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Abstract 16 

Active neurons impact cell types with which they are functionally connected. Both activity and functional 17 
connectivity are heterogeneous across the brain, but the nature of their relationship is not known. Here we 18 
employ brain-wide calcium imaging at cellular resolution in larval zebrafish to record spontaneous activity of 19 

>12,000 neurons in the forebrain. By classifying their activity and functional connectivity into three levels (high, 20 
medium, low), we find that highly active neurons have low functional connections and highly connected neurons 21 
are of low activity. Intriguingly, deploying the same analytical methods on functional magnetic resonance imaging 22 
(fMRI) data from the resting state human brain, we uncover a similar relationship between activity and functional 23 

connectivity, that is, regions of high activity are non-overlapping with those of high connectivity. These findings 24 
reveal a previously unknown and evolutionarily conserved brain organizational principle that have implications 25 

for understanding disease states and designing artificial neuronal networks.  26 

 27 
Introduction 28 

The structure of the brain spans dimensions that are many orders of magnitudes apart, from molecules, 29 

synapses, cells, to meso- and macro-scale brain systems. Such extraordinary architecture serves not only to 30 
process sensory information that guides motor behaviors, but also to generate and maintain internal states (e.g., 31 

emotional, motivational, and cognitive states) that can critically influence an organism’s response to environment. 32 

 Diverse approaches have been employed to understand the brain’s architecture at both anatomical and 33 
functional levels across multiple scales in invertebrate and vertebrate organisms (1-7). Viral tracing and 34 

MRI/fMRI studies provide meso- to macro-scale descriptions of connectivity in mammalian brains (8-10). A 35 

single-cell resolution connectome of C. elegans’ 302 neurons is constructed at the nanometer scale using 36 
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electron microscopy (EM) (1), but the application of EM to more complex brains requires enormous time and 37 

resources, making it best suited for small parts of brain tissues from one or few individuals (11-14). While 38 
structural connectome is foundational to functional connectome, it is the functional connectome that underlies 39 

behavioral and mental states. One effective way to gain insights into brain’s functional architecture is to record 40 

spontaneous neuronal activities brain-wide and analyze their activity and functional connectivity. Functional 41 
connectivity measures correlations between time series of individual neurophysiological events (15). Such 42 

connectivity may be direct, indirect through a subnetwork (16), or via wireless neuro-modulatory communications 43 

(17). Brain-wide functional connectivity studies have been mainly carried out in humans using blood-oxygen-44 
level-dependent (BOLD) fMRI (7) and MEG/EEG data (18). Recent technological advancements in neural activity 45 

reporters (19) and fast in vivo imaging technologies (20-22) have made it possible to record whole brain activity 46 

at cellular resolution in larval zebrafish (3, 23, 24), a vertebrate model organism with relatively small and 47 
transparent brains. An elegant body of work has uncovered brain-wide dynamics underlying sensorimotor 48 

behaviors (3, 25-30). Studies of spontaneous neuronal activities in zebrafish however have been few. 49 
Nevertheless, these studies, mostly focused on the larval optic tectum, have revealed that spontaneous activity 50 

represents “preferred” network states with propagating neuronal avalanches (31, 32). Spontaneous activity can 51 
be reorganized over development (33), and reflects a spatial structure independent of and activate-able by visual 52 
inputs (34).  53 

The dynamicity of activity and functional connectivity patterns in the resting state brain have long 54 

fascinated systems neuroscientists (35). The resting state brain activity refers to spontaneous activity without 55 
deliberately given stimuli. Such activity shows relatively consistent distributed patterns and can be used to 56 
characterize network dynamics without needing an explicit task to drive brain activity. Analyses of cross-57 
correlation between activity in different brain regions demonstrate that resting state networks (RSNs) (36) and 58 

default mode networks (DMNs) (37) reflect to a considerable extent the anatomical connectivity between the 59 
regions in a network. Such intrinsic activity dynamics is shown to be disrupted in neuropsychiatric disorders (38).    60 

In this study, we exploit the resting-state brain activity to ask a previously unaddressed question: how 61 

does the activity of a neuron (or neuronal population) predict the extent of its functional connectivity? Since 62 
neuronal activity is an essential drive that underlies functional connectivity, we hypothesize that neurons with 63 

high activity will likely have high functional connectivity. To test this hypothesis, we applied selective-plane 64 

illumination microscopy (SPIM) (20, 39) to image individual neuron’s spontaneous activity across the forebrain 65 
of transgenic larval zebrafish expressing nuclear targeted GCAMP6s. The vertebrate forebrain shares 66 

considerable homology in developmental ontogeny and gene expression domains, and is functionally involved 67 
in sensory, emotional and cognitive processing (40-43).  In 6-day old larval zebrafish, the forebrain is 68 

spontaneously active with strong local correlations and relatively reduced long-range correlations with the mid- 69 

and hindbrain areas (24),(27). It remains unclear how such spontaneous activity in the forebrain informs the 70 
underlying functional architecture. Employing image processing methods to detect individual neurons, we 71 

obtained time-dependent activity data for more than 12K neurons per individual forebrain. Through image 72 
registration to a brain atlas (44), we assigned anatomical labels to each neuron. We established methods to 73 
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identify optimal thresholding values, at which the functional connectivity was computed. By further classifying 74 

individual neurons into three activity and connectivity groups (high, medium, and low), we uncovered a surprising 75 
complementary distribution of highly active vs. highly connected neurons. Moreover, we extended such analytical 76 

methods to fMRI datasets from the resting state human brain and results like that of zebrafish were obtained. 77 

Together, these findings reveal a mutually exclusive relationship between high activity and high functional 78 
connectivity. Its plausible cause and implications are discussed in the Discussion section below.  79 

 80 

Results 81 
Light-sheet imaging and image processing generate large-scale single neuron activity data across the 82 

larval zebrafish forebrain 83 

Using a light-sheet imaging system custom constructed based on the iSPIM design (39), we recorded the 84 
spontaneous activity of neurons in the larval zebrafish forebrain under awake resting state.  For each individual, 85 

calcium imaging data were collected at ~ 2 volumes per second (26 Z planes with 4 µm interval per volume) for 86 

~15 min (n=9), and acquired images were processed via an image processing pipeline, resulting in a set of multi-87 
dimensional data (Figure S1A-B, Videos S1). The pan-neuronally expressed calcium indicator GCAMP6s fused 88 
to the histone H2B protein was localized to the cell nuclei. Using this feature, we segmented the brain into 89 

individual neurons (Figure S1C). Neuronal activity as reflected by DF/F was calculated using time-dependent 90 

baseline estimation procedure as previously described (45). 91 
 In any calcium imaging experiment, fluorescent signal changes as a measure of neuronal activation are 92 
often plagued with noises, either from the instrument or from baseline fluctuations. To differentiate genuine 93 
neuronal activity-related peaks from such background noises, we applied a method based on the Bayesian 94 

inference of two-dimensional distribution of adjacent DF/F values (31). This enabled us to obtain “ultra-cleaned” 95 

data at 99% confidence levels (Figure S1D). Together, these experiments generate large-scale single neuron 96 
activity data across a healthy group of individuals at the awake resting state (Figure S1E).  97 
 98 

Brain registration enables comparison of anatomically identifiable neuronal activity patterns across 99 
different individual larval zebrafish 100 

