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Abstract

Synthesis of gene products in bursts of multiple molecular copies is an
important source of gene expression variability. This paper studies large
deviations in a Markovian drift–jump process that combines exponentially
distributed bursts with deterministic degradation. Large deviations occur
as a cumulative effect of many bursts (as in diffusion) or, if the model
includes negative feedback in burst size, in a single big jump. The latter
possibility requires a modification in the WKB solution in the tail region.
The main result of the paper is the construction, via a modified WKB
scheme, of matched asymptotic approximations to the stationary distri-
bution of the drift–jump process. The stationary distribution possesses a
heavier tail than predicted by a routine application of the scheme.
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1 Introduction

Bursty production of gene products (mRNA or protein molecules) makes an
important contribution to the overall gene expression noise [1–4]. Bursts can
be modelled as instantaneous jumps of a random process. Burst sizes have
been suggested to follow geometric (in a discrete process) or exponential (in
a continuous process) distributions [5, 6]; we focus on the latter. Production
of gene products is balanced by their degradation and/or dilution. Combining
randomly timed and sized production bursts with deterministic decay leads to
a Markovian drift–jump model of gene expression [7–10]. More fine-grained
models of gene expression are based on a purely discrete [11–15] or a hybrid
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discrete–continuous state space [16–20]. The drift–jump model can be derived
from the fine-grained processes using formal limit procedures [21–26].

In its basic formulation, the drift–jump model for gene expression admits
a gamma stationary distribution [27]. The model possesses an explicit sta-
tionary distribution also in the presence of a Hill-type feedback in burst fre-
quency [28]. Such regulation can result from common transcriptional control
mechanisms [29]. In addition to feedback in burst frequency, there is evidence
of feedback mechanisms that act on burst size or protein stability [30–32]. As
a specific example of regulation of burst size, the RNA binding protein Puf3
destabilises the mRNA (hence shortening bursts of translation) of COX17 [33];
a synthetic gene encoding for the Puf3 protein while containing untranslated
regions of the COX17 gene implements the desired feedback loop [34]. The
explicit stationary solution to the drift–jump model has been extended to the
case of feedback in protein stability [35]. However, in case of feedback in burst
size, an explicit solution is unavailable, save for the special case of Michaelis–
Menten-type response [36].

The near-deterministic regime of frequent and small bursts can be analysed
using the Wentzel–Kramers–Brillouin (WKB) method; the WKB-approximate
solutions closely agree with numerically obtained exact distributions even at
moderate noise conditions [37]. Bursty production has been formulated and
analysed with the WKB method also in the discrete state space [38–42]. Sim-
ilar approaches have earlier been used in queueing systems [43, 44]. The stan-
dard WKB-type/diffusion-like results are guaranteed to apply for jump-size
distributions with super-exponentially decaying tails [45]. Contrastingly, in
the sub-exponential case, large deviations are driven by single big jumps [46,
47]. The exponential case can combine both phenomena for random walks:
the Cramer/WKB-type result applies in a region of sample space called the
Cramer zone, while single big jumps contribute to deviations beyond the Cramer
zone [48, 49].

In this paper, the standard WKB-type approach will be shown to be suitable
for the drift-jump gene expression model with positive feedback in burst size.
If the feedback is negative, the WKB-approach will be shown to apply below
a certain threshold (referred to, by analogy with random walks, as the Cramer
zone), whereas beyond the threshold (referred to as the tail zone) single big
jumps contribute to large deviations. Matched asymptotic approximations to
the stationary distribution in the Cramer zone, in the tail zone, and on their
boundary will be constructed using a singular perturbation approach [50–53].

The structure of the paper is as follows. Section 2 formulates the model.
Section 3 presents the standard WKB approximation scheme. The core of the
paper is Section 4, in which the modified WKB scheme is given. The boundary
layer is treated in Section 5. The asymptotic results are cross-validated by
simulations in Section 6. The paper is concluded in Section 7.

2 Model formulation

The drift–jump gene-expression model is a Markov process with piecewise con-
tinuous sample paths (Figure 1, left panel). The state x of the process represents
the concentration of a gene product (say a protein, for concreteness). The dis-
continuities in the sample path are the production bursts. Between bursts,
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Figure 1: Left: Sketch of a typical sample path of the drift–jump gene-expression
model. Right: Functions α(x), ν(x), and γ(x) quantify feedback in burst fre-
quency, burst size, and protein stability.

the protein concentration decays deterministically with rate γ(x), i.e. as per
ẋ = −γ(x). Bursts occur with state-dependent frequency (propensity) ε−1α(x).
Burst sizes are drawn from an exponential distribution with rate parameter
ε−1ν(x), in which x is the state of the process immediately before the burst; the
reciprocal ε/ν(x) of the rate parameter gives the mean burst size. Decreasing
the noise strength ε makes bursts more frequent and smaller. The functions
α(x), ν(x), and γ(x) can implement feedback in burst frequency, burst size, and
protein stability (Figure 1, right panel).

