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Cross-feeding, the exchange of nutrients between organisms, is ubiquitous in microbial communities. De-
spite its importance in natural and engineered microbial systems, our understanding of how cross-feeding arises
is incomplete, with existing theories limited to specific scenarios. Here, we introduce a novel theory for the
evolution of cross-feeding, which we term noise-averaging cooperation (NAC). NAC is based on the idea that,
due to their small size, bacteria are prone to noisy regulation of metabolism which limits their growth rate. To
compensate, related bacteria can share metabolites with each other to “average out” noise and improve their col-
lective growth. This metabolite sharing among kin then allows for the evolution of metabolic interdependencies
via gene deletions (this can be viewed as a generalization of the Black Queen Hypothesis). We first character-
ize NAC in a simple model of cell metabolism, showing that metabolite leakage can in principle substantially
increase growth rate in a community context. Next, we develop a generalized framework for estimating the
potential benefits of NAC among real bacteria. Using single-cell protein abundance data, we predict that bac-
teria suffer from substantial noise-driven growth inefficiencies, and may therefore benefit from NAC. Finally,
we review existing evidence for NAC and outline potential experimental approaches to detect NAC in microbial
communities.
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Introduction

Microbial communities are found nearly everywhere in nature, inhabiting ecosystems ranging from hydrothermal vents
[1] to mammalian guts [2]. One of the most striking properties of these communities is the ubiquity of cooperation: microbes
frequently share resources. This exchange of resources is broadly referred to as ‘cross-feeding’. Cross-feeding is widespread
across both natural and engineered systems, with notable examples occurring in the human gut and in wastewater treatment
systems [3, 4]. These metabolic interactions link organisms across the entire tree of life, occurring both within and between
kingdoms [5] and even between specialized microbes of the same species [6].

Cross-feeding plays a major role in the structure and function of microbial communities. In natural settings, cross-feeding is
known to be a significant driver of microbial diversity, allowing many species to coexist on a small number of primary resources
[7, 8]. This microbial diversity has been linked to a wide variety of community properties [9, 10], including influence on host
fitness [11]. Cross-feeding can even play a role in public health: it has been shown that metabolite exchange can allow pathogens
to compensate for fitness losses associated with antibiotic resistance [12]. In engineered systems, cross-feeding can be necessary
for efficient operation. For example, wastewater treatment reactors rely on cross-feeding to prevent the buildup of inhibitory
waste products [13]. Thus, a thorough accounting of the factors promoting cross-feeding is an important part of understanding
both natural and engineered microbial communities.

As a result of cross-feeding’s key role in microbial communities, much work has been dedicated to unraveling its evolutionary
origin. There are broadly two different types of cross-feeding, each speculated to have its own mechanisms of evolution.
(1) ‘Waste-product cross-feeding’, in which an organism feeds on the waste products of another organism, is theorized to
evolve as a result of growth trade-offs that make it optimal for organisms to only partially metabolize substrates. This partial
metabolism leads to the secretion of compounds that can be further metabolized by downstream organisms [14–16]. (2) In
contrast, ‘metabolite cross-feeding’, in which organisms share metabolites that they themselves require, is often explained by
invoking the Black Queen Hypothesis (BQH) [17–20]. This hypothesis posits that that if a function is ‘leaky’ (i.e. can benefit
organisms not performing the function), there will be a selective advantage for some organisms to lose the function and rely on
leakage from others. This type of gene loss can ultimately lead to a web of interdependencies.

While the BQH provides a plausible mechanism for the evolution of some cross-feeding relationships, its underlying assump-
tion that many metabolites are naturally leaky is not well-supported. For some functions, leakage is clearly unavoidable because
key processes take place outside the cell, such as iron uptake via siderophores or hydrolysis of large polymers by extracellular
enzymes [21, 22]. However, many cross-feeding relationships involve metabolites that are produced intracellularly, and it is gen-
erally not known how these metabolites exit the cell, much less that this leakage is inevitable. Polar or charged metabolites are
known to have low membrane permeability, limiting the possibility of natural leakage through the cell membrane [23]. Indeed,
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even if a metabolite has a high membrane permeability, this does not necessarily indicate high absolute leakage rates. Cells could
minimize leakage by maintaining only a small metabolite pool with rapid turn-over or by storing the metabolite in an altered,
less leakage-prone form. Even if substantial quantities of a metabolite are observed to escape via a leaky membrane, it cannot
be determined without further study whether this leakage is truly inevitable or, rather, advantageous in some way. Thus, there is
motivation for a more general theory of cross-feeding that can better explain the origins of leakiness. Can cross-feeding evolve
for metabolites that are not naturally leaky?

Here, we explore a novel mechanism for the evolution of cross-feeding in microbial communities. The basis of this mechanism
is that metabolic enzyme regulation is inevitably imperfect, and particularly so in bacteria due to their small size. The resulting
imbalances in enzyme levels can lead to growth inefficiencies due to the under or overproduction of necessary metabolites.
Rather than attempting to downregulate the activity of the excess enzymes, cells can in principle improve their communal growth
rate by exchanging metabolites among their kin and effectively “averaging” out intracellular noise. We term this mechanism
noise-averaging cooperation (NAC). We first characterize NAC in a model of a small population of cells, demonstrating that
metabolite leakage can increase collective fitness. We find that in extreme cases, NAC can even prevent the death of cells whose
poor enzyme regulation would otherwise lead to irreversible growth arrest. We then develop a generalized, experimentally
accessible framework for estimating how NAC is influenced by community size and the complexity of metabolic pathways.
Using this framework and single-molecule data on Escherichia coli enzyme levels, we predict that typical bacteria suffer from
significant growth inefficiencies due to imperfect regulation, and thus could benefit from metabolite exchange. In turn, the
evolution of beneficial metabolite exchange among kin creates the conditions for interdependencies to evolve via the BQH and
gene deletions. Thus, the proposed mechanism provides a more general theory of cross-feeding evolution in which metabolic
leakiness is not assumed a priori, but rather arises from evolutionary pressures.

