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Abstract

Synthesis of gene products in bursts of multiple molecular copies is an

important source of gene expression variability. This paper studies large

deviations in a Markovian drift–jump process that combines exponentially

distributed bursts with deterministic degradation. Large deviations occur

as a cumulative effect of many bursts (as in diffusion) or, if the model

includes negative feedback in burst size, in a single big jump. The latter

possibility requires a modification in the WKB solution in the tail region.

The main result of the paper is the construction, via a modified WKB

scheme, of matched asymptotic approximations to the stationary distri-

bution of the drift–jump process. The stationary distribution possesses a

heavier tail than predicted by a routine application of the scheme.

Keywords: stochastic gene expression, bursting, WKB approxima-

tion, large deviations
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1 Introduction

Bursty production of gene products (mRNA or protein molecules) makes an

important contribution to the overall gene expression noise [1–4]. Bursts can

be modelled as instantaneous jumps of a random process. Burst sizes have
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been suggested to follow geometric (in a discrete process) or exponential (in

a continuous process) distributions [5, 6]; we focus on the latter. Production

of gene products is balanced by their degradation and/or dilution. Combining

randomly timed and sized production bursts with deterministic decay leads to

a Markovian drift–jump model of gene expression [7–10]. More fine-grained

models of gene expression are based on a purely discrete [11–14] or a hybrid

discrete–continuous state space [15–18]. The drift–jump model can be derived

from the fine-grained processes using formal limit procedures [19–24].

In its basic formulation, the drift–jump model for gene expression admits

a gamma stationary distribution [25]. The model possesses an explicit sta-

tionary distribution also in the presence of a Hill-type feedback in burst fre-

quency [26]. Such regulation can result from common transcriptional control

mechanisms [27]. In addition to feedback in burst frequency, there is evidence

of feedback mechanisms that act on burst size or protein stability [28–30]. The

explicit stationary solution to the drift–jump model has been extended to the

case of feedback in protein stability [31]. However, in case of feedback in burst

size, an explicit solution is unavailable, save for the special case of Michaelis–

Menten-type response [32].

The near-deterministic regime of frequent and small bursts can be analysed

using the Wentzel–Kramers–Brillouin (WKB) method; the WKB-approximate

solutions closely agree with numerically obtained exact distributions even at

moderate noise conditions [33]. Bursty production has been formulated and

analysed with the WKB method also in the discrete state space [34–38]. Similar

approaches have earlier been used in queueing systems [39, 40]. The standard

WKB-type/diffusion-like results are guaranteed to apply for jump-size distri-

butions with super-exponentially decaying tails [41]. Contrastingly, in the sub-

exponential case, large deviations are driven by single big jumps [42]. The expo-

nential case can combine both phenomena for random walks: the Cramer/WKB-

type result applies in a region of sample space called the Cramer zone, while

single big jumps contribute to deviations beyond the Cramer zone [43, 44].
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Figure 1: Left: Sketch of a typical sample path of the drift–jump gene-expression
model. Right: Functions α(x), ν(x), and γ(x) quantify feedback in burst fre-
quency, burst size, and protein stability.

In this paper, the standard WKB-type approach will be shown to be suitable

for the drift-jump gene expression model with positive feedback in burst size.

If the feedback is negative, the WKB-approach will be shown to apply below

a certain threshold (referred to, by analogy with random walks, as the Cramer

zone), whereas beyond the threshold (referred to as the tail zone) single big

jumps contribute to large deviations. Matched asymptotic approximations to

the stationary distribution in the Cramer zone, in the tail zone, and on their

boundary will be constructed using a formal singular perturbation approach [45–

47].

The structure of the paper is as follows. Section 2 formulates the model.

Section 3 presents the standard WKB approximation scheme. The core of the

paper is Section 4, in which the modified WKB scheme is given. The boundary

layer is treated in Section 5. The asymptotic results are cross-validated by

simulations in Section 6. The paper is concluded in Section 7.

2 Model formulation

The drift–jump gene-expression model is a Markov process with piecewise con-

tinuous sample paths (Figure 1, left panel). The state x of the process represents

the concentration of a gene product (say a protein, for concreteness). The dis-

continuities in the sample path are the production bursts. Between bursts,
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the protein concentration decays deterministically with rate constant γ(x), i.e.

as per ẋ = −γ(x). Bursts occur with state-dependent frequency (propensity)

ε−1α(x). Burst sizes are drawn from an exponential distribution with rate pa-

rameter ε−1ν(x), in which x is the state of the process immediately before the

burst; the reciprocal ε/ν(x) of the rate parameter gives the mean burst size.