Since individuals differ in morphology, position orientation under the imaging microscope and GCAMP signal 101 

intensity, it is difficult to directly compare their brain activity data even though such data are acquired under 102 
identical conditions to the experimenter’s knowledge. In order to compare data across individuals, we registered 103 

the imaging stacks to the Z-brain atlas (44). The iSPIM imaging stacks, which are acquired at a 45-degree angle 104 

to the anteroposterior axis, however, cannot be directly registered to the Z-brain template, due to: 1) a significant 105 
mismatch between the image directions of our stacks and the Z-brain template, and 2) a significant difference 106 

between the volumes of interest (our highly sampled forebrain vs. the whole brain). To address this problem, we 107 

created an intermediate reference brain from the Z-brain template, by resampling the forebrain region in the 108 
direction and pixel sizes that are comparable to those of the iSPIM stacks (Figure S2A-B).  For each individual, 109 

a densely sampled Z-stack (with 1 µm interval) was collected and used for registration to the intermediate 110 
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reference brain using computational morphometry toolkit (CMTK)(http: //nitrc.org/projects/cmtk) (46). An 111 

example of pre- and post-registration images were shown in Figure S2C.  112 
 We assigned the 294 anatomical masks in the Z-brain template to the registered iSPIM stacks by 113 

reformatting the coordinates for each detected neuron according to the registered frame. This process enabled 114 

us to identify anatomical labels for each neuron and the brain regions covered by our imaging volumes (Figure 115 
S3). Taken together, these analyses generate anatomically identifiable neuronal activity data that can be 116 

compared across individuals.   117 

 118 
Visualization of neuronal activity landscape at single-cell resolution in the larval zebrafish forebrain 119 

As a first step toward data analysis, we visualized the neuronal activity landscape (Fig. 1A). Each neuron’s level 120 

of activity was calculated based on the variances of DF/F across time. The k-means clustering, which is a well-121 

known unsupervised learning algorithm (47), was used to group neurons based on their activity levels. To 122 

distinguish neurons with the highest or lowest levels of activity, we set the number of clusters to 3. Hence, the 123 
activity levels of 1, 2, and 3 denoted neuronal groups with high, medium, and low activity. The activity level before 124 
and after classification was shown for an example subject (Fig. 1B). More than 80% of neurons were classified 125 
as Activity Level 3 (AL-3), whereas only ~2% of neurons belonged to Activity Level 1 (AL-1) (Fig. 1C, 1E). 126 

Visualization of their anatomical distribution showed that AL-1 neurons were mostly located in the lateral region 127 
of the forebrain, whereas AL-3 neurons were distributed in all brain areas (Fig. 1D). Similar observations were 128 
made across all subjects, as reflected by the population statistics (Fig. 1F) and the overlay view of AL-1 neurons 129 

from all subjects (Fig. 1G). Analysis of detailed anatomical distributions for AL-1 neurons showed that they are 130 
mostly located in the telencephalic pallium and diencephalic habenula (Fig. 1H). Together, these findings 131 
uncover highly active neurons that are located laterally in the larval zebrafish forebrain.   132 
 133 

Classification of neurons based on their levels of functional connections in the larval zebrafish forebrain 134 

The brain as a complex network involves intricate communications between individual neurons. An 135 
understanding of their patterns of communications will likely inform underlying network architectures. We 136 

therefore classified neurons based on their levels of functional connections. Here the degree or number of 137 

connections between a neuron and the rest of neurons in the dataset is used as a measure of functional 138 
connectivity, which can be approximated using various statistical measures. One common and effective measure 139 

for estimation of the connectivity matrix is the Pearson correlation coefficient value. We calculated the degree of 140 

connections for each neuron by applying optimal thresholding to the connectivity matrixes followed by 141 
binarization. The optimal thresholding value for each subject was determined using the principle of small world 142 

networks that follow a power law distribution (48, 49) (Fig. S4). Such power law distribution was not observable 143 
in randomly shuffled data (Fig. S5), indicating its biological relevance. Moreover, we showed that known 144 

connections between olfactory epithelial and olfactory bulb neurons were uncovered (Fig. S6), thereby validating 145 

our method of detecting functional connections.    146 
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We next used the k-means algorithm to cluster neurons based on their degree of functional connections 147 

(Fig. 2A), with the number of clusters also set to 3. The connectivity level before and after k-means classification 148 
was shown for an example subject (Fig. 2B). ~8% of neurons belonged to Connectivity Level 1 (CL-1, the high 149 

connectivity group) whereas ~70% of neurons were classified as Connectivity Level 3 (CL-3, low 150 

connectivity)(Fig. 2C). Visualization of their anatomical distributions showed that the CL-1 neurons were mostly 151 
located in the medial area of the forebrain (Fig. 2C). Two example CL-1 neurons had 1814 and 1506 functional 152 

connections respectively, in contrast to two example CL-3 neurons with 10 and 19 connections respectively (Fig. 153 

2E). Consistent with the example subject, population statistics showed that the CL-1 neurons represent ~8% of 154 
total recorded forebrain neurons (Fig. 2F) and they are located in the medial region of the forebrain (Fig. 2G). 155 

Analysis of detailed anatomical distributions for CL-1 neurons uncovered that Telencephalic Olig2 Cluster, 156 

Telencephalic S1181t Cluster, and Telencephalic subpallial Otpb strip are among the neuronal groups with high 157 
degrees of functional connections in the zebrafish forebrain (Fig. 2H). Together, these findings uncover neurons 158 

with high degrees of functional connectivity that are located medially/centrally in the larval zebrafish forebrain.  159 
 160 

Complementary domains of high neuronal activity and high functional connectivity exists in the larval 161 
zebrafish forebrain  162 
It was intriguing to note that highly active neurons occupied regions that are complementary to those occupied 163 
by highly connected neurons in the larval zebrafish forebrain (Fig. 3A). Plotting the activity and functional 164 

connectivity values for all recorded neurons in one example subject showed that highly active neurons did not 165 
overlap with highly connective neurons (Fig. 3B). To visualize the distribution and assess statistical significance 166 
on a population scale, we used a bootstrapping method (50) to construct a graph showing the percentage of 167 
neurons with different levels of activity and connectivity at 2.5% and 95% confidence intervals (i.e., AL-1&CL-1, 168 

AL-1&CL-2, AL-1&CL-3, AL-2&CL-1, AL-2&CL-2, AL-2&CL-3, AL-3&CL-1, AL-3&CL-2, AL-3&CL-3). Specifically, 169 
9 subjects were randomly sampled with replacement and this was repeated at least 25 times. A non-overlap set 170 
of the AL-1 and CL-1 neurons was detected (Fig. 3C), suggesting a mutually exclusive relationship between 171 

highly active and highly connected neurons in the larval zebrafish forebrain. 172 
 173 

Regions of high neuronal activity versus high functional connectivity are largely non-overlapping in the 174 

resting state human brain 175 
To determine whether such relationship between activity and connectivity is an evolutionarily conserved 176 

phenomenon, we analyzed the resting state human brain functional magnetic resonance imaging (fMRI) data 177 
from Centre for Biomedical Research Excellence (COBRE) dataset (51) 178 

(http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html)(Fig. 4A). The COBRE data set includes the resting 179 

state fMRI data from 74 healthy individuals that were used in this study. The fMRI dataset for each subject 180 
includes blood-oxygenation level dependent (BOLD) volumes of 5 minutes. In contrast to the larval zebrafish 181 

data in which each ROI is a single neuron, the human fMRI data described activity and connectivity on the scale 182 
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of brain regions (i.e., each ROI is a brain region). Brodmann areas defined by the Talairach Daemon (TD) system 183 

(52) were assigned to all subjects (a total of 105 ROIs). Data pre-processing workflow was shown in Fig. S7. 184 
Similar to our calcium trace data analysis, the variance of BOLD signals across time was calculated as 185 

the activity for each ROI, followed by applying the k-means algorithm to classify ROIs into three levels of activity 186 

(Fig. 4B, and Fig. S8A-B). Our analysis showed that the anterior division of inferior temporal gyrus displayed 187 
high activity that was observed in more than 45% of the subjects (Fig. S8C-D), whereas the hippocampus, 188 

pallidum, and putamen were less active in the resting state (Fig. S8E, and Table S1).   189 

