
3D-Scaffold: Deep Learning Framework to

Generate 3D Coordinates of Drug-like Molecules

with Desired Scaffolds

Rajendra P. Joshi,† Niklas W. A. Gebauer,‡,¶,§ Mridula Bontha,† Mercedeh

Khazaieli,† Rhema M. James,† Ben Brown,‖ and Neeraj Kumar∗,†

†Pacific Northwest National Laboratory, Richland, WA 99352, United States

‡Machine Learning Group, Technische Universität Berlin, 10587 Berlin, Germany

¶BASLEARN – TU Berlin/BASF Joint Lab for Machine Learning, Technische Universität

Berlin, 10587 Berlin, Germany

§Berlin Institute for the Foundations of Learning and Data, 10587 Berlin, Germany

‖Environmental Genomics & Systems Biology, Lawrence Berkeley National Laboratory,

Berkley, CA 94710

E-mail: neeraj.kumar@pnnl.gov

Abstract

The prerequisite of therapeutic drug design is to identify novel molecules with

desired biophysical and biochemical properties. Deep generative models have demon-

strated their ability to find such molecules by exploring a huge chemical space efficiently.

An effective way to obtain molecules with desired target properties is the preservation

of critical scaffolds in the generation process. To this end, we propose a domain aware

generative framework called 3D-Scaffold that takes 3D coordinates of the desired scaf-

fold as an input and generates 3D coordinates of novel therapeutic candidates as an
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output while always preserving the desired scaffolds in generated structures. We show

that our framework generates predominantly valid, unique, novel, and experimentally

synthesizable molecules that have drug-like properties similar to the molecules in the

training set. Using domain specific datasets, we generate covalent and non-covalent an-

tiviral inhibitors. To measure the success of our framework in generating therapeutic

candidates, generated structures were subjected to high throughput virtual screening

via docking simulations, which shows favorable interaction against SARS-CoV-2 main

protease and non-structural protein endoribonuclease (NSP15) targets. Most impor-

tantly, our model performs well with relatively small volumes of training data and

generalizes to new scaffolds, making it applicable to other domains.

Introduction

The COVID-19 pandemic, caused by SARS-CoV-2, posed a serious challenge to the public

health worldwide.1 With the aim to address such challenges in developing lead candidates

against different diseases, it is necessary to have a disease aware generative model that

quickly generates effective therapeutics from the unknown and massive chemical space and

could be tested with cell based assay screening.

The discovery and development of a new therapeutic is a long, expensive, and risky pro-

cess that sometime takes many years before clinical approval. One of the challenges in drug

design is to find small molecules with desired functionalities.2 This is a daunting task with

conventional methods, which has slowed down the discovery of high impact molecules for di-

verse applications.3 The huge chemical space (1060) of molecules still remains unexplored.4–6

Recently, with the rise of deep learning models, several approaches to efficiently explore

the astronomically large chemical space have been proposed. The majority of existing ap-

proaches focus mainly on de-novo drug design using variational auto-encoders, generative

adversarial networks, or reinforcement learning generating molecules mainly in the form of

SMILES strings.7–18
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An alternate and robust way to find drug-like molecules is by generating molecules with

desired functional groups, core structures, or scaffolds.19,20 Such fragments play an impor-

tant role in determining the functionalities of generated molecules, thus making tuning of

properties more flexible. Moreover, molecules with certain scaffolds are likely to have desired

interactions with a given protein target as a drug. Scaffold-based approaches allow to in-

corporate such prior knowledge in the generation process in order to increase the chances of

obtaining molecules with desired properties compared to simply generating molecules from

scratch. Several approaches have been proposed recently to generate therapeutic candidates

building on the core structures.20–23 Some of these methods are constrained to certain def-

initions of scaffolds (e.g. Murcko24 scaffolds) or do not guarantee that the desired scaffold

is always preserved during molecule generation while others do not generalize well for new

scaffolds.21,23 To the best of our knowledge, none of the existing approaches focuses on gen-

erating 3D coordinates of drug-like molecules that can be directly tested against the protein

target via computational and experimental screening. However, 3D coordinates of generated

molecules are required for physics-based simulations as well as for robust graph-based pre-

dictive models for modeling the properties. Moreover, these molecules can be directly used

for high throughput virtual screening through structure based docking against the proteins

to determine their affinity and efficacy as drugs against a particular disease. Consequently,

we believe that 3D molecule generation will accelerate the hit identification and lead opti-

mization for drug discovery and development.