Decreasing the noise strength ε makes bursts more frequent and smaller. The

functions α(x), ν(x), and γ(x) can implement feedback in burst frequency, burst

size, and protein stability (Figure 1, right panel).

The probability density function p(x, t) of being at state x at time t satisfies

the integro–differential equation

∂p

∂t
+
∂J

∂x
= 0, (1)

J(x, t) = −γ(x)p(x, t) +
1

ε

∫ x

0

p(y, t)α(y) exp

(
−ν(y)(x− y)

ε

)
dy. (2)

In the conservation equation (1), J = J(x, t) gives the flux of probability across

a reference state x at time t. By (2), it consists of a negative local flux due to

deterministic decay and a positive non-local flux due to stochastic bursts. The

non-local term integrates, over all states y < x, the probability ε−1p(y, t)α(y)

that a burst occurs multiplied by the exponential probability that the burst goes

beyond the reference state x.

Estimating the integral in (2) by the Laplace method [48] as ε → 0, we

obtain J ∼ (α(x)/ν(x) − γ(x))p(x, t), which is the probability flux of a purely

deterministic process

dx

dt
=
α(x)

ν(x)
− γ(x). (3)

Equation (3) is the deterministic limit of (1)–(2) (sometimes also referred to as

the fluid limit or the law-of-large-numbers limit). Retaining a further term in

the asymptotic expansion of the non-local term leads to an ad-hoc drift–diffusion

approximation to the drift–jump process [49]. Such truncations exhibit different

ε→ 0 asymptotics than the original problem [50].
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Equating the flux in (2) to zero, we obtain a Volterra integral master equation

γ(x)p(x) =
1

ε

∫ x

0

p(y)α(y) exp

(
−ν(y)(x− y)

ε

)
dy (4)

for the stationary distribution. Multiplying a solution p(x) to (4) by a constant

gives another solution. The multiplicative constant can be fixed by requiring

that the total probability integrate to one. However, the dependence of the nor-

malisation constant on ε introduces unnecessary complications in the asymptotic

expansions; we defer the normalisation until Section 6.

The principal aim of Sections 3–5 is to characterise the ε → 0 asymptotics

of solutions p(x) = p(x; ε) to the Volterra master equation (4).

3 Standard WKB scheme

We seek an approximate solution to (4) in the WKB form

p(x; ε) = r(x; ε) exp

(
−Φ(x)

ε

)
, (5)

where a regular dependence

r(x; ε) = r0(x) + εr1(x) +O(ε2) (6)

of the prefactor on ε is postulated. The function Φ(x) in (5) is referred to as

the quasipotential.

Inserting (5) into (4) gives

γ(x)r(x) exp

(
−Φ(x)

ε

)
=

1

ε

∫ x

0

r(y)α(y) exp

(
−Ψ(x, y)

ε

)
dy, (7)

where

Ψ(x, y) = Φ(y) + ν(y)(x− y). (8)
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Differentiating (8) with respect to y and setting y = x gives relations

Ψ(x, x) = Φ(x), ∂yΨ(x, x) = Φ′(x)− ν(x) ∂2yΨ(x, x) = Φ′′(x)− 2ν′(x), (9)

which tie up the local behaviour of Ψ(x, y) near the boundary y = x and that

of the (yet unknown) quasipotential.

Provided that

Ψ(x, y) > Ψ(x, x) for y < x, (10)

the dominant contribution to the integral on the right-hand side of (7) comes

from an O(ε)-wide neighbourhood of the right boundary. Estimating the inte-

gral in (7) by the Laplace method and cancelling the common exponential term

gives

γ(x)r(x) +
α(x)r(x)

∂yΨ(x, x)
= ε

r(x)α(x)∂2yΨ(x, x)− (r(x)α(x))′∂yΨ(x, x)

(∂yΨ(x, x))3
+O(ε2).

(11)

Inserting (6) and (9) into (11), and collecting O(1) terms, yields the quasipo-

tential

Φ(x) =

∫
ν(x)− α(x)

γ(x)
dx, (12)

while collecting O(ε) terms determines the prefactor

r0(x) =
1

γ(x)
exp

(∫
ν′(x)γ(x)

α(x)
dx

)
. (13)

The constants of integration in the indefinite integrals in (12)–(13) add up to

the normalisation constant in the probability distribution (5) and can be chosen

arbitrarily.