The probability density function p(x, t) of being at state x at time t satisfies
the integro–differential equation

∂p

∂t
+
∂J

∂x
= 0, (1)

J(x, t) = −γ(x)p(x, t) +
1

ε

∫ x

0

p(y, t)α(y) exp

(
−ν(y)(x− y)

ε

)
dy. (2)

In the conservation equation (1), J = J(x, t) gives the flux of probability across
a reference state x at time t. By (2), it consists of a negative local flux due to
deterministic decay and a positive non-local flux due to stochastic bursts. The
non-local term integrates, over all states y < x, the probability ε−1p(y, t)α(y)
that a burst occurs multiplied by the exponential probability that the burst goes
beyond the reference state x.

Estimating the integral in (2) by the Laplace method [54] as ε → 0, we
obtain J ∼ (α(x)/ν(x) − γ(x))p(x, t), which is the probability flux of a purely
deterministic process

dx

dt
=
α(x)

ν(x)
− γ(x). (3)

Equation (3) is the deterministic limit of (1)–(2) (sometimes also referred to as
the fluid limit or the law-of-large-numbers limit). Retaining a further term in
the asymptotic expansion of the non-local term leads to an ad-hoc drift–diffusion
approximation to the drift–jump process [55]. Such truncations exhibit different
ε→ 0 asymptotics than the original problem [56].
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Equating the flux in (2) to zero, we obtain a Volterra integral master equation

γ(x)p(x) =
1

ε

∫ x

0

p(y)α(y) exp

(
−ν(y)(x− y)

ε

)
dy (4)

for the stationary distribution. If ν(x) is constant (no feedback in burst size),
then the integral kernel in (4) is both separable and convolution-type [57], and
the equation can be solved by differentiation [35] or the Laplace transform [7].
If ν(x) is non-constant, the kernel is neither separable nor convolution-type, and
a general solution seems to be unavailable.

Multiplying a solution p(x) to (4) by a constant gives another solution.
Below, we derive asymptotic approximations to a solution with an arbitrary
choice of the multiplication constant, which does not necessarily integrate to
one. Normalisation is performed before these approximations are cross-validated
by kinetic Monte-Carlo simulations in Section 6.

3 Standard WKB scheme

We seek an approximate solution to (4) in the WKB form

p(x; ε) = r(x; ε) exp

(
−Φ(x)

ε

)
, (5)

where a regular dependence

r(x; ε) = r0(x) + εr1(x) +O(ε2) (6)

of the prefactor on ε is postulated. The function Φ(x) in (5) is referred to as the
(quasi)potential. The ansatz (5)–(6) is equivalent to the frequently encountered
alternative form p(x; ε) = exp(−ε−1(Φ0(x)+εΦ1(x)+ε2Φ2(x)+. . .)) of the WKB
expansion [58]; the correspondence between the terms is given by Φ(x) = Φ0(x),
r0(x) = exp(−Φ1(x)), and r1(x) = − exp(−Φ1(x))Φ2(x).

Inserting (5) into (4) gives

γ(x)r(x) exp

(
−Φ(x)

ε

)
=

1

ε

∫ x

0

r(y)α(y) exp

(
−Ψ(x, y)

ε

)
dy, (7)

where
Ψ(x, y) = Φ(y) + ν(y)(x− y). (8)

Differentiating (8) with respect to y and setting y = x gives the relations

Ψ(x, x) = Φ(x), ∂yΨ(x, x) = Φ′(x)− ν(x), ∂2yΨ(x, x) = Φ′′(x)− 2ν′(x), (9)

which tie up the local behaviour of Ψ(x, y) near the boundary y = x and that
of the (yet unknown) potential.

Provided that
Ψ(x, y) > Φ(x) for y < x, (10)

the dominant contribution to the integral on the right-hand side of (7) comes
from an O(ε)-wide neighbourhood of the right boundary. Estimating the inte-
gral in (7) by the Laplace method and cancelling the common exponential term
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gives

γ(x)r(x) +
α(x)r(x)

∂yΨ(x, x)
= ε

r(x)α(x)∂2yΨ(x, x)− (r(x)α(x))′∂yΨ(x, x)

(∂yΨ(x, x))3
+O(ε2).

(11)
Inserting (6) and (9) into (11), and collecting O(1) terms, yields the potential

Φ(x) =

∫
ν(x)− α(x)

γ(x)
dx, (12)

while collecting O(ε) terms determines the prefactor (Appendix A)

r0(x) =
1

γ(x)
exp

(∫
ν′(x)γ(x)

α(x)
dx

)
. (13)

The constants of integration in the indefinite integrals in (12)–(13) add up to
the normalisation constant in the probability distribution (5) and can be chosen
arbitrarily.

The weak point of this section is the assumption (10). Combining (8) and
(12), we see that

∂yΨ(x, y) = −α(y)

γ(y)
+ ν′(y)(x− y). (14)

If ν(x) is decreasing (positive feedback case), then ∂yΨ(x, y) < 0 for y ≤ x,
which confirms (10) post hoc. If ν(x) is constant (no feedback in burst size),
then r0(x) exp(−Φ(x)/ε) given by (12)–(13) is the exact solution to (4) [35].
The case of an increasing ν(x) (negative feedback in burst size) is the subject
of the rest of the paper; it requires a modification in the WKB scheme.