We next used the Pearson correlation measure to derive a metric of functional connectivity between ROIs 190 
followed by k-means classification into three levels of connections (Fig. 4C, and Fig. S9A-B). Similar to the 191 

analysis of functional connectivity in the zebrafish brain, we applied the thresholding value that provided the best 192 

fit to the power-law curve as the optimal threshold value for the connectivity matrix. Our analysis showed that 193 
the precentral gyrus, right postcentral gyrus and anterior division of Cingulate Gyrus were among the regions 194 

with the high level of connectivity in the human brain, whereas the Pallidum right frontal medial cortex, subcallosal 195 
cortex, and amygdala were much less connected in almost all subjects in the human resting state dataset (Fig. 196 

S9C-E, Table S1).  197 
Similar to the observations made in the larval zebrafish forebrain, highly active regions and highly 198 

functionally connected regions in the resting state human brain appear complementary and non-overlapping 199 
(Fig. 4D). Plotting the activity and functional connectivity values for all recorded brain regions in one example 200 

subject (Fig. 4E) and the percentage of ROIs in each activity and connectivity category (Fig. 4F) further reinforced 201 
this notion. Together, regions with high functional connectivity appear mutually exclusive with those of high 202 
activity in the resting state human brain. 203 
 204 

Discussion  205 
One major goal of neuroscience is to understand fundamental organizational principles of the brain. While 206 
functional imaging and analysis of brain networks in larval zebrafish is an emerging field, numerous studies of 207 

resting state human brain networks have examined brain activity or connectivity patterns, suggesting the 208 
prevalence of activity-based or connectivity-based organizations (35, 53).  209 

Despite these advances, the relationship between activity and functional connectivity in the brain has not 210 

been previously examined. This is an interesting and important question both for understanding the brain 211 
architectural principles and for designing artificial neuronal networks. In this study, we have examined the 212 

relationship between activity and functional connectivity in both the larval zebrafish forebrain where each ROI is 213 
an individual neuron, and in the resting state human brain where each ROI is a brain region composed of millions 214 

of neurons. In larval zebrafish, activity is measured through quantifying variances of calcium signals over time: 215 

more frequent events of fluorescent changes indicate higher activity. In the human brain, activity is measured 216 
through the BOLD signal, i.e., alterations in deoxyhemoglobin driven by localized changes in brain blood flow 217 

and blood oxygenation, which are coupled to underlying neuronal activity. More frequent events of BOLD signals 218 
indicate higher activity. Functional connectivity in both the larval zebrafish and human brains is measured using 219 
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Pearson correlation; the resulting correlation matrices are further denoised with optimal threshold values, which 220 

are determined using the concept of “small-world” network with power law distribution. Through these analyses, 221 
we have uncovered a mutually exclusive relationship between high activity and high functional connectivity at 222 

individual ROI levels across all zebrafish and human subjects. This is remarkable, given the 450 million years of 223 

evolutionary distance and the drastic brain size differences (100K vs. 100 billion neurons) between the two 224 
species.  225 

We propose two possible models to explain why such exclusive relationship between high activity and 226 

high functional connectivity is at work in both zebrafish and human brains. The first model pertains to a physical 227 
constraint. Given that structural and functional connectivity show considerable correlation (16), it is possible that 228 

neurons with high levels of connections are physically incapable of achieving high activity. The second model is 229 

based on a metabolic constraint. ROIs with high activity are at a high metabolic cost (54), thereby accumulating 230 
more oxidative damage and prone to degeneration. To best preserve network integrity, it would therefore be 231 

desirable to delegate the tasks that require high activity to the ROIs with low degree of functional connections, 232 
while maintaining ROIs with high connections at low activity.  Future experiments are necessary to test these 233 

models. With the accessibility of the zebrafish brain to molecular cellular and systems level dissections, such 234 
validations are feasible in zebrafish. 235 
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 372 
 373 
Figure 1. Visualization of neuronal activity landscape at cellular resolution in the larval zebrafish 374 
forebrain. A, Overview of the classification of individual ROIs (neurons) based on their level of activity. The 375 
variance of df/f of each ROI was used as a measure of its activity. The k-means algorithm was used to classify 376 
each ROI into 3 levels. B, Sorted ROIs (left) vs. clustered ROIs (right) based on their activity level for an 377 
example subject. C, Pie chart showing the percentage of ROIs in three activity level categories for an example 378 
subject. Less than 2% of ROIs are highly active (level I) but more than 80% are largely inactive. D, Dorsal and 379 
lateral views of the three activity categories of ROIs’ distributions in the example subject's forebrain. E, Raster 380 
plot of ROIs with different levels of activity in an example subject: (left) Activity Level 1; (right) Activity Level 3. 381 
F, Percent of total recorded neurons in each activity level category across 9 subjects. G, overlay view of highly 382 
active neurons (Level 1) in all 9 subjects shows that they are located in the lateral part of the forebrain. H, 383 
Anatomical distribution of Activity Level 1 neurons sorted based on the percentage of total recorded neurons in 384 
each anatomical mask.  385 
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 386 
Figure 2. Classification of neurons based on their degree of functional connections. A, Overview of the 387 
classification of individual ROIs (neurons) based on their level of functional connectivity (degree). The Pearson 388 
correlation coefficient was used to calculate the correlation matrix, which was then thresholded using the optimal 389 
threshold value. The k-means clustering algorithm was used to cluster ROIs based on their degree. B, Sorted 390 
ROIs (left) vs. clustered ROIs (right) based on their functional connectivity level for an example subject. C, Pie 391 
chart showing the percentage of ROIs in three connectivity level categories for an example subject. The ROIs 392 
with the highest level of functional connectivity is the smallest group (around than 8%). D, Dorsal and lateral 393 
views of the three connectivity categories of ROIs’ distributions in the example subject's forebrain. E, The 394 
connectivity of ROIs with the connectivity level 1 and 3 in the example subject brain. F, Percent of total recorded 395 
neurons in each functional connectivity level across 9 subjects. G, overlay view of highly functional connected 396 
ROIs (Level 1) in all 9 subjects shows that they are located in the medial part of the forebrain. H, Anatomical 397 
distribution of connectivity Level 1 neurons sorted based on the percentage of total recorded neurons in each 398 
anatomical mask.  399 
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 400 

 401 
 402 
Figure 3. Highly active and highly connected neuronal populations occupy complementary domains in 403 
the larval zebrafish forebrain. A, Overlay of highly active (red) and highly functional connected ROIs (individual 404 
neurons) in the larval zebrafish forebrain across 9 subjects. The highly active cells are in the lateral area whereas 405 
the cells with a high level of functional connectivity are located in the medial area of. B, connectivity levels (Y-406 
axis) of all neurons sorted based on their activity (X-axis) in an example subject. Red and blue boxes denote 407 
neurons of high activity and high functional connectivity respectively. The dotted circle denotes where highly 408 
active and highly connected neurons are expected.  C, the population distribution curve of all neurons with 409 
different levels of activity and functional connectivity. Note that neurons that have high activity and high 410 
connectivity are non-existent.  411 
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 414 

Figure 4.  Largely non-overlapping distribution of highly active and highly connected regions in the 415 
resting state human brain. A, Overview of the classification of individual ROIs (brain regions, n=105) based on 416 
their level of activity and functional connectivity (degree). Variations of the brain region activity across time was 417 
used as a measure of activity and the Pearson correlation of brain regions' activity was used a measure of 418 
functional connectivity (degree). The k-means clustering algorithm was employed to cluster the brain regions 419 
into three levels based on each measure. B, Percent of total ROIs in each activity level category. C, Percent of 420 
total ROIs in each functional connectivity level category. D, Highly active (red) and highly connected regions 421 
(green) across all subjects (n=74). E, connectivity levels (Y-axis) of all brain regions sorted based on their activity 422 
(X-axis) in an example subject. Red and blue boxes denote regions of high activity and high functional 423 
connectivity respectively. The dotted circle denotes where highly active and highly connected brain regions are 424 
expected to locate.  F, the population distribution curve of brain regions with different levels of activity and 425 
functional connectivity. Note that brain regions that have high activity and high connectivity are non-existent.  426 
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Supplementary Info 429 