The weak point of this section is the assumption (10). Combining (8) and

(12), we see that

∂yΨ(x, y) = −α(y)

γ(y)
+ ν′(y)(x− y). (14)

If ν(x) is decreasing (positive feedback case), ∂yΨ(x, y) < 0 for y ≤ x, which
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confirms (10) post hoc. If ν(x) is constant (no feedback in burst size), then

r0(x) exp(−Φ(x)/ε) with (12)–(13) is the exact solution to (4) [31]. The case of

negative feedback in burst size requires a subtler analysis, which is the subject

of the rest of the paper.

4 Modified WKB scheme

From now on, we refer to the function Φ(x) defined by (12) as the local potential.

The name reflects the fact that its derivation involved a local estimate of the

integral in the Volterra master equation (7). We assume that the local potential

satisfies

Φ′′(x) > 0, lim
x→0

Φ(x) =∞, lim
x→∞

Φ(x)

x
=∞. (15)

Assumptions (15) are satisfied e.g. by choosing

α(x) = 1, γ(x) = x, ν(x) = xm, m > 0. (16)

Graphical examples in this section pertain to the parametric choice (16). The

following subsection examines the behaviour of Ψ(x, y) defined by (8) and con-

structs a modified potential.

4.1 Modified potential

For any fixed y > 0, equation Ψ(x, y) = Φ(x) in the unknown x has two roots,

the trivial one x = y, and a non-trivial one such that x > y (Figure 2, left).

Comparing the slopes of Φ(x) and Ψ(x, y) at their non-trivial intersection, we

obtain

ν(x)− α(x)

γ(x)
> ν(y) if Ψ(x, y) ≤ Φ(x) and y < x. (17)

Let us look at the same equation but reverse the dependency between the two

variables. For any fixed x > 0, equation Ψ(x, y) = Φ(x) in the unknown y has a

trivial root y = x, a non-trivial root y = y∗ < x∗ if x = x∗, and two non-trivial
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Figure 2: Properties of Ψ(x, y) as defined by (8) and (12). The parametric choice
(16) with m = 2 is used. Left: Solutions to Ψ(x, y) = Φ(x) in the unknown x.
Right: Important curves in the domain of Ψ(x, y).

roots if x > x∗ (Figure 2, right, dotted line); the critical pair (x∗, y∗) satisfies

Ψ(x∗, y∗) = Φ(x∗), ∂yΨ(x∗, y∗) = 0. (18)

Note that (17) implies that

ν(x∗)−
α(x∗)

γ(x∗)
> ν(y∗). (19)

The function Ψ(x, y) is minimised by (cf. Figure 2, right, solid line)

argminy∈(0,x]Ψ(x, y) =


x if x ≤ x∗,

ym(x) if x ≥ x∗,
(20)

where ym(x) is the lower branch of the critical equation

∂yΨ(x, ym(x)) = 0, ym(x) ≤ y∗. (21)

We define the modified potential as

Φ̃(x) = min
y∈(0,x]

Ψ(x, y) =


Φ(x) if x ≤ x∗,

Ψ(x, ym(x)) if x ≥ x∗.
(22)
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The region x < x∗ will be referred to as the Cramer zone, and the complemen-

tary region x > x∗ as the tail zone. The derivative of the potential in the tail

zone satisfies

Φ̃′(x) = ∂yΨ(x, ym(x))y′m(x) + ν(ym(x)) = ν(ym(x)) for x > x∗. (23)

Combining (12), (23), and (19), we find

Φ̃′(x−∗ ) = ν(x∗)−
α(x∗)

γ(x∗)
> ν(y∗) = Φ̃′(x+∗ ), (24)

meaning that the derivative of the modified potential is discontinuous at the

boundary of the Cramer zone.

The purpose of the remainder of this section is to use the modified potential

(22) as a basis for a WKB-type approximation to the solution p(x, ε) to the

integral equation (4). In the Cramer zone, condition (10) is satisfied and the

standard procedure of Section 3 yields

p(x; ε) ∼ r0(x) exp

(
−Φ(x)

ε

)
, x < x∗, (25)

where the prefactor is defined by (13). The next section argues that the modified

potential (22) is appropriate outside the Cramer zone.

