanism. 
  
asQTL peaks contain lineage and tumor specific eQTLs 
  
We next sought to characterize the transcriptional activity at asQTL peaks by integrating them 
with independent expression QTL (eQTL) data. We reasoned that asQTL peaks were more likely 
to harbor variants with causal effects on transcription of nearby genes and should thus be 
enriched for eQTLs in relevant tissues. First, we calculated the enrichment of HMTF-state 
combinations for eQTLs with the same procedure used to calculate enrichment of PrCa GWAS 
SNPs. We used eQTLs from the GTEx Consortium in prostate tissue as representative healthy 
prostate eQTLs (referred to as “GTEx-prostate eQTLs”), and eQTLs from prostate 
adenocarcinoma (PRAD) samples from TCGA as representative of PrCa tumor eQTLs (TCGA-
PRAD) (Figure 3, Supplementary Table 7). We again conservatively estimated eQTL enrichment 
within asQTL peaks compared to balanced peaks (𝜂!"#"$%&'()!"#"$%&').   
 
In total there were 10 HMTF-state combinations with nominally significant 𝜂!"#"$%&'()!"#"$%&'

 (p<0.05) for 
GTEx-prostate eQTLs and 10 for TCGA-PRAD eQTLs. All asQTL H3K27ac peak categories were 
significantly enriched for GTEx-prostate eQTLs and TCGA-PRAD eQTLs. T-asQTLs were 
similarly enriched in both GTEx prostate and TCGA-PRAD, showing that T-asQTLs capture broad 
germline effects on transcription from both healthy and cancer tissues. Across all features, TvsN-
asQTL FOXA1 peaks had the greatest enrichment for GTEx-prostate eQTLs (𝜂!"#"$%&'()!"#"$%&'=2.75x, 
p<0.01) whilst N-asQTL H3K27ac peaks had the greatest enrichment for TCGA-PRAD eQTLs 
(1.82x, p<0.01). Interestingly, TvsN-asQTL HOXB13 peaks exhibited a significant depletion in 
GTEx-prostate eQTLs. (p<0.01; Figure 3, Supplementary Table 7), suggestive of novel tumor-
specific regulatory variants. As a sanity check, we again estimated the enrichment relative to 
random regions in the genome (rather than active elements; 𝜂*"$'+)()!"#"$%&'), finding significant 
enrichments for 19/20 and 17/20 HMTF-state combinations in TCGA-PRAD and GTEx-prostate 
eQTL respectively (empirical p<0.05) (Supplementary Figure 3, Supplementary Table 5). 
  
We quantified the tissue-specificity of asQTLs by comparing them to eQTLs identified in non-
prostate tissues from the GTEx and TCGA studies (as there are currently no large scale, multi-
tissue chrom-QTL studies). We computed the ratio of GTEx-prostate eQTLs enrichment to GTEx-
non-prostate eQTL enrichment, and likewise for TCGA-PRAD relative to TCGA-non-PRAD. By 
using the enrichment relative to non-prostate tissues as a background, we generated an 
enrichment ratio of the form 𝜂()!"#"$%&',$+$-.*+/0"0&

()!"#"$%&',.*+/0"0& and 𝜂()!"#"$%&',$+$-1234
()!"#"$%&',1234  (see Materials & 

Methods). In GTEx, nine tissue-specific enrichments were significant at a threshold of empirical 
p<0.05, the greatest enrichment being TvsN-asQTL FOXA1 peaks 
(𝜂()!"#"$%&',$+$-.*+/0"0&
()!"#"$%&',.*+/0"0& =2.39x, empirical p=0.028) (Figure 3, Supplementary Table 7). All 

H3K27ac and three H3K4me3 categories exhibited a significant 𝜂()!"#"$%&',$+$-.*+/0"0&
()!"#"$%&',.*+/0"0& . In TCGA, 
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two were significant: N-asQTL HOXB13 (𝜂()!"#"$%&',$+$-1234
()!"#"$%&',1234 =1.62x, p=0.05) and T-asQTL 

HOXB13 peaks (1.44x, p=0.03 respectively). These tissue-specific enrichments highlight asQTLs 
as broadly enriched for prostate specific effects on transcriptions, and asQTLs in HOXB13 as 
being enriched for prostate tumor specific effects. 
  
