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ABSTRACT 
 
Cognition depends on resisting interference and responding to relevant stimuli. Distracting information, 
however, varies based on content, requiring distinct filtering mechanisms. For instance, affective information 
captures attention, disrupts performance and attenuates activation along frontal-parietal regions during 
cognitive engagement, while recruiting bottom-up regions. Conversely, distraction matching task features (i.e. 
task-similar) increases fronto-parietal activity. Neural mechanisms behind unique effects of different distraction 
on cognition remain unknown. Using fMRI in 45 adults, we tested whether affective versus task-similar 
interference show distinct signals during delayed working memory (WM). We found robust differences 
between distractor types along fronto-parietal versus affective-ventral neural systems. We studied a 
hypothesized mechanism of this effect via a biophysically-based computational WM model that implements a 
functional antagonism between affective/cognitive neural ‘modules’. This architecture reproduced 
experimental effects: task-similar distractors increased, whereas affective distractors attenuated cognitive 
module activity while increasing affective module signals. The model architecture suggested that task-based 
connectivity may be altered in affective-ventral vs. fronto-parietal networks depending on distractor type. 
Empirically, affective interference significantly increased connectivity within the affective-ventral network, but 
reduced connectivity between affective-ventral and fronto-parietal networks, which predicted WM 
performance. These findings detail an antagonistic architecture between cognitive and affective systems, 
capable of flexibly engaging distinct distractions during cognition. 
 
Key Words: working memory; distraction; cognition; emotion; computational modeling; amygdala; functional connectivity 
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INTRODUCTION 
 
The brain encompasses systems that evolved to perform distinct computations, which at times compete in the 
service of adaptive behavior. Two computations that, at the behavioral and neural level, represent 
‘antagonistic’ interactions are affect and cognition, capturing the intuition that logic and reason are at odds 
with heightened affect (Pessoa, 2008). Affective computations (Lang and Davis, 2006; LeDoux, 2000; Ohman, 
2005; Vuilleumier, 2005) allow rapid action deployment (Lang and Davis, 2006; LeDoux, 2000; Ohman, 2005; 
Vuilleumier, 2005) with privileged access to neural resources (Morris et al., 1998; Ohman et al., 2001; Pessoa, 
2005; Vuilleumier and Driver, 2007), at times disrupting cognitive operations (Dolcos and McCarthy, 2006). 
However, some incoming information may share features with ongoing cognitive processes, and should be 
integrated, or filtered, using distinct neural mechanisms (Dolcos et al., 2008) – a function hypothesized to rely 
on ‘top-down’ cognitive control (Cole et al., 2013; Miller and Cohen, 2001). The neural mechanisms behind 
dissociable effects of distinct distraction on cognition remain uncharacterized. 
One canonical cognitive process is working memory (WM) (Baddeley and Hitch, 1974), supported by a 
network of regions, including fronto-parietal areas (Curtis et al., 2004). WM provides a strong test-bed for 
understanding effects of distraction on cognition for two reasons: first, its neural architecture is well 
understood through primate neurophysiology (Funahashi et al., 1989), computational modeling (Compte et al., 
2000; Wang, 2010) and human neuroimaging (Curtis et al., 2004; Wager and Smith, 2003; Wager et al., 
2014); second, computational models that detail its cellular-level functional architecture can be expanded to 
generate testable system-level neuroimaging predictions (Anticevic et al., 2012b). 
Prior work demonstrated a dichotomy between fronto-parietal and ventral-affective areas when affective 
distraction appeared during the delay period of WM (Dolcos et al., 2008): Fronto-parietal regions’ activity 
attenuated, whereas ventral regions exhibited increased activity in response to affective distractors. This may 
reflect fronto-parietal regions being driven ‘off-line’ by regions processing affective interference, such as the 
amygdala. Conversely, distractors that matched task features (i.e. task-similar) exerted the opposite effect, 
increasing fronto-parietal signals (Anticevic et al., 2010a; Anticevic et al., 2011), perhaps requiring distinct 
‘filtering’ mechanisms. 
Using functional neuroimaging, we first tested for a whole-brain functional segregation between affective and 
task-similar interference during WM. Building on prior work, we hypothesized that, during delayed WM, ventral 
systems would exhibit higher signal following affective than task-similar interference. Conversely, we 
hypothesized that task-similar distraction would be associated with elevated fronto-parietal signal, whereas 
affective distraction would attenuate these signals. Next, to study possible circuit-level mechanisms behind 
these phenomena, we used a biophysically-based computational model of WM (Murray et al., 2014) extended 
to neural systems (Anticevic et al., 2012b), implementing a functional antagonism between affective and 
cognitive modules (Drevets and Raichle, 1998; Mayberg et al., 1999). The model provided a parsimonious 
mechanism for observed responses, and made dissociable predictions for the neural and behavioral impact of 
bi-directional net-inhibitory projections between affective and cognitive systems. Furthermore, the model 
architecture suggested that task-based connectivity is altered in ventral-affective vs. fronto-parietal areas 
depending on distractor type, which we tested and related to behavioral performance. These neuroimaging 
and computational effects detail a proposed antagonistic architecture between cognitive and affective 
systems, capable of flexibly engaging distinct distractors during cognition with implication for neuropsychiatric 
conditions where such computations may be disrupted. 
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MATERIALS AND METHODS 
 
Subjects. 45 neurologically and psychiatrically healthy right-handed, healthy adults (25 male, mean 
age=31.2) were recruited from Washington University in Saint Louis and the general community via 
advertisement by the Psychology Department subject coordinator and underwent neuroimaging data 
collection.  
 
Ethics Statement. The study was conducted in accordance with the Declaration of Helsinki. All participants 
completed and signed an informed consent approved by the Washington University in Saint Louis institutional 
review broad (IRB) and were paid $25 an hour for their participation. All secondary analyses reported here 
were approved by the Yale IRB. 
 
Materials. All participants performed a modified WM delayed response task (Sternberg, 1969) with three 
distractor types presented during the delay period: i) affectively negative image, ii) visually complex neutral 
image; and iii) task-related geometric shape. Some aspects of our experiment were reported previously 
(Anticevic et al., 2011; Anticevic et al., 2010b). Here we studied a key novel and independent question: we 
specifically characterized the opposing effects of task-similar and affective interference during WM delay at 
the whole-brain level to better understand the large-scale functional architecture behind opposing distractor 
effects, previously reported in specific prefrontal/parietal areas (Dolcos et al., 2008). We did so because prior 
work showed that task-similar distraction (i.e. distractors sharing task properties) was associated with 
increased signals in some dorsal cortical regions rather than the decreased signals found for affectively 
negative distraction (Dolcos et al., 2008). We also examined trials without distraction, used here to estimate 
distractor-free delay activity as well as trials involving neutral distractors, to establish whole-brain specificity of 
task-similar versus affectively negative interference. As in our prior studies, the WM sets and task-related 
distractors were constructed from complex geometric shapes (Attneave and Arnoult, 1956) that were difficult 
to verbally encode and were generated using an automated Matlab algorithm (Collin and McMullen, 2002) 
(see (Anticevic et al., 2010b) for more detail on stimulus generation). Negative and neutral visual distractors 
were selected from the extensively validated International Affective Picture System (IAPS) stimulus set (Lang 
et al., 1999) and were equated on luminance, contrast, figure-ground relationships, spatial frequency and 
color (Bradley et al., 2007; Delplanque et al., 2007; Sabatinelli et al., 2005). All distractors were presented 
centrally, subtending a visual angle of 8.5 degrees. In this study we focused explicitly on the brain-wide 
signals modulated differentially by affectively negative vs. task-similar distractors (see Figure 1). As described 
below, neutral images were used only to verify specificity of distractor effects (see Figure 3). 
For all subjects, the trial sequence was pseudo-randomized with the constraint that no distractor type could 
appear in more than 3 consecutive trials (to avoid mood induction via negative distractors). The WM 
memoranda sets were presented centrally subtending a visual angle of 15.75 degrees for a duration of 4.4 
seconds followed by an 8.8 second delay. The delay was followed by a 1.1 second presentation of the 
distractor (if present) and then by a 6.6 second post distractor delay and a probe presented for 2.2 seconds 
(Figure 1). Each trial was followed by a 13.2 second fixation period to allow the neural hemodynamic 
response to return to baseline. Prior to the start of the experiment each subject was presented with 
instructions explaining the task and given a brief (8 trial) practice session to demonstrate various trial 
combinations. During the scanning period visual stimuli were presented through an LCD projector to a screen 
located behind the scanner, which the subject could see through an angled mirror located above the eyes. 
The entire experiment was divided into 12 scanning BOLD runs, each lasting 9.2 minutes. There were 180 
trials in total with 30 distractor-free trials, 50 negative, 50 neutral and 50 task-similar distractor trials. A subset 
of participants (24 total) completed a shorter version of the task: 24 distractor-free distractor trials (three 
5.09min BOLD runs), 50 negative, 50 neutral and 50 task-similar distractor trials (across six 7.44min BOLD 
runs) because their data were used to match to a clinical population that could not tolerate a scanning length 
of 180 trials (see (Anticevic et al., 2011)). We verified that all reported group-level effects held for both cohorts 
of participants (Anticevic et al., 2011). 
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Figure 1. Task design and neuroimaging model schematic. (a) Working memory interference 
paradigm. The task design is displayed along with different trial components and their onsets marked 
along the timeline. Each box represents a trial component with the duration marked below. Memory 
sets were presented centrally, subtending a visual angle of 15.75 for 4.4 sec, followed by an 8.8-sec 
delay. The delay was followed by a 1.1-sec presentation of the distractor (if present) and then by a 
5.5-sec post-distractor delay and a probe presented for 2.2 sec. Each trial was followed by a 13.2-sec 
fixation period (inter-trial interval [ITI]) to allow the hemodynamic response to return to baseline, as 
employed in our prior work. Distractors were: i) affectively negative complex images, ii) a task-similar 
geometric shapes of a different color distinguishing it from the probe, iii) neutral complex images, or iv) 
no distraction. As noted, neutral and negative images were matched on relevant visual characteristics 
(see Methods). (b) Assumed hemodynamic response function (HRF) components used in the general 
linear model (GLM). We modeled 5 different components of each trial: i) Encoding phase (blue), ii) 
Pre-distractor delay phase (gray), iii) Distractor response (red), iv) Post-distractor delay phase (black), 
and v) Probe response (green). Distractor response and post-distractor delay were modeled 
separately for each condition type (i.e. neutral, emotional, task-related and distractor-free trials). These 
assumed HRF estimates were used to derive the group-level maps. Time courses of activity were 
extracted for visualization only (see Methods). 