In this work, we propose a deep learning framework called 3D-Scaffold that can generate

3D coordinates of therapeutic candidates given a desired scaffold. It is guaranteed that

100% of the generated molecules contain the desired scaffold and the model generalizes well

to previously unknown scaffolds not included in the training data. Our current framework

is different from existing scaffold-based approaches for multiple reasons: (I) In contrast

to existing approaches, which generate SMILES strings or molecular graphs, our model

generates 3D coordinates of the molecules with a given core structure; (II) It works equally
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well for any type of scaffold definition including BM, cyclic skeletons, or side chains provided

SMILES strings exist for the desired scaffolds; (III) Our model is transferable to generate

molecules with novel scaffolds where the model is not trained on; (IV) Without constraining

the model directly on desired properties, our model can generate molecules with properties

similar to the training set.

A few issues arise when constructing physics informed machine learning approaches based

on 3D nuclear coordinates in contrast to more abstract molecule representations such as

strings or molecular graphs.25 The coordinate representation is not invariant to rotation,

translation, and indexing of atoms while most properties of interest (e.g. the potential en-

ergy or the logP score) are invariant to these transformations or change equivariantly (e.g.

atomic forces rotate and translate with the coordinates). The G-SchNet26 neural network

architecture used in our 3D-Scaffold framework systematically obeys these constraints by

design. This allow our model to extract features from the coordinates that capture local

symmetries and are invariant to rotation, translation, and indexing of the input coordinates.

Furthermore, the distributions it predicts for atom positions equivariantly rotate and trans-

late with respect to the coordinates. Most importantly, we show that our framework designs

reasonable molecules even with small training datasets due to the robust architecture of the

underlying model. By training it on limited, already known and drug-like molecules, we

aim to generate more and previously unseen novel candidates with desired scaffolds that

can be synthesized, which ultimately will contribute towards accelerating the discovery of

therapeutic drugs.

In this contribution, we applied our 3D-Scaffold for de-novo discovery of molecules specif-

ically tailored to bind with given SARS-Cov-2 diseases targets. Our methodology is exem-

plified by the task of designing antiviral candidates to target SARS-CoV-2 related proteins.

Using carefully curated covalent and non-covalent antiviral datasets, we were able to con-

strain the generation space for domain aware deep generative framework to generate novel

covalent and non-covalent inhibitor candidates. Properties of generated molecules are com-
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pared with the molecules in the training set. Generated 3D-coordinates of molecules were

further examined for their efficacy as antiviral inhibitors against SARS-COV-2 main protease

(Mpro) and a SARS-CoV-2 non-structural protein endoribonuclease (NSP15).

Methods

3D-Scaffold framework

The 3D-Scaffold framework is based on an autoregressive, generative deep neural network

named G-SchNet,26,27 which builds molecular structures from scratch by iteratively placing

one atom after another in 3D space, respecting global and local symmetries by design. The

neural network uses SchNet for feature extraction,28–31 a state-of-the-art predictive model

that can predict several quantum mechanical properties of small molecules with benchmark

chemical accuracy. In 3D-Scaffold, instead of starting from scratch, molecules are build

around a desired scaffold.

From a computational perspective, the neural network used in our framework for de-

novo therapeutic candidate design is broken down into two major blocks: feature learning

and atom placement as shown in Figure 1. In the feature learning block, embedding and

interaction layers are used to extract and update rotationally and translationally invariant

atom-wise features that capture the chemical environment of an unfinished molecule. Here,

the neural network utilizes continuous-filter convolution layers as a means to learn robust

representations of molecules starting only from positions of atoms and corresponding nuclear

charges. In the atom placement block, the extracted features are used to predict distributions

for the type of next atom and its 3D coordinates, where the latter distribution is constructed

from predictions of pairwise distances between the next atom and all preceding atoms. In

order to do the actual placement of the next atom in 3D space, a distribution on a small

grid with candidate positions focused on one of the preceding atoms is constructed from the
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Figure 1: 3D-Scaffold framework used as generative model to produce drug-like molecules
with desired functionality. The bottom panel shows the scaffold-based molecular generation
scheme, where origin token, focus token, and stop type aid the generation of the molecules
from scaffolds.
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predicted pairwise distances. The whole procedure is repeated successively in order to build

a complete molecule with desired scaffold: after the type and position of the next atom has

been sampled from the predicted distributions, new atom-wise features incorporating the

added atom are extracted in the feature learning block and then used to place the following

atom with the atom placement block.

