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Abstract
White adipose tissue (WAT) plays a central role in metabolism, and multiple diseases and
genetic mutations cause its remodeling, most notably obesity, which has reached pandemic
levels. WAT is present in subcutaneous (SAT) and visceral (VAT) depots, and its main
components are white adipocytes. Quantitative analysis of white adipocyte size and counts
is of great interest to understand physiology and disease, due to intra- and inter-depot
heterogeneity, as well as better prognosis for hypertrophy than hyperplasia, and for SAT
expansion than VAT expansion. H&E histology of whole depot cross-sections provides
excellent approximation of cell morphology and preserves spatial information. Previous
studies have been limited to window subsampling of whole slides, and cell size analysis.
In this paper, we present a deep learning pipeline that can segment overlapping white
adipocytes on whole slides and filter out other cells. We also propose a statistical framework
based on linear models to study WAT phenotypes with three interconnected levels (body
weight BW, depot weight DW and quartile cell area). Applying it to find Klf14 phenotypes in
mice using 147 whole slides of WAT H&E histology, we show sexual dimorphism, and
different effects between depots, heterozygous parent of origin for the KO allele and
genotype (WT vs. Het). In particular, whether variables are correlated (DW vs. BW and cell
area vs. DW), and statistical differences between fitted linear models. We also find
significant differences between hand-traced or window subsampling datasets and whole
slide analysis. Finally, we provide heatmaps of cell size for all the slides, showing substantial
spatial heterogeneity and local spatial correlations.

Introduction

White adipose tissue (WAT) provides the body’s main long-term energy storage and plays a
central role in metabolism. It is distributed in subcutaneous (SAT) and visceral (VAT) depots,
with SAT depots located abdominally, gluteofemorally, intramuscularly and in the upper body
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above and below the fascia, whereas VAT depots are omental, mesenteric, perirenal,
retroperitoneal, gonadal and pericardial1,2. The main components of WAT are unilocular
lipid-filled white adipocytes or fat cells, comprising 90% of WAT mass, but less than 20% to
25% of cell population count3,4. WAT also contains blood vessels, adipocyte precursor cells,
lymph nodes and nerves of the sympathetic nervous system and immune cells5, which
interact with white adipocytes in adipose expansion and in metabolic disease6–9.

Healthy white adipocytes may present inter-depot heterogeneity in size, with SAT cells
generally larger than VAT10–12. There is also a sex effect, as females have significantly
smaller adipocytes than males in VAT11. Females have larger adipocytes than males in
SAT11,13, but not significantly after adjusting for BMI, age and ancestry11. Obesity, or
excessive WAT expansion occurs through two mechanisms: initial increase in cell size
(hypertrophy) followed by increase in cell numbers (hyperplasia), the latter having poorer
prognosis14. Obesity has reached pandemic levels and is strongly associated with a higher
risk of type 2 diabetes, cardiovascular disease and cancer, as well as other chronic diseases
such as fatty liver disease, hyperlipidaemia, hypertension, gout, restrictive lung disease,
stroke, dementia, gallbladder disease, degenerative arthritis, and infertility14–19. Where the
expansion occurs is also important, as VAT expansion (especially omental and mesenteric)
is correlated with higher disease risk, whereas SAT expansion can have a protective
metabolic effect20–22. Further, relative anthropometric measures of fat distribution such as
waist-hip-ratio adjusted for BMI (WHRadjBMI) capture body fat percentage, and
cardiovascular disease and type 2 diabetes risk, and may be better than BMI
measures17,23,24. Adipocyte mean area correlates with obesity measured through BMI, more
strongly in VAT than SAT11. The study of WAT remodeling is interesting beyond obesity, as
WAT expansion or wasting can be caused by certain diseases such as hypogonadism,
Cushing’s syndrome, HIV, parasitic infection, or cancer-induced cachexia2.

The laboratory mouse is the leading model organism for the study of human disease, due to
99% of its genes having human orthologs, a wide catalogue of inbred strains and mutant
models, and ease of breeding25. Depending on the strain, 16 week mice on regular diets vary
from 16.4% to 43.1% fat percentage in males and from 16.7% to 43.5% in females26. For the
C57BL/6NTac strain that we use in this work, fat percentage varies from 29.0% in males to
23.2% in females on control diets, and from 43.3% in males on a 12 week high fat diet (HFD)
to 31.6% in females on a 2 week HFD27. As in humans, mice present inter-depot
heterogeneity, with visceral gonadal rather than SAT or visceral mesenteric expansion being
associated with metabolic disorders28. Common mouse models to study obesity are
numerous genetics models such as the ob/ob, db/db, POMC, MC4 knockout, ectopic agouti
and AgRP, FABP4-Wnt10b, LXRβ−/−, Sfrp5−/− and Timp−/− models, surgical/chemical
models and diet induced obesity2,29. Other models to study WAT phenotypes are R6/2 and
CAG140 for Huntington's disease30 and CRH for Cushing’s syndrome31. In this paper, as an
exemplar we focus on the C57BL/6NTac Klf14 knockout model (Klf14tm1(KOMP)Vlcg) previously
developed by Small et al.13. The KLF14 (Krüpple-Like family 14) transcription factor is
associated with metabolic syndrome and regulates gene expression in adipose tissue. This
single exon gene is imprinted and only expressed from the maternally inherited allele32, and
is expressed more highly in females than males22. Homozygous females with the KLF14 risk
allele had significantly larger SAT white adipocytes in the Oxford Biobank (BMI-matched)13

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 4, 2021. ; https://doi.org/10.1101/2021.06.03.444997doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.03.444997
http://creativecommons.org/licenses/by/4.0/


and GTEx (unmatched)11 datasets, compared to non-risk homozygous females. The ENDOX
dataset showed the same trend, but no statistical significance possibly due to the smaller
data sample11. By contrast, VAT did not show significant adipocyte size differences in the
GTEx11 dataset.
Therefore, for human or animal model analysis, unbiased, high-throughput, global WAT
quantitative analysis is of great interest. Adipocytes can be collagenase-isolated, counted
and measured with a series of methods: microscope33,34, hemocytometer35, Coulter counter36

and flow cytometry37. However, those approaches consume the tissue and discard its spatial
information, whereas whole slide imaging using fluorescent or conventional brightfield
microscopy preserves tissue architecture within their slices. Given a sufficiently large field of
view, ideally surveying the entire depot area, 2D assessment provides an excellent
approximation of cell morphology. Hence our work focuses on the analysis of digitised
Hematoxylin and Eosin (H&E) stained tissue sections.

In the first part of this work, we tackle adipocyte segmentation. Manual segmentation of
adipocytes is highly accurate6, but also labour intensive and slow. Larger scale studies
require semi- or automatic instance segmentation methods, that need to be robust against
preanalytical variation in histopathology (e.g. staining variability, tissue deformations, tears)
and imaging artefacts (e.g. out of focus regions, bubbles). Early approaches were either
based on hand-tailored features combined in ad hoc pipelines, including colour conversion,
median filters, mathematical morphological operators, thresholding and watershed
algorithms38–42; or based on training a pixel classifier with feature vectors extracted by a set
of predetermined general-use filters43.

Advances in deep learning have revolutionised biomedical image analysis, for instance cell
detection and segmentation44,45. In addition, these methods provide new ways for
phenotyping specific cell types46. DeepCell47,48 replaces predetermined filters43 by deep
convolutional neural networks (DCNNs) that learn optimal feature extraction for the target
cell and microscopy modality, although its fully connected layers restrict input images to a
pre-arranged size. To overcome this, Adipocyte U-Net11 uses a Fully Convolutional Network
(FCN)49, so that images of variable size can be processed, up to the GPU memory limit.
DCNNs successfully tackle stain variability and other colour variations using their
generalisation capabilities, transfer learning, data augmentation (geometric transformations
and colour) or a combination thereof. Even so, a DCNN-based whole H&E slide WAT
segmentation pipeline needs to address several design decisions that we briefly review next.

Segmentation by pixel classification (typically as background, cell boundary or cell interior) is
widely used11,46,47, but the results may need to be regularised, for example with an active
contour47. In addition, segmentation results tend to be worse where membranes touch, have
less definition or are damaged. Segmentation results have been shown to improve by
replacing pixel-classification by regression of the Euclidean distance transform (EDT)50,51, i.e.
distance of each pixel to the closest membrane point (see Supplementary material for insight
in pixel-classification vs. EDT). Then, watershed seeds can be computed with peak
detection51 or with a DCNN trained as an object detector on the EDT50, although neither can
differentiate between adipocytes or other objects in the EDT. In this paper, we propose an
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EDT DCNN followed by a contour detector DCNN and watershed for full segmentation of
H&E images.

The aforementioned segmentation approaches do not tackle white adipocyte overlap (see
Fig. OVERLAP). Cell overlap has been tackled with a number of options such as a Physics
model of light attenuation through the cytoplasm52 to ISOODL53, which rotates the plane of
each cell in 3D space so that they do not overlap, but those increase the problem
complexity. A general solution is using a single Shot Multibox Detector followed by individual
cell segmentation with a U-Net46, but this approach does not suit our whole-tile
segmentation. Instead, we propose a DCNN based on QualityNet1(Huang, Wu, and Meng
2016) that corrects each segmented object to account for cell overlap.

Efficient computation requires pre-segment tissue areas to avoid segmenting large areas of
empty background space54,55; we tackle this problem with traditional image processing
techniques. In addition, tissue areas are typically too large at full resolution to process in
random-access or GPU memory, and need to be tiled and the results stitched together.
Uniform titling is commonly used11,55,56 as it is simple to implement, but the tile overlap
needed to avoid dropping cells on the tile seams produces redundant computations; in this
work, we propose an adaptive tiling algorithm to reduce that burden. Furthermore, it is
necessary to differentiate between the cells of interest (mature white adipocytes) and other
WAT components and image artefacts. For this, tiles can be accepted or rejected as a whole
by an InceptionV3 network11. This, however, has poor granularity and favours areas away
from tissue edges and where other components are less prevalent. For full granularity, one
can first detect valid cells and then segment them46, or as we do in this paper, first compute
a whole-tile segmentation and then classify each object as a valid or invalid white adipocyte.

Building a training dataset for training/validating DCNNs can be done by cropping small
histology windows, labelling them as valid/invalid for processing, and/or manually hand
tracing the cells they contain. Previous multiple-cells-per-window approaches11,47,50 need that
all training pixels are labelled as either background / membrane / cell interior, because they
all contribute to the network’s loss function. But in practice, windows often contain
ambiguous pixels, due to damaged, overlapping or unclear membranes. Furthermore,
windows with non-adipocytes are precluded, or those objects need to be labelled as
background or a new class, something laborious if they present intricate boundaries.
Alternatively, one-cell-per-window approaches46 can be trained granularly, as each training
image contains a single cell. However, this also introduces redundant computation, as each
training image must allocate space around the cell to provide spatial context. In this paper
we search for a compromise, with a multiple-cells-per-window approach that can leave pixels
unlabelled.

We address the challenges above to propose a whole slide white adipocyte segmentation
pipeline called DeepCytometer. The challenges include: 1) whole slide processing of all
tissue, ignoring the background; 2) tiling overlap compromise between segmenting all cells
and reducing redundant computations; 3) colour variability in the slide; 4) cell segmentation
considering that white adipocytes present as mostly background surrounded by a thin
membrane, and that membranes can touch, overlap, be damaged or have poor definition; 5)
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differentiate between adipocytes and other WAT components, as well as image artefacts; 6)
choice of training scheme, e.g. one-window multiple-cells vs. one-window one-cell, full vs.
partial segmentation. We validate the segmentation results with summary statistics (Dice
coefficient and relative area error) as in previous literature, but also propose to examine
segmentation errors as a function of cell size, to assess whether all subpopulations are
equally well segmented. We integrate DeepCytometer with the open source web-based
application AIDA (github.com/alanaberdeen/AIDA) to navigate whole slides with the
segmentation results.

In the second part of this paper, we phenotype Klf14tm1(KOMP)VlcgC57BL/6NTac mice WAT,
analysing DeepCytometer segmentations of 147 whole slides of H&E histology. We extend
previous approaches that quantify median cell area from BMI-matched subjects13 or mean
area11, and propose a phenotype framework with three interconnected linear model levels
(body weight, depot weight and quartile cell area). Finally, we provide heat maps of cell area
in whole slides, for qualitative assessment of spatial heterogeneity of subpopulations.

We provide all the code for the pipeline and experiments, and trained weights
(github.com/MRC-Harwell/cytometer). We also provide the histology images, hand-traced
and pipeline segmentations (TODO: upload to zenodo.org).

Results
In this section we present the DeepCytometer pipeline and its validation. Then, we present
an analysis of WAT from Klf14tm1(KOMP)Vlcg C57BL/6NTac mice, using tissue samples and
additional data generated as part of the Small et al. 2018 study13. This analysis is based on
cell areas derived from automatic segmentations from our pipeline and body and depot
weight. It should be noted that the single exon Klf14 gene is imprinted and only expressed
from the maternally inherited allele32. However, our current preliminary analysis of this
dataset does not take into account this Klf14 monoallelic expression, which we will include in
our next round of analysis.

A main contribution of this paper is our DeepCytometer pipeline to segment white adipocytes
from whole H&E histology slides. The pipeline (Fig. PIPE(a)) performs a coarse
segmentation of the tissue, uses an adaptive tiling algorithm to select image blocks that fit in
GPU memory, performs colour correction and feeds the blocks to a white adipocyte
segmentation sub-pipeline (Fig. PIPE(b)) based on DCNNs. The sub-pipeline works by
segmenting all objects in the image block, then classifying which ones are white adipocytes,
and correcting their outlines to account for cell overlap. Pixels that belong to cropped cells
on the edges are flagged to be processed in neighboring image blocks. A detailed
description of slide preprocessing can be found in Methods - Coarse tissue mask and
adaptive tiling for full processing of whole slides. The segmentation sub-pipeline is described
in Methods - Segmentation sub-pipeline, with details of its constituent Deep CNNs, in
Methods - Deep CNN architectures.
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In this subsection we present three groups of experiments: “Adaptive tiling computational
load reduction” quantifies the reduction in the number of pixels that need to be processed
with our adaptive tiling algorithm compared to uniform tiling. “Tissue CNN validation” shows
that the segmentation sub-pipeline correctly identifies white adipocytes and rejects other
types of elements in the histology image with high sensitivity and specificity. “Segmentation
validation” shows that the segmentation sub-pipeline outlines white adipocytes with low area
errors, such that it provides a good representation of the adipocyte population in the slide.