 
Data Acquisition. Data were acquired on a 3T Tim TRIO Siemens scanner at Washington University Medical 
School. Functional images were acquired using an asymmetric spin-echo, echo-planar sequence, maximally 
sensitive to blood oxygenation level-dependent (BOLD) contrast (T2*) (repetition time [TR] = 2200ms, echo 
time [TE]=27ms, field of view [FOV]=256mm, flip=90°, voxel size=4mm3). Each BOLD run contained 251 
volumes comprised of 32 oblique axial images, which were acquired parallel to the anterior-posterior 
commissure. All structural images were acquired using a sagittal MP-RAGE 3D T1-weighted sequence 
(TR=2400ms, TE=3.16ms, flip=8°; voxel size=1mm3). 
 
fMRI Preprocessing. Functional magnetic resonance imaging data preprocessing steps included: i) 
Compensation for slice-dependent time shifts; ii) Removal of first 5 images from each run during which BOLD 
signal was allowed to reach steady state; iii) Elimination of odd/even slice intensity differences due to 
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interpolated acquisition; iv) Realignment of data acquired in each subject within and across runs to 
compensate for rigid body motion (Ojemann et al., 1997); v) Intensity normalization to a whole brain mode 
value of 1,000 but without bias or gain field correction; vi) Registration of the 3D structural volume (T1) to the 
atlas representative template based on 12 normal subjects represented in the Talairach coordinate system 
(Talairach and Tournoux, 1988) using a 12-parameter affine transform and re-sampled to 1mm3 representation 
(Buckner et al., 2004; Ojemann et al., 1997); vii) Co-registration of the 3D fMRI volume to the structural image 
and transformation to atlas space using a single affine 12-parameter transform that included a re-sampling to 
a 3mm3 representation; viii) Spatial smoothing using a 6mm full-width at half maximum (FWHM) Gaussian 
filter.  
 
fMRI Analysis. We used a general linear model (GLM) approach to estimate task-related activity in each 
voxel for each subject. Analyses were conducted using the Washington University in Saint Louis Neuro-
Imaging Laboratory (NIL) pipelines. First, we employed an assumed response GLM approach to specifically 
isolate distractor-related activation in addition to other trial components. The model estimated 5 different 
components of each trial (i.e. encoding, pre-distractor delay, distractor response, post-distractor delay and 
probe, see Figure 1b), obtained by convolving a block function reflecting the neuronal response with a 
Boynton assumed BOLD response function (Boynton et al., 1996b). Distractor response and post-distractor 
delay were modeled separately for each condition type, whereas encoding and pre-distractor delay 
components were not, given that subjects had no advance knowledge of upcoming distractor type. This 
yielded a total of 11 GLM beta estimates. Of note, given the temporal proximity of the distractor and post-
distractor delay components we did not make explicit comparisons between the two components and we 
specifically used the distractor component for the remainder of analyses. All subsequent statistical analyses 
used the beta estimates from the assumed response GLM model. That is, the assumed response GLM was 
explicitly used to derive beta estimates of distractor-related signal that were entered into 2nd level analyses, 
which were used to derive the main-effect maps. In turn, we computed another GLM without assuming a 
hemodynamic response function (HRF) shape (Ollinger et al., 2001). The un-assumed response was modeled 
explicitly to provide time course of activity that could be used for qualitative visualization of event-related 
response patterns. Specifically, for the un-assumed HRF model, the first 15 frames of each trial were modeled 
and the resulting beta estimates were subsequently extracted for each time point to provide time courses of 
activity in a given identified region for each condition (see Figure 2 time courses for an example).  
As noted, only the resulting assumed-response HRF beta estimates for task-similar and negative distractors 
were carried into the 2nd level analysis treating subjects as a random factor. At the 2nd-level we computed a 
two-tailed paired t-test contrasting negative vs. task-similar distractor conditions for all voxels. If the two 
distractors have a unique impact on dorsal-fronto-parietal vs. ventral-affective activity during WM 
maintenance, then the statistical map should reveal differences in task-evoked signal patterns between the 
two distractors. To test this, we applied a stringent whole-brain type I error correction (Z>3 & cluster size >20 
contiguous voxels) to the resulting map, ensuring that we capture robust whole-brain effects (see Tables 1-2). 
Next, to isolate specific cortical/subcortical ROIs within the type-I error corrected Z-map, we employed an 
automated peak-searching algorithm, delineating separate ROIs if they were more than 10 mm apart. These 
ROIs were limited to no more than 80 mm3, in order to preclude creating ROIs that spanned several 
functionally distinct cortical regions, as done previously (Kerr et al., 2004; Michelon et al., 2003) (see Tables 
1-2 for a comprehensive list of all identified peaks). As noted above, the key objective here was to examine 
the dissociation, at the whole-brain level, between task-similar and affectively negative interference during 
WM. While our whole-brain corrected map revealed robust signal differences around the amygdalae, given the 
a priori focus on affective regions, we also verified its location via individually specific anatomically defined 
amygdala masks. Specifically, as done before (Anticevic et al., 2012c), we used an anatomical amygdala ROI 
mask based on the current sample, isolated using an automated subcortical segmentation process available 
through FreeSurfer (Fischl et al., 2002; Fischl et al., 2004). We then applied this bilateral amygdala mask to 
the statistical map described above to isolate above-threshold voxels specifically within the subject-specific 
anatomically defined amygdala regions, ensuring anatomical precision. 
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Task-based Functional Connectivity Analyses. Our modeling simulations, which are detailed below, 
provided insight into how task-based functional connectivity (tb-fcMRI) could be altered in affective vs. 
cognitive systems as a function of different distraction. To test these connectivity-related predictions, we 
computed tb-fcMRI analyses for which additional analytic steps were performed: 
Preprocessing & Analysis: We further preprocessed the BOLD time series via the NIL pipeline to remove 
sources of spurious variance that can drive between-region functional connectivity: i) High-pass filtering 
(>0.009Hz) to remove low frequencies and scanner drift. ii) Removal of motion correction parameters, 
ventricle, deep white matter, and global mean (GMS) signals as well as their first derivatives using the GLM 
framework. We conducted all subsequent tb-fcMRI analyses on the residual values as done previously 
(Anticevic et al., 2012d; Anticevic et al., 2010b). Next, we computed the average BOLD signal value for the 
approximate encoding (time points 3 & 4) and delay period (time points 8 & 9) at each trial for each voxel in 
the image, as validated in prior studies (Anticevic et al., 2010a; Anticevic et al., 2010b). We averaged two 
time-points to reduce variability due to possible outlier frames. Next, we concatenated the values into 4-D 
(brain volume x trial) time series that represented trial-to-trial variability. Extracting only specific time-locked 
components of the time series, as demonstrated in prior work (Anticevic et al., 2010a; Anticevic et al., 2011; 
Anticevic et al., 2010b), ensured that the correlations are driven primarily by trial-to-trial variability and not 
overall task response. 
Network Definition and Analysis: Our hypotheses focused on the relationship between the fronto-parietal 
(cognitive) and the bottom-up ventral (affective) networks (although some areas responsive to affective 
distractors were cortical). To define our networks, while controlling for individual anatomical variability, we 
used three steps: i) We employed our task-based results as a guide whereby we first isolated all the activation 
peaks for the main effect map defined above. These included both cortical and subcortical regions in both the 
cognitive and affective networks. The peak coordinates for these regions are shown in Table 1 and Table 2 
respectively. ii) Next, we created spherical ROIs (9mm in diameter) in standard space centered on the peak 
coordinates for each activation cluster, as done previously (Repovs et al., 2011). iii) We masked the resulting 
ROIs with the individual subject-derived FreeSurfer segmentation of the high-resolution structural image that 
was registered to the same standard space (Talairach and Tournoux, 1988). This way we excluded any voxels 
within the group-defined ROIs that did not represent the relevant gray matter for a given individual subject, 
ensuring we captured individual-specific gray matter signal. While not fully independent of the main task 
effects, this approach effectively yielded a network definition for tb-fcMRI that captured the areas driven by the 
task that intersected with subject-specific gray matter. 
Next, we extracted the time series for each of these ROIs and computed the ROI-to-ROI correlation matrix 
across all ROIs for each participant for cognitive-affective network pairs at the encoding and distraction phase 
of the trial. All obtained correlations for each subject were converted to Fisher-Z (Fz) values. Given no a priori 
motivation to focus on any one specific ROI-to-ROI connection, as done previously (Anticevic et al., 2010b), 
we averaged Fz values across all connections between the nodes of two networks of interest to produce a 
single ‘mean Fz’ index of within and between network connectivity. Using this mean Fz index as the 
dependent measure we computed 2nd-level analyses: a 2-way repeated measures ANOVA with Task 
Condition (task-similar vs. affective) × Task Phase (encoding vs. distraction) as factors. Here we used Task 
Phase as a factor, given the expectation that at encoding there should be no effect of distraction (as no 
distraction occurred yet, therefore the encoding phase serves as a control condition in this case). 
Computational Modeling. Presented neuroimaging findings provide neural system-level evidence for the 
effects of different distractor types on cognition. To further relate these BOLD effects to possible synaptic 
mechanisms underlying large-scale neural system interactions, we constructed a parsimonious yet 
biophysically-grounded computational WM model to understand these effects. We specifically implemented 
interactions between two distinct modules: a task-activated network (denoted as the “cognitive module”) that 
responds to task-relevant stimuli and performs WM-related computations; and an affective salience network 
(denoted as the “affective module”) that is activated by task-irrelevant affectively salient stimuli. The two 
modules interact via long-range projections that implement a functional antagonism. All the presented 
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simulations are built on prior well-validated biophysically-based models of WM, which are spiking local circuit 
models capable of WM and decision-making computations (Compte et al., 2000; Murray et al., 2014; Wang, 
2002). Moreover, the implemented extension to the system-level neural architecture is based on published 
approaches (Anticevic et al., 2012b), but expanded here to capture interactions between putative ‘affective’ 
and ‘cognitive’ modules. More specifically, each module is a local circuit of spiking excitatory (E) and inhibitory 
(I) cells. E-cells interact with one another through horizontal connections mediating recurrent excitation via 
NMDA receptors and a pool of I cells that mediate feedback synaptic inhibition via GABA receptors. The 
cognitive module is comprised of two sub-networks: sensory and mnemonic. The sensory sub-module 
receives task-similar stimulus input.   
Model Details: For all circuits, we adapted parameters from a previous spatial WM model (Murray et al., 
2014). Here we note changes to parameters from that original set. For the sensory and mnemonic modules, 
pyramidal cells are tuned to angular location on a circle (0-360°) with uniform distribution of preferred angles. 
The network structure follows a columnar architecture, such that pyramidal cells with similar stimulus 
selectivity are preferentially connected to each other. To produce differences in WM-related persistent activity 
across circuits, we modified the height of the recurrent E-E connectivity profile (J+) (Compte et al., 2000). 
Specifically, the synaptic conductance from neuron j onto neuron i (gji) is scaled by the Gaussian profile:  
 