 430 
METHODS 431 

Zebrafish strain maintenance and larval sample preparation 432 

The transgenic line Tg[HuC-H2B-GCaMP6s] with nacre or casper background was used for breeding. Embryos 433 
were kept in blue egg water (2.4 g of CaSO4, 4g of Instant Ocean Salts, 600μl of 1% Methylene blue in 20 liters 434 

of milliQ water) and incubated at 280C. On 6 days post fertilization (dpf), healthy larvae with high GCaMP6s 435 

expression were selected for imaging. Fish samples are held in custom-designed polydimethylsiloxane (PDMS) 436 
sample holders with each holder carrying up to 5 larvae. Each larva was half-embedded in a slot on the sample 437 

holder, paralyzed with 1mg/mL mivacurium chloride and covered with 2% agarose gel/E3 medium solution. After 438 

loading the whole group of larvae to be imaged, the sample holders were immersed in E3 medium for 1 hour to 439 
wash off traces of mivacurium chloride. All animal experiments were approved by the Institutional Animal Care 440 

and Use Committee (IACUC) at the University of California, San Francisco, USA. 441 
 442 

In vivo calcium imaging using iSPIM 443 
An inverted SPIM (iSPIM) that is similar to a previously reported design (39) was used for imaging. The 444 
microscope framework was adapted from a di-SPIM (Applied Scientific Imaging, Inc.) (55). The excitation laser 445 
(Coherent OBIS LS 488 nm) was fiber-coupled into the microscope, collimated, then focused by a 0.3 NA water-446 

dipping objective (Nikon). A virtual light-sheet was created by deflecting the scanning mirror, illuminating a layer 447 

of specimen with ~7 µm thickness. Fluorescence from the illuminated layer was collected in an orthogonal 448 

direction by a 20x 1.0 NA water-dipping objective (Olympus XLUMPLFLN-W) and the final image is captured by 449 
a scientific CMOS (sCMOS) camera (Hamamatsu Orca Flash 4.0, C11440). Due to the strong scattering of the 450 
blue-green light in deep tissues, we confined the illumination within dorsal forebrain of the larvae. The volume of 451 

interest was approximately 300 µm x 250 µm x 100µm in x,y,z directions, respectively. This volume covered the 452 

entire dorsal telencephalon and habenula regions. To resolve the dynamics of GCaMP6s, image stacks were 453 
acquired at 2Hz, which allowed us to resolve frequency components up to 1Hz based on Nyquist sampling 454 

theorem. Each 100µm stack consisted of 26 slices with 4 µm between two adjacent slices. The resting state of 455 

the selected volume in each larva was imaged for 15 minutes; in addition to this time lapse recording, a Z-stack 456 

with 1 µm step (101 slices) was acquired across the same volume as a reference. The raw data were submitted 457 

to the data preprocessing pipeline for cleaning and feature extraction. 458 

 459 
 460 

Pre-processing of calcium imaging data 461 

Drift correction and ROI (neuron) extraction 462 

Raw images were organized as hyper stacks in the order of x-y-z-t. Each hyper stack was split into 26T-463 
stacks at different z positions and drift corrected with the StackReg plugin(56). For each drift-corrected T-stack, 464 

neuronal nuclei were segmented using the Laplacian of gaussian blob detection algorithm blob_log in the Python 465 
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library scikit image (57). Since neuronal nuclei (~4µm in diameter) can be imaged in two or more adjacent planes, 466 

a redundancy detection algorithm was developed to find lateral duplications in cell extraction: if a nucleus is 467 
detected at the same (x; y) position in the kth and the (k + 1)th planes, this detection would be considered as 468 

redundant and the Z-position was considered as an average between zk and zk+1. In each extracted neuronal 469 

nuclei, its raw fluorescence signals were calculated through the entire T-stack, and the relative signal intensity 470 
of calcium transients, ΔF/F, was calculated using the method as previously described (45). Two additional 471 

cleaning steps were applied to remove potential artifacts that were falsely recognized as neuronal nuclei by the 472 

blob detection algorithm: first, since GCaMP6s has background signals in the absence of action potentials, blobs 473 
of real neurons should have a high fluorescence baseline, and blobs with very low baseline (comparable to dark 474 

areas in the image) are excluded; second, since in reality the value of ΔF/F should fall within a reasonable range, 475 

blobs with extraordinarily high ΔF/F values (exceeding a threshold during recording) were excluded.  476 
Since activity levels vary among neurons, over the 15-min imaging session, some neurons may exhibit 477 

high calcium signal peaks while others remain “silent”. Since the latter are not likely to contribute to downstream 478 
analyses, it would be beneficial to exclude them from the very beginning. This requires us to: 1). find a reliable 479 
method to identify peaks from background in a noisy timeseries; 2). find a measure for the activity level of each 480 
neuron, i.e., whether and how much does it activate during the imaging session; 3). Set a well-defined criterion 481 

to accept or reject a neuron based on its two characteristics above. The method we used to identify peaks and 482 
baselines from each ΔF/F time trace was based on the Bayesian inference of two-dimensional distribution of 483 

adjacent ΔF/F values (31). For each neuron i, its baseline of ΔF/F, µi, was calculated by averaging all the (ΔF/F)I 484 

time points that are identified as background, 485 

 486 
where Si,k refers to the kth time point of (ΔF/F)i. 487 

 488 
  489 
Image registration 490 

 Since individuals differ in morphology, placement, and brightness, it is difficult to directly compare their 491 

images even though the latter are acquired under the same condition. In order to compare imaging results from 492 
different individuals, the images should be anatomically mapped to a common template image, i.e., a "reference". 493 

A whole-brain template, Z-brain, has been provided by Randlett et al (44) as a standard reference brain atlas for 494 

anatomical and functional studies of larval zebrafish brain. Although the fish we experimented on were at the 495 
same stage as that in the Z-brain template, the iSPIM stacks acquired in their dorsal forebrain could not be 496 

directly registered to the reference due to: 1) a significant mismatch between two imaging directions and 2) a 497 

significant difference between the volumes of interests. Since the dorsal forebrain region that we imaged only 498 
accounts for a sub-volume of the entire brain, a direct registration of the former to the latter is prone to error. To 499 

solve this problem, we created an intermediate reference brain from the Z-brain template by resampling the 500 

dorsal-forebrain region in the direction and pixel sizes that are comparable to those of the iSPIM stacks. For 501 
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each fish, its densely sampled Z-stack was registered to the intermediate reference brain using computational 502 

morphometry toolkit (CMTK) (http://nitrc.org/projects/cmtk). After registering the iSPIM stacks into the 503 
intermediate template, the coordinates of the extracted neurons in original T-stacks need to be reformatted 504 

accordingly into the registered frame. This step was carried out using the registration output and the function 505 

stream x form in CMTK. By comparing the reformatted coordinates with the 294 anatomical masks in the Z-brain 506 
template, we were able to identify the anatomical label of each neuron and the brain regions covered by our 507 

imaging volume. 508 

 509 
Preprocessing of the resting state human brain fMRI data 510 

We used healthy control subjects (n=74) from the COBRE16 resting-state fMRI datasets available at 511 

http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html.  The fMRI dataset for each subject includes blood-512 
oxygenation level-dependent (BOLD) volumes of 5 minutes (TR = 2 s, TE = 29 ms, FA = 75°, 32 slices, voxel 513 

size = 3x3x4 mm3, matrix size = 64x64, FOV = 255 x255 mm2). The pre-processing steps included realignment, 514 
co-registering, and normalization. We used established preprocessing and analysis pipelines (58) and CONN 515 

software package (https://www.nitrc.org/projects/conn). 516 
Re-alignment 517 
In brief, the first-level covariate containing the 6 rigid-body parameters was created based on the MRI 518 

data to estimate the subject motion.  For each subject, this variable was used to perform regression on the fMRI 519 

data to correct for motion-related effects.  520 
To reduce the physiological noise source, a Component-Based Noise Correction Method (CompCor) was 521 

used (59).  522 
Co-registering 523 

The functional volumes are co-registered with the ROIs and structural volumes. All the Brodmann areas 524 
(ROIs) defined through the Talairach Daemon (TD) system (52) were assigned to all subjects using segmentation 525 
of structural image; grey matter, white matter and cerebrospinal fluid (CSF) masks were generated. Anatomical 526 

volumes were co-registered to the functional and ROI volumes for each subject and the volumes were 527 
transformed to the MNI-space.  528 