Adaptive tiling computational load reduction

We measured the reduction of computational load provided by our adaptive tiling compared
to uniform tiling of the tissue region with overlapping blocks, by comparing the number of
pixels each approach needs to process. Uniform tiling was produced by splitting the image
into (Lmax, Lmax) square blocks, where Lmax=2,751 pixels is the maximum tile length allowed in
our adaptive algorithm. Blocks overlapped by on each side, where

pixels is the radius of the largest circular cell accepted by the pipeline, and
pixels is the maximum Effective Receptive Field of the CNNs. The sum

of the areas of all the uniform blocks containing tissue in an image were
compared to the sum of the areas of the adaptive blocks (Fig. ADAPTBLOCK).
The average ratio from the 147 whole slides used in the phenotyping experiments was

/ = 0.86 ± 0.13, corresponding to a reduction of 16.59% in the
number of processed pixels (and correspondingly, time), from an average of 2.11 · 10-9 pixel
(uniform) to 1.81 · 10-9 (adaptive) per slide.

Tissue CNN validation

The Tissue CNN was validated on 126 training images using 10-fold cross validation. We
calculated the receiver operating characteristic (ROC) curve for the classification of white
adipocytes vs. “other” objects, weighted by the number of pixels in each object (experiment
details in Methods - Segmentation sub-pipeline, curve in Fig. CLASS_ROC(a)). The
classifier performs very well, with area under the curve = 99.59%, and pixel-wise false
positive rate (FPR) = 1.80% and true positive rate (TPR) = 97.71% for a white-adipocyte
classification threshold . The low FPR means that cell population studies will
contain a negligible number of false objects, and the high TPR indicates that the vast
majority of white adipocytes will be detected in the slides. We also provide TPR and FPR
values for other thresholds in Fig. CLASS_ROC(b).

Segmentation sub-pipeline validation

We validated the segmentation sub-pipeline on 55 hand-segmented images using 10-fold
cross validation, both for the Auto and Corrected methods (experiment details in Methods -
Segmentation sub-pipeline). We computed the Dice Coefficient (DC) between pairs of
DeepCytometer and hand-traced (ht) cell contours, matched as described in Methods. For
the Auto method we obtained DCAuto = 0.89 (median), 0.85 (mean), 0.10 (std), and for the
Corrected method, DCCorrected = 0.91 (median), 0.87 (mean), 0.10 (std). We also computed
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the median relative errors, which were -10.19% (Auto) and 4.19% (Corrected) (Fig.
SEG_VALIDATION(b)). Both DC and relative error suggest that DeepCytometer segments
white adipocytes with an acceptable area error, and that the Corrected method performs
better than the Auto method.

To evaluate whether DeepCytometer segmentations represent the training cell area
population, we compared box-and-whisker plots of the hand traced, Auto and Corrected
white adipocyte areas (Fig. SEG_VALIDATION(a)). The hand traced population had quartiles
(Q1, Q2, Q3) = (1.5, 2.3, 3.9) 103 μm2. The Auto method moderately underestimated cell
areas, as expected due to the lack of cell overlap, (Q1, Q2, Q3) = (1.3, 2.1, 3.4) 103 μm2.
The Corrected method approximated the hand traced population better, with just a slight
overestimation (Q1, Q2, Q3) = (1.5, 2.4, 4.0) 103 μm2.

Furthermore, as discussed in Methods, we went beyond summary statistics
commonly found in the current literature to evaluate whether segmentation errors remain
constant across the cell population. For this, we plotted Auto and Corrected relative errors
vs. hand traced cell area, the rolling median and interquartile range curves and the global
median relative error (Fig. SEG_VALIDATION(c)-(f)). The curves suggest that relative errors
remain constant for Areaht ≥ 780 μm2, but shift towards more positive values for smaller cells.
This would suggest less reliable phenotyping results for cells with Areaht < 780 μm2, which
comprise the bottom 15.9% of the population. This highlights the need to report
segmentation errors by cell size in future literature.

Phenotype study of WAT using DeepCytometer segmentations

We broke down the study of Klf14 phenotypes into three interconnected levels: the mouse
level (body weight, BW), the depot level (depot weight, DW) and the cell level (quartile cell
area). The mice were stratified by sex, and we tested separatedly for genotype (WT or Het)
and “parent” (heterozygous parent of origin for the KO allele: father, PAT or mother, MAT)
effects as exploratory analysis (the number of mice did not allow us to include both variables
and their interactions in a model). Body and depot weight were measured in the laboratory,
and cell areas were computed both for hand traced and DeepCytometer segmentations.
(Methodology details are provided in Methods, Phenotype framework for WAT).

Mouse level

We studied the sex effect on BW, as well as genotype and parent. (We also checked that cull
age had no significant effect, see Suppl. Cull age effect on BW).

Sex effect on BW

To assess the effect of sex on BW, we fitted a Robust Linear Model (RLM) (BW ~ sex) to the
PAT mice (nfemale=nmale=18). We used all PAT mice instead of only WT as controls as they do
not display Klf14 phenotypes. The RLM was preferred to an Ordinary Least Squares (OLS)
model to moderate the leverage of a large male outlier. The model calculated a mean BW for
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females of 25.06 g and 38.30 g for males (males 52.82% larger, β=13.24 g, p=6.00e-20).
This sexual dimorphism is larger than genotype or parent effects that we found in the next
sections at the BW, DW or cell level, so we stratify the data by sex in the rest of the study.

Genotype and parent effect on BW

Next we looked at the effect of parental inheritance on BW. We fitted separate OLS models
(BW ~ genotype) and (BW ~ parent) to 76 mice stratified by sex (nfemale=nmale=38). T-tests of
the βgenotype(Het) coefficients do not show any significant genotype effect in females (p=0.22)
or males (p=0.79) (Fig. BW(a)). On the other hand, there is a highly significant parent effect
for females (βparent=4.48 g, p=0.0061), where MATs are on average 4.48 g / 25.10 g = 17.86%
larger than PATs (Fig. BW(c)).

Depot level

As discussed in the Introduction, SAT and VAT have different impacts on disease and
phenotypes. In this section we study genotype or parent effects on DW of inguinal
subcutaneous (for SAT) and gonadal (for VAT) depots adjusting for BW, as well as DW
correlation with BW.

BW, genotype and parent effects on depot weight (DW)

We fitted OLS models (DW ~ genotype * BW/BW) and (DW ~ parent * BW/BW) to the same
76 mice stratified by sex and depot, where BW=33.44 g is the mean BW of all animals used
as a normalisation factor to lower the condition number of the linear model. We then used
Likelihood ratio tests (LRTs) to compare those models to null-models (DW ~ BW/BW) in
order to test for genotype or parent effects. Even though the (DW ~ effect * BW/BW) models
already provide one fitted line for the control group (WT or PAT) and another for the effect
group (Het or MAT), this assumes similar data variance and overlap in both groups. To be
free from that requirement, in order to assess correlation we fitted new models (DW ~
BW/BW) separately to the control and effect groups, and then used a t-test of their slopes to
evaluate correlation between DW and BW. Said individual linear models are shown in Fig.
BW(b) together with scatter plots of the original data (one point per mouse). Their intercept
and slope values, and corresponding p-values are tabulated in Tables Table
DW_BW_RLM_GENOTYPE and Table DW_BW_RLM_PARENT. The p-values of the slopes
from the 8 genotype or parent models were jointly corrected using
Benjamini-Krieger-Yekutieli57.

Genotype effect: LRTs do not show a significant genotype effect in DW for any of the
4 sex/depot strata: female (gonadal LR=0.23, p=0.63, subcutaneous LR=0.03, p=0.87) or
male (gonadal LR=2.13, p=0.14, subcutaneous LR=3.26, p=0.071). According to the
individual models stratified by genotype (Table Table DW_BW_RLM_GENOTYPE), the
p-values of the slopes suggest that DW is positively correlated with BW in female gonadal
depots both for WTs and Hets (βBW/BW(WT)=1.52 g, p(WT)=0.015; βBW/BW(Het)=1.63 g,
p(Het)=0.031), but uncorrelated in the other strata.
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Parent effect: LRTs reveal significant parent effects in females (gonadal LR=5.23,
p=0.022, subcutaneous LR=5.42, p=0.020). According to the individual models stratified by
parent (Table Table DW_BW_RLM_PARENT), the p-values of the slopes suggest that BW is
positively correlated with DW in female gonadal depots both for PATs and MATs
(βBW/BW(PAT)=2.58, p(PAT)=0.0048; βBW/BW(MAT)=1.40, p(MAT)=0.010). In female
subcutaneous depots, the trend is the same as in gonadal ones, but does not reach
significance. In both depots, female MATs have lower DW for the same BW than PATs, and
thus, lower fat percentages. In males, LRTs show very significant parent effects (gonadal
LR=7.48, p=0.0063, subcutaneous LR=11.29, p=0.00078). However, what those LRTs are
finding is a significant difference between a non-significant positive slope βBW/BW(PAT) and a
non-significant negative slope βBW/BW(MAT). Thus, we consider that male DW is uncorrelated
with BW under parent stratification, and that a parent effect in male DW is inconclusive.

To summarise, DW is positively correlated with BW in female gonadal depots, but not
in female subcutaneous, or either male depot. In addition, there is no genotype effect on
DW, but there is a parent effect in females, with MAT females having lower fat percentages
than PAT ones.

Cell level

First, we calculate probability distribution functions (pdfs) in the hand traced data set and the
DeepCytometer segmented whole slides to compare hand traced populations to
DeepCytometer whole slide ones. Second, we study genotype or parent effects on cell area
in the same depots as before, adjusting for DW, as well as cell area correlation with DW.
Finally, we present heatmaps of cell areas computed from the DeepCytometer
segmentations. This provides a clear picture of whether there are local correlations or a
uniform spatial distribution of cell sizes across whole slides, as well as whether slides from
the same stratum have similar cell population spatial distributions.

Area population distributions of hand traced cells

The hand traced dataset consists of 1,903 cells pooled from 60 subcutaneous windows and
20 mice (see Data). The cells measured between 66.0 μm2 (321 pixel) and 19,058.2 μm2

(92,544 pixel). To represent cell populations, we estimated probability density functions
(pdfs) of the areas of hand traced cells (Fig. MANUAL_POPULATION_HISTOS(a)). We also
calculated the cell area Harrell-Davis (HD) quartiles (Q1, Q2, Q3) with 95%-CIs (Fig.
MANUAL_POPULATION_HISTOS(b)). Male cells were notably larger than female cells for
each quartile. On the other hand, for each sex and quartile, PAT and MAT areas were
similar, with overlapping 95%-CIs (although there is a trend for smaller MAT cells in each
quartile).

Area population distributions of DeepCytometer segmented cells

We estimated pdfs from the areas of DeepCytometer segmented cells (with the Corrected
method), one pdf per slide (Fig. SEG_POPULATION_HISTOS(a)-(b)). We segmented 75
inguinal subcutaneous and 72 gonadal whole histology slides, corresponding to 73 females
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and 74 males, to produce 2,560,067 subcutaneous and 2,467,686 gonadal cells. We
combined all the pdfs by computing pdf HD quantiles q={2.5%, Q1, Q2, Q3, 97.5%} (i.e.
quantiles of density values instead of cell areas), and displayed them as shaded areas and
solid curves in Fig. SEG_POPULATION_HISTOS(c)-(d): 2.5%-97.5% form the 95%-interval
(light shaded area) and Q1-Q3 form the interquartile range (dark shaded area). The Q2
curve (solid blue) provides a median histogram for each stratum. In addition, we computed
the cell area quartiles Q1, Q2, Q3 for each pdf, and their standard errors. We combined
those estimates using the inverse-variance meta-analysis method to produce one combined

, , and their 95%-CIs per stratum. The combined , , are displayed as
vertical black lines in Fig. SEG_POPULATION_HISTOS(c)-(d), and their numerical values
and 95%-CIs are provided in the tables of Fig. SEG_POPULATION_HISTOS(e)-(f).

.

Comparison of hand traced vs. DeepCytometer segmented cell populations

In section Results - Segmentation sub-pipeline validation, we showed that DeepCytometer
automatic segmentation approximates hand tracing in training windows, and is faster. In this
section, we test whether whole slide segmentation also adds valuable population information
to training window segmentation. First, we compared hand tracing of the training windows
sampled from 20 subcutaneous whole slides against the DeepCytometer segmentations of
those same 20 whole slides. For the purpose of this experiment, it is enough to stratify by
sex and parent, omitting genotype. We computed HD quartiles (Q1, Q2, Q3) from each
mouse and combined them using the inverse-variance meta-analysis as in the previous
section. Pdfs and quartiles are plotted in Fig. MANUAL_POPULATION_HISTOS(a) and (c),
and quartile values and their 95%-CIs are tabulated in Fig.
MANUAL_POPULATION_HISTOS(b) and (d). The area difference (%) between hand traced
and DeepCytometer segmentations is tabulated in Fig.
MANUAL_POPULATION_HISTOS(e). In all but one stratum, the DeepCytometer
segmentation quartiles are larger than the hand traced ones. Whereas for males the area
difference is between -8.72% and +20.42%, for female MATs it ranges between +57.65%
and +65.15%. This suggests that our 1,903 hand traced cells from 60 windows and 20 mice,
despite being a rather large training dataset, misrepresents the whole slide populations in
the four strata, especially for female MATs. Namely, it undersamples the long tails on the
right-hand side of the pdfs, i.e. the larger cells in the population. These errors are not
systematic, and vary between strata. This could be partly due to hand tracing sampling a
relatively small number of cells per mouse and pooling them. This highlights the need for
whole slide analysis.

Furthermore, to test whether 20 whole slides are enough to represent cell
populations, we computed pdfs from the other 55 subcutaneous DeepCytometer whole slide
segmentations for a total of 75 subcutaneous pdfs (as well as from the 72 gonadal slides for
completion) (Fig. SEG_POPULATION_HISTOS). The quartile area difference between the
20 and 75 whole subcutaneous slides is shown in Fig. SEG_POPULATION_HISTOS(g).
Although the quartile areas are similar for females (from -4.10% to +9.00%), the
subpopulation estimates change substantially for males (from -14.28% to +22.36%).
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Therefore, both whole slide analysis and the analysis of more mice significantly
changed the cell population pdfs. Both increases are enabled by DeepCytometer’s
segmentation.