𝑊"𝜃! − 𝜃"% = 	 𝐽# + (𝐽$ − 𝐽#) exp[−"𝜃! − 𝜃"%
%/𝜎%]	

 
where J- is set by normalization of the profile. The sensory sub-module has connectivity profile set by J+ = 2 so 
that it does not support tuned persistent activity in the absence of a stimulus. The mnemonic sub-module, 
which does support WM-related persistent activity, is set by J+ = 3, as in prior work (Murray et al., 2014). For 
parsimony, we set the affective module to have homogenous connectivity, J+ = 1. This is because we do not 
model selectivity for a particular affective stimulus within this network, and thus it is activated broadly by 
affectively salient stimuli. The sensory, mnemonic and affective modules each contain NE = 2,048 pyramidal 
cells and NI = 512 interneurons.  
 
Interactions between modules: The model contains projections between modules, originating from pyramidal 
cells and targeting both pyramidal cells and interneurons. Projections targeting pyramidal cells may be 
structured based on similarity of stimulus selectivity, and projections targeting interneurons are unstructured 
and uniform. The sensory module provides structured feed-forward excitation and inhibition to the mnemonic 
module to relay the task-related stimulus information. This projection is set with gE-E = 600/NE nS, J+ = 1.555,  
σE-E = 9°, and gE-I = 450/NE nS. The mnemonic sub-module and the affective module send reciprocal long-
range projections that are net inhibitory and unstructured (J+ = 1). For projections from the mnemonic sub-
module to the affective module, gE-E = gE-I = 200/NE nS. For projections from affective module to the mnemonic 
sub-module, gE-E = gE-I = 10/NE nS. All other inter-module connections are set to zero. Projections between the 
mnemonic and affective modules create a net inhibitory impact on principal cells, implementing an 
antagonistic interaction between the two modules. 
 
Stimulus: Stimulus input is a 1-sec current pulse to the E-cells in the sensory sub-module with maximum of 
0.285 nA and Gaussian profile width of 14.4°. The cue duration was 4.4 sec and the distractor duration was 
1.1 sec, to match the experimental protocol (Anticevic et al., 2010a). The model assumes differential routing of 
task-relevant vs. affective stimuli. The cue stimulus activates pyramidal cells in the sensory network of the 
cognitive module, which in turn activate the mnemonic network. Task-similar distractors were modeled 
identically to the initial cues, with same intensity (maximum 0.285 nA) and duration (1-sec current pulse), but 
with a different stimulus location, such that the distractor appeared at a given angle relative to the original cue. 
In contrast, affectively salient distractors uniformly activate E-cells in the affective module. We set the negative 
distractor strength to 0.278 nA for Figures 4 and 5.  
We quantified the network’s robustness against affective distractors during WM by measuring the distractibility 
threshold, i.e., the strength of affective distractor input above which the WM signal is lost to suppression of the 
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WM-related activity (Figure 6). Specifically, we varied the applied distractor strength (Iapp), and measured the 
probability of distraction. The distractibility threshold (Ithresh) was extracted by fitting this relationship with a 
logistic function: 𝑃(𝑑𝑖𝑠𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛) = 	 =1 + exp"−"𝐼&'' − 𝐼()*+,)%/𝜎%@

#-.  
 Simulations were implemented with the Brian neural simulator (Goodman and Brette, 2009). 
Simulation code is available from the authors upon request.  
 
Simulated BOLD Signal: To further relate our modeling findings to observed BOLD results we linked neuronal 
activity to neuronal ensemble activity to simulated BOLD response. To simulate an approximate BOLD signal 
in the model, we followed a two-step approach validated in previous studies (Anticevic et al., 2012b; Deco et 
al., 2004; Stemme et al., 2005): (i) simulate the local field potential (LFP) from synaptic activity in the network; 
and (ii) convolve the LFP signal with a hemodynamic response function, building on the correlation between 
LFP and BOLD signals (Logothetis et al., 2001). LFP is calculated as the absolute sum of all non-leak currents 
(AMPA, NMDA, GABA, and applied external) averaged across all pyramidal cells in a module (Mazzoni et al., 
2008). This model of LFP has been used successfully to link spiking circuit models to experimental LFP 
recordings (Mazzoni et al., 2008). The BOLD signal was then calculated by convolving the LFP signal with a 
single gamma distribution function of the form:  

𝑓(𝑡) = B
𝑡 − 𝑜
𝜏 D

'#-
	B
exp	(−(𝑡 − 𝑜)/𝜏)

𝜏(𝑝 − 1)! D 

with timescale 𝜏 = 1.25 sec, delay o = 2.25 sec, and shape parameter p = 2. We employed this hemodynamic 
response function as it was also used to compute the assumed HRF for distinct task phases in the WM trial 
from the experimental data (Boynton et al., 1996a). 
 