4.2 Dominant balance

If we look for a solution p(x; ε) to (4) in a form that is logarithmically equivalent

to exp(−Φ̃(x)/ε), then the integrand on the right-hand side is logarithmically

equivalent to exp(−Ψ̃(x, y)/ε), where

Ψ̃(x, y) = Φ̃(y) + ν(y)(x− y). (26)

Let us investigate the behaviour of Ψ̃(x, y) as function of y ∈ (0, x] for a fixed

x > x∗. The Cramer and the tail regions are thereby treated separately:
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1. y ≤ x∗. Here we have

Ψ̃(x, y) = Ψ(x, y) ≥ Ψ(x, ym(x)) = Φ̃(x), (27)

with equality in place if y = ym(x).

2. y ≥ x∗. Here

Ψ̃(x, y) = Ψ(y, ym(y)) + ν(y)(x− y) (28)

= Φ(ym(y)) + ν(ym(y))(y − ym(y)) + ν(y)(x− y) (29)

≥ Φ(ym(y)) + ν(ym(y))(x− ym(y)) = Ψ(x, ym(y)) (30)

≥ Ψ(x, ym(x)) = Φ̃(x), (31)

where the estimate (30) holds for a non-decreasing ν(x) (negative feedback

in burst size) and the estimate (31) follows from (20); both estimates

become equalities if y = x.

The upshot of (27)–(31) is that

Ψ̃(x, y) ≥ Φ̃(x) for y ∈ (0, x], with equality if y ∈ {ym(x), x}. (32)

The integral on the right-hand of (4) side will be logarithmically equivalent to

exp(−miny∈(0,x] Ψ̃(x, y)/ε) = exp(−Φ̃(x)/ε), which is the asymptotics postu-

lated for the solution. The use of the modified WKB potential (22) thus leads

to a desired balance between the sides, at least to a logarithmic precision, of

the master equation (4).

Important contributions to the integral term in (4) come from the neigh-

bourhoods of the minimisers y = ym(x) and y = x of Ψ̃(x, y) (as function of

y ∈ (0, x] for a fixed x > x∗). The function is locally parabolic near the internal

minimiser y = ym(x) < x∗, but it is locally linear near the boundary minimiser

y = x > x∗. By the Laplace method [48], an O(ε1/2) neighbourhood of the

parabolic minimiser, but only an O(ε) neighbourhood of the linear minimiser,
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contribute. In order to balance the contributions, we compensate at the level

of prefactor, seeking the solution outside the Cramer zone in the form of

p(x, ε) ∼ ε−1/2ρ(x) exp

(
− Φ̃(x)

ε

)
, x > x∗. (33)

The next subsection determines the prefactor ρ(x) outside the Cramer zone.

4.3 The prefactor outside the Cramer zone

Inserting the WKB expansions (25) and (33) into the Volterra master equation

(4), we find that for δ � ε1/2 we have

γ(x)ρ(x) exp

(
− Φ̃(x)

ε

)
= ε−1/2

∫ ym(x)+δ

ym(x)−δ
α(y)r0(y) exp

(
− Ψ̃(x, y)

ε

)
dy

+ ε−1
∫ x

x−δ
α(y)ρ(y) exp

(
− Ψ̃(x, y)

ε

)
dy + o

(
exp

(
− Φ̃(x)

ε

))
. (34)

Estimating the integrals by the Laplace method, cancelling the common expo-

nential term, and collecting at the leading order, we obtain

γ(x)ρ(x) =

(
2π

∂2yΨ(x, ym(x))

)1/2

α(ym(x))r0(ym(x))− α(x)ρ(x)

∂yΨ̃(x, x)
. (35)

Differentiating (26) with respect to y and using (23) gives

∂yΨ̃(x, y) = ν(ym(y)) + ν′(y)(x− y)− ν(y), y > x∗. (36)

We set y = x into (36) and insert the result into (35), arriving at

ρ(x) =

(
2π

∂2yΨ(x, ym(x))

)1/2
α(ym(x))r0(ym(x))

γ(x)− α(x)
ν(x)−ν(ym(x))

. (37)

Inequality (17) ensures that the denominator in (37) is positive (including at

the boundary x = x∗).

In the next section, we tie up the loose ends in the approximation scheme

by constructing an inner solution in a neighbourhood of the Cramer boundary

11

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 3, 2021. ; https://doi.org/10.1101/2021.06.02.446860doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.02.446860
http://creativecommons.org/licenses/by-nc-nd/4.0/


x = x∗ that matches (25) to the left and (33) to the right.