DW, genotype and parent effects on cell area quartiles

So far, our comparison of cell area quantiles has not taken into consideration confounders
such as BW or DW. As we have previously studied DW as a function of BW, in this section
we complete the three level phenotyping analysis with OLS models (areaq ~ genotype ∗ DW)
and (areaq ~ parent ∗ DW), stratified by sex and depot, where areaq are the area quartiles
q={Q1, Q2, Q3} (Table AREAQ_DW_LRT). (We removed 2 gonadal and 1 subcutaneous
slides from the analysis due to lack of BW and DW records of two mice.) We apply a similar
approach as before, using LRTs to assess genotype and parent effects, and slopes to
assess correlation. The p-values of the slopes βq=βDW(q) were jointly corrected using
Benjamini-Krieger-Yekutieli in the 24 models that correspond to 3 quartiles, 2 sexes, 2
genotypes/parents, and 2 depots.

Genotype effect: individual linear models are shown in Fig.
AREAQ_DW_GENOTYPE_LINREG and coefficients provided in Table
AREAQ_DW_GENOTYPE_LINREG. LRTs are shown in Table AREAQ_DW_LRT(a). For the
gonadal depot, the individual linear models for WT and Het are visually very close, and LRTs
comparisons show no significant difference between WT and Het for females or males. For
the individual models, there is a statistically significant correlation between DW and cell area
in female WTs (βQ2=2360.7 μm2/g, pQ2=0.030; βQ3=4420.8 μ2/g, pQ3=0.030), but not in female
Hets. However, this could be due to slightly higher variance for Het values. Both visual
assessment and LRT p-values suggest a trend of WT and Het female gonadal cell area
increasing with DW. By contrast, in male gonadal depots, visual assessment and slopes and
their p-values suggest constant cell area regardless of DW.

Subcutaneous depots visually show that cell area increases with DW in female and
male WTs, and that cell areas are smaller in Hets, at least as a trend. However, in females,
slopes βq are not statistically significantly different from zero according to their t-test
p-values. There is no evidence of a difference between female WT and Het models
according to LRT p-values either. On the other hand, p-values for male WT slopes are very
significant (pQ1=pQ2=pQ3=0.0011) and indicate that cell area increases with DW (βQ1=720.9
μm2/g, βQ2=1735.2 μm2/g, βQ3=2744.8 μm2/g), whereas Het slopes are not significantly
different from 0. The difference between WT and Het models is significant according to LRTs
(pQ1=0.0091, pQ2=0.0058, pQ3=0.014). Thus, there is evidence that cell area increases with
DW for WTs, but there is no evidence of correlation with DW for Hets.

Parent effect: individual linear models are shown in Fig.
AREAQ_DW_PARENT_LINREG and coefficients provided in Table
AREAQ_DW_PARENT_LINREG. LRTs are shown in Table AREAQ_DW_LRT(b). The plots
display positively correlated cell area to DW. However, the residuals reveal
heteroscedasticity and autocorrelation, and t-tests of the βq coefficients return non-significant
p-values after multitesting correction due to the variance of area values. Thus, it is
inconclusive whether DW and cell area are truly correlated. Nonetheless, the LRTs suggest

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 4, 2021. ; https://doi.org/10.1101/2021.06.03.444997doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.03.444997
http://creativecommons.org/licenses/by/4.0/


a very significant parent effect in female cells, both gonadal (pQ1=0.01, pQ2=0.0023,
pQ3=0.0022) and subcutaneous (pQ1=0.00082, pQ2=0.0015, pQ3=0.0021). Visual inspection of
the OLS plots suggests that this difference arises from larger MAT than PAT cell areas for a
given DW. However, due to the aforementioned issues with the residuals, we qualify this
phenotype as inconclusive.

For males, we have a case analogous to the depot level above, as in some cases the
LRTs show a significant difference between PAT and MAT, but all the gonadal and
subcutaneous slopes βq are non-significant. Thus, we conclude that cell area and DW are
uncorrelated, and there is effectively no parent effect.

Quantile colour map plots to assess cell size heterogeneity

In order to gain insight into the spatial distribution of adipocyte populations, we used the
area-to-colour map described in Methods - Quantile colour map plots to assess cell size
heterogeneity to visualise cell area distribution in all whole slides processed by
DeepCytometer, both in AIDA to visually assess the segmentation, and to generate figures
for this paper (Fig. COLORMAP_F_GWAT-Fig. COLORMAP_M_SCWAT). The colour map is
linear with area quantile, rather than area, and we use separate colour maps for females and
males, due to sexual dimorphism. The results clearly show local subpopulations or clusters
of white adipocytes. These clusters are irregular in shape, and present high inter- and
intra-slice variability, even within the same sex and depot stratum. They illustrate the
challenges for statistical studies of cell populations performed on subsamples of whole
slides, such as our hand traced dataset. Namely, cells within clusters are correlated
observations, so although spatial analysis is without the scope of this paper, we conjecture
that an apparently large number of cells (~2,000 in our hand traced dataset) may not
properly represent the mixture of subpopulations in the original whole slides.

Summary of phenotype findings

Effect Model Results

Full body

Female Male

Sex

BW

Male 52.8% heavier than female.

Genotype N.e. N.e.

Parent E: MAT 14.7% heavier than
PAT.

N.e.

(a)
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Gonadal depot

Female Male

Genotype
WT ￫ Het

DW ~ BW N.e.
C: β(WT), β(Het) > 0.

N.e.
N.c.

areaq ~ DW N.e.
C: β(WT) > 0, β(Het) = 0.

N.e.
N.c.

Parent:
PAT ￫ MAT

DW ~ BW E: DW(MAT) < DW(PAT).
C: β(PAT), β(MAT) > 0.

N.e.
N.c.

areaq ~ DW E: inconclusive.
C: inconclusive.

N.e.
N.c..

(b)

Subcutaneous depot

Female Male

Genotype
WT ￫ Het

DW ~ BW N.e.
N.c.

N.e.
N.c.

areaq ~ DW E: n.s. area(Het) < area(WT).
N.c.

E: area(Het) < area(WT).
C: β(WT) > 0, β(Het) = 0.

Parent:
PAT ￫ MAT

DW ~ BW E: DW(MAT) < DW(PAT).
C: n.s. β(PAT), β(MAT) > 0.

N.e.
N.c.

areaq ~ DW E: area(PAT) < area(MAT)?
inconclusive.
C: inconclusive.

N.e.

N.c.

(c)

Table SUMMARY_FINDINGS. Summary of phenotyping analysis of three traits: (a) body
weight (BW), (b) depot weight (DW), and (c) cell area. The main findings we report are
genotype/parent effect (significant difference between WT and Het, or PAT and MAT,
respectively) and correlation (β slope coefficient significantly different from zero) between
trait and covariate (BW or DW). N.e.: no effect (genotype or parent, respectively). E: effect.
N.c.: no correlation between continuous covariate and dependent variable. C: norrelation.
n.s.: not significant.
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Discussion

This paper tackled two parts: first, we presented DeepCytometer, a pipeline to segment
white adipocytes from high resolution H&E histology, together with visualisation tools for the
results. Second, we presented a phenotype framework for white adipose tissue that we
applied to Klf14 mouse data. Unlike previous methods that have been limited to processing
small windows containing mostly white adipocytes with good image quality, DeepCytometer
can process whole slides containing cell overlaps, other types of tissue, image artifacts and
variations in image quality. In the first part of the paper, we addressed several problems that
naturally arise in whole slide segmentation: 1) Coarse tissue mask. By applying traditional
image processing techniques to segment tissue areas on the 16× downsampled slide. This
resolution was enough to obtain a tissue mask, avoided processing large empty background
areas and its computation time was negligible compared to segmentation. 2) Adaptive tiling
for whole slide processing. We improved on previous tiling approaches by proposing a
method that does not discard cells cropped by tile edges, chooses each tile’s location and
size to reduce overlap and redundant computations. We found a 16.59% reduction in the
number of processed pixels on 147 histology images, compared to uniform tiling. As the
processing time is linear with the number of pixels, this resulted in an overall speedup of
whole slide segmentation. 3) White adipocyte segmentation. We built on previous cell
segmentation work, with a combination of FCNs and post-processing methods, in particular
watershed and mathematical morphology (we call this our Auto method). As in previous
work, we estimated an EDT from adipocyte membranes with a CNN, but followed it by a
Contour CNN to find the EDT troughs, because we found that in practice, previously
proposed simple post-processing methods did not work consistently in whole slides. In
addition, we proposed the Correction CNN to correct Auto labels to account for cell overlap
(Corrected method). Our median Dice coefficients were 0.89 (Auto) and 0.91 (Corrected),
showing good agreement with the hand traced segmentation. The median relative area
errors were -10.19% (Auto) and 4.19% (Corrected). Following previous practice in the
literature, these measures would validate our segmentation method. However, in this paper
we also proposed looking at segmentation errors over the population distribution. We found
that the segmentation area error was roughly proportional to cell area for cells ≥ 780 μm2,
which is desirable, but shifts towards more positive values for smaller cells, the bottom
15.9% of the population. This illustrated how segmentation errors in subpopulations could go
undetected using summary statistics, and highlighted the need for validating segmentation
errors as a function of cell size. This did not affect our phenotyping evaluation, as we used
the cell area population quartiles (25%, 50% and 75%) and not the smallest cells. Running
time of the pipeline increased linearly with tissue area, with 5.5 h for a median size slide with
174.7 mm2 (848.2 Mpixel) of tissue. Most of our slides contained two slices, so the median
time to analyse a slice would be 2.75 h. Of the processing time, 43.9% corresponded to the
Auto method, and 56.1% to the Corrected method. Thus, the Corrected method increases
computation time by ⨯2.28 over using only the Auto method. Whether this trade off is
acceptable depends on the available resources. In our quantitative experiments, we used
Corrected results. 4) Tissue and object classifier. To determine which segmented objects
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are white adipocytes, first we classify each histology pixel, and then accept objects that
contain ≥ 50% white adipocyte pixels. We weighed the object classifier’s ROC by the
number of pixels per object, to balance the contribution to classification errors of white
adipocytes (small but numerous) with other objects (scarcer but large). The 0.97 area under
the ROC indicated overall good performance of the classifier. With the 50% acceptance
threshold, the false positive rate (FPR) = 15% and true positive rate (TPR) = 95%, which we
considered acceptable for phenotyping. If a lower FPR was required in other work, the 50%
threshold could be raised. Given the large cell counts in the slides, the resulting lower TPR
may be an acceptable trade-off. 5) Ground truth / training data. We created a ground truth
/ training data set for the EDT, Contour and Correction CNNs with 55 random windows from
20 mice, totalling 2,117 white adipocyte hand traced contours, for 10-fold cross validation.
For the Tissue CNN, we added another 71 windows containing only non-white adipocyte
regions. This was necessary to create a balanced set of ≈ 23.7 · 106 white adipocyte pixels
and ≈ 45.1 · 106 non white adipocyte pixels. Non-white adipocyte areas were easier to
manually segment because they are larger and do not need precise outlining. For the cell
population studies, we added another 5 windows (for a total of 60) to two mice with
undersampled populations, but removed 214 segmented objects (for a total of 1,903 cells left
over) where we had doubts of being white adipocytes. We hope that the data set will be a
useful resource in the field, and have made it available for download at XXXXXX. 6)
Segmentation results visualisation. Integration of our pipeline with AIDA allowed us to
review whole slide segmentation results in real-time. AIDA was launched on the same GPU
server as the pipeline, and enabled real-time review of the results from a desktop or laptop
using a regular browser. The pipeline features saving each block as a separate layer or all in
the same layer for display. AIDA also allows manual correction of labels. 7) Cell size
heterogeneity visualisation. To highlight spatial size heterogeneity, we proposed a colour
scale proportional to the cell area’s quantile. This scheme produced highly contrasted
images readily showing cell area heterogeneity across tissue samples, with subpopulations
of different sizes grouped in clusters (Fig. COLORMAP_F_GWAT-Fig.
COLORMAP_M_SCWAT). 8) Suitability of hand traced dataset for cell population study.
The Results - Comparison of hand traced vs. DeepCytometer segmented cell populations
experiment returned very significant differences between the distributions obtained from the
hand traced data set and whole slide automatic segmentations used as ground truth. This
suggests that even though the hand traced data set contained 1,903 cells from 60 random
windows, it failed to represent the true distribution of white adipocyte areas. Although spatial
analysis is without the scope of this work, we conjecture that intra-slice clustering introduces
strong spatial local correlations in cell size, thus reducing the effective size of the training
dataset (Fig. COLORMAP_F_GWAT-Fig. COLORMAP_M_SCWAT). Such difference
between hand traced and DeepCytometer populations highlights the need for whole slide
segmentation and analysis, with pipelines that can run on dozens or hundreds of slides.
Furthermore, this begs the question for future work of whether a single whole slide provides
an appropriate representation of a whole depot’s cell population, or whether fat phenotype
studies should contain multiple slices that cover each depot, or our work should be extended
to 3D modalities such as fluorescent microscopy, considering the financial and
computational cost increase.
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In the second part of this paper, we performed an explanatory study of Klf14 phenotypes in
B6NTac mice at three nested levels –animal (body weight, BW), depot (depot weight, DW)
and cell (quartile cell area)– in four strata defined by sex (female/male) and depot
(gonadal/subcutaneous). Cell areas were obtained by DeepCytometer from 75 inguinal
subcutaneous and 72 gonadal full histology slides. At the BW level, control mice presented
marked sexual dimorphism, with males weighing 52.8% more than females on average.
Thus, the rest of the study was stratified by sex.
At each level, we considered two phenotype assessments: 1) correlation between variables
(e.g. BW vs DW) via t-tests of linear model slopes and 2) genotype (WT/Het) or parent
(PAT/MAT) effects using LRTs. In addition, at the cell level we computed pdfs of cells areas.