4 Modified WKB scheme

Since the derivation of (12) involved a local estimate of the integral in the
Volterra master equation (7), we refer to the function Φ(x) as the local potential.
We assume that it satisfies the conditions

Φ′′(x) > 0, lim
x→0

Φ(x) =∞, lim
x→∞

Φ(x)

x
=∞. (15)

An example of a local potential which satisfies (15) is given by the parametric
choice

α(x) = 1, γ(x) = x, ν(x) = xm, m > 0. (16)

The constancy of the burst frequency and the linearity of the decay rate in
(16) means that feedback occurs only in the burst size. The coefficient m can
be interpreted as the number of protein molecules that need to cooperate to
repress a production burst. Although the analysis of this section is performed
for a general parametric choice, all graphical examples pertain to the choice
(16). Specialised calculations for (16) can be found in Appendix B.

We define the modified potential by

Φ̃(x) = min
y∈(0,x]

Ψ(x, y), (17)
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Figure 2: Left: The local potential Φ(x) and the modified potential Φ̃(x) as
the envelope of rays Ψ(x, y). Right: Important curves in the domain of Ψ(x, y).
The parametric choice (16) with m = 2 is used.

where Ψ(x, y) is given by (8) and (12). Since Ψ(x, x) = Φ(x), we immediately
obtain Φ̃(x) ≤ Φ(x). Graphical examination shows that there is a critical point
x∗ such that Φ̃(x) = Φ(x) for x ≤ x∗, whereas for x ≥ x∗ the graph of Φ̃(x) is
the envelope of rays x→ Ψ(x, y) parametrised by y (Figure 2, left). The region
x < x∗ will be referred to as the Cramer zone, and the region x > x∗ as the tail
zone.

The critical point x∗ is the supremum of all x for which (10) holds. It follows
that at x = x∗, an internal minimiser y = y∗ < x∗ of (17) exists in addition to
the boundary minimiser y = x∗, so that

Ψ(x∗, y∗) = Φ(x∗), ∂yΨ(x∗, y∗) = 0. (18)

Equations (18) determine the critical pair (x∗, y∗) uniquely (Figure 2, right).
In the tail zone,

Φ̃(x) = Ψ(x, ym(x)), x ≥ x∗, (19)

where ym(x) is the internal minimiser, which satisfies

∂yΨ(x, ym(x)) = 0, ym(x) ≤ y∗, x ≥ x∗. (20)

Note that ym(x∗) = y∗ and y′m(x) < 0. The potential derivative satisfies

Φ̃′(x) = ∂xΨ(x, ym(x)) = ν(ym(x)), x > x∗. (21)

The first equality in (21), which states that the envelope is tangential to the ray
that forms it, is a simple example of an envelope theorem [59].

The local potential and the envelope of rays intersect at x = x∗ transversally
with slopes Φ′(x∗) = Φ̃′(x−∗ ) > Φ̃′(x+∗ ): the modified potential has a discontin-
uous derivative at x = x∗. Convexity of Φ(x) and concavity of Φ̃(x) imply
Φ′(x) > Φ̃′(x) for x > x∗. These comparisons, together with (12) and (21), lead
to the inequality

ν(x)− α(x)

γ(x)
> ν(ym(x)) for x ≥ x∗, (22)

which will be important in the subsequent analysis.
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If we look for a solution p(x; ε) to (4) in a form that is logarithmically
equivalent to exp(−Φ̃(x)/ε), then the integrand on the right-hand side is loga-
rithmically equivalent to exp(−Ψ̃(x, y)/ε), where

Ψ̃(x, y) = Φ̃(y) + ν(y)(x− y). (23)

For x > x∗, we have (Appendix C)

Ψ̃(x, y) ≥ Φ̃(x) for y ∈ (0, x], with equality if y ∈ {ym(x), x}. (24)

Notably, Ψ̃(x, y) — as function of y ∈ (0, x] — is minimised both on the right
boundary and internally, whereas Ψ(x, y) is minimised only internally for x > x∗.
The integral on the right-hand of (4) side will be logarithmically equivalent to
exp(−miny∈(0,x] Ψ̃(x, y)/ε) = exp(−Φ̃(x)/ε), which is the asymptotics postu-
lated for the solution. The use of the modified WKB potential (17) thus leads
to a desired balance between the sides, at least to a logarithmic precision, of
the master equation (4).

Important contributions to the integral term in (4) come from the neigh-
bourhoods of the minimisers y = ym(x) and y = x of Ψ̃(x, y) for a fixed x > x∗.
The function is locally parabolic near the internal minimiser y = ym(x) < x∗,
but it is locally linear near the boundary minimiser y = x > x∗. By the Laplace
method [54], an O(ε1/2) neighbourhood of the parabolic minimiser, but only an
O(ε) neighbourhood of the linear minimiser, contribute. The internal minimiser
lies in the Cramer zone, where the standard procedure of Section 3 yields

p(x; ε) ∼ r0(x) exp

(
−Φ(x)

ε

)
, x < x∗, (25)

with the prefactor defined by (13). In order to balance the contributions of
the internal and boundary minimisers, we compensate at the level of prefactor,
seeking the solution outside the Cramer zone in the form of

p(x, ε) ∼ ε−1/2ρ(x) exp

(
− Φ̃(x)

ε

)
, x > x∗. (26)