Calculation and normalization of fMRI measures 529 

Following re-alignment and co-registering, the Principal Component Analysis (PCA) algorithm was used 530 
to extract BOLD signal components for each ROI. The fMRI measures were calculated using MATLAB-based 531 

software packages, SPM12 (http://www.fil.ion.ucl.ac.uk/spm/). All of the computed measures are normalized to 532 
an N (0,1) Gaussian distribution for each subject. 533 

 534 

Data analysis 535 
 Analysis and classification of ROI activity levels 536 
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For a given ROI (i.e., individual neurons in larval zebrafish or brain regions in the case of human fMRI data) 𝑖,  537 

if 𝑠! 	is denoted as its variance of DF/F (zebrafish) or BOLD (human) signals over time, the activity value 𝑎𝑐!, 538 

which is the mean of squared deviations from the mean of  𝑠!, was calculated as follows: 539 

 𝑎𝑐! = 𝑚𝑒𝑎𝑛	((𝑠! −𝑚𝑒𝑎𝑛(𝑠!))")  

 

 

After obtaining each ROI activity level in the given time series, we used the K-means algorithm (47) to 540 

classify them into Activity Levels 1-3. The k-means clustering algorithm minimizes the within-cluster squared 541 
Euclidean distances. Here a one-dimensional activity population was partitioned into 3 sets (levels). The within-542 

class cells in each level have similar activity.  543 

 544 
 Analysis and classification of ROI functional connectivity levels 545 

We used Pearson correlation to measure functional connectivity between ROIs. Since Pearson correlation 546 
assigns a value to all ROI pairs, it is necessary to apply thresholding to eliminate potentially spurious 547 

connections. There is no standard method to calculate the optimal threshold value 𝜏#$%!&'( and different values 548 

of 𝜏 are used to create the adjacency matrices. Arbitrarily chosen thresholding values are often applied to raw 549 
matrixes (6). As different cutoff values can directly influence network properties and bias analysis results, we 550 
developed algorithms to calculate the optimal thresholding values and generate the connectivity matrix. This 551 
matrix was then used to calculate the functional connections (i.e., degrees) of each ROI, followed by K-means 552 

classification into three connectivity levels. The steps of calculating functional connections for each ROI are: 553 

1) Let 𝜌 = 	𝜌!)  be the correlation matrix, where 𝜌!)   is the Pearson correlation of ROIs 𝑖  and 𝑗  and can be 554 

calculated as follows:                  555 

𝜌!" =
𝑐𝑜𝑣(𝑖, 𝑗)
𝛿!𝛿"

, 556 

2) Setting the threshold values: 557 

𝜏 = 	 (𝜏*) 558 

𝜏* ∈ 	 (0,1) 559 

3) Thresholding the connectivity matrix using 𝜏* ∈ 	𝜏  or each 𝜌!) 560 

𝜌𝜏𝑘
!"
= ,

𝜌!" 	𝑖𝑓	𝜌!" >	𝜏𝑘
0	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

 561 

where 𝜌+! =	 (𝜌+!
!)
) is the thresholded correlation matrix. 562 

4) Binarizing 	𝜌+!         563 

𝜌𝜏𝑘,𝑏
!"
= ,

1		𝑖𝑓	𝜌!" >	𝜏𝑘
0	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

 564 

5) Calculating the degrees for each 𝑅𝑂𝐼$, 𝑑𝑒𝑔𝑟𝑒𝑒$ 	= ∑ 𝑙$,%% 	, where 𝑙$,% 	is the link between 𝑟𝑜𝑖$ and 𝑟𝑜𝑖%. 565 
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6) Calculating the degree distribution of the network; The fraction of ROIs with the degree k is defined as follows:   566 

𝑃𝜏𝑘(𝑘) =
𝑛𝑘
𝑛
,	568 

where n, is the number of the ROIs that have degree k. 567 

7) Calculating the fitting value of the degree distribution with the power-law distribution. 𝑟"  (coefficient of 569 

determination) was used to evaluate the closeness of data at each threshold value to the power-law curve.  570 

8) Derive the optimal threshold value: At the optimal threshold value, the  𝑟" is highest, which indicates the best 571 

fit of the data to the power-law curve.  572 

𝜏!"#$%&'
"( ≈ 𝑎𝑟𝑔	𝑚𝑎𝑥)		(𝑟+) 573 

 574 
The detailed steps of calculating the optimal threshold value of the connectivity matrix were provided in 575 

the Fig. S4. The average 𝜏#$%!&'(
$- 	value of all zebrafish subjects in our data ranged from 0.4 to 0.6. We applied 576 

this algorithm to the human fMRI data and obtained 0.7 for 𝜏#$%!&'(
$- . Using these values, we binarized our data: 577 

correlations with a value less than 𝜏#$%!&'(
$-  were set to zero, whereas those with a value greater than 𝜏#$%!&'(

$-  578 

were set to one.  579 

 To further test whether the observed power-law structure of the functional brain is relevant, we shuffled 580 

the data (Fig. S5) to generate random networks with the same numbers of nodes and edges as the original 581 
networks and applied similar thresholding and analysis of degree distributions. The random network did not 582 

follow a power law structure at any thresholding values tested.  Together, these analyses enable us to establish 583 
optimal thresholding values that uncover biologically relevant networks. Using such matrixes, we were able to 584 
detect known connections between the olfactory epithelia and the olfactory bulb (Fig. S6).  585 

 After obtaining each ROI’s numbers of functional connections in the given time series, we used the K-586 
means algorithm as described above to classify them into Connectivity Levels 1-3. 587 
 588 

 Analysis of the relationship between activity and functional connectivity 589 
We plotted the activity and connectivity for each ROI in each individual. The input data are: zebrafish calcium 590 

imaging data are composed of >12k individual neuronal activity and connectivity per subject (n=9 subjects); 591 

human resting-state fMRI data are composed of 136 brain regions’ activity and connectivity per subject (n=74 592 
subjects). 593 

To analyze the population frequency of each class of ROIs (i.e., AL-1&CL-1, AL-1&CL-2, AL-1&CL-3, AL-594 

2&CL-1, AL-2&CL-2, AL-2&CL-3, AL-3&CL-1, AL-3&CL-2, AL-3&CL-3) and its statistical significance, we used 595 
the following bootstrapping method:    596 

1. Select the number of the bootstrapping iteration (here, 25 iterations were used). 597 

2. Repeat the steps “3" to “7" 25 times for the input data. 598 
3. Select a sample set with replacement from the set of all subjects. 599 

4. Calculate activity (variances) and connectivity (degrees) data for each ROI from all sampled subjects.  600 
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5. Calculate activity (variances) and connectivity (degrees) data for each ROI from all sampled subjects.  601 