At the animal level (BW), there was no genotype effect, but we found a parent effect, as
MAT females were 14.7% heavier than PATs. This would suggest a phenotype where
females with mothers that carry the KO allele are heavier, regardless of whether the
daughter carries it herself. At the depot level (DW ~ BW), males had no genotype or parent
effects, and their BW and DW were uncorrelated. Females showed no genotype effect either.
Nonetheless, there was an interesting non-phenotypic difference between VAT and SAT:
stratified by genotype, BW and DW were correlated in gonadal depots, but not in
subcutaneous depots. Females showed a depot parent effect, with MAT depots being
smaller than PAT ones. This is remarkable, because then, female MATs are both heavier but
have smaller fat depots than their PAT counterparts, i.e. they are both larger and leaner
mice. Furthermore, when stratifying by parent, we observed a similar non-phenotypic
difference as above: BW and DW were correlated in gonadal depots, but the slope in
subcutaneous depots is statistically non-significant. Thus, both at animal and depot weight,
there are phenotypes for female MATs. At the cell level (areaq ~ DW), it is noteworthy that
males exhibited a phenotype, but only as a subcutaneous genotype effect, with cell area in
Hets being smaller than in WTs. In that depot, male areaq is correlated with DW in WTs but
not in Hets. These two observations, together with the fact that there was no genotype effect
in male DW itself, would suggest that male WTs and Hets have similar subcutaneous DW,
with the distinction that in WTs, larger DW is achieved by white adipocyte enlargement,
whereas in Hets, it is by cell multiplication. In female gonadal depots, there is no genotype
effect according to the LRT. However, DW and areaq are correlated in WTs but not in Hets;
because in the depot level, DW and BW were correlated for both WTs and Hets, this would
suggest that WT female gonadal white adipocytes grow with BW, but in Hets, cell growth is
limited and instead DW is due to cell multiplication. The female gonadal parent effect
analysis is inconclusive, due to the data variance and not suitability for a linear model.
Finally, female subcutaneous depots show no correlation between DW and areaq with
genotype stratification, and only a weak trend of Het areas being smaller than WT ones. The
parent effect is inconclusive as before, although there is a trend for MAT areas being larger
than PAT ones.
In summary, our exploratory analysis reveals interesting phenotype leads by breaking down
the study into animal, depot and cell level, and assessing parent and genotype effects. Of
particular interest are strata where depot size can be explained in terms white adipocyte size
vs. multiplicity, which would be directly connected to hypertrophy vs. hyperplasia. However,
further investigation with more mice is necessary, to be able to examine genotype:parent
interactions and provide explanatory mechanisms for the phenotypes.
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In future work, the pipeline can also be redesigned with alternative deep learning
approaches that find candidate objects and then segment them, as opposed to
DeepCytometer, which first segments all objects and then classifies them, e.g. based on
Faster R-CNN58, Mask R-CNN59 or TensorMask60. Although we have proved that
DeepCytometer can analyse hundreds of slides with common resources, we would like to
improve its architecture to scale it to studies with thousands of slides, without needing large
cloud computing resources.

Data

Mouse description, tissue acquisition and imaging

To develop and evaluate our methods we analysed adipose tissue histological samples from
mice carrying (Het) or not (WT) a Klf14 gene knockout on either maternally (MAT) or
paternally (PAT) inherited chromosomes, described previously13. The summary of the
characteristics of the 20 Klf14-C57BL/6NTac (B6NTac) mice used for training and testing the
DeepCytometer pipeline, as well as the hand traced population experiments, is shown in
Table MICE. The mean ± standard deviation mouse weights were 26.6 ± 3.7 g (female PAT),
26.2 ± 2.9 g (female MAT), 37.6 ± 1.9 g (male PAT), 39.9 ± 3.8 g (male MAT).

The histopathology screen involved fixing, processing and embedding in wax, sectioning and
staining with Hematoxylin and Eosin (H&E) both inguinal subcutaneous and gonadal adipose
depots. For paraffin-embedded sections, all samples were fixed in 10% neutral buffered
formalin (Surgipath) for at least 48 hours at RT and processed using an Excelsior™ AS
Tissue Processor (Thermo Scientific). Samples were embedded in molten paraffin wax and 8
μm sections were cut through the respective depots using a Finesse™ ME+ microtome
(Thermo Scientific). Sampling was conducted at 2sxns per slide, 3 slides per depot block
onto simultaneous charged slides, stained with haematoxylin Gill 3 and eosin (Thermo
scientific) and scanned using an NDP NanoZoomer Digital pathology scanner (RS C10730
Series; Hamamatsu).

Ground truth hand traced dataset for CNN training and cell
population studies

We created two slightly different hand traced datasets. For DeepCytometer training and
validation, we randomly sampled each of the 20 training histology slides to extract a total of
55 histology training windows with size 1001×1001 pixels and traced white adipocytes, other
types of tissue (connective, vessels, muscle, brown adipocytes, etc.) and background areas.
Another 71 windows were manually selected to add more examples of only other types of
tissue to train the tissue classifier. This first dataset is summarised in Table MICE in black.
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For cell population studies, we added 5 random windows from 2 mice whose cell population
was undersampled, and we removed those white adipocyte objects with ambiguous
interpretation, namely fully overlapped, suffering from image artifacts or comprising very
small gaps between clear adipocytes. This second dataset is summarised in Table MICE in
blue.

The total number of hand traced white adipocytes is 2,117 and 1,903, respectively, with a
roughly balanced split between the four groups formed by the female/male and PAT/MAT
partitions (Table CELL-NUM). The total number of “other tissue” objects is 232, and of
“background”, 24. (Note that cell objects tend to be much smaller than “other” or
“background” objects). Each window contained one or more of these types of objects. Hand
tracing was performed with the image editor Gimp (www.gimp.org) over a month. Automatic
levels correction and manual curves adjustment was temporarily applied to each window to
improve image contrast for the human operator. Contours were drawn as linear polygons on
the outermost cell edge, accounting for the cell overlaps shown in Fig. OVERLAP(b), and
exported with an ad hoc plugin as SVG files for further processing. For “other” or
“background”, representative linear polygons were drawn, avoiding complex boundaries.
This approach produced partially labelled training windows.

ID Sex Genot. BW
(g)

Fold Cells Oth. Back. Total
win.

Win. that
contain
cells

16.2d m MAT Het 46.19 3 55 89 9 5 7 8 4 5

17.1c f MAT Het 22.07 2 165 86 15 3 5 5 1 1

17.2c f MAT Het 26.39 1 34 31 7 0 4 4 1 1

17.2f m MAT Het 40.87 9 150 135 14 0 7 7 3 3

18.1a f MAT Het 30.65 6 63 48 13 1 6 6 1 1

18.1e m MAT Het 40.02 8 25 128 9 0 7 11 2 6

18.2b f MAT Het 24.28 0 49 44 12 0 5 5 2 2

18.2d f MAT Het 27.72 0 190 148 12 0 5 5 2 2

18.2g m MAT Het 41.98 9 0 0 9 0 3 3 0 0

18.3b m MAT Het 34.52 8 83 73 11 3 8 8 4 4

18.3d m MAT Het 36.08 2 199 179 16 1 8 8 5 5

36.1a f PAT Het 31.42 5 96 82 5 0 5 5 2 2

36.1b f PAT WT 29.25 5 65 56 8 0 6 6 2 2

36.1c f PAT Het 27.18 7 187 159 8 1 5 5 2 2
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36.1i m PAT Het 36.55 1 251 218 11 2 11 11 7 7

36.3d m PAT Het 40.77 6 111 100 21 1 8 8 5 5

37.1c f PAT WT 23.69 3 157 122 13 2 5 5 2 2

37.1d f PAT WT 21.20 4 17 13 15 0 5 5 2 2

37.2g m PAT Het 36.98 4 147 126 13 0 8 8 5 5

37.4a m PAT Het 36.11 7 73 66 11 5 8 8 3 3

Total 2,117 1,903 232 24 126 131 55 60

Table MICE. Description of mouse cohort used for CNN training (black), and hand traced cell
population studies (blue). All slides acquired from subcutaneous tissue. Genot.: Parent and
genotype (MAT/PAT: maternally/paternally inherited allele. WT: Wild type. Het:
Heterozygous). BW: Body weight. Oth.: Other. Back.: Background. Cells/Oth./Back.: Number
of hand traced white adipocytes/other tissue/background objects. Total win.: Number of
1,001×1,001 pixel windows extracted from the full slice at maximum resolution for training
and testing. Win. that contain cells: Number of those windows that contain hand traced white
adipocytes.

Sex →
Parent ↓

Female Male Total

PAT 522 582 1,104

MAT 501 512 1,013

Total 1,023 1,094 2,117

DeepCytometer training dataset

Sex →
Parent ↓

Female Male Total

PAT 432 510 942

MAT 357 604 961

Total 789 1,114 1,903

Cell population studies dataset

Table CELL-NUM. Number of hand traced white adipocytes stratified by sex and parent.
These tables are summaries of Table MICE.

Methods

Coarse tissue mask and adaptive tiling for full processing of
whole slides

Coarse tissue mask
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Histology slides in Hamamatsu NDPI format can be read by blocks of arbitrary size at a fixed
number of precomputed resolution levels with OpenSlide 61. At the highest resolution level,
our images have pixel size 0.454 μm. We read the whole histology slide at the precomputed
×16 downsampling level (7.26 μm pixel size), applied contrast enhancement and computed
the mode and standard deviation in each RGB channel of the image. We
assume that the background colour is centered around , as background pixels are
more numerous than tissue pixels. To segment the tissue, we thresholded the downsampled
image for pixels that are darker than in all RGB channels (see Fig.
RMABb), where . Then, we applied morphological closing with a 25×25 kernel at
×16 downsampling level, filled holes smaller than 8,000 pixels (421,759 μm2), and removed
connected components smaller than 50,000 pixels (2,635,994 μm2).

Adaptive tiling

When using uniform tiling, to guarantee that any cell will be processed whole in at least one
tile, adjacent tiles need to overlap by , where is the receptive field or
diameter of input pixels that affect each output pixel, and is the diameter of the largest
cell. This overlap introduces repeated processing of the same pixels and multiple
segmentations of the same cells from adjacent tiles, but when it is ignored11, cells cropped
by tile edges need to be discarded.
To ameliorate this problem, we propose an iterative tiling algorithm that adapts the block size
and overlap of each new tile according to the local cell size and tissue mask, such that the
whole coarse tissue mask is covered, all cells are segmented, and redundant computations
are reduced.
For this, first we flag all pixels in the coarse tissue mask as “to be processed”. To find the
location of the first block, the mask is convolved with two small linear kernels. Pixels > 0 in
both outputs are potential locations for the block’s top-left corner. Any of those locations
guarantee that the block has at least one mask pixel on the top and left borders. The
algorithm chooses the first of the candidate pixels, in row-column order. The bottom-right
corner of the block is initially chosen to obtain a block with maximum size 2751⨉2751 pixels
(maximum allowed by GPU memory). The block’s right side and bottom are then cropped to
remove empty columns or rows, producing an adaptive size. Finally, the block is extended
half the effective receptive field on each side, to prevent border effects. (This extra border is
discarded after image processing operations.) If the block overflows the image, it is cropped
accordingly. The image block is then segmented; pixels from cells cropped by the edges
keep their “to be processed” flag, so they will be included in another block. The rest of the
mask pixels are cleared, and the process is repeated iteratively choosing new adaptive
blocks until the whole tissue mask is cleared. Pseudocode and details for the algorithm are
provided in Suppl. Pseudocode for adaptive tiling, and an example of its behaviour is shown
in Fig. RMAB:

Deep CNN architectures
In this section we describe the function of the four different DCNNs used in this work, with
illustrative examples (Fig. DMAP-Fig. CORRECT), a summary of their architectures (Table
CNN), and the calculation of their effective receptive fields (ERFs) (Table ERF). Training and
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validation details are provided in Supplementary material. These networks are components
of the Segmentation sub-pipeline that we describe in the next section. The networks are fully
convolutional49, so that tile size can be adjusted to available GPU memory and the needs of
the adaptive tiling. We used a stride of 1 to avoid downsampling followed by deconvolution,
and thus preserve high-resolution segmentation following 62. We used atrous or dilated
convolution63–65 to enlarge the ERF following 47,62. RGB 8-bit unsigned integer values in the
image files were converted to 32-bit float type and scaled to [0, 1] or [-1, 1] depending on the
specifications of the network they are being fed to.

Histology to EDT regression CNN (EDT CNN)

This network (see architecture in Table CNN(a)), based on previous work by 51,66 and similar
to 50,67 ―as discussed in the Introduction― takes an input histology image and estimates the
Euclidean Distance Transform (EDT) as the Euclidean distance of each pixel to the closest
label boundary point (see EDT CNN and Contour CNN training dataset below for details).
This produces an image similar to an elevation map (Fig. DMAP), where each “hill” defines
an object (e.g. a white adipocyte, an area of muscle tissue or a vessel cross-section). If the
object is a white adipocyte, troughs represent the cell’s membrane boundary or a
compromise boundary between overlapping cells. Trough points are all critical points
(extrema or saddle points) but have different values or “elevations”. We found that troughs in
our whole slides could not be segmented with simple segmentation methods like in 50,67.
Instead, we trained the following Contour network for that task.

EDT to Contour detection CNN (Contour CNN)

This network (see architecture in Table CNN(b)) classifies each EDT pixel as either
belonging or not to a trough (Fig. CONT).

Pixel-wise tissue classifier CNN (Tissue CNN)

This network (see architecture in Table CNN(c)) classifies each pixel from the histology block
as “other type of tissue” vs. “white adipocyte” or “background” (see Fig. CLASS). “White
adipocyte” and “background” are combined in one class because a gap in the tissue and the
inside of a white adipocyte have the same appearance in the histology. The output of this
network is used to classify a segmented object as white adipocyte or not, according to the
proportion of “white adipocyte” / “background” pixels it contains (see section DeepCytometer
pipeline below for details).

Segmentation correction regression CNN (Correction CNN)

This network (see architecture in Table CNN(d)) takes the cropped and scaled histology of a
single object, multiplied by a mask derived from its segmentation, and estimates which pixels
underestimate (detection error) or overestimate (false positive) the segmentation. This
output is then used to correct the object’s segmentation (see section DeepCytometer
pipeline below for details). Because each object’s segmentation is corrected separately,
corrected boundaries can overlap. To create an input for the network, the histology tile is
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cropped using a square box with at least twice the size as the segmentation mask’s
bounding box, and scaled to a fixed size of 401×401 pixels to make the network blind to cell
size. The scaling factor is , where × is the size of the cropping window. Then,
the histology RGB values are multiplied by +1 within the segmentation mask, and by -1
without. By contrast, 68’s QualityNet1 multiplied the histology RGB values by 0 without. Our
approach preserves the information outside the segmentation, while still partitioning the
histology image into two sets of inside/outside pixels. Moreover, instead of estimating one
single quality measure for the whole input image as in QualityNet1, we estimate whether the
segmentation is correct per pixel, computing a value between -1 (undetected pixel) to +1
(false positive pixel) through 0 (correctly segmented pixel).

Effective receptive field (ERF)

The theoretical receptive field (span of input pixels that contribute to an output pixel) can be
computed considering the properties of convolutions, downsampling and pooling. However,
the weight of an input pixel’s contribution decreases quickly towards the edges of the span,
and thus the effective receptive field (ERF) is much smaller than the theoretical one69. To
estimate the ERF, we used gradient backpropagation69, but replaced ReLU activations by
Linear activations and Max Pooling by Average Pooling to avoid numerical instabilities. The
ERF was around 131✕131 pixels (Table ERF), or 37.1% of maximum cell diameter (160 μm
or 353 pixels), causing the EDT CNN to clip the estimated distance to the membrane for
distances larger than the ERF. However, the segmentation validation showed no
performance drop for large cells. This is because distant points do not contribute essential
information to the Contour CNN. This was convenient, as increasing the ERF is
computationally expensive, generally requiring deeper networks.

