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ABSTRACT 

Recent evidence suggests that dysbiosis, an imbalance of microbiota, is associated with 

increased risk of colorectal cancer.  Diverse microbial organisms are physically associated 

with the cells found in tumor biopsies.  Characterizing this mucosa-associated microbiome 

through genome sequencing has advantages compared to culture-based profiling.  However, 

there are notable challenges in accurately characterizing the features of tumor microbiomes 

with methods like transcriptome sequencing.  Most sequence reads originate from the host.  

Moreover, there is a high likelihood of bacterial contaminants being introduced.  Another 

major challenge is the microbiome diversity among different studies.  Colorectal tumors 

demonstrate a significant extent of microbiome variation among individuals from different 

geographic and ethnic origins.  To address these challenges, we identified a consensus 

microbiome for colorectal cancer through analyzing 924 tumors from eight independent 

RNA-Seq data sets.  A standardized meta-transcriptomic analysis pipeline was established 

and applied to the complete CRC cohort.  Common contaminants were filtered out.  Our 

study involved taxonomic investigation of non-human sequences, linked microbial signatures 

to phenotypes and the association of microbiome with tumor microenvironment components.  

Microbiome profiles across different CRC cohorts were compared, and recurrently altered 

microbial shifts specific to CRC were determined.  We identified cancer-specific set of 114 

microbial species associated with tumors that were found among all investigated studies.  

Validating our approach, we found that Fusobacterium nucleatum was one of the most 

enriched bacterial species in CRC.  Firmicutes, Bacteroidetes, Proteobacteria, and 

Actinobacteria were among the four most abundant phyla for CRC microbiome.  Signficant 

associations between the consensus species and specific immune cell types were noted.  

Our results are available as a web data resource for other researchers to explore (https://crc-

microbiome.stanford.edu). 

Keywords: Colorectal cancer, microbiome, dysbiosis, meta-transcriptome, microbial 

signatures
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INTRODUCTION 

Tumors such as colorectal cancer have specific biological interactions with commensal 

microbial species.  Humans coexist with a rich diversity of bacteria and viruses living within 

the confines of specific tissue niches.  This collection of microbial organisms, referred to as 

the microbiome, vastly outnumber the eukaryotic cells making up our various tissues [1, 2].  

The cellular interactions of specific organ tissue and the microbiome can be beneficial, 

neutral or pathogenic in terms of non-infectious human diseases.  Beneficial microbes play 

critical roles in maintaining immune function, metabolic homeostasis, and overall health [3].  

Neutral bacteria have no discernible consequences on the host.  Pathogenic 

microorganisms may increase the risk and severity of conditions like inflammation [4], 

obesity [5], fatty liver disease [6], type 2 diabetes [7] and carcinogenesis [8].  An indicator of 

a microbial influence in disease pathogenesis, dysbiosis is an imbalanced state of the 

naturally-occurring microbiota where specific pathogenic microbes overgrow other 

components.  This phenomenon leads to a fundamental shift in the contents of the 

microbiome.  This imbalance has the potential to lead to cancer [4].  The microbiome 

properties of colorectal cancer (CRC) have been of interest given that the colon and the 

rectum have the most abundant and diverse microbiome for any human organ.  Many 

studies seek to identify specific microbiome properties that are indicators of dysbiosis and 

influence colorectal cancer development, phenotype and clinical outcomes. 

 

There are two specific environmental niches for the analysis of the colorectal cancer 

microbiome.  Generally, the largest and most diverse niche involves the microbial and viral 

contents of the fecal material within the colon.  The smaller niche, a subset of the fecal 

material, involves those microbes that are directly associated with the colorectal tumor and 

the surrounding normal colon mucosa.  This mucosa-associated microbiome has an 

important role in colorectal cancer biology given its direct contact to the colon epithelial 

tumor cells and its interactions with the local tumor microenvironment (TME).  Because of its 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 2, 2021. ; https://doi.org/10.1101/2021.06.02.446807doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.02.446807
http://creativecommons.org/licenses/by-nc/4.0/


 

2 
 

direct contact with the colon cellular microenvironment, this microbiome niche is carried over 

after a biopsy or surgical resection of a tumor.  Thus, the tumor extracted DNA or RNA 

reflect the microbial contents adjacent to and intermingled with the colon mucosa. 

 

For genomic microbial characterization of CRCs, next generation sequencing (NGS) 

methods like RNA-Seq have been used for determining the microbiomes of specific tissues.  

For example, Simon et al investigated more than 17,000 samples from publicly available 

human RNA-Seq data and found that a significant proportion of unmapped reads were of 

microbial origin [9].  Sequencing the 16S rRNA gene is another common method for 

determining microbiome characteristics.  The 16S gene contains nine hypervariable regions 

(V1-V9) that provide a sequence barcode for identifying microbial species and conducting 

phylogenetic analysis [10].  Depending on the sequencing approach, microbial abundance 

estimation is represented in operational taxonomic units (OTUs) or amplicon sequence 

variants (ASVs), which are usually mapped to the genus or species level [11].  Each 

molecular dataset captures different aspects about the patient's microbiota; comparative 

analysis of data from these two methods may provide insights not possible through a single 

data type alone. 