The generation process is aided by two auxiliary tokens with unique, artificial types,

namely the origin and focus tokens. At each generation step, one of the already placed

atoms is uniformly randomly chosen as focus token. The origin token, in contrast, stays fixed

throughout the whole generation procedure. In previous work with G-SchNet by Gebauer

et al. 26 , the origin token marks the center of mass of molecules. In our 3D-Scaffold frame-

work, however, we instead use it to mark the center of mass of the scaffold that is the starting

point of the generation procedure. At each step, the unplaced neighbour of the focus token

that is closest to the origin token is supposed to be sampled. This means that while the

structure grows around the center of mass of the resulting molecule in the previous G-SchNet

model, in our current 3D-Scaffold framework it grows from the center of mass of the desired

scaffold given to the model as a starting point. If the currently focused atom has no neigh-

bors left to place, the model should predict the stop type instead of a proper atom type and

in this way mark the focused atom as finished. Atoms marked as finished cannot be chosen

as focus anymore and after all atoms have been marked as finished, the generation process

terminates. The resulting schemes for training of the model and generation of molecules are

summarized as pseudo code in Table 1.

The model is trained end-to-end with backpropagation using the ground truth types and

pairwise distances of atoms in training data molecules split into sequential atom placement

steps as described in the pseudo code. At each training step, the model predicts the type

of the next atom and its distances to all preceding atoms. The distributions predicted by

the model are discrete: the type distribution contains a probability value for each atom

type occurring in the training dataset and the stop type and the distance distributions cover
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distances between 0 Å and 15 Å in 300 equally spaced bins. At any step, let Znext be the

ground truth type of the next atom and p̂Znext
type the probability that the model assigns to

that type at the current step. Then, we use negative log-likelihood as the loss for the type

prediction:

`type = − log
(
p̂Znext
type

)
(1)

For the loss on distance predictions, we use the cross-entropy between true and predicted

distances:

`dists =
N∑
j=1

∑
b∈B

qbj log
(
p̂bj
)

(2)

with Gaussian expanded ground truth distances

qbj =
e−γ(||rnext−rj ||2−b)2∑

b′∈B
e−γ(||rnext−rj ||2−b′)2

. (3)

Here rnext is the ground truth position of the next atom, rj is the position of an already placed

atom, N is the number of preceding atoms, γ determines the width of the expansions, B are

the 300 binned distances between 0 Å and 15 Å, and p̂bj is the probability that the model

assigns for the distance between rj and rnext to fall into distance bin b ∈ B at the current

step. In steps where the ground truth type is the stop type, the loss on distance predictions

is set to zero as no distances are predicted. Descriptions about the hyper-parameters used

in this work is provided in SI.

Training data

Therapeutic candidates interact with target proteins either by forming a covalent bond or

non-covalently with non bonding interactions. Depending on the kind of interaction, they

are known as covalent or non-covalent drug candidates. The focus of our study is to develop
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Table 1: Pseudo code for training and generation phases in 3D-Scaffold framework.

Training phase
Input: M, Iscaff . training molecule, indices of the atoms in the desired scaffold
origin ← get center of mass(M, Iscaff ) . set position of origin token to center of mass of atoms in the scaffold
Mpart ← {origin, focus} . initialize partial molecule with the two auxiliary tokens
A ← {origin} . initialize set of available atoms with origin token
while A 6= {φ} . while set of available atoms is not empty, i.e. not all atoms marked as finished

focus ← random(A) . randomly select any atom available as focus
neighbors ← get unplaced neighbors(focus, M, Mpart) . get all neighbors of focus not in Mpart

if neighbors = {φ} then . no neighbors left for the current focus
next atom ← stop . predict stop type to mark current focus as finished
A ← A \ {focus} . remove focus from the set of available atoms, i.e. mark it as finished

else
next atom ← get closest atom(origin, neighbors) . find atom in neighbors closest to origin
A ← A ∪ {next atom} . add next atom to set of available atoms

model.predict and backprop(Mpart, next atom) . predict distributions for type and distances and update model weights
if next atom 6= stop then . if the next atom is not the stop type

Mpart ← Mpart ∪ {next atom} . add next atom to the partial molecule
if focus = origin then . in the very first step (focus is on the origin)