 
Data Availability. The data and code that support the findings of this study are available upon request from 
the corresponding author. A data sharing agreement, project proposal and co-authorship agreement should 
be submitted. 
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RESULTS 
 
WM Accuracy. We first quantified group-level WM performance across different distractor types. Overall WM 
accuracy was 78.95%. For the no-distractor condition, WM accuracy was 81.07%. In turn, WM accuracy was 
80.41%, 74.99% and 79.33% for task-similar, negative and neutral distractor conditions respectively, 
consistent with there being a significant effect of distraction across conditions. We verified this by computing a 
1-way ANOVA with 4 levels of condition type (task-related, emotional, neutral and distractor-free conditions) 
[F(3,132)=7.13, p<0.001]. Pair-wise post-hoc t-tests revealed a significant effect of negative distraction relative 
to no distraction [t(43)=4.27,p<0.00015], verifying that negative distractors exhibited a significant effect on 
behavior. While numerically lower, other distractor conditions did not significantly statistically differ from the 
distractor-free condition without distraction on average. 
 
Task Relevant and Affective Distraction Modulate Distinct Functional Networks. We first tested for 
dissociable whole-brain effects of distinct distracting information during WM (Anticevic et al., 2010a). As 
noted, in this experiment, participants performed a modified WM delayed response task (Sternberg, 1969) 
with three distractor types presented during the delay period: i) affectively negative image (denoted as a 
“negative distractor”); ii) visually complex neutral image (denoted as a “neutral distractor”); and iii) task-related 
geometric shape (denoted as a “task-similar distractor”) (Figure 1). Prior work established that specific dorsal 
fronto-parietal areas exhibit signal reductions in response to affective distractors, whereas more ventral and 
subcortical regions exhibited activations in response to negative distractors. Other more focused studies 
showed that a similar set of dorsal regions activated in response to task-similar distractors. Yet, it remains 
unknown if these negative versus task-similar effects differ at the whole-brain level during delayed WM. We 
hypothesized, based on prior focused regional findings (Dolcos et al., 2008) that affectively negative versus 
task-similar interference will produce dissociable whole-brain BOLD signal responses during delayed WM.  
To test this hypothesis, we first computed a paired t-test using a beta weight representing the assumed HRF 
BOLD response fit for each distractor type (see Methods). Whole-brain results revealed robust differences 
across dorsal (cognitive) vs. ventral/subcortical (affective) regions for negative vs. task-similar distraction 
(Figure 2a). To visually illustrate this difference, we highlight BOLD responses for exemplar regions using an 
un-assumed time-course analysis (Ollinger et al., 2001). In two highlighted prefrontal/parietal regions, there 
was a significantly higher BOLD response to task-similar distractors, but a lower response to negative 
distractors (Figure 2b,c). In contrast, for ventral regions, including the amygdala, we observed a strong 
response for negative distractors, but a significantly attenuated response for task-similar distractors (Figure 
2d,e). These results replicate and extend prior regionally focused reports suggesting opposing influence of 
different distraction on prefrontal signals (Dolcos et al., 2008). These effects also illustrate that task-similar 
distractors, which match mnemonic features, produce opposing influences on brain-wide neural signals during 
WM to those observed following affectively negative interference.  
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Figure 2. Regions showing dissociable responses to affective vs. task-similar distraction. (a) 
Results from a whole-brain paired t-test directly comparing negative vs. task-similar interference during 
delayed WM. The map on the left shows regions for which there was significantly higher BOLD signal 
following negative interference (yellow-orange) and regions for which there was significant higher 
BOLD signal following task-similar interference (blue). The map highlights brain-wide differences 
between ventral/dorsal networks in response to opposing distractor types. Of note, these results were 
obtained using an assumed HRF analysis, specifically modeling distractor onset. The time-courses on 
the right show un-assumed BOLD signal estimates for a set of exemplar regions, to facilitate 
visualization: (b,c) Effects overlapping with fronto-parietal executive regions typically associated with 
WM performance, for which there was an increase in BOLD signal following task-similar interference 
(green time-course), but a drop in BOLD signal following negative interference (red time-course), 
relative to no distraction (gray time-course). (d,e) Effects overlapping with ventral/subcortical regions 
typically associated with affective/salience responses, for which there was an increase in BOLD signal 
following negative interference (red time-course), but relatively little or no response to task-similar 
interference (green time-course), relative to no distraction (gray time-course). The coordinates above 
each figure highlight the center of mass for a given region (for a full list see Tables 1-2). The vertical 
dashed lines indicate the onset of the distractor. 

 
Identification of Separable Responses to Task-similar Versus Affective Distractors. Above we observed 
significant differences in activity elicited by task-similar versus negative distractors (Figure 2a). Next, we 
sought to establish the specificity of these findings, as these differences can be driven by two possibly distinct 
properties of the distractor stimuli: affective valence or memoranda task similarity. To further characterize the 
functional role of identified regions we used neutral stimuli as a comparison (which was omitted in the contrast 
presented in Figure 2a for parsimony). Here neutral stimuli provide a control condition to characterize areas 
that are uniquely responsitve to affect versus task-similarity. This is possible because neutral distractors differ 
in one dimension from the other distractor types: i) they differ from task-similar distractors in their similarity to 
the task cues, but contain no affect; ii) they differ from affective stimili explicity on the affective dimension, but 
not other visual features on average (see Methods). Using this control condition, we tested four possible 
activity patterns: 
First, we hypothesized that regions that are primarly responsive to task-similar inteference would show 
significant differences between task-similar and neutral distractors, as well as task-similar and negative 
distractors. However, there should be no significant differences between negative and neutral distractors in 
such areas (as these regions are not driven by affect). This analysis identified a set of regions that enables 
sustained maintenance of a memorandum in face of highly similar distractors whose representation might 
overlap with the representation of the memory set (Figure 3, red regions). Second, regions responsive 
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primarily to affective salience should show significant increases in the response to negative stimuli compared 
to both task similar and neutral stimuli, but no significant differences between the later two (Figure 3, purple 
regions). This contrast would identify areas responsible for processing and orienting to affective distractors 
specifically (but not other distractor types). Third, regions involved in WM maintenance, but disrupted by 
affectively salient distractors should show significant decreases in activity specifically after presentation of the 
negative stimuli in comparison to both neutral and task similar stimuli (Dolcos and McCarthy, 2006). These 
regions would correspond to a system enabling performance of the ongoing task, which is disrupted when a 
reorienting affective stimulus appears (Fuster, 1973) (Figure 3, green regions). Lastly, we predicted the 
existence of regions with ovelapping proceses, in which both task-similar and negative distractors elicit 
significantly different responses than neutral stimuli (Figure 3, yellow and blue regions respectively). To 
identify regions matching these criteria we computed maps of significant differences in brain responses 
between individual pairs of conditions and then assigned each voxel to one of the above described categories 
based on patterns of activity.  
The results revealed a large set of dorsal regions in which negative distractors significantly decreased WM-
related activation compared to both task-similar and neutral distractors (Figure 3), replicating prior work 
(Dolcos and McCarthy, 2006). As predicted, these regions correspond to a subsystem engaged during WM 
maintenance that is disrupted by affectively salient distractors. Across these regions, a specific subset of 
areas centered on the fronto-parietal network exhibited graded response, reflecting not only reduced activity 
due to affective salience, but also increased activity in the case of task-similar distractors (Figure 3, foci 
marked b-c closely corresponding to timecourses shown in Figure 2b-c). Indeed, a set of bilateral regions in 
posterior parietal cortex exhibited only increases in response to task-similar distractors. This revealed regions 
that are most responsive to distractors similar to the target WM item and are probably directly involved with 
maintenance of the WM representation. In contrast, a set of ventral regions including occipital cortex, ventral 
temporal cortex, insula, medial frontal and medial posterior cortex, and ventral PFC showed increased 
response to affetively salient stimuli (see Table 3 for a full list of identified ROIs). Across these regions, 
occipital and inferior temporal regions also show increases to neutral compared to task-similar stimuli, 
possibly reflecting the difference in the complex content of the stimuli (images vs. geometrical shapes). To 
summarize, this 'specificity' analysis confirmed separable subsystems: i) those that subserve WM task 
performance with responsiveness to task-similar interference, and ii) those that process affectively salient 
negative distractor stimuli. This demonstration is critical to establish dissociable cortical responses to task-
similarity versus affective salience, motivating the computational modeling aspect.  
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Figure 3. Identification of separable regions responsive to task-similar versus affective 
distractor processing. The analysis tested for specific and separable response patterns between 
task-similar distractors (TS) and affectively negative distractors (NEG), using visual neutral distractors 
as a control (NEUT). Contrasts were computed for each pair of comparisons and formed the following 
conjunctions to identify dissociable patterns of activity, shown in (a) volume and (b) surface view: i) 
where NEG were lower than both NEUT and TS distractor responses (green regions); ii) where TS 
were higher than both NEUT and NEG distractors (red regions); iii) where TS responses were higher 
than NEUT, which were also higher than NEG (i.e. a graded response, yellow regions, shown in box b 
& c); iv) where NEG responses were higher than either TS and NEUT distractor responses (purple 
regions); and v) where NEG responses were higher than NEUT, which were also higher than TS (i.e. a 
graded response, blue regions, shown in box e & d). Note that regions identified using this stringent 
conjunction approach converged closely onto the regions shown in Figure 2, confirming separable 
responses to NEG vs. TS distractors along distinct cortical and subcortical systems. For a 
comprehensive list of regions that showed TS>NEUT>NEG (yellow) and NEG>NEUT>TS (blue) 
response patterns see Table 3. 