asQTL peaks show evidence of somatic dedifferentiation 
  
Studies of prostate tumor epigenomes have identified the phenomena of somatic 
dedifferentiation, whereby the tumor epigenome becomes less specific to the normal cell of origin 
(Brawn 1983; Pomerantz et al. 2020). We hypothesized that dedifferentiated regulatory elements 
harboring a germline regulatory variant could thus become activated in the tumor and detectable 
as T-asQTLs (if the regulatory element is newly active in the tumor) or TvsN-asQTLs (if the 
regulatory element is active but poised in the normal) (Figure 5). We would thus expect T-/TvsN-
asQTLs to be enriched for dedifferentiated regions. To test this, we used H3K27ac peaks from 
ROADMAP in embryonic stem (ES) cells as a surrogate for the dedifferentiated epigenetic state 
(see Materials & Methods). We then calculated an enrichment of the same form as the tissue-
specific scores, using H3K27ac peaks from fetal prostate cells as a baseline. As with the tissue-
specific scores, this allows us to compare enrichment relative to balanced features and our 
background of interest. This creates an enrichment coefficient of the form 𝜂()!"#"$%&',5&0"#	.*+/0"0&

()!"#"$%&',78 . 
 
We observed significant enrichment for dedifferentiated regions across all H3K27ac asQTL peak 
states, with the strongest in T-asQTL (𝜂()!"#"$%&',5&0"#	.*+/0"0&

()!"#"$%&',78 =1.28x, p<0.01) and TvsN-asQTL 
(1.27x, p<0.01) peaks (Figure 3, Supplementary Table 7). In contrast, HOXB13/FOXA1 asQTL 
peaks exhibited significant dedifferentiation depletion, ranging from 0.56x (p=0.0492) for TvsN-
asQTL FOXA1 peaks to 0.79x (p=0.0028) for T+N-asQTL HOXB13 peaks (Figure 3, 
Supplementary Table 7), consistent with prostate lineage specificity of these two transcription 
factors. Only N-asQTL FOXA1 peaks were significantly enriched (1.21x, p=0.03). Combining T-
asQTL and TvsN-asQTL peaks did not change the significance of the results compared to 
considering each category separately, apart from T+TvsN-asQTL FOXA1 peaks, which became 
non-significantly depleted (0.64x, p=0.0616) (Supplementary Figure 4). This enrichment lends 
support to our hypothesis that germline regulatory variants may become “reactivated” in the tumor 
through dedifferentiation.  
  
asQTL peaks implicate novel cancer-specific transcription factors and extensive cooperative 
binding 
  
Motivated by the observation that asQTLs may be capturing tumor-specific regulatory 
mechanisms, we applied our enrichment method to TFs to nominate novel TFs that may be 
relevant to prostate tumorigenesis. We used publicly available ChIP-seq measurements on 25 
transcription factors and epigenetic marks assayed in the LNCaP cell line and processed them 
using the Cistrome pipeline (T. Liu et al. 2011). Enrichment of TF activity at imbalanced asQTL 
peaks was widespread, with 219 out of 500 LNCaP-TF/HMTF-state combinations exhibiting 
significant enrichment at an FDR of 1% (Figure 6A, Supplementary Table 8). Notably, AR was 
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significantly enriched in H3K27ac T-asQTL (𝜂!"#"$%&'()!"#"$%&'=1.22x, p<0.001) and TvsN-asQTL 
(1.22x, p<0.001), consistent with the known phenomena of AR reprogramming during 
transformation (Pomerantz et al. 2015). 
 
Given the breadth of significant enrichment, we further stratified the H3K27ac peaks to those 
within 1kb of a transcription start site (“proximal”, and likely acting directly via the promoter) and 
those that were not (“distal”, and likely acting through enhancer/repressor elements looping into 
a target promoter) and re-evaluated enrichment of TFs at asQTL peaks within each sub-category 
(Figure 6B, Supplementary Table 9). Serving as positive controls, canonical PrCa TFs were 
enriched at distal T-asQTLs but not distal N-asQTLs: AR, FOXA1, HOXB13, and NKX3-1 (Bhatia-
Gaur et al. 1999). In addition to these canonical factors, multiple novel TFs were significantly 
enriched in distal T or TvsN asQTL-peaks, which we broadly classified into three groups: 