5 Boundary layer

The discontinuity in the potential derivative (24) and the mismatch of prefactor

magnitudes in (25) and (33) suggest the presence of a boundary layer near

x = x∗. We define the inner variable ξ via the transformation

x = x∗ + κεlnε+ εξ, (38)

where the constant κ > 0 will be specified later. Qualitatively, as x increases

towards x∗, the integral in the Volterra equation begins to feel the “ghost” of the

internal minimum of Ψ(x∗, y) (Figure 2, right panel): the local approximation

of Section 3 breaks down before x∗ is reached. The qualitative notion is made

quantitative in the rest of the section. Subsection 5.1 constructs the inner

solution that is valid in the boundary layer ξ = O(1). Subsection 5.2 matches the

inner solution to the WKB approximations that are valid outside the boundary

layer.

5.1 Inner solution

The inner solution is sought to be proportional to a regular function of the inner

variable:

p(x∗ + κεlnε+ εξ; ε) ∼ C(ε)f(ξ). (39)

We divide the integration interval in (4) into 0 < y < xo and xo < y < x,

where xo belongs to the overlap of the WKB approximation (25) and the inner

approximation (39).

In the first interval, the integral is estimated by means of the WKB approx-
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imation (25) and the Laplace method as

1

ε

∫ xo

0

p(y)α(y) exp

(
−ν(y)(x− y)

ε

)
dy

=
1

ε

∫ xo

0

p(y)α(y) exp

(
−ν(y)(x∗ − y)

ε
− ν(y)ξ

)
ε−κν(y)dy

∼ 1

ε

∫ xo

0

α(y)r0(y) exp

(
−Ψ(x∗, y)

ε
− ν(y)ξ

)
ε−κν(y)dy

∼
(

2π

∂2yΨ(x∗, y∗)

)1/2

α(y∗)r0(y∗) exp

(
−Φ(x∗)

ε
− ν(y∗)ξ

)
ε−κν(y∗)−

1
2 . (40)

In the second interval, the substitution y = x∗ + κεlnε + εη and the inner

approximation (39) give an asymptotic estimate

1

ε

∫ x

xo

p(y)α(y) exp

(
−ν(y)(x− y)

ε

)
dy

∼ C(ε)α(x∗)

∫ ξ

−∞
f(η)e−ν(x∗)(ξ−η)dη. (41)

Requiring that (40) and (41) be of the same order implies

C(ε) = exp

(
−Φ(x∗)

ε

)
ε−κν(y∗)−

1
2 (42)

for the proportionality constant in the inner solution (39).

Inserting (39), (40), and (41) into the Volterra master equation (4), and then

dividing by C(ε), yields

γ(x∗)f(ξ) =

(
2π

∂2yΨ(x∗, y∗)

)1/2

α(y∗)r0(y∗)e
−ν(y∗)ξ

+ α(x∗)

∫ ξ

−∞
f(η)e−ν(x∗)(ξ−η)dη.

(43)

Multiplying (43) by eν(x∗)ξ and differentiating with respect to ξ turns the inte-
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gral equation (43) into a differential equation

γ(x∗)
d

dξ

(
eν(x∗)ξf(ξ)

)
= α(x∗)e

ν(x∗)ξf(ξ)

+

(
2π

∂2yΨ(x∗, y∗)

)1/2

α(y∗)r0(y∗)(ν(x∗)− ν(y∗))e
(ν(x∗)−ν(y∗))ξ.

(44)

Solving (44) yields

f(ξ) = Ae−(ν(x∗)−α(x∗)
γ(x∗) )ξ +Be−ν(y∗)ξ, (45)

where

B =

(
2π

∂2yΨ(x∗, y∗)

)1/2
α(y∗)r0(y∗)

γ(x∗)− α(x∗)
ν(x∗)−ν(y∗)

(46)

is found by the method of undetermined coefficients and A is a constant of

integration, which will be determined by asymptotic matching to the outer

solution.

5.2 Matching

Two constants need to be determined to complete the inner solution, namely:

• the integration constant A in (45);

• the constant κ in the offset of the boundary layer (38).

These will be calculated in Section 5.2.2 by matching to the WKB solution (25)

inside the Cramer zone. Before doing so, we demonstrate that the inner solution

asymptotically matches the WKB solution (33) outside the Cramer zone.