 

For either the fecal or mucosal-associated microbiome, there is substantive evidence that 

dysbiosis is associated with the development and progression of CRC [10, 12, 13].  Studies 

have focused on either studying (1) the fecal contents from CRC patients or (2) direct 

analysis of CRC tumors with the microbiome that is in direct contact with the tumor.  Citing a 

study from the former, Sobhani et al [12] performed one of the first studies to identify cancer-

related dysbiosis in CRC from the analysis of fecal material from patients.  They found that 

an elevated representation of the Bacteroides/Prevotella genus was present among the 

majority of the CRCs they investigated.  Using a similar approach, Yu et al [13] did a 

metagenomic profiling of CRC samples and showed that four microbial species, including 
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Parvimonas micra, Solobacterium moorei, Fusobacterium nucleatum and 

Peptostreptococcus stomatis were enriched in individuals with CRC compared to normal 

controls.  These studies were limited to fecal samples which represent a distinct niche from 

CRC tissue samples. 

 

The direct sequencing analysis of CRC tumors and mucosa provides insight into the 

microbiota that are directly associated with the TME.  Given their proximity to the cellular 

milieu of the tumor, these microbes may play a potential role in the physiopathology of CRC 

[14].  Citing the most widely validated example of mucosa-proximal microbiome of CRC, 

many studies have demonstrated an enrichment of Fusobacterium nucleatum, which we will 

refer to as F. nucleatum for short, in CRC tumors.  The initial discoveries were based on 

identifying microbial sequence reads from genomics studies of CRCs [15].  Some studies 

have shown that F. nucleatum is associated with higher stage CRC and a lower density of T-

cells in the CRC TME.  Some of these observations have been born out experimentally [16].  

For example, this bacteria activates the WNT signaling pathway in CRC cells and inhibits T-

cell-mediated immune responses against tumors [17]. 

 

Obtaining a high-quality analysis of cancer microbiomes has a number of significant 

challenges.  In the case of the mucosa-associated microbiome, samples are exposed to 

contamination across multiple steps as a clinical biopsy is acquired, processed and 

sequenced.  This includes the presence of microbial DNA among the molecular biology 

reagents used sequencing and genetic characterization.  Complicating any analysis, the use 

of stringent quality controls has been inconsistent for cancer-based genomic studies of the 

microbiome [18].  These issues can dramatically skew microbiome results.  Different 

sequencing methods such as 16S and RNA-Seq reveal different microbiome features.  As 

an added challenge, microbiomes vary among individuals living in different geographic 

regions and ethnic backgrounds.  This fundamental variation among individual microbiomes 
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makes it more difficult to identify common microbial species that may have a universal role in 

colorectal cancer tumorigenesis. 

 

Addressing these challenges, we analyzed the colorectal cancer microbiome composition 

and potential function in modulating cancer and the immune system.  More importantly, we 

sought to identify consensus mucosal species that were consistently observed across 

multiple independent CRC cohorts. We utilized different RNA-Seq datasets including the 

Cancer Genome Atlas Colon Adenocarcinoma (TCGA-COAD) and the Gene Expression 

Omnibus (GEO) database.  In total, 924 CRCs were included in this study to investigate the 

different microbiome profiles across different studies.  With this large number of samples, we 

conducted a rigorous quality control to eliminate potential contaminants and reduce the 

effect of batch bias.  To evaluate the quality of our mucosa-associated RNA-Seq data in 

evaluating microbiomes, we compared these results to a 16S analysis for a subset of 

overlapping samples.  Finally, we derived a consensus microbiome composition across 

different CRC cohorts, determined dysbiosis features when examining normal tumor pairs 

and investigated several microbial species’ association with CRC’s cellular and clinical 

metrics.  To facilitate the sharing of this consensus microbiome, our results are available and 

can be queried through a web data resource (https://crc-microbiome.stanford.edu). 

 

METHODS AND MATERIALS 

Colorectal tumor RNA-Seq data 

Seven whole-transcriptome sequencing CRC datasets were downloaded either from NCI’s 

Genomic Data Commons (GDC) or the Sequence Read Archive (SRA) (Table 1).  In 

addition, we had an internal data set from an independent set of CRCs that we refer to as 

IMS3.  All participants signed a written informed consent as part of a study protocol 

approved by Stanford University.  Tumor tissues were collected and preserved on formalin-
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fixed paraffin-embedded (FFPE) slides.  All tumor samples were determined to have greater 

than 60% cellularity in pathology review. 

 

DNA and RNA sequencing 

Tumor tissues were recovered and processed for nucleic acid.  RNA was extracted from 

Maxwell 16 LEV RNA FFPE Purification Kit (Promega, Wisconsin, USA) following the 

manufacturer’s instructions.  RNA-Seq libraries were prepared using KAPA RNA HyperPrep 

Kit with RiboErase (HMR) (Roche, California, USA) by 8 cycles of PCR.  The enriched 

libraries were quantified by qPCR using Kapa Library Quantification kit (Roche, California, 

USA), and subjected to Illumina MiSeq sequencing (100 bp paired-end reads). 

 

DNA was extracted using the Promega AS1030 Maxwell 16 Tissue DNA Purification Kit 

(Promega, Wisconsin, USA) following the manufacturer’s protocols.  The concentration of 

DNA was quantified with the Qubit system (Thermo-Fisher Scientific, Massachusetts, USA), 

and DNA integrity was evaluated using LabChip GX (PerkinElmer, Waltham, Massachusetts, 

USA).  Five hundred ng DNA from each sample was sheared using a Covaris E220 

sonicator (Covaris, Massachusetts, USA) (microTUBES AFA fibre, 10% duty cycle, 200 cbp, 

intensity 5, and time 55 s), and purified by a 0.8X AMPure XP (Beckman-Coulter, California, 