Inserting the WKB expansions (25) and (26) into the Volterra master equation
(4), we find that for a δ � ε1/2 we have

γ(x)ρ(x) exp

(
− Φ̃(x)

ε

)
= ε−1/2

∫ ym(x)+δ

ym(x)−δ
α(y)r0(y) exp

(
− Ψ̃(x, y)

ε

)
dy

+ ε−1
∫ x

x−δ
α(y)ρ(y) exp

(
− Ψ̃(x, y)

ε

)
dy + o

(
exp

(
− Φ̃(x)

ε

))
. (27)

Estimating the integrals by the Laplace method, cancelling the common expo-
nential term, and collecting at the leading order, we obtain

γ(x)ρ(x) =

(
2π

∂2yΨ(x, ym(x))

)1/2

α(ym(x))r0(ym(x))− α(x)ρ(x)

∂yΨ̃(x, x)
. (28)

Differentiating (23) with respect to y and using (21) gives

∂yΨ̃(x, y) = ν(ym(y)) + ν′(y)(x− y)− ν(y), y > x∗. (29)
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We set y = x into (29) and insert the result into (28), arriving at

ρ(x) =

(
2π

∂2yΨ(x, ym(x))

)1/2
α(ym(x))r0(ym(x))

γ(x)− α(x)
ν(x)−ν(ym(x))

. (30)

Inequality (22) ensures that the denominator in (30) is positive.
In the next section, we complete the approximation scheme by constructing

an inner solution in a neighbourhood of the Cramer boundary x = x∗ that
matches (25) to the left and (26) to the right.

5 Boundary layer

The discontinuity in the potential derivative and the mismatch of prefactor
magnitudes in (25) and (26) suggest the presence of a boundary layer near
x = x∗. We define the inner variable ξ via the transformation

x = x∗ + κεlnε+ εξ, (31)

where the constant κ > 0 will be specified later. Qualitatively, as x increases
towards x∗, the integral in the Volterra equation (7) begins to feel the “ghost”
of the internal minimum of Ψ(x∗, y) at y = y∗; the local approximation scheme
of Section 3 breaks down before x∗ is reached.

The inner solution is sought to be proportional to a regular function of the
inner variable:

p(x∗ + κεlnε+ εξ; ε) ∼ C(ε)f(ξ). (32)

Inserting (32) into the Volterra master equation (4) and seeking a dominant
balance between terms gives (Appendix D)

C(ε) = exp

(
−Φ(x∗)

ε

)
ε−κν(y∗)−

1
2 . (33)

Collecting the leading-order terms in the expansion of (4), the unknown f(ξ) is
found to satisfy an inhomogeneous Volterra equation (Appendix D). Unlike the
original equation (4) for p(x; ε), the Volterra equation for f(ξ) has a separable
kernel, and is readily turned into a differential equation with a general solution
(Appendix D)

f(ξ) = Ae−(ν(x∗)−α(x∗)
γ(x∗) )ξ +Be−ν(y∗)ξ. (34)

The constant

B =

(
2π

∂2yΨ(x∗, y∗)

)1/2
α(y∗)r0(y∗)

γ(x∗)− α(x∗)
ν(x∗)−ν(y∗)

(35)

multiplying the particular solution in (34) is found by the method of undeter-
mined coefficients; the constant of integration A multiplying the homogeneous
solution remains undetermined at this stage.

The ξ → ∞ asymptotics of (32) agree with the x → x∗ behaviour of the
tail-zone WKB solution (26) with arbitrary choices of the integration constant
A and the constant κ in the offset of the boundary layer (31) (Appendix E). In
order to determine the two constants, the ξ → −∞ asymptotics of (32) need
to be matched to the x → x∗ behaviour of the Cramer-zone WKB solution
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(25). By inequality (22) with ym(x∗) = y∗, the first term in (34) dominates as
ξ → −∞, so that

p(x; ε) ∼ A exp

(
−Φ(x∗)

ε
−
(
ν(x∗)−

α(x∗)

γ(x∗)

)
ξ

)
ε−κν(y∗)−

1
2 (36)

in the overlap of the inner solution and the outer (Cramer-zone WKB) solution.
On the other hand, inserting (31) into the outer solution (25) gives

p(x; ε) ∼ r0(x∗) exp

(
−Φ(x∗)

ε
− Φ′(x∗)(κlnε+ ξ)

)
= r0(x∗) exp

(
−Φ(x∗)

ε
−
(
ν(x∗)−

α(x∗)

γ(x∗)

)
ξ

)
ε−κ(ν(x∗)−α(x∗)

γ(x∗) ). (37)

Comparing (36) to (37) yields

A = r0(x∗), κ =
1

2
(
ν(x∗)− α(x∗)

γ(x∗)
− ν(y∗)

) ; (38)

inequality (22) thereby guarantees that κ > 0 as advertised at the beginning
of the boundary-layer analysis. Equations (38) complete the inner solution and
thus the asymptotic analysis of (4).