Segmentation sub-pipeline

The segmentation sub-pipeline combines the EDT, Contour, Tissue and Correction CNNs
with traditional image processing methods (Fig. PIPE(b)) to segment an input histology
image tile, producing one label per white adipocyte.

Histology colour correction

To estimate the typical background colour of the training data set, we computed density
histograms with 51 bins between 0-255 for each RGB channel of the 126 training images
(Table MICE). The 50% HD quantile was computed for each bin, producing a median
histogram for each channel. The modes in each median channel were taken as the typical
background colour, = 232.5, = 217.5, = 217.5. Colour correction was
applied for inference but not for training, to reduce overfitting. To apply colour correction to a
histology slide, we estimated the mode intensity of each channel .

Then, each colour channel was corrected as ,

and .
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White adipocyte label segmentation without overlap (Auto)

The colour-corrected histology image was used as input to the EDT CNN, and its output to
the Contour CNN. To conservatively detect pixels inside objects, we thresholded the
resulting image with a zero threshold (pixels on or near EDT troughs have values > 0). This
produced one connected component inside each cell or object. We filled holes with fewer
than 10,000 pixels, and each connected component was given a different label. Components
with fewer than 400 pixels were removed. The colour-corrected histology image was also fed
to the Tissue CNN, and pixels with score > 0.5 were labelled as white adipocyte pixels. All
non white adipocyte pixels that do not already belong to a seed were labelled as a single
new seed. Seeds were expanded using a watershed algorithm on the negative of the EDT
surface (the negative sign turned hills into basins). Each watershed basin corresponded to a
candidate object. Objects were rejected if they: 1) were smaller than 1,500 pixel (308.9 μm2),
2) did not overlap at least 80% with the coarse tissue mask, 3) did not contain at least 50%
white adipocyte pixels, 4) touched an edge, 5) were larger than 200,000 pixels (41,187.4
μm2) - the largest training cell was 92,544 pixel (19,058.2 μm2). Objects that were inside
another object were merged into the surrounding object. Each surviving label was
considered to segment one white adipocyte, but without overlap.

Segmentation label correction with overlap (Corrected)

The colour-corrected histology image was cropped and resized around each valid white
adipocyte label, and passed through the Correction CNN as described above. Output pixels
with scores 0.5 were added to the label, and pixels with scores -0.5 were removed.
Label holes were filled, and the connected component that had the best overlap with the
input label was kept as the corrected label. Finally, the corrected label was smoothed using a
closing operator with an 11×11 pixel square kernel. (See Fig. CORRECTc).

Segmentation output to AIDA user interface

Each corrected label was converted to a linear polygon with vertices
using Marching Squares 70. Point coordinates were

converted from the processing window to the whole histology image using

, where is the scaling factor and are the
coordinates of the processing window’s top-left pixel within the whole histology image. The
contours were then written to a JSON file that can be read by the browser interface AIDA.
The results are illustrated in Fig. AIDA.

Tissue CNN validation

The Tissue CNN was applied to each of the 126 training images (see Table MICE) according
to the 10-fold split, and classification scores > 0.5 were labelled as white adipocyte pixels.
Then, for each hand traced contour we computed the white adipocyte score

, where #WA stands for the number of white
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adipocyte pixels within the object, and #NWA for the number of non white adipocyte pixels.
This was compared to the ground truth score to compute the receiver
operating characteristic (ROC) curve, weighting each object by its number of pixels. This
way, the ROC takes into account the fact that white adipocyte objects tend to be much
smaller and more numerous than other objects. Namely, this allows us to interpret the
classification error in terms of the more balanced tissue area classification error (our training
contours contain ≈ 23.7 · 106 white adipocyte pixels and ≈ 45.1 · 106 non white adipocyte
pixels).

Segmentation sub-pipeline validation

We applied the segmentation sub-pipeline to each of the 55 colour-corrected images with
hand traced cells (see Table MICE), using 10-fold cross validation. This produced Auto and
Corrected contours for each image that we compared to the hand traced ones for validation.

The literature relies on summary statistics for segmentation validation. For instance,
per-image average diameter40, mean Dice coefficient (DC) and mean Jaccard Index47,
median cell area/volume per subject13, IoU and F1-score 71 and mean cell area11. As
summary statistics, we used the DC and relative area error between each pipeline-produced
contour and the hand traced (ht) contours in the image. The

, where are areas computed with polygon operations.
The highest DC was considered the best match. DC ≤ 0.5 were considered no match, as
they are usually contours that segment an adjacent object. To compare cell populations, cell
area distributions were computed using box-and-whisker plots with median notches for the
hand traced, Auto and Corrected contours with a match (Fig. SEG_VALIDATION). The lower
whisker was set at the lowest datum above Q1 - 1.5 (Q3 - Q1), and the upper whisker, at the
highest datum below Q3 + 1.5 (Q3 - Q1). Data outside the whiskers was displayed as
circles. The relative area error was computed as and

, respectively.

Although they are the standard, summary statistics hide important subpopulation
information. Ideally, we would like a constant relative error for all cell sizes, so that
segmentation errors do not create spurious changes in cell subpopulations. To assess this
for our algorithm, we plotted Auto and Corrected relative errors vs. hand traced cell area. We
then sorted the errors by hand traced cell area and computed rolling Harrell-Davis (HD)
estimates for quartiles={Q1, Q2, Q3} of the relative errors using a rolling window of 100
points that shrinks as it overflows at the extremes down to a minimum size of 20 points. The
rolling median and interquartile range Q1-Q3 were plotted as a solid curve and red shaded
area, respectively (Fig. SEG_VALIDATION(c)-(f)). Finally, we computed the global HD
estimate for Q2 and plotted it as a horizontal green line.

Phenotype framework for WAT
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We use two main tools to study WAT: cell area probability density functions (pdfs) to
represent cell populations, and linear models to phenotype body and depot weight, and cell
area.

To estimate cell area pdfs, we applied Kernel Density Estimation with a Gaussian kernel and
bandwidth = 100 μm to preserve sharp peaks in the distributions. Quartiles (Q1, Q2, Q3) or
other quantiles were computed with Harrell-Davis (HD) quantile estimation(Harrell and Davis
1982). For a weighted average of quantiles from multiple mice, for each p-quantile for the i-th
mouse qi(p) we computed the corresponding HD standard error sei(p), using jackknife and
applied the meta-analysis inverse-variance method 72,73. The combined quantile estimate is

and the combined standard error is

The 95%-CI for the combined quantile estimate is
95%-CI(p) =

Previous KLF14 phenotype studies stratified datasets by sex11,13 and compared two groups
(sex or risk allele vs. non-risk allele) with summary statistics, namely median adipocyte area
with a Wilcoxon signed-rank test13, or mean area with inverse variance fixed effects
meta-analysis11. Neither adjusted for BW (the Wilcoxon signed-rank test compared pairs of
BMI-matched subjects and the meta-analysis study selected subjects within the normal BMI
range), although BW is a known general phenotype confounder74,75, in particular of mouse
adipocyte diameter and DW28. In addition, summary statistics could miss changes in cell
subpopulations that become apparent when comparing population quantiles76.

To tackle equivalent issues in the mouse model, we propose a Klf14 phenotype framework
with three interconnected levels: the mouse level (body weight, BW), the depot level (depot
weight, DW) and the cell level (quantile cell area), to remove confounding effects. Also, we
study cell sizes at different quantiles; for the sake of simplicity, we use the three quartiles in
this work, but the model could be applied to any other quantiles. In each phenotype level, we
used linear models to quantify the trait (e.g. cell area) vs. categorical effect (e.g. genotype)
and continuous covariate (e.g. depot weight). For this, we built upon the mixed model
proposed by Karp et al.74,75 (trait ~ genotype*sex + body_weight + (1|batch)), where “batch”
groups animals processed the same day, and adipocyte size or DW vs. BW non-linear
models by van Beek et al. 28. Our approach is different in six ways: 1) as we have a smaller
number of animals per stratum, we did not consider “batch”, and thus, replaced mixed
models for simpler Ordinary Least Squares (OLS) models or Robust Linear Models (RLMs).
In larger studies, batch and other random effects (litter, mother) could be considered. 2) Due
to sexual dimorphism that would dominate other effects, we stratified the study by sex, rather
than include sex as a covariate. 3) We considered two effects, genotype and parent, instead
of just genotype. Due to limited data (~18 mice per sex/depot/effect stratum), we performed
separate exploratory analysis for each effect rather than combining both in the same model.
4) We considered two covariates to adjust for, body weight (BW) and depot weight (DW),
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instead of just BW. 5) We added an interaction, “effect * covariate = effect + covariate +
effect:covariate”, to allow for different slopes in the trait vs. covariate relationship. 6) We use
adipocyte area instead of adipocyte diameter28 to linearise the relationship with DW.

Accordingly, the three-level linear models we propose are: (BW ~ effect), (DW ~ effect *
BW/BW) and (areaq ~ effect ∗ DW), where BW=33.44 g is the mean BW of all animals, effect
∈ {genotype, parent} and q={Q1, Q2, Q3} are quartiles. BW, DW and areaq are continuous
variables, and effect (genotype or parent) are categorical variables. In addition, an intercept
is included in all models, but omitted in the formula for simplicity.

We extract two results from the models. First, the two-tailed t-test of the continuous
variable’s slope β tells us whether trait and variable are correlated (due to the equivalence
between slope and Pearson’s coefficient tests); for a significant correlation with p-value ≤
0.05, β also provides e.g. the increase rate of DW with BW/BW. Second, a Likelihood Ratio
Test (LRT) evaluates whether the categorical variable has a significant effect in the trait. The
LRT compares the null-model without the effect to the model with the effect, e.g. (areaq ~
DW) vs. (areaq ~ genotype ∗ DW), both applied to the same data. (Details are provided in
Suppl. Likelihood Ratio Test).

Body and depot weight were measured with Satorius BAL7000 scales. For cell area
quantification, we applied DeepCytometer to 75 inguinal subcutaneous and 72 gonadal full
histology slides (with one or two tissue slices each), including the 20 slides sampled for the
hand traced data set. Each slide belongs to an animal and depot (gonadal or subcutaneous),
stratified by sex —female (f) or male (m)—, heterozygous parent —father (PAT) or mother
(MAT)— and genotype —wild type (WT) or heterozygous (Het)—. For segmentation of
training slides, we used the pipeline instance that did not see any part of it in training. Slides
not used for training were randomly assigned to one of the 10 pipeline instances.

When fitting multiple linear models, e.g. 8 models for 2 sexes, 2 depots and 2 effect
categories, the p-values of all slopes undergoing t-tests where corrected using the FDR
2-stage Benjamini-Krieger-Yekutieli method 57 for a significance level α=0.05.

Quantile colour map plots to assess cell size heterogeneity

Because of skewness and long tails in the histogram (Fig. COLORMAP_F(a) and Fig.
COLORMAP_M(a)), overlaying a colour map proportional to cell area or radius on the tissue
sample produces a low contrast image that offers very little visual information about spatial
patterns. In this section, we propose a colour map that provides a much clearer picture, by
making the colour scale proportional to the ECDF of cell area.
We applied the pipeline to whole slides, to produce the scatter map , where

are the coordinates of the -th white adipocyte centroid and is the white
adipocyte’s area. We created a mask with all the pixels that belong to at least one white
adipocyte. We used Delaunay triangulation and linear interpolation to rasterise the scatter
map to pixel coordinates within the mask. Finally, area values were mapped to quantiles,
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, where is the HD quantile estimate computed on the hand
traced training data set. Because of the significant sex effect in cell area (Fig.
SEX_EFFECT), we stratified the training data set into females and males and computed
separate ECDFs and colour maps for each group. Areas smaller or larger than in the hand
traced data set were clipped to or , respectively. The colour map was created in

Hue/Saturation/Lightness (HSL) mode, by setting and . To
sum up, each cell area was mapped to a colour using the relationship

(Eq_COLORMAP)
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(b)
Fig. PIPE. Pipeline diagrams. (a) DeepCytometer pipeline. (b) White adipocyte segmentation
sub-pipeline.
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Fig. SEG_VALIDATION. Validation of the segmentation algorithm on the training dataset. (a)
Comparison of cell area distribution between the hand traced dataset, the automatically
segmented labels with the watershed algorithm (Auto) and segmentation correction
(Corrected). Only matches with > 0.5 were considered valid. (b) Relative area
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segmentation error with respect to hand traced cells. (c)-(f) Segmentation error as a function
of hand traced cell area. For the whole cell population with Auto method (c) and Corrected
method (e). Zoom into regions of interest for Auto (d) and Corrected (f). Blue dots
correspond to individual cells in the training dataset. Black solid curves represent the HD
quartiles (Q1, Q2, Q3) on points sorted by Area , with space between the curves
highlighted as a shaded red area. Green horizontal line represents the overall HD Q2 for all
cells.
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(a)

(b) Female visceral gonadal PAT WT

36.1b 36.3b 37.1c

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 4, 2021. ; https://doi.org/10.1101/2021.06.03.444997doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.03.444997
http://creativecommons.org/licenses/by/4.0/


37.1d 37.3a 37.3c

37.2b 37.2d 39.1h

(c) Female visceral gonadal PAT Het
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37.1b 37.2c

(d) Female visceral gonadal MAT WT

16.2a 17.1d 17.2b
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19.2e

(e) Female visceral gonadal MAT Het

17.1b 17.1c 17.2c
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18.1b 18.2a 18.2e

18.1a 18.2b 18.2d

Fig. COLORMAP_F_GWAT. White adipocyte tissue histology and area quantile heatmaps
for female visceral gonadal depot. (a): Quantile colour map and cell area density for female
Corrected segmentation with deciles plotted for reference (vertical black lines). (b): PAT WT.
(c): PAT Het. (d): MAT WT. (e): MAT Het.
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(a) Female inguinal subcutaneous PAT WT

36.1b 36.3b 37.1c

37.1d 37.3a 37.3c
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37.2b

Female inguinal subcutaneous PAT Het

36.1a 36.1c 36.3a
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38.1a

Female inguinal subcutaneous MAT WT

16.2a 17.1d 17.2b
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19.2e

Female inguinal subcutaneous MAT Het

17.1b 17.1c 17.2c
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18.1b 18.2a 18.2e

17.1a 18.1a 18.2b
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18.2d

Fig. COLORMAP_F_SCWAT. White adipocyte tissue histology and area quantile heatmaps
for female inguinal subcutaneous depot. (a): PAT WT. (b): PAT Het. (c): MAT WT. (d): MAT
Het.
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(a)

(b) Male visceral gonadal PAT WT

36.1e 37.1g 37.1h
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37.2h 37.4b 38.1f

37.1f 37.1g 37.1h

(c) Male visceral gonadal PAT Het
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36.1d

36.1f 36.1j

37.2g 37.4a 39.2d
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36.3d 37.2f 38.1e

(d) Male visceral gonadal MAT WT

16.2b 16.2e 17.1e
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18.3c 19.2f

16.2f 17.1f 19.1a

(e) Male visceral gonadal MAT Het
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17.2f
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18.2g 18.3b 18.3d
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17.2g 16.2d 19.2g

Fig. COLORMAP_M_GWAT. White adipocyte tissue histology and area quantile heatmaps
for male visceral gonadal depot. (a): Quantile colour map and cell area density for male
Corrected segmentation with deciles plotted for reference (vertical black lines). (b): PAT WT.
(c): PAT Het. (d): MAT WT. (e): MAT Het.