USA) bead cleanup.  The hypervariable regions (V3-4) of the 16S rRNA gene from each 

sample were amplified using Forward primer (5'-TCG TCG GCA GCG TCA GAT GTG TAT 

AAG AGA CAG CCT ACG GGN GGC WGC AG-3') and Reverse primer (5'-GTC TCG TGG 

GCT CGG AGA TGT GTA TAA GAG ACA GGA CTA CHV GGG TAT CTA ATC C-3') with 

Illumina sequencing adaptors (Illumina, California, USA).  The purified PCR products were 

then subjected to a multiplexing process using Nextera XT Index kit (Illumina, California, 

USA) in 50 μL reactions.  After PCR product cleanup, two batches of libraries were 

quantified and sequenced using an Illumina MiSeq platform. 
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Sequence data processing for microbiome characterization 

Raw RNA-Seq data were preprocessed to remove adapter sequences and low-quality bases 

with Cutadapt (v2.4) [19].  Trimmed data were then mapped to the human genome 

(GRCh38) using STAR (v2.5) [20].  Uniquely mapped reads were used for subsequent 

immune cell infiltration analysis.  Quality controlled (by fastp software) unmapped reads 

were used as microbial reads for taxonomic assignment for each OTU. 

 

Reverse reads from 16S amplicon sequencing were removed from the analysis due to low 

sequence quality.  The sequence was processed with DADA2 using maxN = 0, maxEE = 2, 

truncQ = 2 parameters to do reads filtering and quality checks [21].  Reads that passed the 

quality control were used for taxonomy classification.  ASV values were determined for each 

sample. 

 

Taxonomic microbiome classification 

Kraken2 was used as the meta-transcriptome classification tool in our study.  It relies on 

exact k-mer matches to assign microbial sequences to specific taxonomic labels [22].  The 

unmapped reads from RNA-Seq were queried in a Kraken2 database we created on our 

server (September 18, 2019), which contains taxonomic information (obtained from NCBI 

Taxonomy database), complete genomes in Refseq for the bacterial, archaeal, viral, 

plasmid, and eukaryotic organisms.  Taxonomy classification results were posted to the CRC 

consensus microbiome website (https://crc-microbiome.stanford.edu). 

 

Gene expression quantification and immune cell infiltration analysis 

Gene counts table generated from RNA-Seq mapped reads were normalized using TMM 

(weighted trimmed mean of M-values) with the EdgeR package and converted to cpm and 
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log2 transformed [23].  A filtering process was also performed to exclude genes without at 

least 1 cpm in 20% of the samples.  We used the program Xcell to estimate 64 tumor 

infiltrating immune and stromal cell types, together with immune, stroma, and tumor 

microenvironment (TME) scores for each tumor’s or normal colon’s RNA-Seq data 

(xcell.ucsf.edu) [24].  Multiple testing correction was applied using the p.adjust() function  

available in R, with the method set as "FDR”.  Kruskal-Wallis rank sum test was used to 

determine differential immune cell infiltration among patient groups using a threshold of 

multiple testing corrected P < 0.05. 

 

Differential microbiome analysis 

Microbial differential analysis was performed using DEseq2 and Phyloseq [25].  Statistical 

tests such as the Chi-Squared test and the Wilcoxon rank-sum test were performed to 

examine the patient grouping information with various clinical variables.  Multiple testing 

correction was applied as previously described.  Results were considered significant if the 

adjusted p-value was less than 0.05. 

 

The CRC Microbiome Explorer website 

We developed a web-based data resource for our study (https://crc-

microbiome.stanford.edu).  The microbial abundance data was uploaded to a MySQL 

(v5.5.62) relational database from kraken2 output converted to mpa format.  The database 

server has 32GB RAM and 16 processors running Ubuntu (v16.04).  The web application 

was written using Ruby on Rails (v5.1.7 with ruby v2.4.2), a framework well suited for use 

with a backend relational database.  The application server uses Ubuntu (v16.04).  The 

application was deployed using Passenger and Apache2.  The user interface utilizes 

Bootstrap (v3.4.1) for responsive sizing to different format clients and browsers.  Jquery 

dataTables provide standard formatting, search and filtering capability for query tables, and 
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Highcharts is used to format and display plots.  All queries and plots are produced 

dynamically from the underlying database tables based on user query parameters. 

 

RESULTS 

CRC microbiome composition estimation from unmapped RNA-Seq 

Overall, we analyzed eight primary CRC transcriptomic datasets [26-32] from a variety of 

sources that included the Cancer Genome Atlas (TCGA), the NIH Gene Expression 

Omnibus (GEO), the NIH’s Short Read Archive (SRA) and an independent dataset (IMS3).  

The CRC RNA-Seq studies included the TCGA COAD data set which had the largest 

number of samples (n=564).  In addition, GEO had six different data sets with the highest 

number of CRCs coming from GSE107422 (n=109) and the smallest set being GSE137327 

(n=9) (Table 1).  The IMS3 data set contained 162 tumor and matched normal tissues.  The 

total number of CRC samples were 924.  An additional 298 matching normal colon samples 

were available for assessing their microbiome characteristics.  Except for GSE137327 which 

used the BGI sequencing technology, all of the samples were sequenced with Illumina. 

 

To process these CRC RNA-Seq cohorts, we removed human genome sequences, low 

quality reads and adapter sequences.  Subsequently, we used the high quality microbial 

(unmapped) reads from a given CRC sample for taxonomy classification with Kraken2 

(Figure 1).  We also conducted downstream processing and leveraged an updated database 

that includes NCBI's RefSeq sequence data for human, bacteria, and viruses (Methods).  