6 Numerical solution

Before being compared to a numerical solution, the asymptotic solutions are
normalised by

N =

∫ x∗

0

r0(x) exp

(
− Φ̃(x)

ε

)
dx+ ε−1/2

∫ ∞
x∗

ρ(x) exp

(
− Φ̃(x)

ε

)
dx, (39)

which is calculated by numerical quadrature.
For the numerical solution, sample paths xi(t), i = 1, . . . , N , 0 ≤ t ≤ T , sub-

ject to x(0) = x0 are generated using the exact stochastic simulation algorithm
(Appendix F). The solution is constructed by the histogram method from the
dataset of final-time values {xi(T )}i=1,...,N . Specifically, we divide an interval
[0, xmax] into n equally sized bins, count the number of data in each bin, and
divide the counts by Nxmax/n so as to normalise into a probability density. The
histogram estimate is close to the exact solution p(x; ε) to the Volterra master
equation (4) if the number of samples N is large (so that the statistical error is
small) and the simulation end time T is large (so that the process equilibrates
to steady state).

Figure 3 compares the three matched asymptotic approximations to the
numerical solution for selected values of the noise strength ε. Decreasing ε
leads to a close agreement between the numerical solution and the asymptotic
approximations in their respective regions of validity (Figure 3, top panels). As
ε decreases further (Figure 3, bottom panels), the Cramer-boundary and tail
behaviour become exponentially improbable, and cannot be reliably estimated
from a feasible number (say a billion) of samples. Nevertheless, the chosen
examples demonstrate that the naive solution, which extends (25) outside the
Cramer zone, underestimates the tail of the stationary distribution, whereas the
alternative approximations provide an adequate description.
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Figure 3: The simulation-based probability density (dots) is compared to the
individual asymptotic approximations (solid lines), namely the WKB solution
in the Cramer zone (25), the inner solution in the boundary layer (34), and the
WKB solution in the tail zone (26). Model parameters: we use (16) with m = 2;
values of ε are specified in the label of the ordinate. Numerical parameters:
x0 = 1, T = 30, N = 108 (upper panels), N = 109 (lower panels), n = 100,
xmax = 3 (upper panels) and xmax = 2.5 (lower panels).
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7 Conclusion

This paper provides matched asymptotic approximations to the stationary dis-
tribution of a drift–jump model for stochastic gene expression. The analysis
revolves around the estimation of the integral term in the Volterra master equa-
tion (4). The integral term represents the flux of probability due to production
bursts through a reference state x. In the Cramer region (x < x∗), the flux con-
sists solely from local contributions (y ≈ x), whereas in the tail region (x > x∗),
a contribution comes also from within the interval. The latter corresponds to
the ‘single big jumps’ advertised in the abstract.

Negative feedback in burst size is a prerequisite for the singular behaviour
in question. Conceptually, in the presence of negative feedback in burst size, it
is ‘cheaper’ to hunker down and then take a giant leap, than to climb up with
tiny steps. The result is thus in agreement with the broad principle that any
large deviation occurs in the least unlikely of all the unlikely ways [60].

For a power-law feedback in burst size (16), an earlier study [61] provides the
asymptotic formulae p(x) ∼ x−1+1/ε as x→ 0 and p(x) ∼ ηx−1−1/εm as x→∞
(for an ε > 0 which is not necessarily small), where η = m−1ε−1+1/εmΓ(1/εm).
The latter asymptotic implies that the stationary distribution is heavy-tailed
(sub-exponential) [62]. The same study establishes a central-limit-theorem-type
approximation that is valid as ε→ 0 for |x−1| = O(ε1/2) [61]. The current study
contributes by approximations that apply as ε→ 0 throughout the state space
x > 0. In particular, elementary calculations show that the x→ 0 behaviour of
the Cramer-zone WKB solution and the x→∞ behaviour of the tail-zone WKB
solution are equal to the aforementioned x→ 0 and x→∞ asymptotics of the
exact solution, wherein η ∼ (2π/εm)1/2e−1/εmm−1/εm for ε � 1 by Stirling’s
formula.

While the power-law non-linearity is the principal example of this paper, the
popular Hill function can be reduced to the power non-linearity by an explicit
transformation [61]. For feedback responses that do not satisfy the constraints
introduced in Section 4, one expects that multiple disconnected Cramer zones
may exist, in which the potential is evolved locally, and which are interspersed
by zones in which the potential is formed by an envelope of rays.

It is also expected that the current methods can be applied to the discrete
framework, if this is extended so as to include feedback in burst size, with
burst sizes drawn from the geometric distribution [5]. More widely, the current
results can be pertinent to other fields, e.g. to the Takács equation for the
amount of unfinished work in an M/M/1 queue, or other jump processes with
jump measures with exponential tails [44].

Earlier studies argue that the subtleties that arise with feedback in burst
size are an artefact of delay [36, 37]. Indeed, the memoryless property of the
exponential distribution of burst sizes implies a lack of control at the infinitesi-
mal timescale of burst growth. In light of this argument, the results contribute
to the understanding of the interplay between bursting and delay [63–67].