A ← A \ {origin} . remove origin from the set of available atoms to only focus proper atoms afterwards
Generation phase
Input: model, max atoms, Ascaff . trained model, maximum number of atoms, atoms in the scaffold
origin ← get center of mass(Ascaff ) . set position of origin token to center of mass of atoms in the scaffold
M ← {origin, focus, Ascaff} . initialize molecule with auxiliary tokens and the atoms in the scaffold
A ← {Ascaff} . initialize set of available atoms with atoms in the scaffold
t ← 2 . number of tokens (origin and focus)
N ← |Ascaff | . number of atoms in the scaffold
for i = t+N + 1 to t+ max atoms do . atom placement loop

while A 6= {φ} . type prediction loop
focus ← random(A) . randomly select an atom to be focused from set of available atoms
next type ← sample(model.predict type(M)) . predict and sample from distribution over type of the next atom
if next type = stop then . if stop type was sampled

A ← A \ {focus} . remove current focus from A and repeat type prediction loop
else . if a proper atom type was sampled

break . proceed to the actual atom placement
if A = {φ} then . no atoms in set of available atoms, i.e. all are marked as finished

return M \ {origin, focus} . return the finished molecule without auxiliary tokens
p(dij) = model.predict dists(M, next type) ∀j < i . predict distributions over pairwise distances dij to preceding atoms

p(ri = r) = 1
α

∏i−1
j=1 p(dij = ||r− rj||2) . compute probabilities of grid positions r from distance probabilities

next position ← sample(p(ri)) . sample position of next atom from computed 3d grid distribution
M ← M ∪ {(next type, next position)} . Add sampled atom to molecule
A ← A ∪ {(next type, next position)} . Add sampled atom to set of available atoms

del M . max atoms atoms are placed but not all of them marked as finished, thus discard the molecule
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a general framework capable of producing both covalent and non-covalent novel therapeutic

candidates with specific scaffolds, so we performed experiments for two different datasets.

First, we performed experiments on covalent inhibitors data (hereafter called covalent

dataset) taken from multiple sources.32,33 For the covalent dataset, we used ∼4000 candi-

dates from a database of FDA approved drugs32 and cysteine molecules from the enamine

database33 with 6 different scaffolds namely acrylamides, chloroamides, nitriles, disulfides,

maleimides, and pyrodines.32 These functional groups react with the cysteine residue of the

target protein by forming covalent bonds. The distribution of each scaffold in the data set

is provided in the pie chart in Figure 2. Nearly 95 % of the training set is dominated by 3

scaffolds. We later show that, irrespective of the fraction of data for each scaffold, our model

generalize equally well for all of them. SMILES strings of the molecules are extracted from

the respective databases. RDkit34 with MMFF9435 forcefield was used to convert SMILES

into the 3D coordinates required as an input for our model.

Figure 2: (a) Distribution of covalent dataset based on scaffolds. (b) Filtering criteron used
to generate non-covalent training dataset. See SI for details used for atomtype and warhead
filter.

In addition, for non-covalent inhibitor design we curated and filtered a large dataset of

synthesizable molecules from BindingDB,36 MCULE37 and Enamine33 databases to create
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the non-covalent dataset. We used different filtering criterons as shown in Figure 2 for

creating the dataset. Our non-covalent inhibitor design model is trained with 36k molecules

consisting of 10k unique scaffolds. For the non-covalent dataset, we use Murcko scaffolds24

as a definition of scaffolds, which demonstrates the flexibility of our model not only in

allowing different scaffold definitions, but also for generating non-covalent inhibitors. We

used RDkit to obtain Murcko scaffolds from SMILES strings of molecules in the training

set. For generation with this dataset, we randomly select 25 out of the 10k scaffolds and

generate 1000 molecules for each of them, providing ample generated molecules to assess the

performance of the model.

Results and Discussion

Despite tremendous effort, COVID-19 lacks effective therapeutics. As of now, no antiviral

drugs were developed against the closely related coronavirus, SARS-CoV-1 or MERS-CoV,

regardless of previous zoonotic outbreaks.38 To identify starting points for such therapeutics,

our focus is to develop a domain informed ML framework to generate covalent electrophiles

and non-covalent inhibitor candidates against the SARS-CoV-2 main protease (Mpro) and

SARS-CoV-2 non-structural protein endoribonuclease (NSP15), two main viral proteases

essential for viral replication. Most of the therapeutic candidates for SARS-CoV-2 have

been taken from existing databases to screen against the target proteins. However, it is

challenging to generate novel yet target specific molecules knowing the functionality and

scaffold that can lead to high potency and efficacy.