1.  TFs that collaborate with the above canonical TFs: CREB1, which co-localizes with 
FOXA1(Sunkel et al. 2016); GRHL2, an AR coregulator (Paltoglou et al. 2017) ; NR3C1, 
also known as Glucocorticoid Receptor/GR and regulated by AR (Xie et al. 2015); PIAS1, 
a competitive co-regulator of AR (Gross et al. 2001); and TLE3 (Palit et al. 2019), a co-
repressor with AR; 

2.  TFs that have been linked to castration-resistant prostate cancer: HNF4G (Shukla et al. 
2017) and NANOG (Jeter et al. 2011); 

3.  Putatively novel TFs without established PrCa function: ARID1A, REPIN1, and VDR. 
In particular, ARID1A, HOXB13, NR3C1 and TLE3 were each depleted in more than 3 state 
categories in proximal H3K27ac asQTL peaks, but enriched in at least one distal state category, 
consistent with regulation specific to distal elements. 
  
Focusing on AR, we investigated a broader landscape of AR activity measured in multiple primary 
prostate samples and adjacent normal tissues (Pomerantz et al. 2015) and classified into tumor-
specific (TARBS) and normal-specific (NARBS) binding sites (Supplementary Figure 5). TARBS 
were significantly enriched in HOXB13 and FOXA1 asQTL peaks observed in tumors relative to 
balanced HOXB13 and FOXA1 peaks, consistent with these TFs being directly co-regulated with 
tumor-specific AR binding. In contrast, NARBS were significantly depleted in HOXB13 and 
FOXA1 asQTL peaks observed in normal prostate samples indicating that normal-specific AR 
binding is independent of these cofactors. For H3K27ac, no significant enrichment or depletion 
was observed for TARBS at T-asQTL peaks or NARBS at N-asQTL peaks. However, significant 
depletions were observed at mismatching states, i.e. NARBS were depleted at H3K27ac T-asQTL 
peaks, as would be expected if NARBS generally reflected lack of regulatory activity at the same 
site in the tumor and thus absence of asQTLs (and vice versa for TARBS). Consistent with this 
mechanism, no depletion of ARBS at H3K27ac asQTL peaks were observed when evaluated 
relative to a random baseline rather than random balanced peaks (Supplementary Figure 6). 
 
Finally, extended our enrichment analysis to pairs of reference TFs, to investigate putative 
collaborative or competitive binding. For a pair of TFs a and b, we quantified the number of a 
peaks and b peaks that overlapped each asQTL peak, and then estimated the correlation of these 
two vectors as a measure of co-binding. We then performed the same quantification using random 
balanced peaks to estimate the difference between correlation coefficients, and significance. We 
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identified 6 pairs of TFs with significant changes in co-binding between imbalanced and balanced 
peaks at an FDR of 1% (Supplementary Table 10). At FOXA1 TvsN-asQTL peaks, the pairs 
FOXA1:HOXB13 (change in correlation = 0.407, empirical p-value < 0.01) and CSNK2A1:NANOG 
(0.401, p<0.01) significantly increased in co-occurrence compared to balanced peaks. While the 
former are well established as co-binding factors (Pomerantz et al. 2015), the latter have not been 
implicated. At HOXB13 TvsN-asQTL peaks, the pairs H2A.Z:TOP1 (0.512, p < 0.01), H2A.Z:E2F1 
(0.354, p<0.01), HNF4G:TLE3 (0.478, p<0.01), and HNF4G:ARID1A (0.462, p<0.01) all 
significantly increased in co-occurrence compared to balanced peaks. The histone variant H2A.Z 
has recently been implicated in activation of AR associated enhancers in prostate cancer (Valdés-
Mora et al. 2017), providing a potential mechanism for increased co-binding with HOXB13 in 
TvsN-asQTLs. In contrast, while HNF4G has been implicated in an AR-independent 
transcriptional circuit in prostate cancer (Shukla et al. 2017), it has not been linked to the co-
binding factors identified here. In sum, this analysis identifies extensive co-binding of TFs involved 
in prostate cancer regulation at tumor-specific, germline regulatory variants. Further functional 
validation is needed to distinguish which TF partners are necessary for the observed allelic 
imbalance. 
  
Discussion 
  
We have demonstrated that germline allelic imbalance in somatic chromatin activity is a 
widespread phenomenon, and can be used to identify cis-regulatory variants from relatively 
modest sample sizes. asQTL peaks were significantly enriched for prostate-specific and tumor-
specific eQTLs in independent datasets, serving as a validation of their regulatory function. PrCa 
GWAS heritability and significant associations were broadly enriched across imbalanced 
H3K27ac peaks relative to balanced H3K27ac peaks (a stringent baseline). 20 GWAS loci 
contained a fine-mapped SNP that overlapped an asQTL regulatory element and are thus putative 
targets for functional follow-up. 
  