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 4, 2021. ; https://doi.org/10.1101/2021.06.03.444997doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.03.444997
http://creativecommons.org/licenses/by/4.0/


Male inguinal subcutaneous PAT WT

36.1e 37.1g 37.1h

37.2h 37.4b 38.1f
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36.1h 37.2f 38.1e

Male inguinal subcutaneous PAT Het

36.1d 36.1j 39.2d
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36.1f 37.2g 37.4a

36.1g 36.1i 36.3d

Male inguinal subcutaneous MAT WT
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16.2f 17.1f 19.1a

19.2f

Male inguinal subcutaneous MAT Het
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16.2d 17.2g 18.1e

19.2g

Fig. COLORMAP_M_SCWAT. White adipocyte tissue histology and area quantile heatmaps
for male inguinal subcutaneous depot. (a): PAT WT. (b): PAT Het. (c): MAT WT. (d): MAT Het.
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Supplementary material

Relation between pixel-classification and EDT regression.
We note that the pixel-classification47 and EDT50,51,66 approaches reviewed in the Introduction
are related, as pixel-classification can be seen as a simplification of signed EDT regression
by applying the sign function

Thus, the EDT representation is richer, because it not only estimates whether a pixel is
inside a cell, but how far from the membrane it is. This could account for the better
segmentation results found by Wang et al.50.

Effective receptive field (ERF) of CNNs

The ERF of each CNN and fold was computed and is shown in Table ERF. The maximum
cell size in our manual dataset is just under 20,000 μm2. This corresponds to a diameter of
160 μm for a circular cell, or 353 pixels for pixel size 0.454 μm. An ERF=131 pixels covers
around 37.1% of the largest cell diameter.

Effective receptive field of:
EDT CNN

Fold 0 1 2 3 4 5 6 7 8 9

Height 128 131 131 131 131 131 131 130 131 124

Width 131 131 131 131 129 131 127 131 131 123

Contour CNN

Fold 0 1 2 3 4 5 6 7 8 9

Height 131 131 131 131 131 131 131 131 131 131

Width 131 131 131 131 131 131 131 131 131 131

Tissue CNN

Fold 0 1 2 3 4 5 6 7 8 9
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Height 123 131 130 131 131 131 131 131 131 131

Width 131 131 131 131 131 131 131 131 131 131

Correction CNN

Fold 0 1 2 3 4 5 6 7 8 9

Height 131 131 131 131 131 131 131 131 131 131

Width 131 131 131 131 131 131 131 131 131 131

Table ERF. Effective Receptive Field (ERF) of the DeepCytometer pipeline CNNs. All sizes in
pixels.

Pseudocode for adaptive tiling

adaptive_block_algorithm():
1. Let

a. histology_filename be the filename of the full resolution histology slide.
b. mask_todo_lores := coarse tissue mask computed in previous section.
c. downsample_factor := 8
d. max_window_size := [2751, 2751]  # due to GPU memory limit
e. border := [65, 65]  # Overlap with other windows to account for receptive field

2. Open file pointer to full resolution histology without reading it into memory
im := OpenSlide(histology_filename)

3. Loop until mask_todo_lores is empty.
a. Compute coordinates of next processing block, both in full resolution and

downsampled image coordinates
[box_coords_hires, box_coords_lores] :=
get_next_roi_to_process(mask_todo_lores, downsample_factor,
max_window_size, border)

b. Load block to process from full resolution image
im_box := OpenSlide.read_region(im, box_coords_hires)

c. Extract low resolution mask for the block and upsample to full resolution
mask_box_lores := mask_todo_lores[box_coords_lores]
mask_box_hires := resize(mask_box_lores, downsample_factor, ’nearest
neighbour’)

d. Segment histology to obtain one label per cell, and mask of cells on the edge
labels_hires, mask_edge_hires :=
DeepCytometer_pipeline(im_box, CNN_models, segmentation_parameters)

e. If no cells found, wipe out current box from coarse tissue mask to avoid
infinite loops
mask_todo_lores[box_coords_lores] := 0
go to next iteration in 3.
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f. Downsample mask of edge objects so that the coarse tissue mask can be
updated
mask_edge_lores :=
resize(mask_edge_hires, size(box_coords_lores), ’nearest neighbour’)

g. Convert labels to contours for AIDA display
h. Update current block of coarse tissue mask with edge mask

mask_todo_lores[mask_box_lores] := mask_edge_lores

Function get_next_roi_to_process() convolves the coarse tissue mask with a vertical and
horizontal line kernel and combines the outputs to find the location of the next processing
block.

get_next_roi_to_process():
1. Compute convolution kernel size

L := int((max_window_size - 2 border) / downsample_factor)
2. Let kh and kv be convolution kernels with size L×L pixels. The kernels are all zeros

except for a horizontal or vertical line of ones through the middle, respectively (Fig.
RMABc).

3. Compute Fast Fourier Transform (FFT) convolution of coarse tissue mask, with
output cropped to mask size
zh := mask_todo_lores kh
zv := mask_todo_lores kv

4. Compute hits where the processing block would both have a mask pixel on the top
and left edges as the Hadamard or pointwise product (Fig. RMABd)
hits_lores := zh zv

5. Choose first found hit (x0, y0) in hits_lores as top-left corner of block (Fig. RMABe).
6. Choose bottom-right corner of block

xend := x0 + max_window_size - 2 border
yend := y0 + max_window_size - 2 border

7. Reduce block size if there are empty mask rows/columns at the bottom/right
xend := min(xend, last column in block with mask pixel)
yend := min(yend, last row in block with mask pixel)

8. Add a border around the block to account for the effective receptive field. Crop the
border if it overflows the image edges, where the downsampled image has size (Rd,
Cd) pixels
x0 := max(x0 - border, 0)
y0 := max(y0 - border, 0)
xend := min(xend + border, Cd-1)
yend := min(yend + border, Rd-1)

9. Upsample block coordinates for full resolution image
x0_hires := round(x0 * downsample_factor)
y0_hires := round(y0 * downsample_factor)
xend_hires := round(xend * downsample_factor)
yend_hires := round(yend * downsample_factor)
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Deep CNNs training methodology

Training for 10-fold cross validation

All CNNs were trained with the same 10-fold cross validation described in Table MICE: 20
mice randomly partitioned in 10 sets of 18 mice for training and 2 for validation.

Training with a combination of labelled and unlabelled pixels

As advanced in the Introduction, it is convenient to use training images with a combination of
labelled (‘White adipocyte’, ‘Background’, ‘Other tissue’) and unlabelled pixels. Instead of
becoming a new class (‘Void’), unlabelled pixels should not contribute to the training
process, as if they were not part of the training dataset at all. This functionality is not
available in Keras 2.2. Thus, we implemented an extension that enables element-wise1

weighting of pixel-wise scores. Let be the score matrix of size , where each
element is the contribution of an output pixel to the
loss. Let be a weighting matrix such that the loss is

where is the number of output pixels where . If

then is the average score of labelled pixels.

EDT CNN and Contour CNN training dataset

We used the 55 histology images with 2,117 ground truth white adipocyte (WA) hand traced
contours from Table MICE. The corresponding SVG files containing the description of the
hand traced WA contours (as described in Ground truth hand traced dataset for CNN
training) were read. Each contour was rasterised as a closed polygon. Pixels that belonged
to a single polygon were labelled as seeds. Then a watershed algorithm expanded the seeds
over areas where polygons overlap. This effectively found a compromise boundary between
overlapping cells. Boundaries were computed as pixels between two labels or between label
and background. Ground truth EDTs were computed with respect to those boundaries (Fig.
DMAP(c)). Boundaries were then dilated with a 3×3 kernel because we found that the
Contour CNN training was unsatisfactory on 1-pixel thick boundaries. Masks of labelled
pixels were computed for the loss function from the union of all polygons, and then were
dilated with a 3×3 kernel. The histology windows, EDTs, boundaries and masks dataset was
then 10× augmented with random rotations up to ±90º, a scaling factor in , and

1 https://github.com/rcasero/keras
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horizontal and vertical flips. The augmented images were split into 4 blocks due to GPU
memory restrictions. Blocks where the mask had fewer than 1,900 pixels were discarded.

EDT CNN training

We trained the 10-fold CNNs using the augmented histology windows (input), ground truth
EDTs (output), masks of labelled pixels (loss function masks), Adadelta optimisation 77 with
He uniform variance scaling initialisation 78, mean absolute error (MAE) loss, MAE and mean
squared error (MSE) metrics for validation with the left-out data, a batch size of 10 and 350
epochs until the loss and metrics converged.

Contour CNN training

We trained the 10-fold CNNs using the EDTs estimated by the previous CNN (input), ground
truth dilated boundaries (output), masks of labelled pixels (loss function masks), Adadelta
optimisation 77 with He uniform variance scaling initialisation 78, binary cross entropy loss,
accuracy metric for validation with the left-out data, a batch size of 10 and 500 epochs until
the loss and metric converged.

Tissue CNN training dataset

We used all 126 histology images with hand segmentations in Table MICE, containing a total
of 2,117 “white adipocyte” (WA) objects and 232 “other” (NWA) objects. All WA and NWA
contours were read. Each contour was rasterised as a polygon. Pixels within each polygon
were labelled as “1” for WA and background, and “0” for other types of tissue to create the
classifier ground truth. Pixels in overlap areas between a WA and NWA were considered
NWA. The histology windows, classifier ground truth and masks dataset were 10×
augmented with random rotations up to ±90º, a scaling factor in , horizontal and
vertical flips and shear angle in to an output shape of 1,416×1,416 to avoid
cropping out training pixels. The augmented images were split into 4 blocks due to GPU
memory restrictions.

Tissue CNN training

We trained the 10-fold CNNs using the augmented histology windows (input), classifier
ground truth (output), masks of labelled pixels (loss function masks), Adadelta optimisation 77

with He uniform variance scaling initialisation 78, binary focal loss 79 with ,
accuracy metric for validation with the left-out data, a batch size of 8 and 37 epochs until the
loss and metric converged. We used a cyclical learning rate80 with a triangular cycle that
scales initial amplitude by half each cycle, initial learning rate , upper boundary
and number of training iterations per half cycle equal to 8× training iterations in epoch.

Correction CNN training dataset
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We used the same 55 histology images, hand traced contours and rasterised polygons as
for the EDT and Contour CNNs. Let be the hand traced contour polygon area, and

the radius of a circle with the same area. We generated a series of incorrect
segmentations by eroding and dilating the ground truth segmentation using an

square kernel with length , where the parameter
( for erosion and for dilation).

Thus, we established a correspondence between a histology cropped image, the
eroded/dilated segmentation mask and the segmentation error , where is
the hand traced contour polygon. Note that is -1 for pixels that underestimate the
segmentation, 0 for correctly segmented pixels and +1 for pixels that overestimate the
segmentation. Next, we multiplied the histology by +1 within and by -1 without. We also
computed a mask for the loss function by dilating by a factor . Finally,
the resulting image, the segmentation error and the loss function mask were
cropped and resized according to the bounding box of , as described above in the
Correction CNN architecture section.

Correction CNN training

We trained the 10-fold CNNs using the cropped and resized -1/+1 masked histology (input),
segmentation error (output) and loss function mask, the same cyclical learning
rate as in the Tissue CNN, Adadelta optimisation 77 with He uniform variance scaling
initialisation 78, mean squared error (MSE) loss, mean absolute error (MAE) and MSE
metrics for validation with the left-out data, a batch size of 12 and 100 epochs until the loss
and metrics converged.

DeepCytometer running times

We computed running times on a random sample of 95 automatically segmented whole
slides. We measured tissue area as the area covered by the coarse tissue mask. Ordinary
Least Squares model (time ~ tissue area) showed a linear relationship with intercept
β0=297.1 ± 2,495.8 s, slope β1=111.9 ± 10.6 s / mm2. Tissue areas were between 41.5 -
612.3 mm2 (201.5 Mpixel - 2973.2 Mpixel), corresponding to a computation time of 4,939 -
6,8784 s (1.4 - 19.1 h) in the linear model. The area HD quartiles were (Q1, Q2, Q3) =
(102.4, 174.7, 276.2) mm2 corresponding to (3.3, 5.5, 8.7) h. It should be noted that each
slide contained two tissue slices.
Segmentation times were calculated applying the Corrected method to the 60 training
images for population studies. The Auto part of the pipeline took 43.9% ± 1.6% of the total
time, and overlap correction took the other 56.1% ± 1.6%. Thus, overlap correction
increased Auto computation time by a factor ⨯(2.28 ± 0.08).