Results

A. Isolated cells

We begin by exploring the impact of enzyme noise on the growth of an isolated model cell. To focus on the role of enzyme
level fluctuations, we consider a cell of fixed volume and track the numbers of internal enzyme and metabolite molecules.
Cell growth rate is recorded, but does not explicitly lead to an increase in cell volume. Instead, to capture the effects of cell
growth and the associated volume increase, the rates of enzyme production and enzyme loss by dilution are both taken to be
proportional to the growth rate. Since metabolite production and consumption fluxes are generally large compared to the dilution
of metabolite levels by growth, we neglect the small effect of dilution on the metabolite levels. In this simple model, we assume
that cell growth requires two essential metabolites that have intracellular counts ofmint

1 andmint
2 . These metabolites are produced

intracellularly by specialized enzymes with intracellular counts of E1 and E2. Both metabolites are produced from the same
precursor, which is imported such that a constant number of precursor molecules is maintained within the cell. Each enzyme
produces its metabolite at rate κEi, with κ encompassing both the precursor concentration and the enzyme rate constant. In
accordance with Liebig’s law of the minimum, growth is proportional to the level of the least abundant of the two metabolites
such that the growth rate is g = g∗Mini(mint

i ), where g∗ is a constant relating the metabolite levels to the cell growth rate. Thus,
the cell growth rate is maximized when the metabolites are produced and present in equal amounts. Metabolites within the cell
are assumed to be consumed at a rate proportional to the growth rate. Metabolites are also exchanged with an extracellular
space whose volume is rV times greater than a cell volume. This exchange occurs via membrane diffusion with permeability
P (we show in Appendix A that this form of exchange is mathematically equivalent to active transport in the linear regime).
Metabolites both inside and outside the cell are passively degraded at a rate δ. A schematic of this model is shown in Figure 1A.
Formally, the intra- and extracellular counts of the metabolites evolve according to the following nondimensionalized equations
(see Appendix A for details):

dmint
i

dt
= κEi −Mini(mint

i ) + P · (mext
i /rV −mint

i )− δmint
i , (1)

dmext
i

dt
= −P · (mext

i /rV −mint
i )− δmext

i . (2)

We model these metabolite dynamics as deterministic, as there is generally a large number of each essential metabolite within
cells [24].

Enzyme production within the cell is regulated based on internal metabolite levels, with the cell exclusively producing the
enzyme corresponding to the currently least abundant metabolite. A flow-chart of this regulation scheme is shown in Figure
1B. To reflect the bursty nature of gene expression [25], we assume that enzymes are produced in Poisson distributed bursts
with average size β. Cells produce enzymes at a rate proportional to their growth rate such that the rate of enzyme bursts is

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 2, 2021. ; https://doi.org/10.1101/2021.06.02.446805doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.02.446805
http://creativecommons.org/licenses/by-nc-nd/4.0/


3

(γ/β)g∗Mini(mint
i ), where γ is constant controlling the steady-state abundance of enzymes (such that at steady state 〈Ei〉 =

γ/2). Enzymes are diluted by growth at a rate proportional to their abundance Eig∗Mini(mint
i ). We model enzyme production

as a stochastic process due to its intrinsically noisy nature, and model enzyme dilution as a deterministic process. The metabolite
and enzyme equations are simulated numerically using a hybrid deterministic-stochastic method (see Appendix B for details).

In Figure 1C and D, we show example timecourses of metabolite dynamics for different burst sizes in cells with an average
level of each enzyme of 〈Ei〉 = γ/2 = 25. In Figure 1C, we show the metabolite levels of a cell with a small burst size
β = 2. The small bursts allow for precise regulation of metabolite production, with the cell maintaining nearly equal levels of
the two metabolites. In contrast, Figure 1D shows a cell with a burst size of β = 20. This cell’s poor enzyme regulation leads to
imbalances in enzyme levels which in turn manifest as metabolite imbalances (see Appendix F —figure 4 for the corresponding
enzyme timecourses).

How does the growth of an isolated cell depend on membrane permeability? In Figure 1E, we show the mean growth rate of
isolated cells for varying permeability P . As can be seen, growth rate decreases monotonically with permeability. This follows
because permeability leads to a loss of metabolites to the extracellular space where they cannot be utilized by the cell, but can be
degraded. The coefficient of variation (CV) of the intracellular metabolite levels does not substantially change with increasing
permeability, decreasing only very slightly due to stored metabolites in the extracellular space buffering fluctuations within the
cell (see Appendix F—figure 5). Growth rate losses increase with growing extracellular volume, approaching the limit in which
metabolites are permanently lost upon leakage from the cell.

The growth of isolated cells is also strongly influenced by the enzyme burst size, with small burst sizes permitting faster
growth. This is seen in Figure 1F, which shows that growth rate decreases monotonically with average burst size β. The
decreasing trend reflects a type of “use it or lose it” phenomenon in which cells grow poorly when they have large metabolite
imbalances, as these result in metabolites being degraded instead of consumed for growth. The smaller the burst size, the lower
the variance of the enzyme levels and the closer to equality metabolite production and levels can be maintained. Note that with
sufficiently large burst sizes, the cell can experience irreversible metabolic arrest. This occurs because the cell must grow to
produce additional enzymes, and if the cell experiences a sufficiently large metabolite imbalance, it may be unable to make
another burst of enzyme before its existing metabolites are exhausted. In Figure 1E, this growth arrest is reflected in the β = 100
curve that is zero for all values of permeability. Similarly, in Figure 1F, there is a value of β beyond which cells do not grow.

Multi-cell communities

We have characterized the behavior of an isolated model cell, but how do enzyme noise and metabolite leakage affect growth
rates in a community? We now expand our model to a population of cells that share a common extracellular space with which
they exchange metabolites, as depicted in Figure 2A. When cells leak there is now a possibility that these leaked metabolites
will be taken up by other cells. To explore how leakage influences the collective metabolism of a multi-cell community, we
simulate a community of 10 cells growing under the same conditions as in Figure 1E. In Figure 2B, we show the intracellular
metabolite CV of these cells as a function of permeability for a range of enzyme burst sizes. As in the single-cell case, metabolite
CV generally increases with increasing burst size. Interestingly, however, the metabolite CV now decreases substantially with
increasing permeability. This occurs because metabolite exchange allows the cells to “average out” the noise arising from their
individually poor enzyme regulation, a phenomenon we term noise-averaging cooperation (NAC). With large burst sizes, cells
are prone to overproducing one type of enzyme, and thus overproducing a single type of metabolite. An isolated cell has no
avenue to remedy this imbalance, leading to degradation of the overabundant metabolite. In a sufficiently large community this
changes: within the population of cells, it is likely that there exist cells with opposite imbalances, and by exchanging metabolites
these cells can collectively balance their metabolism.