Across this extended tumor cohort, we observed that an average of 83% of reads were 

uniquely mapped to the human genome per sample.  Quality controlled, unmapped RNA-

Seq reads averaged 4% per sample.  The percentage of unmapped reads for each dataset 

varies from 0.05% (TCGA) to 19.86% (GSE107422) (Supplemental Figure 1).  Variations in 

the raw sequence data, unmapped reads and unmapped ratios were observed from each 
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dataset.  For example, the TCGA and GSE146889 cohorts had the largest number of total 

and unmapped sequences per a sample.  The GSE107422 as well as GSE104836 samples 

set had the highest percentages of unmapped reads (Supplemental Figure 1).  Thus, we 

normalized microbial abundances to the median sequencing depth within each cohort.  Our 

results are available for exploring and download at the following URL: https://crc-

microbiome.stanford.edu. 

 

A portion of sequencing reads may originate from contaminating microbial DNA that are 

found in the general environment or contaminants from the sequencing assay.  This includes 

microbes that contaminated the sample as a result of clinical processing, were present in the 

sequencing reagents or grow in the fluidic systems of sequencers.  To minimize the bias 

introduced by unwanted information, we conducted a microbial filtering process.  Known 

microbial contaminants were filtered out (Supplementary Table 1).  This list was compiled 

by Eisenhofer et al. based on a series of negative controls across multiple studies.  This list 

of contaminants was part of their ‘RIDE’ minimum standards criteria which addresses many 

of the potential sources of artifacts in genomic-based microbiome characterization [33]. 

 

We identified the highest represented phyla from each cohort and made comparisons of 

relative percentage abundance (Table 1, Figure 2a-g).  The shared seven phyla were 

displayed in the heatmap (Figure 2h).  Firmicutes, Proteobacteria, Bacteroidetes, and 

Actinobacteria were the four top ranked bacterial phyla identified from various CRC cohorts.  

The average relative abundance of Firmicutes (over 29.5%), had the highest average 

abundance across the entire cohort.  This species was followed by Proteobacteria (22.4%), 

Actinobacteria (13.8%), and Bacteroidetes (11.5%). 
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Variations of bacterial community composition were observed at the phylum level, such as 

Proteobacteria accounts for more than half of the major phyla abundance in GSE137327, 

whereas this species only accounted for less than 10% in GSE104836 (Figure 2h).  Other 

noticeable phyla include Fusobacteria and Deinococcus-Thermus (5.46% and 1.17% 

relatively).  These phyla accounted for a small proportion of the total percentages of relative 

abundance, respectively (Figure 2h).  Overall, the bacterial community composition 

variations were observed at the genus level (Supplemental Figure 2). 

 

Comparing RNA-Seq versus 16S for identifying and characterizing CRC microbiome 

One CRC cohort had overlapping RNA-Seq and 16S data (IMS3, n=162).  We used this data 

for a comparison study between the two sequencing methods.  The processing and analysis 

of microbial reads derived from RNA-seq data were described above.  The raw 16S 

sequencing data was processed using DADA2 and phyloseq pipelines.  Adapters, low 

quality bases and amplification primers were filtered out.  Approximately 95% of 16S rRNA 

sequences passed our quality control measures, bringing in an average of 47,000 reads per 

sample for taxonomy assignments using Silva v132 annotation.  DADA2 detected 531 ASVs, 

after removal of ASVs that were not present in at least one read count in 1% of the samples 

(Supplemental Table 2).  Fifteen and 172 bacterial taxons were observed from ASV on the 

phylum- and genus-level, respectively. 

 

We compared the RNA-Seq and 16S methods as a way of evaluating the accuracy of RNA-

seq-based microbiome phylum and genus level characterization.  There were 12 common 

phyla identified from these two platforms (Supplemental Figure 3a-b).  Actinobacteria, 

Proteobacteria, Firmicutes, and Bacteroidetes were the four most prevalent (Supplemental 

Figure 3a) and abundant phyla (Supplemental Figure 3b).  High Pearson correlation 

coefficients were observed for phylum-level prevalence (0.977) and abundances (0.962) 

between 16S and RNA-Seq data (Supplemental Figure 4a-b).  The prevalence and relative 
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abundance of Bacteroides, Nonanavirus, Actinoplanes, Bacillus, Actinetobacter, and 

Streptomyces were much higher than the remaining genera identified from RNA-Seq data 

(Supplemental Figure 3d-e). 

 

We determined that the microbial diversity via a Shannon index estimate from RNA-Seq data 

was significantly higher compared to the results from the 16S data at the phylum/genus 

levels (Supplemental Figure 3c,h).  Statistical significance was demonstrated using 

pairwise wilcox test (p<2e-16).  A total of 89 overlapped genera were evident when 

comparing these two different methods (Supplemental Table 3-4).  Bacteroides and 

Faecalibacterium were the two most enriched genera identified both from 16S and RNA-Seq 

data (Supplemental Figure 3f-g).  The Pearson correlation coefficients between these two 

sequencing methods at the genus-level were 0.583 for prevalence, and 0.807 for 

abundances (Supplemental Figure 4c-d).  The differences between the two were largely 

due to the viral genome species that were present in the RNA-Seq data.  Overall, these 

results not only suggest that RNA-Seq analysis of CRC accurately determines the 

microbiome features but also provide much more species information than 16S data.  In 

addition, our results showed that 16S data had limited resolution beyond the genus-level and 

a more restricted degree of microbial characterization.  Thus, we opted to focus on using the 

RNA-Seq data for the remainder of the study. 

 

The CRC consensus mucosa-associated microbiome 

From the 924 CRCs and the tumor RNA-Seq data, the high-quality unmapped reads 

underwent Kraken2 processing and species classification.  The range of species identified 

prior to consensus filtering was from 731 (IMS3) to 4187 (TCGA) (Table 1).  To determine 

the microbiome features that were generalizable across the entire cohort, we created a 

union matrix representing all of the samples and different species across the entire cohort.  