6. Calculate the average ROI population size for each activity and connectivity level. 602 
7. Calculate the mean, lower (2.5 percentile), and upper (97.5 percentile) point-wise confidence bands for 603 

the populations that are calculated in the step “6”. 604 

 605 
Data visualization  606 

Different python libraries were used to visualize the results. The plotly libraries (https://plotly.com/python/) were 607 

used to visualize the cells' anatomical and spatial distributions in the calcium imaging data. We used the FSL 608 
(https://fsl.fmrib.ox.ac.uk/fsl) to visualize the brain regions in the fMRI data. 609 

 610 

Statistical analysis 611 
Sample sizes and statistics are reported in the figure legends and text for each measurement. To determine the 612 

relationship between activity and functional connectivity at individual ROI levels (Fig. 3c and 4e), we used 613 
bootstrap tests (with 7 iterations) to test whether the negative correlation between neuronal activity and functional 614 

connectivity is consistent across subjects. For each subject, the activity (variances) and connectivity (degrees) 615 
for each ROI were calculated. Individual neurons in the larval zebrafish calcium imaging data and individual brain 616 
regions in the human fMRI data were considered as ROIs. The ROIs were sorted based on their activity for each 617 
subject (X-axis). The connectivity of sorted ROIs for each subject (Y-axis) was then graphed. The Locally 618 

Weighted Regression algorithm (60) was applied for each subject's data to approximate the polynomial curve. 619 
Finally, the bootstrapping method (50) was used to evaluate the inverse relationship between neuronal activity 620 
and functional connectivity. Here random sampling with replacement was applied for selecting the curves fitting 621 
of individual subjects to evaluate the model. 622 
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Supplementary Info 737 

 738 
METHODS 739 

Zebrafish strain maintenance and larval sample preparation 740 

The transgenic line Tg[HuC-H2B-GCaMP6s] with nacre or casper background was used for breeding. Embryos 741 
were kept in blue egg water (2.4 g of CaSO4, 4g of Instant Ocean Salts, 600μl of 1% Methylene blue in 20 liters 742 

of milliQ water) and incubated at 280C. On 6 days post fertilization (dpf), healthy larvae with high GCaMP6s 743 

expression were selected for imaging. Fish samples are held in custom-designed polydimethylsiloxane (PDMS) 744 
sample holders with each holder carrying up to 5 larvae. Each larva was half-embedded in a slot on the sample 745 

holder, paralyzed with 1mg/mL mivacurium chloride and covered with 2% agarose gel/E3 medium solution. After 746 

loading the whole group of larvae to be imaged, the sample holders were immersed in E3 medium for 1 hour to 747 
wash off traces of mivacurium chloride. All animal experiments were approved by the Institutional Animal Care 748 

and Use Committee (IACUC) at the University of California, San Francisco, USA. 749 
 750 

In vivo calcium imaging using iSPIM 751 
An inverted SPIM (iSPIM) that is similar to a previously reported design (1) was used for imaging. The 752 
microscope framework was adapted from a di-SPIM (Applied Scientific Imaging, Inc.) (2). The excitation laser 753 
(Coherent OBIS LS 488 nm) was fiber-coupled into the microscope, collimated, then focused by a 0.3 NA water-754 

dipping objective (Nikon). A virtual light-sheet was created by deflecting the scanning mirror, illuminating a layer 755 

of specimen with ~7 µm thickness. Fluorescence from the illuminated layer was collected in an orthogonal 756 

direction by a 20x 1.0 NA water-dipping objective (Olympus XLUMPLFLN-W) and the final image is captured by 757 
a scientific CMOS (sCMOS) camera (Hamamatsu Orca Flash 4.0, C11440). Due to the strong scattering of the 758 
blue-green light in deep tissues, we confined the illumination within dorsal forebrain of the larvae. The volume of 759 

interest was approximately 300 µm x 250 µm x 100µm in x,y,z directions, respectively. This volume covered the 760 

entire dorsal telencephalon and habenula regions. To resolve the dynamics of GCaMP6s, image stacks were 761 
acquired at 2Hz, which allowed us to resolve frequency components up to 1Hz based on Nyquist sampling 762 

theorem. Each 100µm stack consisted of 26 slices with 4 µm between two adjacent slices. The resting state of 763 

the selected volume in each larva was imaged for 15 minutes; in addition to this time lapse recording, a Z-stack 764 

with 1 µm step (101 slices) was acquired across the same volume as a reference. The raw data were submitted 765 

to the data preprocessing pipeline for cleaning and feature extraction. 766 

 767 
 768 

Pre-processing of calcium imaging data 769 

Drift correction and ROI (neuron) extraction 770 

Raw images were organized as hyper stacks in the order of x-y-z-t. Each hyper stack was split into 26T-771 
stacks at different z positions and drift corrected with the StackReg plugin(3). For each drift-corrected T-stack, 772 

neuronal nuclei were segmented using the Laplacian of gaussian blob detection algorithm blob_log in the Python 773 
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library scikit image (4). Since neuronal nuclei (~4µm in diameter) can be imaged in two or more adjacent planes, 774 

a redundancy detection algorithm was developed to find lateral duplications in cell extraction: if a nucleus is 775 
detected at the same (x; y) position in the kth and the (k + 1)th planes, this detection would be considered as 776 

redundant and the Z-position was considered as an average between zk and zk+1. In each extracted neuronal 777 

nuclei, its raw fluorescence signals were calculated through the entire T-stack, and the relative signal intensity 778 
of calcium transients, ΔF/F, was calculated using the method as previously described (5). Two additional 779 

cleaning steps were applied to remove potential artifacts that were falsely recognized as neuronal nuclei by the 780 

blob detection algorithm: first, since GCaMP6s has background signals in the absence of action potentials, blobs 781 
of real neurons should have a high fluorescence baseline, and blobs with very low baseline (comparable to dark 782 

areas in the image) are excluded; second, since in reality the value of ΔF/F should fall within a reasonable range, 783 

blobs with extraordinarily high ΔF/F values (exceeding a threshold during recording) were excluded.  784 
Since activity levels vary among neurons, over the 15-min imaging session, some neurons may exhibit 785 

high calcium signal peaks while others remain “silent”. Since the latter are not likely to contribute to downstream 786 
analyses, it would be beneficial to exclude them from the very beginning. This requires us to: 1). find a reliable 787 
method to identify peaks from background in a noisy timeseries; 2). find a measure for the activity level of each 788 
neuron, i.e., whether and how much does it activate during the imaging session; 3). Set a well-defined criterion 789 

to accept or reject a neuron based on its two characteristics above. The method we used to identify peaks and 790 
baselines from each ΔF/F time trace was based on the Bayesian inference of two-dimensional distribution of 791 

adjacent ΔF/F values (6). For each neuron i, its baseline of ΔF/F, µi, was calculated by averaging all the (ΔF/F)I 792 

time points that are identified as background, 793 

 794 
where Si,k refers to the kth time point of (ΔF/F)i. 795 

 796 
  797 
Image registration 798 

 Since individuals differ in morphology, placement, and brightness, it is difficult to directly compare their 799 

images even though the latter are acquired under the same condition. In order to compare imaging results from 800 
different individuals, the images should be anatomically mapped to a common template image, i.e., a "reference". 801 