A particularly unique aspect of our study is the identification of asQTLs that were differentially 
active in tumors. We hypothesize that such asQTLs became newly activated in the context of 
widespread epigenetic reprogramming during tumorigenesis, and could be used to identify 
important somatic regulatory mechanisms. Indeed, we found that tumor-specific asQTL peaks 
were significantly enriched for multiple TFs, including both canonical PrCa TF’s like AR and 
NKX3-1, as well as novel PrCA-linked TF’s like ARID1A and TLE3. We additionally found 
H3K27ac asQTL peaks to be significantly enriched for accessible chromatin in embryonic stem 
cells (relative to epithelial cells), consistent with a broad process of “dedifferentiation” in tumors 
leading to activation of early developmental regulatory elements, whose activity is then altered by 
germline cis-regulatory variants. 
  
Our work has several limitations. First, the ChIP-seq data we collected here primarily targeted 
H3K27ac and other broad histone marks, with relatively fewer individuals assayed for TF activity, 
thus limiting our ability to identify TF-specific mechanisms. Second, somatic copy number 
alterations can induce apparent allelic imbalance within carriers, and our approach accounts for 
this only through modelling the read count overdispersion for each sample. In the population, an 
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imbalanced peak would only result from a somatic copy number change that is both highly 
recurrent and consistently aligns with a germline allele, an unlikely event. However, in our sample, 
peaks with a small number of germline heterozygous individuals may be biased due to somatic 
alterations. In the limit of a single heterozygous individual we cannot statistically distinguish 
between the variant or the copy number driving imbalance. Third, our analyses of asQTLs 
primarily relied on simple physical overlap, under the assumption that the variant driving allelic 
imbalance for a peak is itself likely to reside in the peak. Larger sample sizes (i.e. N>50) would 
provide the genetic diversity needed to perform formal statistical fine-mapping and disease 
colocalization in instances where this assumption does not hold. Fourth, we replicated and 
contextualized our analyses with publicly available epigenetic data that was typically collected in 
cell lines which may be systematically different from primary tissue. We have alleviated this by 
using a variety of datasets to avoid bias from validating in a single cell line. Our asQTL peaks 
have replicated with regulatory QTLs in external samples (Houlahan et al. 2019), but further 
application of this technique in other primary tissues would do much to demonstrate the 
effectiveness of this technique in identifying useful epigenetic changes. 
 
Conclusions 
 
Our work demonstrates the broad utility of applying allelic imbalance methodology to detect 
regulatory variants that change activity across different contexts - in this case looking at 
differences across the normal/tumor cell state change. In particular, we have shown that such 
differential regulatory activity can pinpoint previously unobserved disease risk variants and 
implicate specific transcription factor programs. Our analyses show that we have not reached 
diminishing returns in terms of number of asQTLs that can be detected as a function of sample 
size and coverage, and we anticipate that our methodological approach will be of broad utility to 
studies of diverse molecular contexts for both cancer and non-cancer mechanisms. 
  
Methods 
 
Sample information 
  
Prostate tissue was collected from 27 patients with localized primary prostate adenocarcinoma. 
Each patient yielded a sample of the adenocarcinoma and a sample from surrounding non-
malignant prostate tissue. We performed chromatin immunoprecipitation sequencing (ChIP-seq) 
for H3K27ac (N=26), H3k4me2 (N=3), H3k4me3 (N=3), FOXA1 (N=5), and HOXB13 (N=5) on 
these samples, as well as germline SNP genotyping from blood. Germline variants were phased 
and imputed to the Haplotype Reference Consortium panel. Mapping and aligning was performed 
using bwa; allele-specific reads were processed according to the WASP pipeline (van de Geijn et 
al. 2015) to remove mapping bias; peaks were identified using the MACS2 software. Allele-
specific read counts were generated by the GATK ASEReadCounter (Castel et al. 2015). 
  