Subsequently, we applied a 1% prevalence filter, retaining only the bacterial and viral 
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species above this frequency threshold.  Among the eight studies, 126 microbial species 

were obtained from the 924 CRC tumors.  We conducted an additional level of filtering to 

determine if identify any species typically associated with contaminant artifacts.  There were 

a few species that are known environmental contaminants, such as microbe belonging to the 

the Cutibacterium and Methylobacterium genera.  These contaminants and others were 

removed, which resulted in a final consensus list of 114 microbial species associated with 

CRCs (Table 1, Supplemental Table 5).  All of the species were present for all of the 

sample sets included in the study. 

 

Bacteroidetes and Firmicutes species account for a significant proportion of the 114 

microbial list (Figure 3).  From our consensus CRC microbiome, more than 33% of these 

species belong to the class of Clostridia (Figure 3a).  This class was the most frequently 

occurring among our cohort.  Species belonging to Bacteroidetes (23.5%), Proteobacteria 

(16.5%), and Actinobacteria (10.4%) were the second, third, and fourth most predominant 

phyla among the consensus microbiome.  Most members of the Clostridia have a 

commensal relationship with the host, and are involved in the maintenance of intestinal 

health [34].  Other well-characterized fecal species included Bacteroides megaterium, 

Bacteroides fragilis, Escherichia coli, Bacillus cereus, Faecalibacterium prausnitzii, 

Bacteroides vulgatus, and Prevotella intermedia and were among the most abundant 

species of all the CRC samples across the cohort (Supplemental Table 5).  Validating our 

analysis results, F. nucleatum was common among the tumors, has been previously 

associated with CRC and has a mechanistic contribution towards colon cancer growth. 

 

Interestingly, a number of these microbiome species are established pathogens with the 

most prevalent being Clostridium difficile which is a major cause of infectious diarrhea.  This 

species is also associated with inflammatory bowel disease (IBD) [35].  Clostridium 

perfringens is one of the most common causes of food poisoning in the United States [36].  
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Besides the pathogens such as Clostridium difficile and Clostridium perfringens, other 

potentially pathogens such as Akkermansia muciniphila is a mucin-degrading bacterium.  

Pasteurella multocida can cause a range of diseases in animals and humans, particularly for 

skin infections. 

 

Other species are commensal elements of normal gut microbiota.  Some of them possess 

probiotic properties, like Bacteroides xylanisolvens and Bacteroides ovatus.  Others play 

important roles in other mammalian species and extrinsic metabolic processes.  For 

example, Lachnospiraceae bacterium can ferment polysaccharides into short-chain fatty 

acids and alcohols [37].  Bacteroides cellulosilyticus, a strictly anaerobic cellulolytic 

bacterium, metabolizes cellulose to smaller molecules, and ferment various carbohydrates 

[38].  Ruthenibacterium lactatiformans is characterized by fermentative metabolism [39].  B. 

megaterium has probiotic potential [40]. 

 

Consensus microbiome from matched normal colon tissue 

From the 298 matched normal colon tissue and their RNA-Seq data, we applied the same 

bioinformatic process, quality control filtering and prevalence analysis with a union matrix.  

The range of species identified prior to consensus filtering was from 635 (IMS3) to 3763 

(TCGA) (Table 1).  From this analysis, there were 153 species consistently found among all 

of the matched normal tissues (Supplemental Table 6).  More than half of the species were 

identical to the tumors’ 114 species list (Supplemental Figure 5).  Interestingly, the 

remaining consensus mucosa-associated microbiome from normal colon tissue was quite 

different from tumors, with a large proportion of them came from the Proteobacteria and 

Firmicutes phyla (Supplemental Table 6).  Proteobacteria spp occurs as a free-living 

species which can be identified within the colon microbiota.  Firmicutes phyla, especially in 

the class of Clostridia were enriched in normal tissues, suggesting that Clostridia spp. were 

potentially beneficial microbes.  When compared to the matched normal tissue set, 29 
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species were only present in tumor tissues, this include two Fusobacteria species and 

several other known pathogens (Streptococcus spp. and Prevotella spp.). 

 

We investigated the geographic associations of the eight datasets using the abundances of 

the selected 114 microbial species specific to CRC tumors.  The GSE137327 microbial 

profile was negatively associated with other cohorts, suggesting that the choice of 

sequencing platform may have affected the microbiome profile (Figure 3b,e).  This data set 

was generated from a different sequencing platform, the BGI-Seq system versus the 

remainder of the studies which were Illumina-based.  Several Asian cohorts from different 

geographic locations were represented in this study.  This included GSE107422 and 

GSE50760 where the tumor samples originated from South Korea.  For the GSE104836 

cohort, the samples originated from mainland China.  The CRCs from all three of these 

studies were part of a distinct cluster with Asian origins (Figure 3b, e). 

 

TME and immune cell correlations with the CRC consensus microbiome 

Using the same RNA-Seq data per sample, we determined the immune cell estimations of 

each CRC across the cohort.  Currently, one can use bulk RNA-Seq data to infer the 

proportions of individual cell types from tumor samples.  This process is generally referred to 

as cell deconvolution.  To conduct this study we used the program xCell to make estimates 

about the relative cell populations among the CRC RNA-Seq data sets [24].  This program 

deconvolutes gene expression data to identify the relative representation of 64 immune and 

stromal cell types. 