Likelihood Ratio Test

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 4, 2021. ; https://doi.org/10.1101/2021.06.03.444997doi: bioRxiv preprint 

https://www.codecogs.com/eqnedit.php?latex=a_h#0
https://www.codecogs.com/eqnedit.php?latex=r%20%3D%20%5Csqrt%7Ba_h%20%2F%20%5Cpi%7D#0
https://www.codecogs.com/eqnedit.php?latex=l_%7Bkernel%7D%20%5Ctimes%20l_%7Bkernel%7D#0
https://www.codecogs.com/eqnedit.php?latex=l_%7Bkernel%7D%20%3D%20%5Clceil%202%20r%20%7Ck%7C%20%2B%201%5Crceil#0
https://www.codecogs.com/eqnedit.php?latex=k%20%5Cin%20%5C%7B%20%5Cpm%200.03%2C%5C%20%5Cpm%200.07%2C%5C%20%5Cpm%200.10%2C%5C%20%5Cpm%200.15%2C%5C%20%5Cpm%200.20%20%5C%7D#0
https://www.codecogs.com/eqnedit.php?latex=k%3C0#0
https://www.codecogs.com/eqnedit.php?latex=k%3E0#0
https://www.codecogs.com/eqnedit.php?latex=m_k#0
https://www.codecogs.com/eqnedit.php?latex=m_k%20-%20m_h#0
https://www.codecogs.com/eqnedit.php?latex=m_h#0
https://www.codecogs.com/eqnedit.php?latex=m_k%20-%20m_h#0
https://www.codecogs.com/eqnedit.php?latex=m_k#0
https://www.codecogs.com/eqnedit.php?latex=m_k%20%5Ccup%20m_h#0
https://www.codecogs.com/eqnedit.php?latex=k'%20%3D%200.30#0
https://www.codecogs.com/eqnedit.php?latex=m_k%20-%20m_h#0
https://www.codecogs.com/eqnedit.php?latex=m_k#0
https://www.codecogs.com/eqnedit.php?latex=m_k%20-%20m_h#0
https://doi.org/10.1101/2021.06.03.444997
http://creativecommons.org/licenses/by/4.0/


To assess whether an independent variable X (parent, genotype) produces a significant
effect on a dependent measure Y (body weight, depot weight) in a linear model, we use the
Likelihood Ratio Test (LRT). With the LRT, we compare the fitting of the data to a null model
(without X) with the fitting to an alternative model (with X). The LRT statistic is

λLR = 2 (ln(L1) - ln(L0))
where ln(L0), ln(L1) are the log-likelihoods of the null and alternative models, respectively.
The λLR statistic follows a χ2 distribution with 1 degree of freedom. The test’s null hypothesis
(H0) is that the data is fully specified under the null model (λLR=0). The alternative hypothesis
(H1) is that the alternative model, with variable X, is significantly better (λLR>0). The test
produces a p-value, p=χ2(λLR, 1), to reject H0 for H1. Using the LRT is equivalent to using the
Akaike Information Criterion (AIC). The AIC is a measure that combines the goodness of fit
of the model and its parsimony

AIC = 2 k - 2 ln(L)
where k is the number of parameters of the model and ln(L) is the log-likelihood as above, so
a lower AIC corresponds to a better model. Comparing the null model to the alternative
model yields

AIC1 - AIC0 = 2 - 2(ln(L1) - ln(L0))
where by convention X produces a worthy improvement if AIC1 - AIC0 < -2 ⇒ ln(L1) - ln(L0) >
2. Note that under a χ2 distribution with 1 degree of freedom, this corresponds to p=χ2(4,
1)=0.046. Thus, the LRT with significance threshold α=0.050 is just slightly more lenient than
the AIC with AIC 1 - AIC0 < -2.

Cull age effect on BW

Mice were culled between 133 and 146 days. OLS models (BW ~ cull_age) stratified by sex
suggest a mildly significant cull age effect in females (β=0.6355 g/day, p=0.041) and males
(β=0.4356 g/day, p=0.046). Thus, we investigated whether cull age needs to be considered
in the BW models. OLS models (cull_age ~ genotype) show no statistically significant
difference between WTs and Hets’ cull age in females (β=-0.47 days, p=0.60) or males
(β=-0.34 days, p=0.74). OLS models (cull_age ~ parent) show no statistically significant
difference between PATs and MATs’ cull age in males (β=0.77 days, p=0.47). There is a
statistically significant difference in females (β=2.32 days, p=0.0070), which amounts to
MATs being older by 2.32 days / 137.28 days=1.69% on average.

Supplementary figures
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(a) (b)

Fig. OVERLAP. H&E histology section of white adipose tissue (WAT) displaying clear
cytoplasm overlap between adipocytes. Cut thickness is 8 μm, but we have observed similar
overlaps at 4 μm, 6 μm and 10 μm. These overlaps are effectively the 2D projection of
adjacent cells slightly mounting each other in 3D. (a) Original microscope image. (b)
Enhanced contrast by automatic levels rescaling and manual curves adjustment for better
visualisation of overlaps.

(a) (b)

(c)
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(d)

(e)

(f)

(g)

(h)

(i)

Fig. RMAB. Coarse tissue segmentation and adaptive tiling. (a) Whole histology slide,
female MAT. (b) Coarse tissue mask. (c) Horizontal and vertical line convolution kernels.
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(d)-(i) Black mask: Coarse tissue mask at three consecutive iterations. Red contour:
Boundary of hits or mask convolutions with horizontal and vertical line kernels. Green
square/rectangle: Block chosen for histology segmentation at each iteration. Green solid
line: Separates inner part of the block from added border to account for effective receptive
field. White contour: Update to coarse tissue mask. Note that segmented objects on the
edges are not removed from the mask, for further processing in later iterations. (d), (f), (h):
Whole slide. (e), (g), (i): Detail around processing block.

Fig. ADAPTBLOCK. Comparison of total area processed by uniform tiling of histology
images vs. our adaptive tiling. Each point corresponds to one histology image. The orange
line is the identity line.

(a) (b) (c)

Fig. DMAP. Illustration of EDT CNN. (a) Input histology image. (b) EDT computed by the
network, trained without the test data. (c) Ground truth EDT computed from the contours in
Fig. CONTb.
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(a) (b) (c)

Fig. CONT. Illustration of Contour CNN. (a) The Input to the network is the output from Fig.
DMAPc. (b) Contours computed by the network, trained without the test data. (c) Ground
truth contours derived from hand segmentations with overlaps removed (the hand
segmentation leaves unlabelled pixels, as discussed in “Introduction - Deep Learning
segmentation”).

(a) (b) (c)

Fig. CLASS. Illustration of Tissue CNN. (a) Input histology image. (b) Classification
computed by the network from 0 (dark blue) to 1 (yellow). Red contours correspond to
classification threshold 0.5. (c) Ground truth for classification. In white, unlabelled pixels.

(a) (b) (c)

Fig. CORRECT. Illustration of Correction CNN. (a) Cropped and scaled histology region
around Auto segmentation (red contour). Size 401×401 pixel. Intensity values multiplied by
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+1 inside segmentation, and by -1 outside segmentation. (b) Network estimation of whether
pixels are correctly segmented: Oversegmented (yellow), correct (green), undersegmented
(blue). (c) Correction overlayed with manual ground truth (white contour) and input
segmentation (red contour).

Nomenclature Description

Input(F) Input, any (row, col) input size, F features

Conv(K, F, D) 2D convolution, K×K kernel, F features, D dilation rate

MaxPool(P) 2D max pooling, P×P pool size

BN Batch Normalization (Ioffe and Szegedy, 2015)

ReLU Rectified Linear Unit Activation

Table NOM. Nomenclature for layers of pipeline CNNs. All Conv and MaxPool layers have
stride 1, and zero padding so that their output has the same (row, column) size as their input.

EDT CNN Contour CNN

Input(F=3) Input(F=1)

Conv(K=5, F=32, D=1) + ReLU + MaxPool(P=3) Conv(K=5, F=32, D=1) + ReLU + MaxPool(P=3) + BN

Conv(K=5, F=48, D=2) + ReLU + MaxPool(P=5) Conv(K=5, F=48, D=2) + ReLU + MaxPool(P=5) + BN

Conv(K=3, F=64, D=4) + ReLU + MaxPool(P=9) Conv(K=3, F=64, D=4) + ReLU + MaxPool(P=9) + BN

Conv(K=3, F=98, D=8) + ReLU + MaxPool(P=17) Conv(K=3, F=98, D=8) + ReLU + MaxPool(P=17) + BN

Conv(K=3, F=256, D=16) + ReLU Conv(K=3, F=256, D=16) + ReLU + BN

Conv(K=1, F=1, D=1) Conv(K=1, F=64, D=1) + ReLU + BN

Conv(K=1, F=8, D=1) + ReLU + BN

Conv(K=1, F=1, D=1) + Hard Sigmoid

(a) (b)

Tissue CNN Correction CNN

Input(F=3) Input(F=3)

Conv(K=5, F=32, D=1) + ReLU + MaxPool(P=3) + BN Conv(K=5, F=32, D=1) + ReLU + MaxPool(P=3) + BN

Conv(K=5, F=48, D=2) + ReLU + MaxPool(P=5) + BN Conv(K=5, F=48, D=2) + ReLU + MaxPool(P=5) + BN

Conv(K=3, F=64, D=4) + ReLU + MaxPool(P=9) + BN Conv(K=3, F=64, D=4) + ReLU + MaxPool(P=9) + BN
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Conv(K=3, F=98, D=8) + ReLU + MaxPool(P=17) + BN Conv(K=3, F=98, D=8) + ReLU + MaxPool(P=17) + BN

Conv(K=3, F=256, D=16) + ReLU + BN Conv(K=3, F=256, D=16) + ReLU + BN

Conv(K=1, F=64, D=1) + ReLU + BN Conv(K=1, F=64, D=1) + ReLU + BN

Conv(K=1, F=8, D=1) + ReLU + BN Conv(K=1, F=8, D=1) + ReLU + BN

Conv(K=1, F=1, D=1) + ReLU Conv(K=1, F=1, D=1)

(c) (d)

Table CNN. Description of the four CNN architectures used by the DeepCytometer pipeline.
(See nomenclature in Table NOM).

(a)

Threshold (%) FPR (%) TPR (%)

35% 5.15 99.19

40% 3.87 98.85

45% 3.76 98.23

50% 1.80 97.71

55% 1.80 96.58

60% 1.76 95.10

65% 1.75 93.85

(b)

Fig. CLASS_ROC. Tissue CNN classification validation. (a) Receiver Operating
Characteristic (ROC) curve. (b) Some ROC curve numerical values. Object classification
error (white adipocyte vs. non white adipocyte) weighted by number of pixels. (Weighting
used as the hand traced data set contains many more white adipocyte objects, but non white
adipocyte objects can be very large.)

Genotype effect
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(a) (b)

Parent effect

(c) (d)

Fig. BW. Mouse body weight (BW) and depot weight (DW) analysis. (a), (c) BW swarm plots
stratified by sex and genotype/parent. P-values computed from OLS models (BW ~
genotype) or (BW ~ parent), respectively. (b), (d) DW OLS models (DW ~ BW * genotype)
and (DW ~ BW * parent), respectively, stratified by sex, genotype/parent and depot. Null
models are (DW ~ BW).

Genotype effect

Depot Genot
ype

Intercept (95% CI) p-value

Female

Gonadal WT -0.45 (-1.24, 0.33) 0.24 ns

Het -0.49 (-1.44, 0.45) 0.29 ns

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 4, 2021. ; https://doi.org/10.1101/2021.06.03.444997doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.03.444997
http://creativecommons.org/licenses/by/4.0/


Subcut. WT 0.26 (-0.51, 1.03) 0.49 ns

Het 0.29 (-1.00, 1.59) 0.64 ns

Male

Gonadal WT 1.25 (0.09, 2.42) 0.036 *

Het 0.17 (-1.39, 1.73) 0.82 ns

Subcut. WT 0.11 (-1.16, 1.38 0.86 ns

Het 1.53 (-0.27, 3.32) 0.091 ns

(a)

Depot Genot
ype

β(BW/ )
(95% CI)

p-value Corrected p-value

Female

Gonadal WT 1.52 (0.62, 2.42) 0.0024 ** 0.015 *

Het 1.63 (0.45, 2.81) 0.0098 ** 0.031 *

Subcut. WT 0.25 (-0.64, 1.14) 0.57 ns 0.60 ns

Het 0.18 (-1.43, 1.80) 0.81 ns 0.64 ns

Male

Gonadal WT -0.16 (-1.14, 0.81) 0.73 ns 0.64 ns

Het 0.80 (-0.52, 2.13) 0.22 ns 0.46 ns

Subcut. WT 0.41 (-0.65, 1.48) 0.42 ns 0.53 ns

Het -0.68 (-2.20, 0.84) 0.36 ns 0.53 ns

(b)
Table DW_BW_RLM_GENOTYPE. Coefficients and p-values from OLS models (DW ~ BW/

) fitted to data stratified by sex, depot and genotype in Fig. BW(b). (a) Intercept. (b)
Slope = β(BW/ ).

Parent effect

Depot Parent Intercept (95% CI) p-value

Female

Gonadal PAT -1.15 (-2.16, -0.15) 0.027 *

MAT -0.39 (-1.17, 0.39) 0.31 ns
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Subcut. PAT -0.33 (-1.71, 1.06) 0.62 ns

MAT 0.060 (-0.69, 0.81) 0.87 ns

Male

Gonadal PAT -0.11 (-1.42, 1.19) 0.85 ns

MAT 2.18 (0.95, 3.42) 0.0016 **

Subcut. PAT -0.43 (-1.77, 0.91) 0.51 ns

MAT 1.84 (0.43, 3.26) 0.014 *

(a)

Depot Parent β(BW/ )
(95% CI)

p-value Corrected p-value

Female

Gonadal PAT 2.58 (1.26, 3.90) 0.00077 *** 0.0048 **

MAT 1.40 (0.53, 2.27) 0.0033 ** 0.010 *

Subcut. PAT 1.17 (-0.66, 2.99) 0.19 ns 0.17 ns

MAT 0.35 (-0.48, 1.18) 0.39 ns 0.31 ns

Male

Gonadal PAT 1.01 (-0.12, 2.13) 0.076 ns 0.090 ns

MAT -0.88 (-1.90, 0.14) 0.086 ns 0.090 ns

Subcut. PAT 1.04 (-0.11, 2.20) 0.074 ns 0.090 ns

MAT -1.06 (-2.23, 0.11) 0.073 ns 0.090 ns

(b)
Table DW_BW_RLM_PARENT. Coefficients and p-values from OLS models (DW ~ BW/
) fitted to data stratified by sex, depot and parent in Fig. BW(d). (a) Intercept. (b) Slope =
β(BW/ ).