Appendix A: Solving the ODE for the prefactor

The prefactor satisfies the ordinary differential equation

(r0(x)α(x))′∂yΨ(x, x) = r0(x)α(x)∂2yΨ(x, x) (40)
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with solution

r0(x)α(x) = exp

(∫
∂2yΨ(x, x)

∂yΨ(x, x)
dx

)
. (41)

Using (9) and (12), we obtain

∂yΨ(x, x) = −α(x)

γ(x)
, ∂2yΨ(x, x) = −ν′(x)− (α(x)/γ(x))′. (42)

Inserting (42) into (41) gives

r0α = exp

(∫
ν′γ

α
dx+

∫
(α/γ)′

α/γ
dx

)
=
α

γ
exp

(∫
ν′γ

α
dx

)
, (43)

from which (13) follows.

Appendix B: The power-law example

For the choices (16), the Cramer-zone potential (12) and prefactor (13) are given
by

Φ(x) =
xm+1

m+ 1
− lnx, r0(x) = x−1 exp

(
m

m+ 1
xm+1

)
. (44)

The rays (8), whose envelope constitutes the modified potential, are given by

Ψ(x, y) =
ym+1

m+ 1
− lny + ym(x− y). (45)

The derivative of the rays with respect to the envelope parameter y is given
by (14), which is

∂yΨ(x, y) = mym−1(x− y)− y−1. (46)

The critical pair (x∗, y∗) is the solution of the non-linear system (18), which
here takes the form

ym+1

m+ 1
− lny + ym(x− y) =

xm+1

m+ 1
− lnx, mym−1(x− y)− y−1 = 0. (47)

The author solved (47) iteratively, starting from an initial guess x = 1 + 1/m
and y = 1, using Broyden’s first Jacobian approximation method [68].

In order to find the internal minimiser y = ym(x) of Ψ(x, y), we are required
by (20) to solve for a given x ≥ x∗ the equation

x =
y−m

m
+ y, y ≤ y∗. (48)

The author did this in two steps: first, he found xi corresponding to the values
yi = y∗(1− i/I), i = 0, 1, . . . , I − 1, by substitution into (48); second, he used a
cubic spline to interpolate y = ym(x) between yi−1 = ym(xi−1) and yi = ym(xi),
i = 1, . . . , I − 1. The modified WKB potential and prefactor are calculated by
substituting the spline of y = ym(x) into (19) and (30).

The formulae (30) and (35) for the tail-zone WKB and boundary-layer so-
lutions evaluate ∂2yΨ(x, y) at the internal minimiser y = ym(x). Differentiating
(46) gives

∂2yΨ(x, y) = m(m− 1)ym−2(x− y)−mym−1 + y−2. (49)
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At y = ym(x) the first derivative (46) of Ψ(x, y) vanishes, and the first term in
(49) simplifies to (m− 1)y−2; therefore,

∂2yΨ(x, ym(x)) = my−2m (x)(1− ym+1
m (x)). (50)

Note that ym(x) < y∗ < 1, so that (50) is positive, as required in (30) and (35).

Appendix C: Minimisers of Ψ̃(x, y)

Let us investigate the behaviour of Ψ̃(x, y) as function of y ∈ (0, x] for a fixed
x > x∗. The Cramer and the tail regions are thereby treated separately:

1. y ≤ x∗. Here we have

Ψ̃(x, y) = Ψ(x, y) ≥ Ψ(x, ym(x)) = Φ̃(x), (51)

with equality in place if y = ym(x).

2. y ≥ x∗. Here

Ψ̃(x, y) = Ψ(y, ym(y)) + ν(y)(x− y)

= Φ(ym(y)) + ν(ym(y))(y − ym(y)) + ν(y)(x− y)

≥ Φ(ym(y)) + ν(ym(y))(x− ym(y)) = Ψ(x, ym(y))

≥ Ψ(x, ym(x)) = Φ̃(x), (52)

with both estimates becoming equalities if y = x; the first estimate re-
quires that ν(x) be non-decreasing (negative feedback in burst size).

Appendix D: The inner solution

We divide the integration interval in (4) into 0 < y < xo and xo < y < x,
where xo belongs to the overlap of the WKB approximation (25) and the inner
approximation (32).

In the first interval, the integral is estimated by means of the WKB approx-
imation (25) and the Laplace method as

1

ε

∫ xo

0

p(y)α(y) exp

(
−ν(y)(x− y)

ε

)
dy

=
1

ε

∫ xo

0

p(y)α(y) exp

(
−ν(y)(x∗ − y)

ε
− ν(y)ξ

)
ε−κν(y)dy

∼ 1

ε

∫ xo

0

α(y)r0(y) exp

(
−Ψ(x∗, y)

ε
− ν(y)ξ

)
ε−κν(y)dy

∼
(

2π

∂2yΨ(x∗, y∗)

)1/2

α(y∗)r0(y∗) exp

(
−Φ(x∗)

ε
− ν(y∗)ξ

)
ε−κν(y∗)−

1
2 . (53)
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In the second interval, the substitution y = x∗ + κεlnε + εη and the inner
approximation (32) give an asymptotic estimate

1

ε

∫ x

xo

p(y)α(y) exp

(
−ν(y)(x− y)

ε

)
dy

∼ C(ε)α(x∗)

∫ ξ

−∞
f(η)e−ν(x∗)(ξ−η)dη. (54)

Requiring that (53) and (54) be of the same order implies (33) for the propor-
tionality constant C(ε) in the inner solution (32).