 

After deconvoluting the gene expression data from our cohort, we determined the 

association of TME components that are referred to as the immune, stroma, and TME 

scores.  For this analysis, we used the 114 tumor-specific microbial species from the CRC 
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consensus microbiome.  As an aggregate indicator of different types of cellular composition, 

Xcell provided each CRC with an immune score (the sum of all immune cell types), stroma 

score (the sum of all stroma cell types), and TME score (the sum of all immune and stromal 

cell types) [24].  Stroma scores were mostly negatively correlated with the 114 CRC species 

compared to immune and TME scores (Figure 3c). 

 

Thirty-eight microbial species were selected which have significant associations with specific 

types of the immune cells (Spearman correlations, FDR < 0.05) (Figure 4a).  Natural killer 

(NK) cells had a positive correlation with the majority of the selected microbial species.  CD4 

T, CD8 T, naïve/pro B, and T regulatory cells play opposite correlation patterns with NK cells 

(Figure 4a).  In other words, these cells were negatively correlated with more than half of the 

CRC consensus microbes.  Victivallales bacterium (CCUG447300) was one of the species 

that had a significant positive correlation with NK cell's enrichment in the CRC TME 

(Spearman’s rho = 0.57; p< 1e-4).  This species was significantly negative correlated with 

the CD4 naive T cell's abundance in the TME (Spearman’s rho = -0.45; p< 1e-4).  

 

Immune cells and microbe’s correlations were also investigated in the adjacent normal 

samples (Figure 4b).  NK cells were positively correlated with the selected thirty-eight 

microbial species.  More negative correlations than positive correlations between immune 

cells and microbes can be seen from the heatmap (Figure 4b).  Distinct correlation patterns 

have been found between tumor and normal tissues.  For example, macrophages and CD4 

memory T cells were generally positively correlated with the selected species in tumor 

samples, however, the correlations changed to negative in adjacent normal tissues.  

Similarly, we found that T regulatory, CD4 T, T helper2, iDC, and monocytes had different 

correlation patterns in tumor (positive) and normal (negative) samples.  A group of microbial 

species such as B. helcogenes, L. bacterium, P. cangingivalis, S. sputigena, and E. 

harbinense have shown similar trends of correlations with a subset of immune cells (DC, NK, 
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and other innate immune cells), indicating that there were some microbe-microbe 

interactions between them. 

 

Comparison of CRC versus matched normal microbiomes 

To determine the differences between matched normal and colon tissue microbiomes, we 

used the IMS3 and TCGA tumors.  These two sample sets had sufficiently large numbers of 

matched normal tumor pairs to perform statistically meaningful differential analysis.  We 

compared and identified microbial compositions between tumor and adjacent normal tissues 

at different taxonomic levels (phylum/genus/species). 

 

Variations in the microbial phyla, genera, and species relative abundances were observed 

between tumor and normal groups, respectively (Figure 5).  More specifically, at the level of 

the phylum, increased proportion of Fusobacteria and virus (Figure 5a, adjusted p < 0.01) 

as well as depletion of Bacteroidetes (adjusted p < 0.01) (Figure 5a) were detected in 

tumors.  For example, the average percentage of the viral constituents among the total 

tumor microbiota was 30.70% compared to 11.43% in the adjacent normal tissues.  The 

relative abundances of Bacteroidetes (38.29% vs 22.56%) in normal tissue was detected at 

a higher percentage than in the tumor tissues (Figure 5a).  Significant differences in the 

abundances of three genera were observed between tumor and adjacent normal tissues 

(Figure 5b).  These genera were all under the above-mentioned phyla such as Fusobacteria 

and Bacteroidetes, which followed the same trend with the fold changes we observed at the 

phylum level. 

 

A total of 13 microbial species were significantly differentiated between the tumor and 

normal groups with an adjusted p< 0.05 (Figure 5c, Supplemental Table 7) in IMS3 cohort.  

For example, high abundance of F. nucleatum and Pasteurella multocida were identified 
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among the tumors compared to matched normal tissue as noted by fold changes greater 

than 1 (Supplemental Table 7).  The remaining 11 species were all decreased in tumor.  

For instance, six members within the order Chlostridales, namely, three Lachnospiraceae 

and three Ruminococcaceae were depleted in tumors.  Lachnospiraceae are generally 

beneficial microorganisms that work to fight off colon cancer by producing butyric acid [41].  

Faecalibacterium prausnitzii from the family of Ruminococcaceae was notable as one of the 

most prominent commensal bacteria in the human gut.  The remaining five species that were 

differentially lower in their tumor presence included Collinsella aerofaciens, and four 

members within the order Bacteroidales (three Bacteroides and one Parabacteroides 

genera).  The overall diversity of the microbial community significantly decreased in tumors 

compared to the matched normal tissue at the species level (Figure 5f).  However, the 

microbial diversity in the tumors relative to their matched normal tissue was not significantly 

different at the phylum and genus levels (Figure 5d-e). 

 

From the TCGA dataset, we obtained 129 differential enriched/depleted microbial species 

with adjusted-p less than 0.05 in CRC (Supplemental Table 8).  Among them, 7 species (F. 

nucleatum, Faecalibacterium prausnitzii, Fusobacterium plautii, Ruthenibacterium 

lactatiformans, Lachnospiraceae bacterium, Lachnospiraceae bacterium Choco86, and 

Bacteroids vulgatus) overlapped with the 13 species we identified from the IMS3 cohort.  F. 

nucleatum was found to be enriched in the tumor tissues in both the TCGA and IMS3 

datasets, whereas the remaining 6 species were all depleted in tumors. 