5.2.1 Matching to the right

Owing to the inequality (17), the second term in the inner solution (45) domi-

nates for ξ →∞; inserting it and (42) into (39) gives

p(x; ε) ∼ B exp

(
−Φ(x∗)

ε
− ν(y∗)ξ

)
ε−κν(y∗)−

1
2 (47)
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in the overlap of the inner solution and the outer solution to its right.

On the other hand, inserting the transformation (38) into the outer solution

(33), re-expanding, and using (23) gives

p(x; ε) ∼ ε−1/2ρ(x∗) exp

(
−Φ(x∗)

ε
− Φ̃′(x+∗ )(κlnε+ ξ)

)
= ρ(x∗) exp

(
−Φ(x∗)

ε
− ν(y∗)ξ

)
ε−κν(y∗)−

1
2 (48)

in the overlap. Comparing (47) and (48), we find B = ρ(x∗), which is consistent

with (37) and (46).

5.2.2 Matching to the left

As ξ → −∞, the first term in (45) dominates, so that

p(x; ε) ∼ A exp

(
−Φ(x∗)

ε
−
(
ν(x∗)−

α(x∗)

γ(x∗)

)
ξ

)
ε−κν(y∗)−

1
2 (49)

in the overlap of the inner solution and the outer solution to its left.

On the other hand, inserting (38) into the outer solution (25) gives

p(x; ε) ∼ r0(x∗) exp

(
−Φ(x∗)

ε
− Φ(x−∗ )(κlnε+ ξ)

)
= r0(x∗) exp

(
−Φ(x∗)

ε
−
(
ν(x∗)−

α(x∗)

γ(x∗)

)
ξ

)
ε−κ(ν(x∗)−α(x∗)

γ(x∗) ). (50)

Comparing (49) to (50) yields

A = r0(x∗), κ =
1

2
(
ν(x∗)− α(x∗)

γ(x∗)
− ν(y∗)

) ; (51)

inequality (19) thereby guarantees that κ > 0 as advertised at the beginning

of the boundary-layer analysis. Equations (51) complete the inner solution and

thus the asymptotic analysis of (4).
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6 Numerical solution

Before being compared to a numerical solution, the asymptotic solutions are

normalised by

N =

∫ x∗

0

r0(x) exp

(
− Φ̃(x)

ε

)
dx+ ε−1/2

∫ ∞
x∗

ρ(x) exp

(
− Φ̃(x)

ε

)
dx. (52)

The integral of the WKB solution over the tail zone is exponentially smaller

than the integral over the Cramer zone and can be neglected in (52). The

Cramer-zone integral can in principle be estimated by the Laplace method by the

local contribution from the minimiser of the potential Φ(x). However, practice

shows that doing so introduces a relatively large numerical error. Instead, the

normalisation constant can be calculated by numerical quadrature of (52).

For the numerical solution, sample paths xi(t), i = 1, . . . , N , 0 ≤ t ≤ T ,

subject to x(0) = x0 are generated using the exact stochastic simulation algo-

rithm (see the Appendix). The solution is constructed by the histogram method

from the dataset of final-time values {xi(T )}i=1,...,N . Specifically, we divide an

interval [0, xmax] into n equally sized bins, count the number of data in each

bin, and divide the counts by Nxmax/n so as to normalise into a probability

density. The histogram estimate is close to the exact solution p(x; ε) to the

Volterra master equation (4) if the number of samples N is large (so that the

statistical error is small) and the simulation end time T is large (so that the

process equilibrates to steady state).

Figure 3 compares the three matched asymptotic approximations to the

numerical solution for selected values of the noise strength ε. Decreasing ε

leads to a close agreement between the numerical solution and the asymptotic

approximations in their respective regions of validity (Figure 3, top panels). As

ε decreases further (Figure 3, bottom panels), the Cramer-boundary and tail

behaviour become exponentially improbable, and cannot be reliably estimated

from a feasible number (say a billion) of samples. Nevertheless, the chosen

examples demonstrate that the naive solution, which extends (25) outside the
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Figure 3: The simulation-based probability density (dots) is compared to the
individual asymptotic approximations (solid lines), namely the WKB solution
in the Cramer zone (25), the inner solution in the boundary layer (45), and the
WKB solution in the tail zone (33). Model parameters: we use (16) with m = 2;
values of ε are specified in the label of the ordinate. Numerical parameters:
x0 = 1, T = 30, N = 108 (upper panels), N = 109 (lower panels), n = 100,
xmax = 3 (upper panels) and xmax = 2.5 (lower panels).
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Cramer zone, underestimates the tail of the stationary distribution, whereas the

alternative approximations provide an adequate description.