Inserting (32), (53), and (54) into the Volterra master equation (4), and
then dividing by C(ε), yields an inhomogeneous Volterra equation for f(ξ) with
a separable kernel:

γ(x∗)f(ξ) =

(
2π

∂2yΨ(x∗, y∗)

)1/2

α(y∗)r0(y∗)e
−ν(y∗)ξ

+ α(x∗)

∫ ξ

−∞
f(η)e−ν(x∗)(ξ−η)dη.

(55)

Multiplying (55) by eν(x∗)ξ and differentiating with respect to ξ turns the inte-
gral equation (55) into a differential equation

γ(x∗)
d

dξ

(
eν(x∗)ξf(ξ)

)
= α(x∗)e

ν(x∗)ξf(ξ)

+

(
2π

∂2yΨ(x∗, y∗)

)1/2

α(y∗)r0(y∗)(ν(x∗)− ν(y∗))e
(ν(x∗)−ν(y∗))ξ,

(56)

which has a general solution (34)–(35).

Appendix E: Matching to the right

By inequality (22), the second term in the inner solution (34) dominates for
ξ →∞; inserting it and (33) into (32) gives

p(x; ε) ∼ B exp

(
−Φ(x∗)

ε
− ν(y∗)ξ

)
ε−κν(y∗)−

1
2 (57)

in the overlap of the inner solution and the outer solution to its right.
On the other hand, inserting the transformation (31) into the outer solution

(26), re-expanding, and using (21) gives

p(x; ε) ∼ ε−1/2ρ(x∗) exp

(
−Φ(x∗)

ε
− Φ̃′(x+∗ )(κlnε+ ξ)

)
= ρ(x∗) exp

(
−Φ(x∗)

ε
− ν(y∗)ξ

)
ε−κν(y∗)−

1
2 (58)

in the overlap. Comparing (57) and (58), we find B = ρ(x∗), which is consistent
with (30) and (35).
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Appendix F: Stochastic simulation algorithm

Here we provide a stochastic simulation algorithm that can be used to generate
a sample path x(t) of the process on a time interval [0, T ] subject to an initial
condition x(0) = x0. Similarly like the well-known Gibson–Bruck/Gillespie al-
gorithm, the algorithm does not introduce truncation errors, but only statistical
and round-off errors, and in this specific sense it is an exact simulation algo-
rithm. For simplicity, we focus on the situation when the feedback acts only on
burst size but not on burst frequency or protein stability; the general case is
discussed in the end of the appendix.

Each sample path is generated iteratively as follows. Assume that the sample
path x(t) has already been generated on an interval 0 ≤ t ≤ tcur (initially
tcur = 0 and x(0) = x0 is an initial value). Assuming the absence of feedback
in burst frequency (α(x) = 1), the exponentially distributed waiting time until
the coming burst is sampled by the inversion method as

τ = −εlnθ, (59)

where θ is drawn from the uniform distribution in the unit interval. Assuming
the absence of feedback in protein stability (γ(x) = x), the sample path decays
exponentially until the coming burst:

x(t) = x(tcur)e
−(t−tcur) for tcur < t < tcur + τ. (60)

At the time of the next burst the sample path is increased by the exponentially
distributed burst size:

x(t) = x(t−)− εlnθ̃

ν(x(t−))
for t = tcur + τ, (61)

where x(t−) = x(tcur)e
−τ denotes the state of the sample path immediately

before the burst; the variate θ̃ is drawn from the uniform distribution in the
unit interval independently of θ. Thus one round of iteration via (59), (60), and
(61) extends the sample path from the interval [0, tcur] to the interval [0, tcur+τ ].
The algorithm is repeated until the state x(T ) at a required end time T > 0 is
found.

The algorithm can be modified to account for feedback in burst frequency
and protein stability. If feedback in burst frequency is present, the waiting time
needs to be drawn from a distribution with a non-constant hazard function [8].
If feedback in protein stability is present, the sample path needs to be evolved
as per ẋ = −γ(x) between bursts.
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N. (eds) Hybrid Systems Biology. HSB 2019. Lecture Notes in Computer
Science, vol 11705, Springer, Cham, 2019.

[36] P. Bokes, “Maintaining gene expression levels by positive feedback in burst
size in the presence of infinitesimal delay,” Discrete Cont. Dyn-B, vol. 24,
no. 10, p. 5539, 2019.

[37] P. Bokes, “Exact and WKB-approximate distributions in a gene expression
model with feedback in burst frequency, burst size, and protein stability,”
Discrete Cont. Dyn-B; doi: 10.3934/dcdsb.2021126, 2021.

[38] S. Be’er and M. Assaf, “Rare events in stochastic populations under bursty
reproduction,” J. Stat. Mech. Theory E., vol. 2016, p. 113501, 2016.

[39] M. Assaf and B. Meerson, “WKB theory of large deviations in stochastic
populations,” J. Phys. A: Math. Theor., vol. 50, no. 26, p. 263001, 2017.

[40] J. Hertz, J. Tyrcha, and A. Correales, “Stochastic activation in a genetic
switch model,” Phys. Rev. E, vol. 98, no. 5, p. 052403, 2018.