asQTL peak detection 
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We tested for allele-specific signal using a haplotype beta-binomial test that accounts for read 
overdispersion. Beta-binomial overdispersion parameters were estimated for each 
individual/experiment from the aligned allele-specific counts and were found to be consistently 
low (Normal: mean = 4.9e-4, sd = 1.35e-3; Tumour: 2.66e-3, 4.84e-3). Due to the negligible 
amount of overdispersion, we did not model local structural changes. For each peak and 
individual, haplotype-specific read counts were merged across all heterozygous read-carrying 
sites in the peak for a single measure of allele specificity. Every SNP within 100kb of the peak 
centre and carried by at least one heterozygous individual was then tested for allelic imbalance. 
All heterozygous individuals were tested together under the expectation of a consistent allele-
specific effect. Each test was performed once for samples from normal, tumor, both, as well as a 
differential test between tumor and normal. Finally, peaks were considered “imbalanced” in each 
of these four test categories if any of the variants tested for that peak exhibited allele-specific 
signal at a 10% FDR. For further details of stratAS’s statistical methods and comparison to 
previous methods see (Gusev et al. 2019). We evaluated multiple parameter settings for asQTL 
detection: the size of the peaks used for testing; the distance over which we tested for SNPs 
around each peak and the exclusion distance between SNPs in a read. Detection sensitivity was 
maximized with: peaks defined as 1kb either side of the narrow peak calls derived from MACS2, 
and testing all SNPs within 100kb of the peak center. 
  
asQTL peak enrichment 
 
To determine the general biology of this class of peaks, we measured the enrichment of these 
peaks for various genomic indicators of interest compared to randomly sampled balanced peaks. 
We applied the following workflow using bedtools (Quinlan and Hall 2010) and R: 

1. For each asQTL and non-asQTL peak in that HMTF-state category, calculate how many 
epigenetic features of interest overlap with the peak interval, and normalise by the number 
of base pairs. 

2. Calculate the mean number of features per base pair in the asQTL peaks 
(mean.imbalanced). 

3. Randomly sample a number of balanced peaks equal to the number of asQTL peaks. 
Calculate the mean number of features per base pair in these selected non-asQTL peaks. 

4. Repeat step (3) 5000 times to create a null distribution of randomly sampled balanced 
peaks which captures the variance in estimates of enrichment. 

5. Calculate the following quantities: 
1. Mean of the balanced peaks enrichment distribution (mean.balanced) 
2. Standard deviation of balanced peaks enrichment distribution (sd) 
3. The absolute difference between mean.imbalanced and mean.balanced 

(balanced_to_imbalanced) 
4. The z-score of imbalanced peak enrichment: z = balanced_to_imbalanced/sd 
5. The fold enrichment: relative_enrichment = mean.imbalanced/mean.balanced 
6. The fraction rank of mean.imbalanced in the balanced peaks enrichment 

distribution (percentage) 
7. The empirical p (empirical_p) value: 

1. If the fraction rank is less than 0.5: empirical_p = percentage * 2 
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2. If the fraction rank is more than 0.5: empirical_p = (1 - percentage) * 2 
 

The following datasets were used in the enrichment analysis: 
1. Finemapped prostate cancer GWAS SNPs. This dataset contained 3700 finemapped 

PrCA SNPs. To generate contiguous loci, we added a ±500kb window around each SNP 
and merged overlapping regions, yielding 71 loci (Dadaev et al. 2018) 

2. Prostate and other tissues eQTLs from GTEx v7 (“GTEx Portal” n.d.) 
3. Prostate adenocarcinoma and other cancer eQTLs from PANCAN (Gong et al. 2018) 
4. ROADMAP consortium h3k27ac narrowPeak files for embryonic stem cells (Roadmap 

Epigenomics Consortium et al. 2015) 
5. AR ChIP-seq binding sites that are differentially enriched in normal tissue (NARBS) or 

tumor tissue (TARBS) (Pomerantz et al. 2015) 
6. H3K27ac ChIP-seq peaks in fetal prostate tissue (Pomerantz et al. 2020) 

 
Advanced asQTL peak enrichment 
 
In addition to the above simple enrichment protocol, we expanded this to include a more complex 
protocol for the tissue-specific scores and the ES-specific score.  
We complete step (1) from a basic enrichment analysis for two different features, creating two 
vectors of enrichment sequences x and y e.g. GTEx-prostate and GTEx-non-prostate. Our GTEx-
prostate enrichment reflects the enrichment for our feature of interest, which can be split into two 
sources: the technical features of GTEx which affect all types of eQTL, and those which are 
specific to prostate eQTLs. We then calculate x/y to create one vector of the ratio between e.g. 
GTEx-prostate and GTEx-non-prostate enrichment. We then apply the enrichment steps (2) to (7) 
to calculate the standard enrichment parameters.  
For the GTEx-prostate-specific score, prostate eQTLs from GTEx were used as the numerator 
and eQTLs from all other non-prostate tissue in GTEx was used as the denominator; for the 
TCGA-PRAD-specific score, PRAD eQTLs from TCGA were numerator and eQTLs from all other 
tumors in TCGA were denominator; for the ES-specific score, the H3K27ac peak calls for 
embryonic stem cells from ROADMAP were the numerator, and H3K27ac peak calls from fetal 
prostate cells were the denominator.  
 