Hand traced segmentations of training windows for population studies
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(a)

Subcutaneous

Area,
95%-CI
(103 μm2)

PAT MAT

f Q1 0.97
(0.90, 1.05)

0.92
(0.83, 1.01)

Q2 1.48
(1.38, 1.58)

1.41
(1.30, 1.52)

Q3 2.37
(2.18, 2.57)

2.09
(1.92, 2.27)

m Q1 2.06
(1.90, 2.22)

1.73
(1.58, 1.89)

Q2 2.99
(2.83, 3.14)

2.94
(2.78, 3.10)

Q3 5.21
(4.69, 5.73)

4.77
(4.39, 5.15)

(b)

DeepCytometer segmentations of whole slides that training windows were
extracted from

(c)

Subcutaneous

Area,
95%-CI
(103 μm2)

PAT MAT

f Q1 1.18
(1.18, 1.19)

1.42
(1.42, 1.43)

Q2 1.87
(1.86, 1.88)

2.11
(2.10, 2.12)

Q3 2.84
(2.83, 2.85)

3.17
(3.16, 3.19)

m Q1 2.04
(2.03, 2.05)

1.64
(1.63, 1.64)

Q2 3.70
(3.68, 3.72)

2.74
(2.73, 2.76)
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Q3 6.60
(6.57, 6.63)

4.69
(4.67, 4.71)

(d)

Subcutaneous

Area
difference
(%)

PAT MAT

f Q1 +21.18 +54.67

Q2 +26.18 +49.60

Q3 +19.67 +51.51

m Q1 -0.69 -5.49

Q2 +23.99 -6.59

Q3 +23.68 -1.58

(e)

Fig. MANUAL_POPULATION_HISTOS. Cell populations of the hand traced dataset stratified
by sex, parent and depot. (a), (c) Kernel Density estimation of cell population (blue) and
Harrell-Davis (HD) quartiles (Q1, Q2, Q3) (vertical black lines). (b), (d) Numerical values for
HD quartiles and 95%-CI for the quartile estimate. (c) Also showing 95%-range (light shaded
area), interquartile range (dark shaded area). (e) Area quartile difference (%) from the hand
traced to DeepCytometer whole slide segmentations (subcutaneous slides).

(a) (b)
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(c) (d)

Gonadal

Area,
95%-CI
(103 μm2)

PAT MAT

f Q1 1.53
(1.52, 1.53)

1.95
(1.94, 1.96)

Q2 2.46
(2.45, 2.46)

3.53
(3.52, 3.54)

Q3 3.72
(3.72, 3.73)

5.45
(5.44, 5.46)

m Q1 2.56
(2.54, 2.57)

2.45
(2.43, 2.46)

Q2 5.98
(5.96, 5.99)

6.00
(5.98, 6.02)

Q3 10.15
(10.13, 10.17)

10.08
(10.05, 10.10)

(e)

Subcutaneous

Area,
95%-CI
(103 μm2)

PAT MAT

f Q1 1.15
(1.15, 1.16)

1.45
(1.45, 1.46)

Q2 1.85
(1.84, 1.85)

2.23
(2.23, 2.24)

Q3 2.73
(2.72, 2.73)

3.46
(3.45, 3.47)

m Q1 1.88
(1.87, 1.88)

1.83
(1.83, 1.84)

Q2 3.17
(3.17, 3.18)

3.24
(3.23, 3.25)

Q3 5.85
(5.84, 5.87)

5.74
(5.73, 5.75)

(f)

Subcutaneous

Area
difference
(%)

PAT MAT

f Q1 -2.27 +1.92

Q2 -1.23 +5.71
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Q3 -4.10 +9.00

m Q1 -8.08 +12.05

Q2 -14.28 +18.18

Q3 -11.35 +22.36

(g)

Fig. SEG_POPULATION_HISTOS. DeepCytometer Corrected cell populations. (a)-(b): One
histogram per mouse. Colours used to better differentiate between histograms. (c)-(d):
95%-range (light shaded area), interquartile range (dark shaded area) and median (solid
curve) computed for each histogram bin. No adjustment for body or depot weight. Vertical
black lines represent combined Q1, Q2, Q3; obtained by computing cell area Q1, Q2, Q3
from each mouse and combining them using the inverse-variance method. (e)-(f) Numerical
values and 95%-CIs for the combined Q1, Q2, Q3 of cell areas from each mouse in that
stratum, for females (f) and males (m). (g) Area quartile difference (%) from DeepCytometer
segmentations in the 20 whole slides used for hand traced windows and DeepCytometer 75
whole slide segmentations (subcutaneous slides).

Genotype effect

Fig. AREAQ_DW_GENOTYPE_LINREG. Cell quantile area vs. depot weight (DW) and
genotype effect model. Scatter plots and fitted robust linear models (areaq ~ DW) for cell
population mode and quartiles (Q1, Q2, Q3), stratified by genotype, depot and sex. Each
point corresponds to a mouse.
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Genotype effect

q LR p-value

Female

Gonadal Q1 1.72 0.19 ns

Q2 1.11 0.29 ns

Q3 0.92 0.34 ns

Subcut. Q1 1.11 0.29 ns

Q2 1.13 0.29 ns

Q3 1.08 0.30 ns

Male

Gonadal Q1 1.44 0.23 ns

Q2 0.28 059 ns

Q3 0.02 0.89 ns

Subcut. Q1 6.80 0.0091 **

Q2 7.62 0.0058 **

Q3 6.06 0.014 *

(a)

Parent effect

q LR p-value

Female

Gonadal Q1 6.64 0.01 **

Q2 9.30 0.0023 **

Q3 9.33 0.0022 **

Subcut. Q1 11.20 0.00082 ***

Q2 10.06 0.0015 **

Q3 9.48 0.0021 **

Male

Gonadal Q1 1.09 0.30 ns

Q2 1.78 0.18 ns

Q3 4.15 0.042 *

Subcut. Q1 5.26 0.022 *

Q2 5.63 0.018 *

Q3 6.59 0.01 *

(b)

Table AREAQ_DW_LRT. Likelihood Ratio Tests (LRT) for null models (areaq ~ DW) and
alternative models stratified by sex and depot: (a) (areaq ~ genotype ∗ DW). (b) (areaq ~
parent ∗ DW).

Genotype effect

Depot Parent Intercept
(95% CI)

p-value

Female

Gonadal
WT

Q1 1436.9 (907.7,
1966.1)

2.46E-05 ****

Q2 2055.6 (526.3,
3584.9)

0.011 *

Q3 2832.2 (59.8,
5604.5)

0.046 *
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Gonadal
Het

Q1 1845.5 (1403.7,
2287.4)

2.25E-07 ****

Q2 2907.4 (1743.4,
4071.3)

8.50E-05 ****

Q3 4194.8 (1985.5,
6404.2)

0.0011 **

Subcut.
WT

Q1 1399.1 (964.3,
1833.9)

5.43E-06 ****

Q2 2406.4 (1350.8,
3462)

0.00021 ***

Q3 3893.7 (1874.6,
5912.9)

0.00093 ***

Subcut.
Het

Q1 1402.7 (1115.8,
1689.5)

9.80E-09 ****

Q2 2364.7 (1563.8,
3165.6)

9.16E-06 ****

Q3 3737.6 (2232.3,
5243)

6.67E-05 ****

Male

Gonadal
WT

Q1 2713.1 (1816.6,
3609.6)

8.54E-06 ****

Q2 5591.6 (3839,
7344.2)

4.55E-06 ****

Q3 9836.4 (6987.4,
12685.4)

1.72E-06 ****

Gonadal
Het

Q1 2906.8 (1650.8,
4162.9)

0.00021 ***

Q2 5829.0 (3880.6,
7777.3)

1.61E-05 ****

Q3 9656.1 (6945.7,
12366.4)

2.33E-06 ****

Subcut.
WT

Q1 1666.0 (1401.3,
1930.8)

1.05E-10 ****

Q2 2871.1 (2247.4,
3494.9)

1.49E-08 ****

Q3 5155.0 (4109.7,
6200.4)

5.16E-09 ****

Subcut. Q1 1807.2 (1389.5,
2224.9)

9.01E-08 ****
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Het Q2 3360.3 (2403.3,
4317.3)

1.39E-06 ****

Q3 5698.0 (3895.5,
7500.5)

5.09E-06 ****

(a)

Depot Parent β(DW)
(95% CI)

p-value Corrected p-value

Female

Gonadal
WT

Q1 624.9 (57.6,
1192.2)

0.033 * 0.11 ns

Q2 2360.7 (721.4, 4000) 0.0074 ** 0.030 *

Q3 4420.8 (1449,
7392.6)

0.0060 ** 0.030 *

Gonadal
Het

Q1 235.4 (-285.6,
756.3)

0.35 ns 0.54 ns

Q2 1319.4 (-52.9,
2691.7)

0.058 ns 0.15 ns

Q3 2683.4 (78.4,
5288.4)

0.044 * 0.13 ns

Subcut.
WT

Q1 428.1 (-353.2,
1209.4)

0.26 ns 0.54 ns

Q2 1000.2 (-896.6,
2897)

0.28 ns 0.54 ns

Q3 1794.5 (-1833.7,
5422.7)

0.31 ns 0.54 ns

Subcut.
Het

Q1 170.2 (-312.5, 653) 0.47 ns 0.54 ns

Q2 395.7 (-952,
1743.5)

0.54 ns 0.54 ns

Q3 794.0 (-1739.3,
3327.2)

0.52 ns 0.54 ns

Male

Gonadal
WT

Q1 19.1 (-795.9, 834) 0.96 ns 0.80 ns

Q2 579.9 (-1013.3,
2173.1)

0.45 ns 0.54 ns

Q3 549.9 (-2039.9,
3139.7)

0.66 ns 0.60 ns
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Gonadal
Het

Q1 -325.9 (-1396.5,
744.8)

0.52 ns 0.54 ns

Q2 248.8 (-1412,
1909.5)

0.75 ns 0.65 ns

Q3 738.1 (-1572.2,
3048.3)

0.50 ns 0.54 ns

Subcut.
WT

Q1 720.9 (324.9,
1116.9)

0.0012 ** 0.011 *

Q2 1735.2 (802.2,
2668.1)

0.0010 ** 0.011 *

Q3 2744.8 (1181.3,
4308.4)

0.0017 ** 0.011 *

Subcut.
Het

Q1 203.7 (-313.3,
720.7)

0.42 ns 0.54 ns

Q2 313.9 (-870.6,
1498.3)

0.58 ns 0.55 ns

Q3 722.9 (-1508.1,
2954)

0.50 ns 0.54 ns

(b)
Table AREAQ_DW_GENOTYPE_LINREG. Coefficients of OLS model (areaq ~ DW)
stratified by genotype and depot for females.

Parent effect
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Fig. AREAQ_DW_PARENT_LINREG. Cell quantile area vs. depot weight (DW) and parent
effect model. Scatter plots and fitted robust linear models (areaq ~ DW) for cell population
mode and quartiles (Q1, Q2, Q3), stratified by depot and sex. Each point corresponds to a
mouse.

Parent effect

Depot Parent Intercept
(95% CI)

p-value

Female

Gonadal
PAT

Q1 1463.9 (1037.8,
1890)

2.51E-06 ****

Q2 2258.1 (1212.4,
3303.7)

0.00035 ***

Q3 3248.2 (1385.5,
5110.9)

0.0021 **

Gonadal
MAT

Q1 1860.4 (1364.7,
2356.1)

4.20E-07 ****

Q2 2702.4 (1291.6,
4113.3)

0.00085 ***

Q3 3734.5 (1101.8,
6367.2)

0.0082 **

Subcut.
PAT

Q1 1064.9 (790.2,
1339.6)

8.73E-07 ****

Q2 1639.0 (1071,
2207.1)

2.36E-05 ****

Q3 2464.4 (1460.6,
3468.2)

0.00012 ***

Subcut.
MAT

Q1 1589.5 (1257.8,
1921.1)

8.04E-09 ****

Q2 2718.2 (1770.6,
3665.8)

1.07E-05 ****

Q3 4372.6 (2533.5,
6211.7)

9.38E-05 ****

Male

Gonadal
PAT

Q1 2593.9 (1780.8,
3407)

8.04E-06 ****

Q2 5158.4 (3541.1,
6775.8)

8.06E-06 ****
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Q3 8414.9 (5933.2,
10896.5)

4.08E-06 ****

Gonadal
MAT

Q1 3210.8 (1891.6,
4530.1)

9.50E-05 ****

Q2 6518.4 (4530.9,
8505.9)

3.26E-06 ****

Q3 11465.5 (8709.7,
14221.3)

1.53E-07 ****

Subcut.
PAT

Q1 1592.5 (1179.7,
2005.3)

4.17E-07 ****

Q2 2594.9 (1670.2,
3519.5)

2.04E-05 ****

Q3 4419.7 (2872.9,
5966.6)

1.66E-05 ****

Subcut.
MAT

Q1 1979.5 (1673.5,
2285.4)

6.62E-11 ****

Q2 3745.8 (3007.4,
4484.2)

3.32E-09 ****

Q3 6608.1 (5264.8,
7951.4)

5.37E-09 ****

(a)

Depot Parent β(DW)
(95% CI)

p-value Corrected p-value

Female

Gonadal
PAT

Q1 437.8 (-50.4, 926) 0.075 ns 0.16 ns

Q2 1439.1 (241.2,
2637)

0.022 * 0.055 ns

Q3 2653.0 (519, 4787) 0.018 * 0.055 ns

Gonadal
MAT

Q1 363.4 (-180.1,
906.8)

0.18 ns 0.32 ns

Q2 2190.4 (643.8,
3736.9)

0.0083 ** 0.052 ns

Q3 4390.7 (1504.7,
7276.6)

0.0051 ** 0.052 ns

Subcut.
PAT

Q1 484.5 (91, 878.1) 0.019 * 0.055 ns
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Q2 986.2 (172.5,
1799.9)

0.021 * 0.055 ns

Q3 1781.6 (343.7,
3219.5)

0.019 * 0.055 ns

Subcut.
MAT

Q1 287.1 (-438.7,
1012.8)

0.42 ns 0.55 ns

Q2 1046.1 (-1027.4,
3119.7)

0.30 ns 0.48 ns

Q3 2080.3 (-1944,
6104.6)

0.29 ns 0.48 ns

Male

Gonadal
PAT

Q1 71.5 (-652.8,
795.8)

0.84 ns 0.92 ns

Q2 965.6 (-475,
2406.3)

0.17 ns 0.32 ns

Q3 1976.6 (-233.9,
4187.1)

0.076 ns 0.16 ns

Gonadal
MAT

Q1 -534.2 (-1685.4,
617)

0.34 ns 0.50 ns

Q2 -346.8 (-2081.1,
1387.4)

0.68 ns 0.83 ns

Q3 -976.9 (-3381.6,
1427.8)

0.40 ns 0.55 ns

Subcut.
PAT

Q1 668.5 (174,
1162.9)

0.011 * 0.055 ns

Q2 1640.5 (533.1,
2747.9)

0.0063 ** 0.052 ns

Q3 2965.3 (1112.7,
4817.9)

0.0037 ** 0.052 ns

Subcut.
MAT

Q1 -27.7 (-507.2,
451.8)

0.90 ns 0.95 ns

Q2 -127.0 (-1284.4,
1030.4)

0.82 ns 0.92 ns

Q3 -406.5 (-2512,
1699)

0.69 ns 0.83 ns

(b)
Table AREAQ_DW_PARENT_LINREG. Coefficients of OLS model (areaq ~ DW) stratified by
parent and depot.
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Fig. AIDA. AIDA web interface with DeepZoom navigation of NDPI histology file with
DeepCytometer contours overlaid.
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