Covalent antiviral inhibitor design for Mpro

Using the covalent antiviral dataset, we first trained the model to generate molecules with

6 different scaffolds that are common electrophilic warheads for different drug applications.

For each of the scaffolds, we generated 2000 molecules and inspected them for their validity,
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uniqueness and novelty. To calculate the percentage of valid, unique, and novel molecules,

we use

Validity =
Number of valid molecules

Number of generated molecules
,

Unique =
Number of unique molecules

Number of valid molecules
,

Novelty =
Number of generated molecules not in training set

Number of unique and valid generated molecules
.

The validity of generated molecules is examined by converting generated 3D coordinates

into canonical SMILES strings using the xyz2mol script from the Jensen group,39,40 which

relies on Rdkit.34 The conversion could also be done using only Rdkit or other open source

tools like Open Babel but they are less reliable when determining bond orders during con-

version. We then used the sanitize functionality of Rdkit to examine the validity of thus

obtained SMILES strings. Alternatively, the validity of generated molecules can be measured

by performing physics based simulations such as density functional theory. But due to enor-

mous computational cost required to perform such calculations on thousands of generated

molecules, we resort to empirical approaches for the same. To examine the novelty of gen-

erated molecules, we compared the Rdkit topological fingerprint similarity of the molecules

in training set and generated set. The uniqueness metric is determined similarly by using

molecular fingerprints. In addition, to further authenticates the performance of our model in

generating valid and synthesizable molecules, we also query the MCULE database37 for gen-

erated molecules to check how many already exist in the MCULE dataset. The performance

of our model in terms of these metrics is listed in Table 2.

The performance of our model is similar to existing scaffold-based generative models in

12

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 3, 2021. ; https://doi.org/10.1101/2021.06.02.446845doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.02.446845
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 2: Table showing the statistics of valid, unique, and novel molecules generated for
different scaffolds. The number of generated molecules that exist in MCULE database (not
in the training set) is also listed in column ’Known’. For the model trained on the non-
covalent dataset, mean values of validity, uniqueness and novelty for 25 different scaffolds
is provided. For comparison, performances of recent methods from the literature are also
provided. However, note that literature results stem from experiments with different datasets
than the ones used in this work.

Validity (%) Uniqueness (%) Novelty (%) Known

Scaffolds Covalent dataset

Acrylamides 79 96 99 59
Chloroamides 83 93 99 34
Pyrodines 84 83 100 71
Maleamides 86 85 99 73
Nitriles 81 97 100 59
Disulphides 75 98 100 1
Piperazinea 80 92 100 52

Non-covalent dataset
90 73 100

Literature
G-SchNet26 77 92 88 −
Lim et al.21 99 85 99 −
DeepScaffold23 99 69 − −
GraphVAE41 56 76 62 −
MolGAN41 98 10 94 −
a Novel scaffold
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terms of generating valid, unique and novel molecules. For all the scaffolds in the covalent

dataset, our model performs similarly well, with on average 92% uniqueness among the

generated molecules. 81% of generated molecules are valid and ∼100% are novel. These

metrics remain similar even for the molecules generated using a novel scaffold (piperazine)

as starting point, thus demonstrating the transferrability of our model to scaffolds not in

the training set. Compared to the existing generative models in the literature, our model

shows superior performance in generating unique and novel molecules, while the percentage

of valid molecules generated is in general slightly lower than for other generative models.

We however note that these models were trained on different datasets, making a direct

comparison of the reported numbers difficult. Moreover, the performance of our model is

especially promising when one takes into account the relatively small amount of training

data used (4000) compared to cited models from the literature which were trained on larger

training sets. Training our model on larger training sets might further improve the reported

statistics. In addition, compared to ours, models from the literature were trained to generate

relatively small molecules with the QM9 dataset. When querying the MCULE database,

we found that some of the molecules generated for each scaffold are already known and

available in the database, demonstrating the success of our model in generating synthesizable

molecules. This also holds for the molecules generated with the novel scaffold piperazines.

An important goal of our work is to generate novel molecules with drug-like properties

while retaining desired scaffolds. To this end, we do not directly condition molecule gen-

eration on the desired properties but instead constrain it to the generation of molecules

with desired scaffolds. We expect that this will indirectly constrain the properties, as well.