[41] O. Vilk and M. Assaf, “Population extinction under bursty reproduction
in a time-modulated environment,” Phys. Rev. E, vol. 97, no. 6, p. 062114,
2018.

[42] P. Bokes, A. Borri, P. Palumbo, and A. Singh, “Mixture distributions in a
stochastic gene expression model with delayed feedback: a WKB approxi-
mation approach,” J. Math. Biol., vol. 81, no. 1, pp. 343–367, 2020.

[43] C. Knessl, B. Matkowsky, Z. Schuss, and C. Tier, “Asymptotic analysis of
a state-dependent M/G/1 queueing system,” SIAM J. Appl. Math., vol. 46,
no. 3, pp. 483–505, 1986.

[44] Z. Schuss, Theory and applications of stochastic processes: an analytical
approach. Springer Science & Business Media, Berlin/Heidelberg, 2009.

18

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 22, 2021. ; https://doi.org/10.1101/2021.06.02.446860doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.02.446860
http://creativecommons.org/licenses/by/4.0/


[45] M. I. Freidlin and A. D. Wentzell, Random perturbations of Dynamical
Systems. Springer, Heidelberg, 2012.

[46] A. Vezzani, E. Barkai, and R. Burioni, “Single-big-jump principle in phys-
ical modeling,” Phys. Rev. E, vol. 100, no. 1, p. 012108, 2019.

[47] R. Burioni and A. Vezzani, “Rare events in stochastic processes with sub-
exponential distributions and the big jump principle,” J. Stat. Mech: The-
ory Exp., vol. 2020, no. 3, p. 034005, 2020.

[48] A. A. Borovkov and K. A. Borovkov, Asymptotic analysis of random walks,
vol. 118. Cambridge University Press, 2008.

[49] A. A. Borovkov, Probability Theory. Springer, Heidelberg, 2013.

[50] R. Hinch and S. J. Chapman, “Exponentially slow transitions on a Markov
chain: the frequency of calcium sparks,” Eur. J. Appl. Math., vol. 16,
no. 04, pp. 427–446, 2005.

[51] J. Newby, “Bistable switching asymptotics for the self regulating gene,” J.
Phys. A-Math. Gen., vol. 48, p. 185001, 2015.

[52] P. C. Bressloff, Stochastic processes in cell biology. Springer, Heidelberg,
2014.

[53] K. Proesmans and B. Derrida, “Large-deviation theory for a brownian par-
ticle on a ring: a WKB approach,” J. Stat. Mech: Theory Exp., vol. 2019,
no. 2, p. 023201, 2019.

[54] A. H. Nayfeh, Introduction to perturbation techniques. John Wiley & Sons,
New Jersey, 2011.

[55] N. van Kampen, Stochastic Processes in Physics and Chemistry. Elsevier,
Amsterdam, 2006.

[56] J. Newby and S. J. Chapman, “Metastable behavior in Markov processes
with internal states,” J. Math. Biol., vol. 69, no. 4, pp. 941–976, 2014.

[57] J. D. Logan, Applied mathematics. John Wiley & Sons, 2013.

[58] C. M. Bender and S. A. Orszag, Advanced Mathematical Methods for Sci-
entists and Engineers I: Asymptotic Methods and Perturbation Theory.
Springer, Heidelberg, 1999.

[59] P. Milgrom and I. Segal, “Envelope theorems for arbitrary choice sets,”
Econometrica, vol. 70, no. 2, pp. 583–601, 2002.

[60] F. Den Hollander, Large deviations, Fields Institute Monographs, vol. 14.
American Mathematical Society, Providence, Rhode Island, 2008.

[61] P. Bokes, Y. Lin, and A. Singh, “High cooperativity in negative feedback
can amplify noisy gene expression,” B. Math. Biol., vol. 80, pp. 1871–1899,
2018.

[62] S. Foss, D. Korshunov and S. Zachary, An introduction to heavy-tailed and
subexponential distributions. Springer, Heidelberg, 2011.

19

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 22, 2021. ; https://doi.org/10.1101/2021.06.02.446860doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.02.446860
http://creativecommons.org/licenses/by/4.0/


[63] J. M. Newby, “Spontaneous excitability in the Morris–Lecar model with ion
channel noise,” SIAM J. Appl. Dyn. Syst., vol. 13, no. 4, pp. 1756–1791,
2014.

[64] E. Zavala and T. T. Marquez-Lago, “Delays induce novel stochastic effects
in negative feedback gene circuits,” Biophys. J., vol. 106, no. 2, pp. 467–
478, 2014.

[65] R. Martinez-Corral, E. Raimundez, Y. Lin, M. B. Elowitz, and J. Garcia-
Ojalvo, “Self-amplifying pulsatile protein dynamics without positive feed-
back,” Cell Syst., vol. 7, no. 4, pp. 453–462, 2018.

[66] A. S. Sassi, M. Garcia-Alcala, M. J. Kim, P. Cluzel, and Y. Tu, “Filtering
input fluctuations in intensity and in time underlies stochastic transcrip-
tional pulses without feedback,” P. Natl. Acad. Sci. USA, vol. 117, no. 43,
pp. 26608–26615, 2020.

[67] J. Negrete, I. M. Lengyel, L. Rohde, R. A. Desai, A. C. Oates, and
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