How does this decrease in metabolite noise impact the average growth rate of cells within the community? In Figure 2C, we
plot the growth rates of the communities from Figure 2B. In the case of a large burst size (β = 100), the improvement is extreme.
With sufficiently high permeability, cells that were previously unable to grow at all due to their poor regulation can now grow
at a substantial fraction of the optimal growth rate. We note that while metabolite CV decreases for all values of burst size, this
does not always translate into a growth improvement. With very small burst sizes (β = 2), the increased permeability has the
opposite effect and slightly decreases the growth rate. Since these cells already have efficient enzyme regulation, the moderate
decrease in metabolite CV is outweighed by the increased degradation of metabolites within the extracellular space. Thus, the
benefits of NAC are greatest under two conditions: 1) when individual cells have poor enzyme regulation and 2) when cells exist
in a crowded space with minimal free volume between cells (such as in a biofilm).

How does community size influence the noise-reducing effect of NAC? To answer this question, we consider a simplified
version of our model in which a population of n fully permeable cells are directly connected to each other. We track only a
single type of metabolite and enzyme, assuming a constant growth rate such that the per-cell average rate of enzyme bursts is
Γ/β and the rate of enzyme dilution is µE . Metabolite consumption and degradation are aggregated into a single rate parameter
µm. For simplicity, we assume that all enzyme bursts are of size β, rather than being Poisson distributed. The Langevin equations
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FIG. 1: Isolated bacterial cells suffer negative growth effects from noisy enzyme regulation and metabolite leakage. (A)
Schematic of modeled intracellular dynamics. Cells import an external nutrient (yellow hexagon) that can be converted by
enzymes (magenta and blue) into two essential metabolites. Metabolites passively exchange with the extracellular medium
(“leakage”), and degrade at a fixed rate. The two metabolites are used for growth in accord with Liebig’s law of the minimum.
(B) Schematic of dynamic enzyme regulation scheme: the type of enzyme produced is always the one associated with the lower
metabolite pool. (C) Metabolite timecourse of a cell that produces enzymes in small bursts. See Eqs. 1-2 for details; parameters
β = 2, γ = 50, κ = 100, rV = 10, P = 0.3, δ = 1, g∗ = 1× 10−5. (D) Metabolite timecourse of a cell that produces enzymes
in large bursts. Same parameters as in C but with β = 20. (E) Average growth rate of an isolated cell for differing values of
permeability; parameters as in C and D except as specified. Growth rate is normalized to the maximum possible growth rate,
i.e. with perfect regulation and zero permeability. (F) Average growth rate of an isolated cell for differing values of burst size.
Parameters as in C and D except as specified.

for the total number of enzymes and total number of metabolites are therefore:

dE

dt
= nΓ− µEE + ξE(t), (3)
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FIG. 2: Bacterial cells can compensate for noisy enzyme regulation and increase growth rate by exchanging metabolites within
a clonal community. (A) Schematic of multi-cell metabolism model. Individual cells regulate their own enzyme levels, but
metabolites leak into the local medium and can be used by other cells in the community. (B) Intracellular metabolite coefficient
of variation (CV) for a community of 10 cells as a function of cell permeability. (C) Average growth rate for community of 10
cells as a function of cell permeability. Parameters in B and C same as in Figure 1E.

dm

dt
= κE − µmm+ ξm(t), (4)

where the ξ(t) are noise terms with 〈ξ(t)〉 = 0 (see Methods for further details). Since these equations are linear, we can exactly
compute the expression for the CV of the total enzyme level (see Appendix D):

CVE =

√
(β + 1)

( µE
2Γn

)
. (5)

Consistent with our simulations, the CV increases with burst size β. The dependence on population size can also be immediately
seen from this expression, with the CV being proportional to 1/

√
n. Thus, larger communities are expected to magnify the

positive impact of metabolite exchange. We can also directly compute the metabolite CV:

CVm =

√
µEµm(κβ + 2µE + 2µm + κ)

2κΓn(µE + µm)
. (6)

As expected, the metabolite CV has a similar scaling with respect to n and β as the enzyme CV.
These calculations, along with our simulations, characterize the potential benefits of NAC. The small size of bacteria make

them inevitably noisy, possibly leading to growth losses. Metabolite leakage can act as a form of bacterial mutual aid, benefiting
cells by allowing resource pooling.

Generalized model framework

We have demonstrated NAC in a simple model with two metabolites, but how would the benefits apply to more realistic
metabolic networks? We now develop a general framework to determine the impact of enzyme fluctuations and metabolite shar-
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ing on the growth of bacteria with an arbitrary number of non-substitutable metabolites. We begin with an arbitrary probability
distribution function (PDF) of the intracellular levels of an individual metabolite f(mi). For simplicity, we first consider the
case of independent but otherwise identical metabolites. For a given number of non-substitutable metabolites, we can then apply
Liebig’s law of the minimum to compute the distribution of growth rates qn(g) by determining the distribution of the lowest
metabolite level among a set of n metabolites. Note that while this minimum is technically only proportional to growth rate, for
brevity we assume g∗ = 1 such that g = Mini(mi). To calculate qn(g), we use the cumulative distribution functions (CDFs)
F (mi) and Qn(g):

qn(g) =
dQn(g)

dg
=

d

dg
{1− [1− F (g)]n} . (7)

Intuitively, the mean of the distribution of growth rates with n > 1 non-substitutable metabolites will always be lower than the
mean of mi, as shown schematically in Figure 3A. Thus, as in our simple two-metabolite model, the mean growth rate will
depend not just on the means of the individual metabolite counts, but also their variability.