The properties of interest are synthetic accessibility (SA) score, quantitative estimation of

drug-likeliness (QED), and the partition coefficient (logP). The SA score measures the syn-

thesizability of generated molecules and has values in the range 0-10, where the lower end

suggests increased accessibility. QED is a useful measure for quantifying and ranking the

drug-likeness of a compound. The values range from 0 for unfavorable to 1 for favorable
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molecules. The partition coefficient, logP, estimates the lipophilicity or hydrophilicity of a

compound. It measures the physical nature of a compound and its permeability and ability

to reach the target in the body. A positive logP value indicates the compound is lipophilic

and a negative logP value indicates a hydrophilic compound.

Table 3: Statistics of molecules from the training and generated data set, respectively for
each scaffold. The mean and standard deviation for each property in each set are provided.

Training Set Generated Set
SA LogP QED SA LogP QED

Chloroamides
Mean 2.55 2.30 0.84 4.59 1.73 0.65
Std 0.57 1.00 0.15 1.31 1.97 0.23

Acrylamides
Mean 2.65 2.40 0.76 4.26 2.00 0.60
Std 0.55 1.33 0.21 1.42 1.99 0.25

Disulphides
Mean 2.94 2.64 0.88 5.60 3.15 0.52
Std 0.89 0.82 0.22 0.95 2.15 0.26

Pyrodines
Mean 2.90 1.62 0.70 4.62 0.80 0.52
Std 0.59 1.47 0.25 1.55 1.71 0.28

Maleamides
Mean 2.30 1.32 0.66 4.36 0.72 0.63
Std 0.27 1.02 0.17 1.40 1.62 0.24

Nitriles
Mean 2.40 3.12 0.87 4.47 2.10 0.61
Std 0.40 1.00 0.13 1.28 1.84 0.23

Piperazinea
Mean − − − 4.75 1.09 0.54
Std − − − 1.31 1.86 0.29

a Novel scaffold

We compare the properties of the generated molecules with the ones in the training set

to see whether our model can generate new molecules with properties similar to those of the

molecules in the training set. Ideally, having similar statistics of properties is an indicator

that our model is performing as expected with the constraints imposed upon it. For the

statistical analysis, we report the mean and standard deviation of the SA, LogP, and QED

scores in both the training and the generated sets in Table 3. The mean SA score of both
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generated and training set molecules falls in the lower half of the SA scale 0−10, implying in

general synthesizability of generated molecules. Slight deviation observed between the two

sets can be attributed to the lack of explicit conditioning on target properties. The mean

value of QED for generated molecules is slightly lower (on average by 0.2 units) compared

to molecules from the training set. However, the model also generated molecules with high

QED, i.e. strong drug-likeliness. logP follows similar trends for its mean value among two

sets. We consistently observed relatively large standard deviation for SA, QED and logP in

generated molecules for each scaffolds, reflecting diversity in generated molecules compared

to the well curated training dataset. To further visualize this data, we display the probability

density plots for SA, QED, and logP of the molecules in the training set and the generated

set for each scaffolds in Figure 3. Solid lines mark the distributions of generated molecules

while dashed lines correspond to molecules in the training set. The distributions of generated

molecules with respect to the SA score in Figure 3(a) show that a good fraction of generated

molecules are experimentally synthesizable. Moreover, the distribution of the SA score for

the novel functional group, piperazine (not in training set), is similar to other scaffolds in

the training set, showing the transferability of our model. This also demonstrate the success

of our model in generating experimentally synthesizable molecules, which is a big issue

with most generative models. For the logP metric (see Figure 3(c)), similar distributions are

observed between generated and training molecules. We were able to generate both lipophilic

as well as hydrophilic compounds as indicated by positive and negative logP, respectively,

with the former category being the majority, similar to the molecules in the training set. This

again indicates that our model is generating novel molecules with properties similar to the

training set. From the QED distribution plot (Figure 3(b)), we see that the majority (6̃0%)

of the molecules have a QED score greater than 0.5, with a good chunk of molecules being

close to 1 as evident from the peaks of probability distribution curves around 0.9. Minor

discrepancies between the properties of generated molecules and the training set may be due

to the lack of directly constrained property optimization in our work. Although our model
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generates molecules with desired properties, it would be interesting to see its performance

when explicitly constraining the desired property range. However, this is beyond the scope

of our current work and is kept aside for future work.

Figure 3: Probability density plots of SA score, logP, and QED for molecules in the training
set as well as generated set for each functional group. Solid lines correspond to metrics of
data in the generated set, whereas dashed lines of same color correspond to molecules in the
training set.