A whole-brain template, Z-brain, has been provided by Randlett et al (7) as a standard reference brain atlas for 802 

anatomical and functional studies of larval zebrafish brain. Although the fish we experimented on were at the 803 
same stage as that in the Z-brain template, the iSPIM stacks acquired in their dorsal forebrain could not be 804 

directly registered to the reference due to: 1) a significant mismatch between two imaging directions and 2) a 805 

significant difference between the volumes of interests. Since the dorsal forebrain region that we imaged only 806 
accounts for a sub-volume of the entire brain, a direct registration of the former to the latter is prone to error. To 807 

solve this problem, we created an intermediate reference brain from the Z-brain template by resampling the 808 

dorsal-forebrain region in the direction and pixel sizes that are comparable to those of the iSPIM stacks. For 809 
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each fish, its densely sampled Z-stack was registered to the intermediate reference brain using computational 810 

morphometry toolkit (CMTK) (http://nitrc.org/projects/cmtk). After registering the iSPIM stacks into the 811 
intermediate template, the coordinates of the extracted neurons in original T-stacks need to be reformatted 812 

accordingly into the registered frame. This step was carried out using the registration output and the function 813 

stream x form in CMTK. By comparing the reformatted coordinates with the 294 anatomical masks in the Z-brain 814 
template, we were able to identify the anatomical label of each neuron and the brain regions covered by our 815 

imaging volume. 816 

 817 
Preprocessing of the resting state human brain fMRI data 818 

We used healthy control subjects (n=74) from the COBRE16 resting-state fMRI datasets available at 819 

http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html.  The fMRI dataset for each subject includes blood-820 
oxygenation level-dependent (BOLD) volumes of 5 minutes (TR = 2 s, TE = 29 ms, FA = 75°, 32 slices, voxel 821 

size = 3x3x4 mm3, matrix size = 64x64, FOV = 255 x255 mm2). The pre-processing steps included realignment, 822 
co-registering, and normalization. We used established preprocessing and analysis pipelines (8) and CONN 823 

software package (https://www.nitrc.org/projects/conn). 824 
Re-alignment 825 
In brief, the first-level covariate containing the 6 rigid-body parameters was created based on the MRI 826 

data to estimate the subject motion.  For each subject, this variable was used to perform regression on the fMRI 827 

data to correct for motion-related effects.  828 
To reduce the physiological noise source, a Component-Based Noise Correction Method (CompCor) was 829 

used (9).  830 
Co-registering 831 

The functional volumes are co-registered with the ROIs and structural volumes. All the Brodmann areas 832 
(ROIs) defined through the Talairach Daemon (TD) system (10) were assigned to all subjects using segmentation 833 
of structural image; grey matter, white matter and cerebrospinal fluid (CSF) masks were generated. Anatomical 834 

volumes were co-registered to the functional and ROI volumes for each subject and the volumes were 835 
transformed to the MNI-space.  836 

Calculation and normalization of fMRI measures 837 

Following re-alignment and co-registering, the Principal Component Analysis (PCA) algorithm was used 838 
to extract BOLD signal components for each ROI. The fMRI measures were calculated using MATLAB-based 839 

software packages, SPM12 (http://www.fil.ion.ucl.ac.uk/spm/). All of the computed measures are normalized to 840 
an N (0,1) Gaussian distribution for each subject. 841 

 842 

Data analysis 843 
 Analysis and classification of ROI activity levels 844 
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For a given ROI (i.e., individual neurons in larval zebrafish or brain regions in the case of human fMRI data) 𝑖,  845 

if 𝑠! 	is denoted as its variance of DF/F (zebrafish) or BOLD (human) signals over time, the activity value 𝑎𝑐!, 846 

which is the mean of squared deviations from the mean of  𝑠!, was calculated as follows: 847 

 𝑎𝑐! = 𝑚𝑒𝑎𝑛	((𝑠! −𝑚𝑒𝑎𝑛(𝑠!))")  

 

 

After obtaining each ROI activity level in the given time series, we used the K-means algorithm (11) to 848 

classify them into Activity Levels 1-3. The k-means clustering algorithm minimizes the within-cluster squared 849 
Euclidean distances. Here a one-dimensional activity population was partitioned into 3 sets (levels). The within-850 

class cells in each level have similar activity.  851 

 852 
 Analysis and classification of ROI functional connectivity levels 853 

We used Pearson correlation to measure functional connectivity between ROIs. Since Pearson correlation 854 
assigns a value to all ROI pairs, it is necessary to apply thresholding to eliminate potentially spurious 855 

connections. There is no standard method to calculate the optimal threshold value 𝜏#$%!&'( and different values 856 

of 𝜏 are used to create the adjacency matrices. Arbitrarily chosen thresholding values are often applied to raw 857 
matrixes (12). As different cutoff values can directly influence network properties and bias analysis results, we 858 
developed algorithms to calculate the optimal thresholding values and generate the connectivity matrix. This 859 
matrix was then used to calculate the functional connections (i.e., degrees) of each ROI, followed by K-means 860 

classification into three connectivity levels. The steps of calculating functional connections for each ROI are: 861 

1) Let 𝜌 = 	𝜌!)  be the correlation matrix, where 𝜌!)   is the Pearson correlation of ROIs 𝑖  and 𝑗  and can be 862 

calculated as follows:                  863 

𝜌!" =
𝑐𝑜𝑣(𝑖, 𝑗)
𝛿!𝛿"

, 864 

2) Setting the threshold values: 865 

𝜏 = 	 (𝜏*) 866 

𝜏* ∈ 	 (0,1) 867 

3) Thresholding the connectivity matrix using 𝜏* ∈ 	𝜏  or each 𝜌!) 868 

𝜌𝜏𝑘
!"
= ,

𝜌!" 	𝑖𝑓	𝜌!" >	𝜏𝑘
0	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

 869 

where 𝜌+! =	 (𝜌+!
!)
) is the thresholded correlation matrix. 870 

4) Binarizing 	𝜌+!         871 

𝜌𝜏𝑘,𝑏
!"
= ,

1		𝑖𝑓	𝜌!" >	𝜏𝑘
0	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

 872 

5) Calculating the degrees for each 𝑅𝑂𝐼$, 𝑑𝑒𝑔𝑟𝑒𝑒$ 	= ∑ 𝑙$,%% 	, where 𝑙$,% 	is the link between 𝑟𝑜𝑖$ and 𝑟𝑜𝑖%. 873 
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6) Calculating the degree distribution of the network; The fraction of ROIs with the degree k is defined as follows:   874 

𝑃𝜏𝑘(𝑘) =
𝑛𝑘
𝑛
,	876 

where n, is the number of the ROIs that have degree k. 875 

7) Calculating the fitting value of the degree distribution with the power-law distribution. 𝑟"  (coefficient of 877 

determination) was used to evaluate the closeness of data at each threshold value to the power-law curve.  878 

8) Derive the optimal threshold value: At the optimal threshold value, the  𝑟" is highest, which indicates the best 879 

fit of the data to the power-law curve.  880 

𝜏!"#$%&'
"( ≈ 𝑎𝑟𝑔	𝑚𝑎𝑥)		(𝑟+) 881 

 882 
The detailed steps of calculating the optimal threshold value of the connectivity matrix were provided in 883 

the Fig. S4. The average 𝜏#$%!&'(
$- 	value of all zebrafish subjects in our data ranged from 0.4 to 0.6. We applied 884 

this algorithm to the human fMRI data and obtained 0.7 for 𝜏#$%!&'(
$- . Using these values, we binarized our data: 885 

correlations with a value less than 𝜏#$%!&'(
$-  were set to zero, whereas those with a value greater than 𝜏#$%!&'(

$-  886 

were set to one.  887 

 To further test whether the observed power-law structure of the functional brain is relevant, we shuffled 888 

the data (Fig. S5) to generate random networks with the same numbers of nodes and edges as the original 889 
networks and applied similar thresholding and analysis of degree distributions. The random network did not 890 

follow a power law structure at any thresholding values tested.  Together, these analyses enable us to establish 891 
optimal thresholding values that uncover biologically relevant networks. Using such matrixes, we were able to 892 
detect known connections between the olfactory epithelia and the olfactory bulb (Fig. S6).  893 

 After obtaining each ROI’s numbers of functional connections in the given time series, we used the K-894 
means algorithm as described above to classify them into Connectivity Levels 1-3. 895 
 896 

 Analysis of the relationship between activity and functional connectivity 897 
We plotted the activity and connectivity for each ROI in each individual. The input data are: zebrafish calcium 898 

imaging data are composed of >12k individual neuronal activity and connectivity per subject (n=9 subjects); 899 

human resting-state fMRI data are composed of 136 brain regions’ activity and connectivity per subject (n=74 900 
subjects). 901 