To examine this general model in more detail, we now use realistic metabolite distributions to quantitatively analyze the effect
of various factors on the growth-rate distribution. While the distribution of metabolite levels in single cells has not been directly
measured, there have been extensive measurements of single-cell protein distributions showing that these levels are typically
gamma distributed. As we expect that enzyme levels are the dominant source of metabolite noise, we therefore approximate
the metabolite distributions as gamma distributions, i.e. we assume that the metabolite distributions inherit the shape and thus
the CV of the underlying enzyme distribution. In particular, we use the median gamma-distribution parameters measured for
essential proteins in E. coli [26] as a base. We show the corresponding growth-rate distribution as a function of the number of
non-substitutable metabolites in Figure 3B. One sees that as the number of metabolites increases, the mean of the growth-rate
distribution decreases. This can be viewed as a ‘curse of dimensionality’: the more metabolites the cell must manage, the more
likely it is that at least one will be poorly regulated at a given moment and constrain growth. Thus, NAC is most beneficial to
cells that require large numbers of non-substitutable metabolites. In Figure 3C, we explore how this decrease in growth rate
depends on the CV of the metabolite distribution, with the CV of the E. coli essential protein distribution shown as the dashed
curve. The effect of the CV is to modulate the severity of the curse of dimensionality. If the metabolite levels are poorly
controlled resulting in a large CV, the addition of more metabolites drastically reduces growth. Conversely, if the cell has tight
control of its metabolites, it can manage significant numbers of non-substitutable metabolites without too large a growth loss.
Interestingly, the curve corresponding to the CV of essential E. coli proteins shows a significant loss in growth rate, suggesting
that real-world bacteria may suffer substantially from poor enzyme regulation. It should be noted, however, that enzyme count
noise may overestimate noise in the resulting metabolites, as the enzymes can be regulated post-translationally, and metabolite
fluxes may be buffered against enzyme fluctuations by network feedback effects [27].

Thus far we have assumed that the metabolites distributions are independent, but this likely does not hold in nature. Experi-
mental studies have found that levels of different enzymes within the cell are correlated [26], suggesting that metabolite levels
are likely also correlated. Indeed, this phenomenon occurs even in the simple models we analyzed above (see Appendix F —
Figure 4). To account for these correlations, we computed the mean growth rate for varying degrees of correlation between
metabolites. As a baseline, we again use the median distribution of essential proteins in E. coli. The results can be seen in Figure
3D, and show that correlation between metabolites reduces the adverse effects of metabolite noise. This occurs because if the
metabolite levels are correlated, it is less likely that there will be a single outlying low metabolite level constraining growth. The
correlation between certain proteins in E. coli has been measured [26], and we show this value as a dashed curve. While this
level of metabolite correlation does improve growth, the growth loss associated with realistic enzyme noise is still substantial.

What if the growth rate is not determined by Liebig’s law of the minimum? Real growth functions are unlikely to be quite
so simple, and given the variation that exists in microbial metabolism, it is unlikely that there is a single universally applicable
growth function. Despite this uncertainty, we can determine what classes of growth function will lead to noise-driven growth
defects. Consider an arbitrary growth function g(X) and vector of randomly varying metabolitesX . We can express the decrease
in growth due to noise as E[g(X)] ≤ g(E[X]). This statement is equivalent to the multivariate Jensen’s Inequality for concave
functions, meaning that if g(X) is concave, the introduction of metabolite noise will decrease the mean growth rate. Growth
functions in which the benefit of increasing individual non-substitutable metabolite levels is saturating will generally be concave.
Thus, most reasonable growth functions will lead to decreased mean growth in the presence of metabolite noise. To demonstrate
this, in Appendix F - figure 7 we show a version of Figure 3C with an alternative growth function based on the rate of protein
synthesis. Interestingly, the dependence of the noise-drive growth loss on the concavity of g(X) implies that the magnitude of
the loss may depend on the mean metabolite levels. If the metabolite levels are well above the saturation point of the growth
process, such that the local growth function has low concavity, there will be minimal growth losses due to metabolic noise. A
similar reduction in growth losses may occur if the metabolites are far below saturation.

With the above generalized framework, we were able to incorporate experimental measurements into our theory. Our prelim-
inary analyses based on enzyme level measurements suggest that real bacteria may indeed suffer from substantial noise-driven
growth defects. Combined with our analyses of simple metabolic models, this raises the possibility that bacteria can engage in
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FIG. 3: Sharing multiple metabolites can generically reduce noise and improve overall colony growth rate. (A) Implication of
Liebig’s law of the minimum for fluctuating metabolites: the growth rate at any time is set by the lowest metabolite level, hence
the average growth rate is lower than at the average metabolite level. The magnitude of this decrease grows with increasing
metabolite variance. (B) Distributions of growth rates, set by minimum metabolite level Min(mi), for varying numbers of
essential metabolites. (C) Mean growth rate as a function of number of metabolites and of metabolite CV. The dashed curve
corresponds to CV = 0.4, as measured for essential proteins in E. coli [26]. (D) Mean growth rate as a function of number
of metabolites and of the correlation coefficient between metabolites, for CV= 0.4. The dashed curve indicates a metabolite
correlation of 0.7, approximately that observed for proteins in E. coli [26].

NAC to improve their collective growth rate, particularly in tightly-packed environments like biofilms.

Discussion

In this work, we develop a theory of noise-averaging cooperation (NAC), a novel mechanism potentially underlying the
evolution of both intraspecies cooperation and interspecies cross-feeding. NAC allows microbes with individually poor regula-
tion to average out their metabolic noise and raise their collective growth rate by sharing metabolites. Since NAC is strongest
in crowded environments, it suggests an additional benefit of the biofilm mode of growth. With respect to cross-feeding evolu-
tion, our mechanism can be viewed as a generalization of the Black Queen Hypothesis: it provides a mechanistic explanation
for the evolution of metabolite leakage, setting the stage for the emergence of metabolic interdependencies via gene deletions
[28]. However, while we have shown that this mechanism can occur under plausible assumptions about metabolite noise and is
consistent with some existing data, further study is needed to determine whether NAC occurs in nature and to what extent it may
be a driver of cross-feeding.