We also calculated enrichment where we change step (4) from using balance peaks as a null 
distribution, to using 1000 randomly shuffled intervals of equal size to the asQTL peaks as a null 
distribution. This is a less stringent baseline with which to compare asQTL enrichment for 
epigenetic features. 
 
Enrichment in the proximity of asQTL peaks 
  
We quantified whether asQTL peaks exhibited unusual proximity to other asQTL peaks using 
random sampling. For a given pair of HMTFs a and b, we computed the mean distance between 
asQTL peak a and the nearest asQTL peak b. The null distribution was generated by sampling 
the same number of balanced peaks a, and computing the mean distance to the nearest asQTL 
peak b. The resampling procedure was performed multiple times to obtain the null distribution. 
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Quantifying TF binding at asQTL peaks 
  
We estimated enrichment of asQTLs at 25 transcription factors and histone marks from the LnCaP 
cell line from Cistrome DB (Mei et al. 2017). In addition to comparing to a background of balanced 
peaks, we sought to account for differences in peak coverage. For each asQTL HMTF, we 
constructed a background balanced peak set by matching each asQTL peak to the 20 random 
balanced peaks with similar read coverage. For each focal TF and asQTL peak class, we 
computed the number of binding sites overlapping the asQTL peaks as the numerator of the 
enrichment. We then randomly sampled the same number of (read matched) balanced peaks and 
computed the number of overlapping binding sites as the background. Enrichment was computed 
as the numerator over the mean of the denominator, and significance was computed relative to 
multiple resamplings of the denominator, using the same procedure as described for the basic 
enrichment analysis.  
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Figures and Tables 
  
Figures 
  
Figure 1: The stratAS framework: a method to leverage allelic imbalance to identify causal 
variants 
stratAS takes in two inputs - a matrix of allelic read counts by SNP site and sample (a) and the 
genotypes by SNP site and sample (c). The algorithm iterates over each molecular feature by 
collating the reads of all heterozygous SNPs within a molecular feature to develop the sum of 
reads on either haplotype for each sample (b). This haplotype allelic imbalance is converted to a 
genotype allelic imbalance by the genotype data from step (c), where the allelic read counts for 
the feature is summed across samples, for each SNP (i-v shown) in the testing window. The allelic 
read count distributions are then assessed via a beta-binomal test (e) to determine if the allelic 
fraction is sufficiently polarised between a variant allele on one haplotype and a reference allele 
on another haplotype. Figure (f) provides a graphic showing how allelic imbalance arises in each 
of the four states of peaks. In T+N, allelic imbalance – shown as the difference in read count 
between the haplotype associated with the variant allele (black circle) compared to the reference 
allele (white circle) – is present in both tumor and normal samples. In T-asQTL and N-asQTL, 
allelic imbalance is only present in the respective sample types. In TvsN-asQTL peaks, there is a 
significant change in the allelic imbalance between the tumor and normal states – either because 
one state is balanced but contains a high read count (as tumor is depicted as being in the 
example) or the imbalance in is in the opposite direction (not depicted). 
  
Figure 2: Descriptive summary of asQTL peaks and enrichment for key features 
A, a scatterplot of the read density per sample and the number of peaks per sample. Regression 
lines show the estimated slopes of peaks against enrichment for the transcription factors 
(HOXB13/FOXA1) against histone marks (H3K27ac, H3K4me3, H3K4me2). B, an upset plot 
between the 4 different state categories to show the number of overlapping peaks. C, the 
estimates from LD-score regression. Absent results are those which failed to converge. D, the 
number of GWAS loci within certain HMTF-state categories and loci within these categories which 
contain a fine-mapped SNP. 
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Figure 3: Enrichment of asQTL peaks for key genomic and epigenomic features 
The enrichments of the 20 different HMTF-state categories for various genetic and epigenetic 
markers. Colour denotes the z-score associated with the enrichment: green indicating a positive 
z-score and red indicating a negative z-score. Boxes labelled with a number - indicating the fold 
enrichment - denote that the category was enriched or depleted for the feature of interest with an 
empirical p-value less than 0.05. 
  