 
Hypothesized Mechanisms of Affective versus Task-Salient Interface Effects Examined via 
Computational Modeling. Reported neuroimaging analyses show dissociable effects of task-similar versus 
negative distractors on WM-related activity across distributed neural networks. These dissociable patterns 
seem to be confined to distinct systems (Figure 3), whereby task-similar distraction increases activity 
preferentially along fronto-parietal circuits (Figure 3, yellow areas). In contrast, affectively salient negative 
distraction reduces activity in these same areas, while increasing BOLD signal in the medial cortical, ventral 
and subcortical regions (Figure 3, purple areas). Next, we developed a computational neural circuit model to 
propose a parsimonious mechanism for how such a dissociation might occur. Researchers have previously 
proposed a putative antagonistic relationship between task-engaged cognitive networks and affective 
networks (Drevets and Raichle, 1998; Mayberg et al., 1999), yet the synaptic mechanisms of these large-
scale neural system interactions remain unknown. To investigate hypothesized mechanisms underlying this 
functional antagonism on the cortical microcircuit level, which may inform observed BOLD neural system 
effects, we adapted a well-validated biophysically-based computational model of WM (Compte et al., 2000). 
We specifically implemented interactions between two distinct modules (Figure 4a): a task-activated network 
(denoted as the “cognitive module”) that responds to task-relevant stimuli and performs WM-related 
computations; and an affective salience network (denoted as the “affective module”) that is activated by task-
irrelevant affectively salient stimuli. 
Each module is a spiking circuit of recurrently connected excitatory principal cells and inhibitory interneurons. 
The cognitive module is comprised of two sub-modules, one sensory and one mnemonic, corresponding to 
neuronal sub-populations with distinct tuning properties. The sensory sub-module selectively receives 
structured task-related inputs (cue and task-similar distractor), and represents the task-related stimulus 
feature in stimulus-selective tuned activity during stimulus presentation, but returns to baseline activity after 
stimulus withdrawal. Excitatory cells in the sensory sub-module make structured projections onto the 
mnemonic module. The mnemonic module has stronger structured recurrent excitation, which endows the 
circuit with the ability to support stimulus-selective persistent activity for WM (Compte et al., 2000; Murray et 
al., 2014). Thus the cognitive module contains multiple functional cell types that differ in whether they support 
stimulus-selective persistent activity during WM. This feature is in line with single-neuron recordings from 
monkey dorsolateral and posterior parietal cortex during memory-guided saccade tasks, in which there are 
visual cells and delay cells (Ben Hamed et al., 2001; Goldman-Rakic, 1995). The affective module is 
characterized by a low baseline firing rate but activation at the onset of an affective stimulus, an assumption 
based on prior neuroimaging studies (Dolcos and McCarthy, 2006). Finally, the microcircuit modules interact 
through long-range, net inhibitory projections, an architecture suggested by neuroimaging findings (Drevets 
and Raichle, 1998; Mayberg et al., 1999) and consistent with inter-areal projections onto inhibitory 
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interneurons (Duvarci and Pare, 2014; Medalla et al., 2007a; Timbie and Barbas, 2014). We simulated the 
BOLD signal for a module by convolving the net synaptic current to pyramidal cells with a hemodynamic 
response kernel (Anticevic et al., 2012b; Deco et al., 2004) (see Methods). 
We found that this parsimonious model architecture could closely capture the qualitative pattern of observed 
empirical BOLD effects identified here and by a number of prior neuroimaging studies (Anticevic et al., 2010a; 
Anticevic et al., 2011; Dolcos et al., 2008; Dolcos and McCarthy, 2006). To mechanistically capture empirical 
fMRI observations, the model architecture instantiates two key assumptions that are based on 
neurophysiological and anatomical findings: differential routing of stimuli according to their task-similar or 
affective properties, and functional antagonism between cognitive and affective modules. The differential 
response to distractor types in the cognitive module arises due this routing in combination with the 
suppressive effect onto the cognitive module induced by the affective module following negative distractors. 
To enable comparison with empirical observations, we computed a BOLD signal based on model-generated 
synaptic activity. We found that this model can qualitatively capture the experimentally observed BOLD activity 
in response to task-similar vs. negative distractors (Figure 4b). Specifically, a task-similar distractor increases 
BOLD in the cognitive module, without strong modulation of the affective module. Conversely, an affective 
distractor induces an increased BOLD signal in the affective module and a suppression of the BOLD signal in 
the cognitive module.  
 

 
Figure 4. Model scheme and simulated BOLD responses to distractor types. (a) The model is 
comprised of two spiking circuit modules, cognitive and affective, each containing excitatory (E) and 
inhibitory (I) cells. Task-similar vs. affective stimuli are selectively routed to the cognitive module and 
affective module, respectively. The cognitive module is characterized by representation and WM-
related maintenance of task-similar stimuli. The affective module is characterized by activation by 
affective stimuli. The cognitive and affective modules interact through long-range projections that are 
net inhibitory, implementing a functional antagonism. Notably, the cognitive sub-modules do not 
constitute distinct cortical layers but rather hypothesized neuronal populations with distinct ‘sensory’ vs. 
‘mnemonic’ tuning profiles, supported by primate physiology (Ben Hamed et al., 2001; Goldman-Rakic, 
1995). (b) Simulated BOLD signal qualitatively capture empirical results shown in Figure 2. The vertical 
dashed lines indicate the onset of the distractor. 

  
Figure 5 shows the differential neuronal processing of distractor types within the circuit modules underlying 
the BOLD responses. During the initial cue presentation, a tuned subset of sensory cells within the cognitive 
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module is activated, which relays this signal to a subset of mnemonic cells (Figure 5a). After the cue has 
been removed, the mnemonic cells are able to sustain the stimulus-selective pattern of activity throughout the 
delay, through recurrent excitation and lateral inhibition (Compte et al., 2000) (Figure 5b), whereas the 
affective module remains at a baseline activity level (Figure 5c). During presentation of a task-similar 
distractor, a different subset of sensory cells is activated, which in turn excite corresponding mnemonic cells 
(Figure 5a,b). Competition between cue and distractor representations within the mnemonic sub-module 
mediates task-similar distractor effects (Figure 5b). In the model behavior is compromised when the distractor 
representation is too strong, and the mnemonic representation switches to represent the distractor (Compte et 
al., 2000; Murray et al., 2014). In contrast, during presentation of a negative distractor, cells in the affective 
module are activated (Figure 5f). Due to projections from the affective module to the interneurons in the 
mnemonic module, WM activity is suppressed during negative distraction (Figure 5e). 
 

 
 

Figure 5. Specific responses for each module to task-similar versus affective stimulus inputs. 
Spatiotemporal plots of neuronal spiking activity patterns for sensory (a,d, top), mnemonic (b,e, 
middle), and affective (c,f, bottom) modules in response to a task-similar distractor (left) and an 
affective distractor (right). (a,d) After the initial cue activates the sensory cells, the stimulus identity is 
encoded by persistent activity within the mnemonic module (panels b,e). (Left) A task-similar distractor 
activates sensory cells (panel a), driving competition within the mnemonic module (panel b), but no 
signal is evident in the affective module in this case because the signal was routed to the cognitive 
module (panel c). (Right) A negative distractor activates the affective module (panel f), transiently 
suppressing persistent activity in the mnemonic module (panel e), but no signal is evident in the 
sensory cells in the cognitive module because the signal was routed to the affective module. 