 

A web-based CRC Microbiome Explorer Interface 

To enable access to the study’s results, we created an interactive database entitled the CRC 

Microbiome Explorer (https://crc-microbiome.stanford.edu/).  The CRC Microbiome Explorer 

enables the user to query the database by “Study” or “Patient”.  The “Study” query displays 

an overview bar plot of the top 12 microbial phyla across all normal (if available) and tumor 
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samples in the queried study.  Additionally, users can view a bar plot that displays the 

microbiome composition of each individual patient in the study.  Alternatively, the user can 

select a specific patient to submit for a “Patient” query that generates a Sankey plot 

displaying the top 10 microbial genii in each patient sample.  The patient-level microbial 

abundance data is also available as a searchable and sortable table.  Kraken2 output files 

from each study are available for download as tar archived files from the “Data Download” 

tab. 

 

DISCUSSION 

The human microbiome is associated with human health, and dysbiosis can lead to a variety 

of disease such as colon cancer [42].  The colon is the site of one of the most diverse human 

microbiomes [3, 43].  CRC is a heterogeneous malignancy with distinct molecular features 

and clinical outcomes among patients.  Besides genetic alterations, the gut microbiome may 

play a role in CRC initiation and progression [10, 12, 44, 45].  Most studies on CRC 

microbiota so far are conducted on fecal samples, which are obtained through non-invasive 

methods and are widely available compared to tissue samples.  When considering the 

examination of the fecal versus mucosa-associated microbiomes, the analysis of tissues is 

more directly related to the microbiota contributions to the cellular physiopathology of CRC 

[14].  Thus, studying the microbiome in direct contact with the CRC’s microenvironment is 

important for revealing potential interactions and relationships.  Moreover, microorganisms in 

the gut microbiota interact which changes the representation of any given species.  In 

addition, it is estimated that more than 60–80% of the microbes are nearly impossible to 

culture using conventional microbiology techniques [14].  Thus, culture-independent analysis 

using high-throughput sequencing provides an opportunity to identify species that otherwise 

would be missed.  Overall, we conducted this NGS-based microbial study including a series 

of different CRC tissue cohorts to identify tumor specific microbial profiles for future clinical 

use.  We also investigated infiltrated immune and stroma components in the TME as the 
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phenotype of interest to link them with the marker microbial species we identified.  Our 

results are available at a genomic web resource for the CRC consensus microbiome 

(https://crc-microbiome.stanford.edu). 

 

Tumor-promoting effects of the microbiome in CRC occurs through a dysbiosis mechanism, 

rather than by infections with specific pathogens [8].  This is different from the role of 

Helicobacter pylori in the pathogenesis of gastric carcinoma [46], where bacteria is widely 

recognized as a microbial carcinogen and the most important known risk factor for GC.  

Through our analysis, we found that CRC patients are characterized by the enrichment of a 

set of microbes which can have pathogenic effects in some circumstances as well as 

depletion of health-related microorganisms.  For example, we identified 13 differentially 

enriched/depleted microbes using 162 paired tumor and normal tissues samples.  Among 

them, F. nucleatum has been detected as a predominant species in tumors, which match 

well with previous studies.  Several members of Clostridia possess the properties of 

fermenting diverse plant polysaccharides, which are beneficial to human health, were found 

to be depleted in CRC tissues. 

 

We defined a consensus CRC microbiota by searching the most prevalent microbial species 

across several different cohorts, which can be a valuable resource for future studies. 

Importantly, this set of microbes are present regardless of the patients’ origins over a diverse 

range of geographic locations and ethnicities.  This consensus represents species that may 

interact with the cellular tumor microenvironment of CRC.  As an additional evaluation of the 

quality of this consensus microbiome, we determined if these species had been previously 

reported in in the literature as component species of the normal colon microbiome. 
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The connection between microbiome and CRC is likely to be bidirectional: microbiome 

changes may happen because of CRC development but may also contribute to CRC 

progression [47].  Integration information across datasets provided key insights into the gut 

microbiota of CRC patients.  Humans have a long history of using microbes in daily life, 

research, and other beneficial capacities. For example, yeasts have been used for 

thousands of years in the production of food and beverage for human use. In scientific 

research, Escherichia coli and yeasts serve as important model organisms especially in 

biotechnology and molecular biology for decades. Furthermore, microbes have been used in 

industrial processes such as waste water treatment, and industrial chemicals/enzymes 

production. More recently, antimicrobial therapies have been used for patients who are 

carrying harmful species, and probiotic therapies for patients who are suffering from a lack of 

beneficial microbes.  Development of novel microbiome-related diagnostic tools and 

therapeutic advances may become routine in the near future. 

 

In conclusion, we identified tumor-specific bacteria patterns and signatures, which might 

serve as biomarkers for the prognosis of CRC. Our future works include identified prognostic 

microbial signatures across various cancer types, and translating the microbiome biomarkers 

to the clinic. 

 

AVAILABILITY 

All of our results are available from the following URL: (https://crc-microbiome.stanford.edu).  

Sequence data is available at the TCGA COAD study from the NCI’s Genomic Data 

Commons website: https://portal.gdc.cancer.gov/projects.  Additional data sets were 

available from the NIH’s GEO website from the following studies and their GEO identifiers 

(GSE107422, GSE146889, GSE50760, GSE95132, GSE104836, GSE137327).  The scripts 

used in this study are available in an online repository (https://github.com/sgtc-stanford/crc-

microbiome). 
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TABLE 1. RNA-Seq datasets included in the study. 