How can we identify NAC in natural systems? Our theory predicts, counterintuitively, that it may benefit organisms to
secrete essential metabolites into the environment. Thus, deliberate leakage or export of essential metabolites, such as amino
acids or vitamins, is a potential signature of NAC. The clearest signature of deliberate export would be the existence of dedicated
transporters for essential metabolites. Deliberate export could also occur via membrane leakage, but this case is more ambiguous
as it is difficult to determine whether such leakage is “deliberate”, i.e. allowed by the cells, or is an unavoidable consequence of
membrane permeability. As a test case, we examined the export of amino acids, a key class of non-substitutable metabolites, in
E. coli. How much of E. coli’s amino-acid production is lost to leakage? Using prior experimental measurements of membrane
permeability, intracellular concentrations, and amino-acid production rates, we estimate that E. coli loses only a small fraction
(< 1%) of its amino-acid production to membrane leakage (see Appendix F — figure 6). This suggests that membrane leakage
is not a substantial avenue of amino-acid export in E. coli. On the other hand, there exist multiple amino-acid exporters in
E. coli [29–33], implying that E. coli does indeed engage in deliberate export of essential metabolites, consistent with NAC.
Moreover, consistent with the idea that these exporters enable metabolic exchange, it has been shown that artificial auxotrophic
E. coli strains can indeed cross-feed each other amino acids [34]. Note, however, that there may be reasons other than NAC for
deliberate export of amino acids, such as overflow metabolism or the use of amino acids as signaling molecules [29, 35, 36].

Another way to probe the relevance of NAC to real bacteria would be to obtain more accurate estimates of intracellular
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metabolite distributions. Due to a lack of direct measurements of metabolite concentrations within single bacterial cells, we
approximated the metabolite distribution using data from single-cell proteomics measurements. This approximation allowed
us to estimate growth loss due to noise, but our conclusions depend on the assumption that the magnitude of metabolite noise
roughly follows that of enzyme noise. In our simple metabolic model, this assumption is borne out, as the dominant source of
metabolite noise is the burstiness of the enzyme dynamics. However, in real cells there are likely additional regulatory feedbacks
that suppress metabolite noise. Thus, our analysis may overestimate metabolite noise and thus the benefits of NAC. Future
theoretical studies could yield a more accurate estimate of metabolite noise using realistic models of intracellular metabolite
dynamics that incorporate complete pathways and phenomena such as post-translational regulation. There is also the possi-
bility that direct measurements of intracellular metabolite distributions will become available, as the technology for single-cell
metabolite measurement is rapidly advancing [37, 38].

In addition to more precisely quantifying intracellular metabolite noise, better predicting noise-driven growth losses will
require understanding the relationship between individual metabolite levels and growth rate in real cells. We showed that in
order for metabolic noise to decrease mean growth rate, the only requirement is that the growth function be concave. We expect
most growth functions to meet this condition, as the benefit of increasing metabolite levels generally saturates. However, it is
possible that cells mitigate the impact of noise by maintaining their metabolite levels in a region of the growth function with low
concavity, e.g. in a linear regime or near saturation. Thus, experimental data is needed to determine how sensitive cell growth
is to metabolic noise. Experimental quantification of growth rate functions will likely require simultaneous measurement of
growth and intracellular metabolite levels in single cells. A possible experimental system is a ‘mother machine’ [39] in which
the growth rate of cells, and ideally metabolite levels, can be accurately tracked over long times. The technology for real-time
single-cell metabolite measurement is rapidly developing: for example, a fluorescent reporter for branched-chain amino acids
has recently been demonstrated in eukaryotes [38].

Even if the growth loss due to metabolic noise is large, for NAC to be beneficial the reduction in noise must outweigh the cost
of metabolite loss in the extracellular space. In the context of a biofilm, some of this loss will likely arise from diffusion away
from the biofilm, and thus the loss rate can potentially be calculated from the geometry of the biofilm and the diffusion constant
of the metabolite within the biofilm matrix. Estimating the impact of other, spontaneous or reaction-based, forms of metabolite
loss will likely require experimental measurements.

Analysis of intracellular metabolite dynamics and realistic growth functions may provide some support for NAC, but definitive
testing of the mechanism will likely require dedicated experiments. E. coli would be a suitable organism for such experiments, as
it is known to encode transporters for at least some essential metabolites, and has already been shown to engage in intercellular
exchange of amino acids [34]. To directly test the theory, experiments will require at least two conditions: one in which cells
are isolated and another in which they exist at a relatively high density. One possibility is to compare planktonic and biofilm
cells, while another would be to assemble varying densities of planktonic cells. With isolated and crowded conditions defined,
there are two major predictions that could be tested: growth rate should increase when cells are in crowded environments, and
metabolic noise should be reduced when cells are in crowded environments.

Testing of the growth-rate prediction could be performed using population-level measurements of well-mixed cultures. The
simplest way to test this would be measure the exponential-phase growth rates of bacterial cultures of different densities. An
exponential-phase culture of E. coli could be resuspended at different densities in minimal media with saturating concentrations
of nutrients, and growth rates measured (e.g. via OD). If NAC is occurring, the growth rate should be positively correlated with
the culture density. Another possible experimental system is an E. coli chemostat fed with minimal media. The measured output
in this system will be the steady-state biomass. NAC predicts that, compared to the case where growth rate is independent of
density, the cell density will be higher than expected at low dilution rates (see Appendix E for details). For both of the above
experiments, it will be important to determine whether the observed growth differences are due to metabolite exchange. To test
this, one could employ mutants with different essential metabolite exporter genes deleted and measure whether the difference in
growth rate still exists between isolated and dense conditions. Data from these mutants will need to be interpreted carefully, e.g.
due to redundant/undiscovered transporters or unintended effects of the deletions.