 
Next we examined the role of projections from the cognitive module to the affective module, which can 
mediate “top-down” cognitive control of affective processing. We parametrically reduced the overall strength of 
projections. Because top-down projections are net inhibitory, ongoing activity in the cognitive modules induces 
suppression of responses in affective module. Weakening top-down projections therefore disinhibits the 
affective module, increasing its response to the negative distractor. This in turn can disrupt WM activity in the 
cognitive module, and lead to behavioral errors (Figure 6a). Behavioral distraction is characterized by a 
threshold on the affective stimulus strength, above which the distractor can disrupt WM. We found that 
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weakening top-down strength in the model (i.e. cognitive-to-affective inputs) decreases this distractibility 
threshold (Figure 6b). Weakened top-down strength also smoothly disinhibits the response of the affective 
module in response to negative distractors (Figure 6c). Therefore, net inhibitory projections from cognitive to 
affective areas provide a hypothesized mechanism whereby ongoing cognitive processing can suppress 
responses to affective stimuli in ventral cortical and subcortical areas (Ochsner and Gross, 2005; van Dillen et 
al., 2009). 
Importantly, the model architecture makes several predictions. The antagonistic interactions may be evident 
as anti-correlation between activity patterns in cognitive and affective areas, particularly during processing of 
negative distractors when affective areas are activated. The model also predicts that errors during negative 
distraction may be linked to greater responses in affective areas and greater suppression in WM-related 
areas. Furthermore, the model suggests that one plausible mechanism underlying behavioral errors could be 
related to increased activation of more ventral areas by affectively salient stimuli. This in turn causes 
increased suppression of cognitive areas by affective areas, and consequently decreased top-down 
suppression of affective processing by cognitive areas (i.e. an altered loop). 
 

 
 

Figure 6. Modulating the strengths of top-down and bottom-up contributions. These simulations 
examined the role of top-down inhibition from the cognitive module to the affective module. Strength of 
this projection regulates the strength of activation in the affective module by affective stimuli and the 
threshold at which an affective distractor can impair behavior. (a) BOLD traces for putative affective 
distraction, with and without top-down projections from the cognitive module to the affective module. 
Removal of top-down projections disinhibits activity in response to the affective distractor. In the traces 
shown, the disinhibited distractor response fully collapses the WM delay activity in the cognitive 
module, leading to a behavioral error in WM. (b) Reducing the strength top-down projections 
decreases the distractibility threshold, above which affective distractors can disrupt WM performance. 
(c) Peak BOLD activation of the affective module in response to an affective distractor. Reducing the 
strength of top-down projections increases activation of the affective module in response to affective 
distractors. The white dashed line marks the distractibility threshold in the model simulations. 

 
Affective Interference Alters Task-based Connectivity Between Networks. Despite its simplified 
architecture, the modeling results provide an important novel insight that can be extended to the neural 
system level: affective versus task-similar distraction may uniquely impact the functional connectivity of fronto-
parietal (task-similar) versus ventral-affective networks by modulating the activation patterns within each 
system. That is, if a given distractor type preferentially engages neurons in a given network, then one possible 
outcome is that the recurrent excitation between areas in a given network will increase. In contrast, affective 
distraction may preferentially reduce connectivity between networks by increasing the functional antagonism 
between them, due to a net-inhibitory impact on the task-relevant network by the affective network (Figure 4). 
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We tested this hypothesis via tb-fcMRI, which closely followed prior validated approaches (Anticevic et al., 
2012c; Anticevic et al., 2012d; Anticevic et al., 2010b) (see Methods). After estimating tb-fcMRI for each 
subject we computed a within-subject ANOVA with two factors: Task Phase (2 levels: encoding and 
delay/distractor phases) and Task Condition (3 levels: no distraction, task-similar and negative distraction). 
We computed the ANOVA both for the ventral-affective network specifically (Figure 7a,b, within-network 
findings) and between fronto-parietal (task-similar) and ventral-affective networks (Figure 7c,d, between-
network findings) (for network region selection see Methods for details on ROI selection). As noted, the logic 
for this ANOVA design was to test for a Task Condition × Task Phase interaction, as there is no expected 
effect at encoding (since no distraction appears here), but there is a predicted effect following distraction. 
Results revealed a significant Task Condition × Task Phase interaction within the affective/salience network 
[F(2,88)=5.67, p<0.01] as well as between the affective/salience and task-similar networks [F(2,88)=8.1, 
p<0.001]. In both cases the effect was driven by a significant connectivity modulation in response to negative 
distractors during WM delay (Figure 7b,d). As predicted, in the case of the affective/salience network, there 
was a significant increase in tb-fcMRI following negative distraction in comparison to other conditions. Also, in 
line with predictions, there was a significant reduction in tb-fcMRI across networks following negative 
interference. Interestingly, there was no significant modulation of tb-fcMRI following task-similar distraction as 
predicted by the model, either within or across networks (see Discussion). Collectively, these effects support 
the hypothesis that negative interference can significantly modulate functional connectivity both within and 
across affective/task-similar networks during active cognitive engagement, reflecting the functional 
antagonism across large-scale neural systems. 
 

 
Figure 7. Task-based functional connectivity within and across affective and cognitive 
networks in response to different distractors. (a,b) Task-based functional network connectivity in 
‘affective’ areas is significantly increased, specifically by negative distraction during WM delay, in line 
with the predictions provided by modeling results. (c,d) Task-based functional connectivity between 
areas responsive to task-similar (blue) and affective (red) distractors is significantly decreased, 
specifically by negative distraction during WM delay, also consistent with the predictions provided by 
the model suggesting an antagonistic relationship between the modules (see Figures 4-6). 

   
Connectivity Between Affective and Task-similar Networks Predicts Behavioral Performance. The 
preceding analysis provided evidence consistent with the modeling results, illustrating that the functional 
connectivity between ventral/affective and dorsal/cognitive networks was reduced as a function of negative 
interference. This result raised an important secondary hypothesis: an alteration in task-based connectivity 
may be behaviorally relevant. To test this, we correlated connectivity between affective/task-similar networks 
with the mean WM accuracy for each subject, specifically for a given distractor condition (Figure 8). We found 
a significant positive relationship between affective/task-similar network connectivity and WM accuracy for the 
negative condition (r=0.55, p<0.001, 2-tailed; Figure 8b). Put differently, those subjects with strongest anti-
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correlated connectivity between affective/task-similar networks exhibited lowest WM task performance 
following negative distraction. Such a relationship was not observed for task-similar or distractor-free 
conditions (r=-0.01 and r=-0.03 respectively, a significant difference in correlation coefficients from those 
found for the negative condition; Figure 8d,f). Here the model results did not necessarily predict that task-
similar distraction (or no distraction) would significantly alter the relationship between ventral/affective and 
dorsal/cognitive areas in relation to behavioral performance, as such distractors would not result in modulation 
of functional antagonism between these large-scale systems (even though they may affect behavior on some 
trials). Furthermore, as expected, there was no significant relationship between any of the distracter conditions 
and WM accuracy during the encoding phase (Figure 8c,e,g). These results are consistent with the 
hypothesis that connectivity alterations between functionally antagonistic affective/task-similar areas are 
relevant to WM performance specifically following negative distraction: those individuals that have the most 
functional antagonism following negative affective interference are likely to perform worse. 
  

 
 

Figure 8. Task-based functional connectivity across ventral/affective and dorsal/cognitive 
networks predicts behavioral performance during WM. (a) We correlated the magnitude of 
functional connectivity between ventral/affective-salience (red) and dorsal/task-similar (blue) areas for 
a given condition with behavioral WM performance for that specific condition across subjects. (b) 
Significant positive relationship across subjects (r=0.51, p<0.001, 2-tailed) between task-based 
networks connectivity and WM performance, specifically for trials containing negative distraction. Of 
note, we excluded a single outlier case that exhibited below chance performance in the negative 
distraction condition. The effect remained unchanged when including this case (r=0.55, p<0.001, 2-
tailed). (c) Notably, there was no such relationship during the encoding condition (r=-0.11, NS). This 
constitutes a significant difference between correlation coefficients found at the encoding and 
distractor phases for the negative distractor condition (Z=3.05, p<0.005, 2-tailed). (d-g) There was no 
significant relationship between affective/task-similar connectivity and WM performance for the task-
similar distractor condition at either encoding (r=0.017, NS) or maintenance phases (r=-0.02, NS), nor 
for the WM condition without distraction at either encoding (r=0.04, NS) or maintenance phases (r=-
0.04, NS).  