We further analyzed the diversity of molecules using heatmaps of the Tanimoto coefficient

between molecules within the training set (Figure 4(a)) and within the generated set (Figure

4(b)). The tanimoto coefficient is a measure of the similarity of molecules. The heatmap

shows that the training set we use is quite diverse as evident by the many green spots (low

similarity). A similar heatmap is observed for the generated set, showing that generated

molecules are quite different from each other, while predominantly maintaining similar prop-

erties (as discussed before). We also note that our model generates diverse molecules in

terms of their size, i.e. the number of atoms, while always preserving the given scaffolds.

To check the transferability of our model to generate valid molecules for functional groups

that are not in training set, we generated 2000 molecules with ”Piperazine” as the starting

building block. Generated molecules are checked against the MCULE databases to see if

any of the generated molecules are already known. We found that nearly 50 of the molecules

generated are available in the MCULE database. This shows the capacity of our model to

generate valid, synthesizable molecules even for novel scaffolds. The distribution plot for

the SA, logP, and QED of the molecules generated for piperazine is included in Figure 3.

It shows that the properties of molecules generated follow similar distributions as for other
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Figure 4: Heatmap showing the fingerpoint similarity between molecules in the training set
(a) and the generated set (b) for the scaffold acrylamide.

functional groups.

We visualize representative generated molecules that we also found in the MCULE

database with corresponding SA score, QED, and logP values along with the corresponding

MCULE ids in Figure 5. Overall, our results show that our model constrained to generating

molecules with desired scaffolds indirectly also successfully constrains the properties. De-

spite the significant variation in the amount of training data for each scaffold, our model

consistently generates valid, unique, novel, and experimentally synthesizable molecules with

desired drug-like properties for each scaffold within and outside of the training set.

Binding affinities of covalent inhibitors against Mpro

Finally, as a proof of concept application for generated molecules, we docked them against

main protease (Mpro). Mpro is the key enzyme of SARS-CoV-2 that gets the maximum

attention because of its ability to trigger viral replication and transcription. Significant

effort has been made since the rapid rise of SARS-CoV-2 worldwide to find therapeutic

candidates/vaccines that have desired activity against its protein. Most of the early efforts

were focused on drug repurposing using already known drug molecules. For future pandemic

events, it is possible that an effective drug molecule for repurposing is not yet known. In

those scenarios, models that generate novel molecules with certain functionalities as proposed
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Figure 5: Sample of generated candidates along with their SA score, QED, logP values, and
corresponding MCULE ids. These candidates are synthesizable and available to order from
MCULE database.

Figure 6: Violin plots showing the distribution of the docking score against the MPro protein
for generated molecules with different scaffolds and training molecules in the covalent dataset.
Larger values imply favorable binding.
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here will be an efficient alternative. First step for such generated molecules is to examine

their efficacy against the target protein using docking simulations. Docking simulations use

empirical approaches to determine the favorable/unfavorable binding of ligands with target

proteins and numerically rank them using a docking score.

For our molecular docking simulations we utilized the AutoDock for Flexible Receptors

(ADFR) package.42 Ligands were covalently bound to Cystine-145 of the target protein

(PDB ID: 6WQF), which is part of a catalytic dyad formed with Hystine-41. We compared

the docking score of generated molecules against the training molecules in the covalent

dataset which is shown in Figure 6. A larger magnitude of the docking score implies higher

favorability for the docking process. We found that generated molecules show similar docking

performance when compared to the molecules in the training covalent dataset as illustrated

in the violin plots and the corresponding mean docking score noted in the labels of the x-

axis. For the majority of scaffolds, including the novel scaffold piperazines and the three

scaffolds that make up 95% of the training data, the generated molecules on average show

higher affinity for docking against the Mpro-target protein than molecules in the covalent

dataset. The only scaffolds that have a smaller mean docking score compared to the training

molecules are maleamides and pyrodines with docking scores of 8.96 and 8.64, respectively.

Non-covalent antiviral inhibitor design for NSP15

With the goal of generating non-covalent inhibitors for SAR-Cov-2 targets, we trained our

model on the non-covalent dataset using Murcko scaffolds. The training data consist of 36k

molecules with 10k unique scaffolds. The performance of our model trained for generating

non-covalent inhibitors is similar (Table 2) to the one for the covalent dataset in terms of

validity and novelty. However, the percentage of unique molecules generated drops to a

mean value of 73 % for about 25 different scaffolds. This may be a direct consequence of

the limited number of molecules (on average 4) for each scaffold in the non-covalent training

set. When generating 1000 molecules for each of the 25 scaffolds, the model repeats some of
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the generated molecules. However, the absolute amount of uniquely generated molecules per

scaffold is still remarkable considering the limited number of training examples per scaffold.