Testing whether metabolic noise decreases with cell density will require techniques with single-cell resolution. The difficulty
in testing this prediction will stem from finding a method to measure single-cell metabolite concentrations. One possible method
to estimate the metabolite distribution is to measure timeseries of metabolite levels using the fluorescent reporter approach
discussed above. One could image these fluorescent reporters in two-dimensional colonies and attempt to correlate the observed
metabolic noise to local cell density. Similar to the earlier proposed experiments, one could employ export mutants to determine
whether observed decreases in noise are due to metabolite exchange.

If NAC does exist in nature, how is it implemented and regulated by cells? It is unlikely that cells would exchange their entire
metabolome with the external environment, but how would cells select which metabolites to exchange? If the metabolites within
cells have different levels of noise, it might be optimal for cells to engage in NAC with the metabolites with the highest noise.
This would imply that metabolites produced in small quantities are good candidates for NAC. The choice of which metabolites
to exchange is also influenced by the architecture of the cell’s metabolic network. If there is a bottleneck in the network, for
example if catabolism generates a small set of metabolites that are then used in a myriad of anabolic synthesis processes, it may
be beneficial to exchange these bottleneck metabolites. In addition to selecting which metabolites to exchange, there is also the
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issue of deciding when to engage in NAC. It would be harmful for cells to engage in NAC at low cell density, as most of the
secreted metabolites would be lost. Thus, regulation of NAC would likely be linked to quorum sensing. Note, however, that
sensing of kin cell densities would not be sufficient for regulation of NAC. If the environment also contains a high density of
non-kin, there will likely be a high effective loss rate of metabolites to these non-kin, making NAC disadvantageous. Thus,
regulation of NAC should be dependent on multiple quorum-sensing circuits, using both kin and non-kin autoinducers [40].

We have thus far considered NAC in well-mixed environments, but real microbial communities can be highly spatially struc-
tured, and this has been shown to give rise to a number of behaviors not seen in well-mixed systems [41, 42]. How might NAC
be affected by spatial structure? One consequence of spatial structure is the formation of nutrient gradients within bacterial
biofilms, with bacteria nearing the nutrient source experiencing higher nutrient concentrations [43]. As a result, some cells in
a biofilm will have higher metabolite production rates than others, and it may or may not be collectively beneficial for cells in
high-nutrient areas to share their metabolites with those in low nutrient areas. In such situations, the diffusion coefficient of
the shared metabolite will play a significant role, as this will determine how widely the metabolites are shared. In addition to
spatial structure, fluid flow within environments may also impact NAC. For example, consider a microbial community growing
in pipe-flow conditions. Cells at the beginning of the flow will have little incentive to engage in NAC, as all their resources will
be lost to flow. Conversely, cells further downstream would benefit from NAC as they receive metabolites from their upstream
neighbors. Given the ubiquity of spatial structure and flow in real microbial communities, probing the impact of these factors on
NAC is a promising direction of future study.

We have focused on bacteria in this manuscript, but it is also possible that NAC may be relevant in other domains of life. For
example, NAC highlights a potential advantage of multicellularity: a multicellular tissue separated from its external environment
is the optimal environment for NAC. NAC may also apply to macroecological systems if the outcome of foraging for non-
substitutable resources (such as food and water) is highly variable. Under such conditions, it may be beneficial for animals to
engage in resource sharing, potentially supporting the development of social groups.

While much research is needed to determine the relevance of NAC to real bacteria, the theory highlights an interesting aspect
of ecology: noise at even the smallest scales can have a dramatic impact on the entire ecosystem. In this manuscript we have
focused on the single-species case, but there is potential for more novel behaviors in the many-species context, as has been
observed in other resource-competition models [44]. Overall, we hope this work can serve as a foundation for further theoretical
and experimental work on how noise in resource acquisition impacts ecology and evolution.
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I. METHODS

All code and data used in this manuscript can be found at https://github.com/jaimegelopez/NAC. Details on individual analyses
and derivations can be found in the relevant appendices.

Appendix A: Nondimensionalization of the two-metabolite model

To show how we obtained the nondimensionalized Equations 1-2, we begin with a generalized set of equations in which a
parameter α relates the minimum of the two metabolite levels to the consumption rate of the metabolites:

dmint
i

dt′
= κ′Ei − αMini(mint

i ) + P ′ · (mext
i /rV −mint

i )− δ′mint
i , (A1)

dmext
i

dt′
= −P ′ · (mext

i /rV −mint
i )− δ′mext

i . (A2)

Here, mint
i is the intracellular count of metabolite i, t′ is time, κ′ relates enzyme count to metabolite production, Ei is the count

of enzyme i, α relates the minimum of metabolite levels to metabolite consumption, P ′ is permeability, mext
i is the extracellular

count of metabolite i, rV is the ratio of extracellular to intracellular volume, and δ′ is the metabolite degradation rate. We now
show that by rescaling time, we can eliminate α. We first introduce our dimensionless time variable t′ = tu, where u is a
parameter with units of time. Substituting into the above equations yields:
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dmint
i

dt
= κ′uEi − αuMini(mint

i ) + P ′u · (mext
i /rV −mint

i )− δ′umint
i , (A3)

dmext
i

dt′
= −P ′u · (mext

i /rV −mint
i )− δ′umext

i . (A4)

By defining u = 1/α, κ = κ′/α, P = P ′/α, and δ = δ′/α, we recover Equations 1-2.
We present transport in our model as passive exchange with the environment, but these equations describe a broader range of

transport phenomenon. In particular, our expressions for metabolite exchange are mathematically equivalent to active transport
in the linear regime. To demonstrate this, suppose that import and export are mediated by two separate enzymes with different
kinetics. In the linear regime, the transport expression will be η1m

ext
i /rV− η2m

int
i where the η are constants defining transporter

performance (for Michaelis-Menten kinetics, each η would be the ratio of the maximum rate and the half-saturation constant of
the corresponding transporter). Rearranging terms, one obtains η2

(
η1
η2rV

mext
i −mint

i

)
such that there is an effective permeability

η2 and effective volume ratio η2rV
η1

.

Appendix B: Hybrid numerical methods

In our two-metabolite model, the enzymes are produced in intermittent bursts which must be modeled stochastically, while
other reactions in the system (such as metabolite consumption) involve a large enough number of molecules or occur frequently
enough that they can be treated deterministically. In order to efficiently simulate this system, we use a hybrid stochastic-
deterministic algorithm that can be viewed as a generalization of the Gillespie algorithm. We briefly present the rationale for the
algorithm here, with a full description available in [45].