Study Sequencing 
Platform Sample Origins Sample 

Type 
Sample 

Size 
Species 

Identified 

IMS3 Illumina Western United 
States 

Tumor 
(N=924) 

162 731 

TCGA Illumina Multiple countries 564 4187 

GSE107422 Illumina South Korea 109 744 

GSE146889 Illumina Midwest United 
States 42 1293 

GSE50760 Illumina South Korea 18 951 

GSE95132 Illumina Eastern United 
States 10 1321 

GSE104836 Illumina China 10 1729 

GSE137327 BGISEQ Eastern United 
States 9 3378 

IMS3 Illumina Western United 
States 

Matched 
normal 
colon 

(N=298) 

162 635 

TCGA Illumina Multiple countries 51 3763 

GSE146889 Illumina Midwest United 
States 38 1412 

GSE50760 Illumina South Korea 18 883 

GSE95132 Illumina Eastern United 
States 10 1395 

GSE104836 Illumina China 10 1673 

GSE137327 BGISEQ Eastern United 
States 9 3305 
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FIGURE LEGENDS 

Figure 1. Pipeline for microbiome analysis using RNA-Seq data and analysis. 

(a) RNA-Seq data were processed and mapped to the Human genome.  Mapped data was 

employed to do immune cell infiltration profiling.  Unmapped reads were quality controlled 

and considered as microbial sequences, and used as the input to do taxonomy classification. 

The downstream steps included in the pipeline are microbial abundance, differential analysis 

and microbe-trait correlation analysis.  (b) A heatmap representing the phyla determined 

among the eight different data sets.  The phyla of the colorectal tumor and normal 

microbiome’s representation is shown via a relative abundance percentage each phyla 

across each study.  Red is indicative of a higher fraction and green indicates a lower 

fraction. 

 

Figure 2. CRC microbial composition varies in different populations. 

The top 12 most enriched phyla identified from each cohort: TCGA (a), GSE146889 (b), 

GSE50760 (c), GSE95132 (d), GSE104836 (e), GSE137327 (f), and GSE107422 (g). The 

shared most abundant 7 phyla relative abundance plot (h). In the heatmap, columns 

correspond to microbes, and rows to different dataset. Relative abundances were 

represented by different colors, red means higher values, and green, lower ones. 

 

Figure 3. Colorectal cancer’s consensus microbial species. 

Balloon plot to summarize and compare the taxa distribution for the 114 species at the 

phylum (x-axis) and class (y-axis) levels, where the area and color of the dots were 

proportional to their numerical value (Freq) (a). The correlation plots (b, e) of the eight CRC 

cohorts. Red represent positive correlation, and blue negative correlations. (b) was a 

correlogram, where the area and color of the dots were proportional to their correlation 

coefficients. (e) was a correlation heatmap. (b) and (e) share the same color legend. (c) The 
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PCA-based on Bray-Curtis dissimilarity was used to estimate the beta diversity of the 

cohorts.  (d) A correlation heatmap of the 114 species with stroma, immune, and TME 

scores derived from the same tissue.  The rows are specific microbe species found in our 

colorectal cancer consensus microbiome.  The columns are labelled with the cell type 

summaries derived from the RNA-seq data. 

 

Figure 4. Selected microbial species correlate with immune cells. 

Heatmaps show the correlation patterns between microbes and immune cells in the tumor 

microenvironment that include (a), and normal samples (b).  In the heatmaps, columns 

correspond to cell types, and rows to microbes.  Spearman correlation values were 

represented by different colors, red means higher correlations, and green, lower ones. 

 

Figure 5. Tumor microbial composition is different from that of adjacent normal. 

The top 12 most abundant phyla (a) and genera (b) distribution plots for tumor and adjacent 

normal. Differentially enriched/depleted microbial species between tumor and adjacent 

normal (c), x-axis: log 2 fold changes, y-axis: microbial species names, and colors labeled 

their phylum levels. Comparison of Alpha diversity (Shannon index) between tumor and 

normal at the phylum (d), genus (e), and species (f) levels. 
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Firmicutes Proteobacteria Actinobacteria Unclassified Bacteroidetes Fusobacteria Deinococcus6
Thermus

IMS3 Western+United+
States

162 731 20.634 22.197 24.816 15.815 12.301 1.296 0.379

TCGA Multiple+
countries

564 4187 27.637 37.837 15.243 10.088 5.756 2.017 0.313

GSE107422 South+Korea 109 744 45.119 8.575 5.265 20.878 8.450 7.264 0.041

GSE146889 Midwest+United+
States

42 1293 15.295 11.346 23.280 38.396 2.992 1.269 6.952

GSE50760 South+Korea 18 951 44.459 11.096 4.362 16.228 10.117 12.881 0.168

GSE95132 Eastern+United+
States

10 1321 28.256 26.690 11.170 4.467 20.760 2.831 0.776

GSE104836 China 10 1729 42.017 8.311 3.232 0.310 28.992 15.628 0.059

GSE137327 Eastern+United+
States

9 3378 12.611 53.120 22.936 5.837 2.646 0.506 0.688

Average 29.504 22.397 13.788 14.002 11.502 5.462 1.172

IMS3 Western+United+
States

162 653 23.483 17.699 23.740 6.804 23.338 0.693 0.384

TCGA Multiple+
countries

51 3763 36.783 25.701 10.412 17.879 6.801 1.037 0.372

GSE146889 Midwest+United+
States

38 1412 21.433 7.978 27.326 26.309 4.694 0.226 11.077

GSE50760 South+Korea 18 883 51.106 14.032 3.155 18.213 9.469 3.260 0.187

GSE95132 Eastern+United+
States

10 1395 23.746 28.996 14.998 3.061 21.618 0.803 0.393

GSE104836 China 10 1673 40.151 6.358 6.654 0.275 38.571 6.580 0.146

GSE137327 Eastern+United+
States

9 3305 14.918 47.798 24.087 7.466 2.985 0.495 0.484

Average 30.231 21.223 15.767 11.429 15.354 1.870 1.863
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