7 Conclusion

This paper provides matched asymptotic approximations to the stationary dis-

tribution of a drift–jump model for stochastic gene expression. The analysis

revolves around the estimation of the integral term in the Volterra master equa-

tion (4). The integral term represents the flux of probability due to production

bursts through a reference state x. In the Cramer region (x < x∗), the flux con-

sists solely from local contributions (y ≈ x), whereas in the tail region (x > x∗),

a contribution comes also from within the interval. The latter corresponds to

the ‘single big jumps’ advertised in the abstract.

Negative feedback in burst size is a prerequisite for the singular behaviour

in question. Conceptually, in the presence of negative feedback in burst size, it

is ‘cheaper’ to hunker down and then take a giant leap, than to climb up with

tiny steps. The result is thus in agreement with the broad principle that any

large deviation occurs in the least unlikely of all the unlikely ways [51].

The analysis is formulated for general feedback responses satisfying certain

constraints. A particular specimen, the power non-linearity ν(x) = xm, has been

the main example throughout this text. The coefficient m can be interpreted as

the number of protein molecules that need to cooperate to repress the production

burst. The solution to the Volterra equation (4) with a power non-linearity

has previously been shown to satisfy p(x) ∼ c1x
1
ε−1 as x → 0 and p(x) ∼

c2x
− 1
εm−1 as x→∞, where c1, c2 > 0 [52]. The same study provided a central-

limit-theorem-type approximation that is valid as ε → 0 for |x − 1| = O(ε1/2).

The current study thus contributes by approximations that apply as ε → 0

throughout the state space x > 0. The popular Hill-type non-linearity ν(x) =

1/(1+(x/K)m) can be reduced to the power non-linearity by means of a simple

transformation [52]. The conclusions arrived for the power non-linearity thus
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easily extend to the Hill-type response.

Earlier studies argued that the subtleties that arise with feedback in burst

size are an artefact of delay [32, 33]. Indeed, the memoryless property of the

exponential distribution of burst sizes implies a lack of control at the infinites-

imal timescale of burst growth. In light of this argument, the current results

contribute to the understanding of the interplay between bursting and delay in

biological systems [53–57].

Appendix: Stochastic simulation algorithm

Here we provide an stochastic simulation algorithm that can be used to generate

a sample path x(t) of the process on a time interval [0, T ] subject to an initial

condition x(0) = x0. Similarly like the well-known Gibson–Bruck/Gillespie al-

gorithm, the algorithm does not introduce truncation errors, but only statistical

and round-off errors, and in this specific sense it is an exact simulation algo-

rithm. For simplicity, we focus on the situation when the feedback acts only on

burst size but not on burst frequency or protein stability; the general case is

discussed in the end of the appendix.

Each sample path is generated iteratively as follows. Assume that the sample

path x(t) has already been generated on an interval 0 ≤ t ≤ tcur (initially

tcur = 0 and x(0) = x0 is an initial value). Assuming the absence of feedback

in burst frequency (α(x) = 1), the exponentially distributed waiting time until

the coming burst is sampled by the inversion method as

τ = −εlnθ, (53)

where θ is drawn from the uniform distribution in the unit interval. Assuming

the absence of feedback in protein stability (γ(x) = x), the sample path decays

exponentially until the coming burst:

x(t) = x(tcur)e
−(t−tcur) for tcur < t < tcur + τ. (54)
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At the time of the next burst the sample path is increased by the exponentially

distributed burst size:

x(t) = x(t−)− εlnθ̃

ν(x(t−))
for t = tcur + τ, (55)

where x(t−) = x(tcur)e
−τ denotes the state of the sample path immediately

before the burst; the variate θ̃ is drawn from the uniform distribution in the

unit interval independently of θ. Thus one round of iteration via (53), (54), and

(55) extends the sample path from the interval [0, tcur] to the interval [0, tcur+τ ].

The algorithm is repeated until the state x(T ) at a required end time T > 0 is

found.

The algorithm can be modified to account for feedback in burst frequency

and protein stability. If feedback in burst frequency is present, the waiting time

needs to be drawn from a distribution with a non-constant hazard function [8].

If feedback in protein stability is present, the sample path needs to be evolved

as per ẋ = −γ(x) between bursts.
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