We begin with the traditional Gillespie algorithm. In this algorithm, the time between events is an exponential random
variable with mean 1/rtot, where rtot is the sum of all reaction rates in the system. This formulation assumes that rtot is constant
between stochastic reactions, something that will not be true in a system that also includes deterministic reactions. To account
for time-varying reaction rates, we first recognize that the Gillespie event condition can be rewritten as:

∫ t+τ

t

rtotdt = rtotτ ∼ Exponential(1), (B1)

where τ is the stochastic time before the next reaction. This rewritten condition makes intuitive sense: if one regards the integral
on the left-hand side as a kind of cumulative probability, this states that for every one unit of cumulative probability, on average
one event occurs. From Equation B1 we can rigorously construct a simulation algorithm for systems with time-varying reaction
rates. We first sample a random number x1 ∼ Exponential(1). We then integrate the deterministic dynamics until we find a τ
such that:

∫ t+τ

t

rtot(t)dt = x1. (B2)

In our method, the integration is done by Euler’s method. We then sample another random number x2 ∼ Uniform(0, 1) and use
this to determine which reaction occurs, as in the traditional Gillespie method. The reaction event then occurs at time t+ τ , and
we repeat the above procedure until the simulation reaches a termination condition. In our simulation, the only stochastic events
are the enzyme production bursts, while all other reactions are modeled deterministically. For calculation of CVs and growth
rates in Figures 1 and 2, simulations were run for 4× 105 time units, with statistics computed from the last 3× 105 time units.
For Figure 1EF, 140 replicate simulations were run per point. For Figure 2BC, 40 replicate simulations were run for most points,
with 200 replicates run for certain simulations with large burst size and low permeability.

Appendix C: Generalized framework

To compute distributions of growth rates from metabolite distributions, we first compute the growth distribution’s CDF in
accord with Equation 7 and then apply numerical differentiation to yield the PDF. To obtain the expected value, we numerically
integrate according to the expression E[X] =

∫∞
−∞ xp(x)dx where p(x) is the probability density of value x. As a reference

distribution, we used the median gamma distribution of E. coli essential proteins observed in [26] (k = 6.4 and θ = 5.2, taken
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from table S3). For distributions with different CVs, we maintain the same mean as the median distribution of E. coli essential
proteins.

The case of correlated metabolite levels was analyzed by simulation. To generate correlated distributions, we first generate
50,000 samples for each metabolite from a multivariate normal distribution with the desired correlation structure. The MATLAB
function mvnrnd is used for this purpose. We then use the method of copulas to generate samples from correlated gamma
distributions [46]. This method first involves transforming the normally distributed samples into uniformly distributed samples
using the inverse CDF of the normal distribution. We then transform these uniformly distributed samples into gamma distributed
samples using the appropriate gamma CDF. Note that this method is only guaranteed to exactly preserve the rank correlation,
but we find that the linear correlation is also very well preserved.

Appendix D: Langevin description

To better understand the influence of community size on metabolite noise, we consider a simplified version of the two-
metabolite model. In this model, we only track the concentration of a single constitutively produced enzyme and its correspond-
ing metabolite. The Langevin equations governing the dynamics are:

dE

dt
= nΓ− µEE + ξE(t), (D1)

dm

dt
= κE − µmm+ ξm(t). (D2)

where the Langevin noise terms have zero noise 〈ξE(t)〉 = 〈ξm(t)〉 = 0 and are delta-correlated such that ξi(t1), ξj(t2)〉 =

Ωijδ(t1 − t2), where δ(·) is the Dirac delta function. These equations have mean steady-state fixed point at E∗ = nΓ
µE

and
m∗ = κnΓ

µEµm
. To analytically compute the CV of the enzyme and metabolite, we employ the method of Swain [47]. This method

relies on linearizing the system about steady state and assumes that fluctuations about the steady state are sufficiently small so
as not to drive the system out of the linear regime around the fixed point. Since our system is linear to begin with, this method
will actually provide us with exact expressions of the moments.

We begin by computing the elements of Ω. The squared deviation of ξE(t) will obey:

〈ξ2
E(t)δt2〉 =

(
β2

(
nΓ

β

)
+ (−1)2µE∗

)
δt, (D3)

ΩEE = 〈ξ2
E(t)δt〉 = nΓ (β + 1) . (D4)

Similarly, we can compute the value of Ωmm:

Ωmm = 〈ξ2
m(t)δt〉 =

2κΓn

µE
. (D5)

The off-diagonal entries of Ω will be zero, as the two equations share no common reactions.
Next, we represent our deterministic dynamics as a matrix equation by computing the Jacobian about the fixed point

A =

(
−µE 0
κ −µm

)
. (D6)

This Jacobian has eigenvalues λ1 = −µE and λ2 = −µm with a matrix of column eigenvectors

B =

(
µm−µE

κ 0
1 1

)
. (D7)

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 2, 2021. ; https://doi.org/10.1101/2021.06.02.446805doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.02.446805
http://creativecommons.org/licenses/by-nc-nd/4.0/


12

Variances and covariances of the state variables can then be computed using the following expression:

〈[Xi − 〈Xi〉][Xj − 〈Xj〉] =
∑
p,q,r,s

BipBjr

(
Ωqs

λp + λr

)
B−1
pq B

−1
rs , (D8)

where the Xi are the state variables.
Substituting in the values of B, Ω, and λ yields

Var[E] =
Γn(β + 1)

2µE
, (D9)

Var[m] =
κΓn(βκ+ 2µm + 2µE + κ)

2µEµm(µE + µm)
. (D10)

From these expressions for the variance, we compute the CVs as

CVE =

√
Var[E]

Mean[E]
=

√
Var[E]

E∗
=

√
(β + 1)

( µE
2Γn

)
, (D11)

CVm =

√
Var[m]

Mean[m]
=

√
Var[m]

m∗
=

√
µEµm(κβ + 2µE + 2µm + κ)