Figure 4: Genomic loci annotated with asQTL peaks 
This graphic represents the ChIP-seq reads for 6 epigenetic marks for the TMPRSS2 locus. Grey 
rectangles indicate ChIP-seq peaks indicated by the MACS2 algorithm, whilst coloured rectangles 
above indicate whether these peaks are imbalanced, and in what cell states. Pink vertical lines 
indicate the presence of GWAS fine-mapped SNPs. 
  
Figure 5: Graphical illustration of de-differentiation 
The graphic shows two potential circumstances where we can see allelic imbalance between the 
fetal prostate cells and embryonic stem cells. In T-asQTL peaks, this is due to the presence of 
activity in the haplotype containing the variant and no activity in the reference haplotype: in TvsN-
asQTL peaks, there is a change in allelic fraction in the background of constitutive binding. 
  
Figure 6: Enrichment of asQTL peaks for transcription factors and other histone features 
A, Enrichment of the 20 different HMTF-state categories of asQTL for 25 transcription factors and 
histone features from ROADMAP. B, Enrichment of h3k27ac peaks by STATE and proximity 
(defined by whether it lies greater or less than 1kb) to a TSS for 25 transcription factors and 
histone modifications. Fold enrichment in both is shown for HMTF-state combinations at an FDR 
of less than 1%. 
  
Supplementary Figures 
 
Supplementary Figure 1: PCA of all peaks and asQTL peaks only 
Supplementary Figure 2: Distribution of TvsN-asQTL peaks depending on the allelic fraction of 
their associated SNPs in normal and tumour tissue samples 
Supplementary Figure 3: Enrichment of HMTF-state asQTL peaks for 6 genetic and epigenetic 
features with a background of random genomic intervals instead of balanced peaks 
Supplementary Figure 4: Enrichment of HMTF-state asQTL peaks for ES-specific enrichment with 
a category of TvsN-asQTL and T-asQTL peaks combined 
Supplementary Figure 5: Enrichment of HMTF-state peaks for AR binding sites in tumour cells, 
normal prostate cells and in the LnCaP cell 
Supplementary Figure 6: Enrichment of HMTF-state peaks for AR binding sites in tumour cells, 
normal prostate cells and in the LnCaP cell against a background of random genomic intervals 
instead of balanced peaks 
  
Tables 
  
Table 1: Number of samples and peaks by HMTF-state combination 
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Table 2: Number of GWAS loci lying within different HMTF-state categories of asQTL peaks 
  
Supplementary Tables 
  
Supplementary Table 1: The individual samples used for the analysis, and what HMTF was 
used (the same sample may be assessed for multiple HMTFs) 
Supplementary Table 2: The correlation in allelic fraction for asQTL SNPs between different 
HMTFs 
Supplementary Table 3: The median absolute distance between asQTL peaks of one 
state/HMTF combination and the asQTL/any peak of another HMTF-state combination using 
standard enrichment procedure 
Supplementary Table 4: LDSC regression results for imbalanced and balanced peak HMTF-
state categories 
Supplementary Table 5: Full results of enrichment of HMTF-state peaks for 6 genetic and 
epigenetic features with a background of random genomic intervals instead of balanced peaks 
Supplementary Table 6: List of 16 fine-mapped SNPs who lie within the overlap intervals 
between PrCA GWAS loci and imbalanced HOXB13 and FOXA1 peaks, and not imbalanced 
h3k27ac, h3k4me3, h3k4me2 
Supplementary Table 7: Full results of enrichment of HMTF-state peaks for 6 genetic and 
epigenetic features with a background of balanced peaks, providing a conservative estimate of 
enrichment 
Supplementary Table 8: Enrichments of 25 epigenetic features from ROADMAP within our 
asQTL peaks with a conservative balanced peaks background 
Supplementary Table 9: Enrichments of 25 epigenetic features from ROADMAP within H3K27ac 
peaks stratified by distance to the TSS 
Supplementary Table 10: Change in correlation between pairs TFs co-located within asQTL 
peaks against randomly sampled balanced peaks, matched for read coverage 
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