 
Relationship Between WM Performance and Dissociable Distractor Effects on Dorsal versus Ventral 
Areas. A related model prediction indicated a differential pattern of activity in dorsal ‘top-down’ areas 
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responsive to task-similar distraction versus ventral/affective areas responsive to negative distraction (see 
Figure 6c). Put differently, negative distraction reduced activity in the ‘cognitive’ module and the magnitude of 
this reduction was associated with worse WM performance in the model. In turn, higher responsiveness in the 
‘affective’ module was associated with higher error rates following affective input, reflecting a putative lack of 
‘top-down’ regulation from the cognitive mnemonic module. We tested this model prediction in the following 
way: i) We identified a subset of subjects that exhibited at least a 10% performance reduction in response to 
negative distraction relative to their baseline WM performance, to allow for sufficient incorrect trial variability 
and avoid ceiling WM performance effects (total N=18 subjects). ii) We computed a Task Condition (negative 
vs. task-similar) × Accuracy (correct vs. incorrect trials) ANOVA across all the task-similar versus affective-
salient regions identified in the primary analysis (Figure 2). iii) For the task-similar regions included in this 
analysis, we computed a conjunction such that selected areas had to overlap with regions that exhibit higher 
activity for correct WM performance in the absence of distraction. The underlying logic here is that any 
identified effects of negative distraction had to occur within ‘top-down’ cognitive regions that are explicitly 
involved in WM performance (as opposed to a wider network that may be responsive to any cognitive task; 
Figure 9a).  
Results revealed two areas in the cognitive regions in which signal following negative distraction was 
associated with lower BOLD signal specifically on incorrect trials. Conversely, we observed the opposite 
pattern for task-similar distraction, supporting distinct filtering mechanisms (ROI1 (x=33,y=47,z=25), 
F(1,17)=4.9, p=0.04; ROI2(x=48,y=-53,z=37), F(1,17)=9.43, p=0.007) (Figure 9b,c). Within the affective 
network, we identified the opposite pattern in two cortical regions and one sub-cortical/insular area: responses 
following negative distraction were associated with higher BOLD signal specifically on incorrect trials, whereas 
the opposite was the case for task-similar distraction (ROI1 (x=-36,y=-10,z=-7), F(1,17)=3.0, p=0.09, trend; 
ROI2(x=6,y=10,z=65), F(1,17)=6.2, p=0.016; ROI3(x=-6,y=-45,z=34), F(1,17)=3.4, p=0.07, trend) (Figure 9d-
f). Finally, we tested whether this pattern was associated with individual differences: we correlated the signal 
increase in ‘affective’ areas associated with incorrect trials with the signal decrease in the ‘cognitive’ dorsal 
areas associated with incorrect trials, over all cases for maximal power in this more exploratory analysis 
(Figure 9g). Results revealed a significant relationship (r=-.46, p<.002, 2-tailed): subjects with greatest 
reduction in BOLD signal in ‘cognitive’ dorsal areas exhibited the greatest increase in the ‘affective’ areas 
following negative distraction, specifically on incorrect WM trials. Collectively, these analyses suggest a 
dissociable effect of negative interference on ‘top-down’ areas involved in WM versus areas involved in 
responding to negative distraction. 
 

 
Figure 9. Differences in performance-related signal across cognitive and affective areas in 
response to different distractor types. (a) We examined the effects of negative versus task-similar 
distraction on ‘cognitive’ regions (blue) versus ‘affective’ regions (red) as a function of WM 
performance. We focused on dorsal regions showing main effects of distractor type (see Figure 2), 
which also showed higher WM maintenance activity on correct versus incorrect WM trials (ensuring 
their involvement in WM task performance). In turn, we examined dissociable effects of task condition 
and performance across all ‘affective’ areas identified in Figure 2, as these regions are not involved in 
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WM maintenance. (b-f) We identified 5 total areas, two within the dorsal ‘cognitive’ areas and three 
within the ‘affective’ areas. All areas showed a double-dissociation between distractor type and WM 
performance, consistent with model predictions (see Figure 3). (g) We correlated the percent increase 
in BOLD signal across the three ‘affective’ areas (x-axis) with the percent reduction in BOLD signal 
across the two dorsal ‘cognitive’ areas (y-axis) specifically for incorrect WM trials. Effects revealed a 
significant relationship (r=-.46, p<.002, 2-tailed), suggesting a functional link between the two effects. 
Notably, we included all cases in this more exploratory ‘individual difference’ analysis to remain 
maximally powered. 

 
 

DISCUSSION 
 
This study combined functional neuroimaging and computational modeling to provide novel insights into 
interactions between affect and cognition at the neural system level in humans. We examined a putative 
‘antagonistic’ interaction between regions responsive to affective interference versus areas responsive to task-
similar distraction during WM – a canonical higher-order cognitive process (Wang, 2001). To generate 
hypotheses regarding computational principles behind these effects we implemented a circuit-based WM 
model, extended to the neural system level, generating testable predictions, which can be examined 
empirically. Collectively, present results offer three insights: i) the presence of large-scale dissociable effects 
of task-similar interference versus affective interference on WM-related BOLD signal at the whole-brain level, 
extending prior regional effects (Dolcos et al., 2008). ii) a parsimonious yet biophysically-based computational 
mechanism for these dissociations based on net inhibitory synaptic-level interactions between neural systems; 
iii) distinct effects of negative versus task-similar interference on task-based connectivity and their relationship 
with WM performance, which were predicted by the model architecture and confirmed empirically. 
 
Dissociable Mechanisms Supporting Task-similar versus Affective Interference. Affective interference 
has a unique effect on neural activity during cognitive engagement (Ochsner and Gross, 2005; Okon-Singer et 
al., 2015). This was illustrated during a delayed WM task whereby affective distractors were associated with 
reduction in WM delay activity (Dolcos and McCarthy, 2006). Subsequent studies identified dissociable effects 
between task-similar and affective distractors when focused on select regions (Anticevic et al., 2010a; Dolcos 
et al., 2008). However, a key gap in knowledge relates to whether these effects are brain-wide properties or 
focal effects. We tested this hypothesis in two ways: First, we identified a robust and brain-wide difference in 
neural systems responsive to task-similar versus affective interference during WM (Figure 2); second, we 
confirmed the specificity of these effects relative to neutral distractors (Figure 3). Both analyses revealed 
distinct BOLD responses to affective versus task-similar interference, following a ventral/dorsal separation: 
affective distractors increased signal in affective/ventral areas (with some exceptions in midline cingulate 
cortical regions). Conversely, task-similar distractors increased signals in dorsal areas involved in WM 
maintenance.  
Similar effects were demonstrated in classic primate physiology WM experiments (Fuster, 1973; Miller et al., 
1996): activity of prefrontal neurons during WM in monkeys was selectively attenuated when the animal was 
presented with a biologically meaningful affective distractor (cry of another monkey). These findings confirm 
an antagonistic neural architecture between cognitive and affective areas, capable of flexibly engaging distinct 
incoming distraction and extend prior work in two ways: first, the effects were observed across widespread 
neural systems supporting a general organizing principle; second, the effects were specific to the distinction 
between affective and task-relevant interference. 
 