2κΓn(µE + µm)
. (D12)

Appendix E: Chemostat NAC experiment theory

Here, we present the theory for an experiment in which the effects of NAC are measured in a chemostat. First, we begin
with the equations governing the chemostat dynamics:

dρ

dt
= µρ

(
S

K + S

)
− δρ, (E1)

dS

dt
= Γδ − µρ

(
S

K + S

)
− δS. (E2)

where ρ is the biomass concentration, µ is the maximum growth rate, S is the nutrient concentration, K is the half-saturation
constant, δ is the dilution rate, and Γ is the inlet nutrient concentration. Note that we are measuring biomass and nutrients in the
same units. The steady-state nutrient value will be:

S∗ =
Kδ

µ− δ
. (E3)

The steady-state biomass will therefore be:

ρ∗ = Γ− Kδ

µ− δ
. (E4)

Thus, if we model NAC as an increase in µ, a higher than expected dilution rate will be required to maintain a given high
cell density. To test this, one can estimate µ and K at low cell densities and compute the predicted density as a function of
dilution rate using Equation E4. Then, the actual steady-state densities can be measured for a range of dilution rates. If NAC is
occurring, the predictions will match the experimental data at high dilution rates, while there will be a significant discrepancy
between predicted and observed densities at low dilution rates.
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Appendix F: Supplemental figures

In this section, we present supplemental figures that support the main text. Each figure’s caption contains all pertinent infor-
mation.

FIG. 4: Enzyme timecourses corresponding to Figure 1CD. (A) Enzyme timecourse of a cell that produces enzymes in small
bursts, same parameters as in Figure 1C. (B) Enzyme timecourse of a cell that produces enzymes in large bursts, same parameters
as in Figure 1D. Note that the enzyme levels are substantially correlated with each other (r = 0.73 for β = 2 and r = 0.32 for
β = 20).

FIG. 5: Metabolite CV corresponding to simulations in Figure 1E. All simulation parameters identical to those in Figure 1E. Data
corresponding to β = 100 not shown as metabolite CV cannot be meaningfully estimated for cells with arrested metabolism.
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FIG. 6: Estimated fractional production losses of amino acids in E. coli due to leakage. In order to determine the significance of
amino-acid leakage in E. coli, we estimated the fraction of E. coli’s amino-acid production that is lost to leakage. Formally, we
define the fraction of production lost as the ratio of the number of amino acids lost via leakage over the period of one division to
the number of amino acids required to produce a daughter cell. For each amino acid, we require three experimentally measured
quantities for this calculation: 1) the rate of leakage through the cell membrane, 2) the intracellular concentration of the amino
acid, and 3) the number of amino acids required to produce a daughter cell. For leakage rates, we use data from artificial
liposomes [23]. In cases where multiple pH conditions were tested, we used data measured at pH 7 (though leakage rates did not
vary substantially with pH). This study measured data for only a limited set of amino acids. For other amino acids, we estimated
their leakage rates using a linear regression of leakage rate versus log octanol/water partition coefficient (r2 = 0.96). Leakage
rates were also adjusted for the differing size of the liposomes and typical E. coli cells, assuming a liposome radius of 200nm
and an E. coli radius of 400nm [48]. Intracellular concentrations were taken from [24] and per-cell pool sizes were calculated
assuming a cell volume of 1.8 × 10−15L [49]. A cell’s amino-acid production was assumed to be the number of amino acids
required to produce a daughter cell, taken from [34]. With all of these experimental values, the fraction of production lost is
f = kNIτ

Ntot
where k is the leakage rate, NI is the intracellular molecule count, τ is the doubling time (assumed to be 24 minutes),

and Ntot is the number of amino acids required to produce a daughter cell.

FIG. 7: Version of Figure 3C with an alternative growth function. To demonstrate that our findings are not limited to Liebig’s
law of the minimum, we repeat the analysis in Figure 3C with an alternative growth function from [50]. The function is
g = gmax

1
N

∑N
i=1

mi+m∗
i

mi

, where gmax is the maximum growth rate, N is the total number of unique metabolites, and m∗i is the

half-substrate constant of each metabolite. In this analysis we assume gmax = 1 and m∗i = E[mi].

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 2, 2021. ; https://doi.org/10.1101/2021.06.02.446805doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.02.446805
http://creativecommons.org/licenses/by-nc-nd/4.0/


15

[1] Jian Ding, Yu Zhang, Han Wang, Huahua Jian, Hao Leng, and Xiang Xiao. Microbial community structure of deep-sea hydrothermal
vents on the ultraslow spreading southwest indian ridge. Frontiers in Microbiology, 8:1012, 2017.

[2] Jason Lloyd-Price, Galeb Abu-Ali, and Curtis Huttenhower. The healthy human microbiome. Genome Medicine, 8(1):51, Apr 2016.
[3] Nick W Smith, Paul R Shorten, Eric H Altermann, Nicole C Roy, and Warren C McNabb. Hydrogen cross-feeders of the human

gastrointestinal tract. Gut Microbes, 10(3):270–288, 2019.
[4] Michael C Nelson, Mark Morrison, and Zhongtang Yu. A meta-analysis of the microbial diversity observed in anaerobic digesters.

Bioresource technology, 102(4):3730–3739, 2011.
[5] Olga M. Sokolovskaya, Amanda N. Shelton, and Michiko E. Taga. Sharing vitamins: Cobamides unveil microbial interactions. Science,

369(6499), 2020.
[6] Adam Z Rosenthal, Yutao Qi, Sahand Hormoz, Jin Park, Sophia Hsin-Jung Li, and Michael B Elowitz. Metabolic interactions between

dynamic bacterial subpopulations. Elife, 7:e33099, 2018.
[7] Akshit Goyal and Sergei Maslov. Diversity, Stability, and Reproducibility in Stochastically Assembled Microbial Ecosystems. Physical

Review Letters, 120(15):158102, 2018.
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[15] Alan R Pacheco, Mauricio Moel, and Daniel Segrè. Costless metabolic secretions as drivers of interspecies interactions in microbial
ecosystems. Nature communications, 10(1):1–12, 2019.
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