As a part of DOE National Virtual Biotechnology Laboratories (NVBL) therapeutic de-

sign project, we screened millions of compounds in repurposing libraries of drug compound

for activity against nsp1-nsp15 from SARS-CoV-2 followed by experimental validation. In

particular, the coronavirus nonstructural protein NSP15 is highly conserved among coron-

aviruses. It is also a key component for viral replication with no corresponding counterpart in

host cells which makes it an intriguing candidate for drug development. Our recent compu-

tational and experimental results demonstrated that Exebryl-1, a ß-amyloid anti-aggregation

molecule designed for Alzheimer’s disease therapy can bind to NSP15 but it did not have

sufficient anti-viral activity in cell-based assays for immediate drug repurposing efforts.43

This provide us an interesting target to optimize the Exebryl-1 hit based on 3D-Scaffold

framework with better activity and antiviral properties. Our goal is to lead optimization

together with in silico molecular docking calculations onto the crystal structure of NSP15.

As a test case example, we generated non-covalent inhibitors for the SAR-CoV-2 non-

structural protein endoribonuclease (NSP15) target (PDB ID: 6XDH) by optimizing Exebryl-

1 based compounds.43 Exebryl-1 has experimentally been found to be active43 against NSP15

from high-throughput assay screening from drug and lead repurposing libraries. Our goal is to

modify and generate more active compounds against the NSP15 target by building molecules

on top of Murcko scaffolds of the Exebryl-1 molecule. When examining the structure-activity

relationship, some of such generated molecules (see Figure 7) show good binding-activity

against the NSP15 target. Moreover, these molecules are easily synthesizable (low SA scores)

and have desired drug likeliness (large QED values). Generated molecules from our work

that showed high activity against NSP15 from docking and molecular dynamics simulations

are further being investigated by our experimental collaborators.
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Figure 7: Exebryl-1 and representative generated molecules from our 3D-Scaffold framework
with high binding affinity against NSP15 protein-target. For each molecule, we list the
SA score, QED, logP, binding affinity, and fingerprint similarity (labelled sim in figure)
with respect to experimentally known NSP15 inhibitor Exebryl-1. The scaffold used for
optimization is highlighted in red in generated molecules.

Conclusions

In this report, we developed a generative framework that can generate 3D coordinates of

therapeutic candidates with any desired scaffold. The model is trained end-to-end incor-

porating robust atomistic representation learning techniques and generates 3D coordinates

from the learned probability distributions of atom types and the pairwise distances. Due

to starting the sequential atom-by-atom generation scheme of our framework from a given

scaffold, the desired scaffold is 100 % guaranteed in the generated 3D coordinates. We

use covalent and non-covalent antiviral datasets to optimally narrow the search towards

novel compounds with therapeutic significance that are reasonable to design as covalent and

non-covalent inhibitors. We show that our model generates predominantly valid, unique,

and novel molecules that have therapeutic drug-like properties similar to the molecules in

the training set. The success of our framework lies in generating synthesizable molecules

with desired properties without directly constraining on the target properties. Moreover,
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it performs well for relatively small volumes of training data and generalizes equally well

for generating molecules with a new scaffold, which demonstrates the transferability of the

proposed framework.

Our framework offers the advantage that the generated 3D-coordinates of molecules can

be directly used for further simulations such as DFT, MD, or docking calculations in contrast

to SMILES or graph based models where empirical approaches are used to generate 3D

coordinates. As an application, the 3D coordinates of generated molecules from our work

were examined for their interaction against the Mpro and NSP15 targets of SARS-CoV-

2 using docking simulations. Our results show that generated molecules have favorable

interaction against the target protein similar to the molecules in the training set. This holds

true for novel scaffolds as well. Although we used our framework to generate covalent and

non-covalent inhibitors in this work, our model in principle can be used to generates any

kind of molecules with desired scaffolds making it applicable to many domains. We believe

that the robust performance of our model on relatively small data sets and its generalization

on new scaffolds provides an efficient and flexible way of generating new molecules while

simultaneously optimizing the functionalities by constraining the types of scaffolds included.

Further improvement in the performance of the 3D-Scaffold framework may be observed

by generating molecules while also explicitly constraining on the target properties or by

generating molecules with more than one critical scaffold.
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