To analyze the population frequency of each class of ROIs (i.e., AL-1&CL-1, AL-1&CL-2, AL-1&CL-3, AL-902 

2&CL-1, AL-2&CL-2, AL-2&CL-3, AL-3&CL-1, AL-3&CL-2, AL-3&CL-3) and its statistical significance, we used 903 
the following bootstrapping method:    904 

8. Select the number of the bootstrapping iteration (here, 25 iterations were used). 905 

9. Repeat the steps “3" to “7" 25 times for the input data. 906 
10. Select a sample set with replacement from the set of all subjects. 907 

11. Calculate activity (variances) and connectivity (degrees) data for each ROI from all sampled subjects.  908 
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12. Calculate activity (variances) and connectivity (degrees) data for each ROI from all sampled subjects.  909 

13. Calculate the average ROI population size for each activity and connectivity level. 910 
14. Calculate the mean, lower (2.5 percentile), and upper (97.5 percentile) point-wise confidence bands for 911 

the populations that are calculated in the step “6”. 912 

 913 
Data visualization  914 

Different python libraries were used to visualize the results. The plotly libraries (https://plotly.com/python/) were 915 

used to visualize the cells' anatomical and spatial distributions in the calcium imaging data. We used the FSL 916 
(https://fsl.fmrib.ox.ac.uk/fsl) to visualize the brain regions in the fMRI data. 917 

 918 

Statistical analysis 919 
Sample sizes and statistics are reported in the figure legends and text for each measurement. To determine the 920 

relationship between activity and functional connectivity at individual ROI levels (Fig. 3c and 4e), we used 921 
bootstrap tests (with 7 iterations) to test whether the negative correlation between neuronal activity and functional 922 

connectivity is consistent across subjects. For each subject, the activity (variances) and connectivity (degrees) 923 
for each ROI were calculated. Individual neurons in the larval zebrafish calcium imaging data and individual brain 924 
regions in the human fMRI data were considered as ROIs. The ROIs were sorted based on their activity for each 925 
subject (X-axis). The connectivity of sorted ROIs for each subject (Y-axis) was then graphed. The Locally 926 

Weighted Regression algorithm (13) was applied for each subject's data to approximate the polynomial curve. 927 
Finally, the bootstrapping method (14) was used to evaluate the inverse relationship between neuronal activity 928 
and functional connectivity. Here random sampling with replacement was applied for selecting the curves fitting 929 
of individual subjects to evaluate the model. 930 

 931 
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 979 
 980 
Figure S1. Light-sheet imaging and image processing generate large-scale single neuron activity data. 981 
A, a schematic showing the overall workflow of image acquisition and pre-processing pipeline resulting in a multi-982 
dimensional dataset. The df/f, 3d coordinate, and anatomical mask was assigned to each detected cell. B, a 983 
schematic showing the setup of the iSPIM in vivo calcium imaging system. C, a representative image of 6 dpf 984 
larval zebrafish forebrain showing detected cells (blobs) (n=760 cells detected). D, An example of a highly active 985 
(left) and a largely inactive (right) neurons.  E, Number of detected cells in each of the 9 subjects used in this 986 
study. scale bar, 25 um; dpf, days post fertilization.  987 
  988 

Light-sheet imaging and image processing generate large-scale single neuron activity data

Subject 1 2 3 4 5 6 7 8 9
#Cells 15705 13947 17111 13653 17100 14373 15126 12315 13791

E

A

B C

D
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 989 
 990 
Figure S2. Brain registration enables comparison of single-neuron activity across different individuals. 991 
A, a schematic showing the workflow of image registration and anatomical labeling. B, a schematic showing the 992 
imaging direction in the iSPIM (blue) and the 2-photon system (black), respectively. Stacks acquired from the 993 
former need to be rotated during image registration to the Z-brain atlas, which is acquired via 2-photon 994 
microscopy. C, Example image slice of dorsal forebrain, before (top) and after (bottom) registration. Red: 2-995 
photon image of HuC-H2B-RFP labeled forebrain template in the Z-brain atlas, cropped and resampled in the 996 
iSPIM imaging direction. Green: HuC-H2B-GCAMP6s labeling. Scale bar, 50 um.  997 
  998 

Brain registration enables comparison of single-neuron activity across different individuals 

A B

C
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 999 
Figure S3. Evaluation of the accuracy and representation of anatomical label assignment. A, 2-D 1000 
visualization of recorded ROIs (individual neurons) in several representative anatomic regions of an example 1001 
subject. B, a binary heatmap showing the number of cells detected in defined neuroanatomical labels.  1002 

 1003 

A Evaluation of the accuracy of anatomical labeling in an example subject 
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 Figure S4. Identification of optimal threshold values to uncover significant functional connections in 1004 
larval zebrafish calcium imaging data. A, a schematic showing the workflow of calculating functional 1005 
connectivity for each ROI. B, a schematic of complex brain network, in which individual neurons are considered 1006 
as nodes and the statistically significant relationships between each pair of nodes are known as edges. The 1007 
number of edges each node has is called the degree. C-E, graphs for an example subject. (C) correlation 1008 
matrices of different sparsity using different threshold values as indicated. Connections below the thresholding 1009 
values are removed. D, Graphs showing degree distributions calculated from connectivity matrices as shown in 1010 
c. (E) Graphs showing the approximation of line on the log-log scale to find the optimal threshold value at which 1011 
data follow a power law. The optimal threshold value is 0.4 with a highest 𝑟" (0.97)(marked with a red asterisk).   1012 
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 1013 

Figure S5. Analysis of the shuffled larval zebrafish calcium imaging data does not show power law 1014 
distribution at any thresholding values. A, correlation matrices of different sparsity using different threshold 1015 
values as indicated. Connections below the thresholding values are removed. B, Graphs showing degree 1016 
distributions calculated from connectivity matrices as shown in A. C, graphs showing the approximation of line 1017 
on the log-log scale. No power law distribution is observed at any thresholding value.   1018 
  1019 

C

A

B
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 1020 
 1021 
Figure S6.  Validation of detected functional connections in the larval zebrafish forebrain. A, a source cell 1022 
in the Telencephalon Olfactory blub is detected to have functional connections with cells in the olfactory 1023 
epithelium. B, a source cell in the Ganglia - Olfactory Epithelium is detected to make functional connections with 1024 
cells in the Telencephalon Olfactory blub. Olfactory epithelium is known to be connected with Olfactory bulb, 1025 
thus validating our method of detecting functional connectivity.   1026 
  1027 
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 Figure S7.  A flowchart showing the human brain data preprocessing and analysis pipeline.  1028 
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 1030 
Figure S8. Characterization of activity in the human brain. A, the sorted (top) and the clustered activity levels 1031 
using k-means algorithm (bottom). B, percentage of brain regions belonging to each activity category for an 1032 
example subject. C, highly active brain regions (e.g., Inferior Temporal Gyrus anterior division) in an example 1033 
subject, which is shared across more than 45% of the subjects. D, the heatmap of the Activity Level 1 (left) and 1034 
Activity Level 3 brain regions (right). E, Bar graph showing the top 20 brain regions in Activity Level 1 and percent 1035 
of subjects classified to have Level 1 activity for each brain region.  1036 
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 1038 
 1039 
Fig. S9. Characterization of the connectivity in the human brain. A, the sorted (top) and the clustered 1040 
connectivity levels using k-means algorithm (bottom). B, percentage of brain regions in each connectivity 1041 
category for an example subject. C, highly connected brain regions that are shared across more than 45% of the 1042 
subjects. D, the connectivity of two example brain regions in the Connectivity Level 1 (left) and 3 (right) categories 1043 
of an example subject.  E, Percent of the subjects for each brain region with the connectivity level 1.  1044 
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