Computational Mechanisms Underlying Dissociable Distractor Effects. We found that the modeling 
architecture can closely reproduce BOLD effects across brain areas; task-similar distractors increase BOLD 
signal in the cognitive module, whereas affective distractors decrease BOLD signal in the cognitive module 
and increase signal in the affective module, capturing empirical effects. The model architecture is based on 
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findings from physiology and anatomy. One key property of the model architecture is differential routing of 
stimulus processing according to its task relevance and affective saliency: cue and task-similar distractors are 
routed to the cognitive module and negative distractors are routed to the affective module. Single-neuron 
recordings in the monkey dorsolateral prefrontal cortex have shown that distractors are differentially filtered 
based on their task relevance (Artchakov et al., 2009; Everling et al., 2006). For the ventral affective system, 
and in particular the amygdala, converging studies have demonstrated preferential activation by affectively 
salient stimuli, especially those with negative affective valence (Phelps and LeDoux, 2005). This specificity of 
stimulus routing contributes to the increased activation of the cognitive module by task-similar distraction and 
activation of the affective module by negative distraction.  
In turn, the model implements functional antagonism between the two modules through reciprocal net 
inhibitory projections, an architecture hypothesized by neuroimaging studies (Drevets and Raichle, 1998; 
Mayberg et al., 1999). There is anatomical and physiological evidence supporting antagonistic interactions in 
both directions between cognitive and affective areas. In the model, each projection pathways mediates 
distinct effects on the processing of negative distraction during cognition. The net inhibitory projection from the 
affective module to the cognitive module mediates distractibility by negative stimuli (Figure 6). This allows for 
disruption of ongoing cognitive computations, facilitating rapid deployment of attention to novel and survival-
relevant stimuli (Ferri et al., 2016; Pessoa and Adolphs, 2010). Suppression interactions may be mediated by 
long-range projections that target inhibitory interneurons. Projections from amygdala to prefrontal cortex target 
specific populations of inhibitory neurons (Timbie and Barbas, 2014). Within prefrontal cortex, different long-
range cortico-cortical projections, from anterior cingulate cortex versus dorsolateral prefrontal cortex, make 
distinct patterns of synapses onto excitatory and inhibitory neurons, which could potentially implement the net 
inhibitory projections (Medalla and Barbas, 2009). Human and rodent studies provide converging evidence for 
a pathway by which prefrontal cortex may apply top-down inhibitory control of the amygdala via inhibitory 
interneurons (Duvarci and Pare, 2014; Medalla and Barbas, 2009; Medalla et al., 2007b). The net inhibitory 
projection from the cognitive module to the affective module mediates a flexible, top-down inhibitory control of 
affective processing. This model architecture provides enhanced protection of cognitive processing by 
suppressing responses to incoming affective stimuli (Figure 6). Consistent with top-down inhibition of affective 
systems by the cognitive systems, we observed that cognitive load can reduce the activation of affective areas 
by negative affective stimuli (van Dillen et al., 2009). 
Both long-range projections in the model’s antagonistic architecture contribute to network-level anti-correlation 
as observed via functional connectivity. The strengths of these net-inhibitory projections thereby have 
congruent impacts on functional anti-correlation. This is in contrast to their opposing impacts on WM function 
(Figure 6). The projection from the affective module to the cognitive module mediates suppression of the 
cognitive module by negative distractors. Strengthening this projection lowers the distractibility threshold. In 
contrast, the projection from the cognitive module to the affective module mediates top-down regulation of 
affective processing. Strengthening this projection reduces the impact of negative distraction on WM. 
Therefore, during negative distraction, the bottom-up projection impairs WM performance whereas the top-
down projection improves WM performance. Observed functional anti-correlation between networks does not 
distinguish contributions from these projections (see Limitations). However, during the negative distraction, 
the affective network is strongly activated, potentially augmenting the bottom-up contribution to anti-
correlation. 
In addition, the modeled reciprocal antagonism across networks may be a common motif for large-scale 
system interactions in the brain. A similar architecture was used to model another well-established relationship 
between anti-correlated networks during cognitive tasks – namely the fronto-parietal control system (FPCN) 
and the default mode network (DMN) (Anticevic et al., 2012b). Understanding how these processes interact 
and in turn impact behavior is vital to inform the cognitive neuroscience of functional segregation in the human 
brain, which can have clinical relevance (Anticevic et al., 2012a; Anticevic and Corlett, 2012). Such dynamics 
of cognition-emotion interactions are relevant for multiple neuropsychiatric illnesses, including major 
depressive disorder (MDD) and post-traumatic stress disorder (PTSD). In MDD, there is evidence of localized 
hyper-activity in a cortical area, the subgenual cingulate cortex (Mayberg et al., 1999; Mayberg et al., 2005). 



22 
Computationally Modeling Cognition-Emotion Interactions  
 

22 
 
 

Similar to our findings presented above, hyperactivity in this area could impair its ability to shutoff and 
suppress cognitive areas, consistent with transcranial-magnetic stimulation findings (Fox et al., 2012). In 
PTSD, prefrontal-mediated inhibitory control over affective areas may be effectively weakened (Koenigs and 
Grafman, 2009; Milad and Quirk, 2012; Morey et al., 2009). The model presented here can be used to test 
how putative circuit abnormalities in these disorders disrupt the balance of antagonistic interactions between 
cognitive and affective neural systems. Building on these effects, we hypothesize that dysregulation of the 
functional antagonism between cognitive and affective areas may contribute to cognitive deficits observed in 
PTSD, anxiety, and depression, possibly via distinct mechanisms that may compromise the appropriate large-
scale coordination between neural systems (Anticevic et al., 2012a).  
Finally, the model generated predictions for neural activity associated with errors induced by negative versus 
task-similar distraction. Specifically, the model predicted greater WM error rates in response to more anti-
correlated connectivity between the two modules as well as greater error-related signal reductions in the 
cognitive module, but greater error-related signal increase in the affective module. Both effects were 
confirmed empirically (Figures 8-9). These model-predicted empirical findings illustrate that the identified 
whole-brain results are behaviorally relevant in terms of functional interactions (i.e. connectivity), performance 
on a trial-by-trial basis and across subjects. Such performance-relevant effects add additional insight, 
suggesting that possible breakdowns in the appropriate functional antagonism between cognitive/affective 
regions may have behavioral consequences for optimal cognitive performance. In turn, this insight can inform 
understanding of psychiatric conditions where interactions between affective and cognitive processes are 
compromised (e.g. PTSD, depression, anxiety, and schizophrenia).  
 
Limitations. The model introduces a parsimonious circuit mechanism, grounded in known neurobiology, that 
can capture the core empirical findings presented here. However, the minimal, modular architecture limits the 
extent of the model’s predictions beyond these features. Future modeling studies should extend beyond 
reduced modules to incorporate complex large-scale networks (Deco et al., 2015). The model represents the 
‘affective’ module as a homogeneous pool of neurons, and thereby captures network-level interactions rather 
than specific computations implemented within affective areas. Furthermore, it remains to be established if 
this ‘antagonistic’ architecture can flexibly engage with fronto-parietal areas at times when the affective input 
is actually task-relevant (Spreng et al., 2010). The model is explicitly built around a delayed WM framework. It 
will be important to extend this approach to test if similar computational mechanisms operate across other 
cognitive processes (e.g. decision making, (Wang, 2008)). This study is also limited in its capacity to make 
causal inferences due to the indirect nature of the BOLD signal. As described above, functional connectivity is 
limited in its ability to resolve distinct antagonistic contributions to the observed anti-correlation, due to the lack 
of directionality in functional connectivity. Convergent evidence is needed from experimental transcranial 
magnetic stimulation (Fox et al., 2012) or pharmacological studies (Anticevic et al., 2014) to establish 
causality by impairing ‘top-down’ or ‘bottom-up’ contributions. Another consideration related to causality in the 
context of presented functional connectivity analyses is the possibility of "shared task input" issues. Mainly, 
signals from two regions could be driven by a single task input, and therefore show very similar trial-by-trial 
fluctuations, but there may be little direct interaction between these two regions. Additional convergent 
techniques that could be used in future studies may involve partial physiological interaction analysis or the 
"background connectivity" approach (Al-Aidroos et al., 2011). 
 
Conclusions. This computational cognitive neuroscience investigation blends neuroimaging and 
computational modeling in the context of delayed WM faced with distinct distracting information. We extend 
the WM circuit model to the level of neural systems, to provide three insights to into the ‘antagonistic’ 
interaction between affect and cognition in the human brain: First, we observed whole-brain dissociable 
effects of task-similar interference versus affective interference on WM-related BOLD signal. Second, we 
implemented a parsimonious yet biophysically-based computational mechanism for these dissociations based 
on net inhibitory synaptic-level interactions between neural systems. Third, the model generated testable 
predictions following negative interference and its effects on large-scale network connectivity, which were 
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confirmed empirically. These findings highlight an antagonistic architecture between cognitive and affective 
systems during WM, capable of flexibly engaging distinct distractions during cognition, with implications for 
psychiatric conditions where the interaction of affect and cognition may be compromised. 
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TABLES 
 

Table 1 | Region Coordinates - Negative > Task-similar Distraction  
X Y Z Hemisphere Landmark Max Z 

Value 
Cluster size 
(mm3) 

-31 -75 -12 left fusiform gyrus (BA 19) 7.92 10125 
31 -46 -14 right fusiform gyrus (BA 37) 7.59 12636 
-31 -51 -12 left declive 7.38 8181 
29 -91 20 right middle occipital gyrus (BA 19) 7.18 6237 
41 -82 11 right middle occipital gyrus (BA 19) 7.08 8370 
37 -77 -9 right fusiform gyrus (BA 19) 6.89 12690 
15 -35 -5 right parahippocampal gyrus (BA 30) 6.58 8586 
-31 -93 11 left middle occipital gyrus (BA 18) 6.38 7209 
-11 -55 5 left lingual gyrus (BA 18) 6.40 6561 
-12 -101 0 left cuneus (BA 18) 6.29 5508 
14 -99 8 right cuneus (BA 18) 6.25 6075 
-18 -37 -7 left parahippocampal gyrus (BA 30) 6.15 8910 
-3 52 30 left superior frontal gyrus (BA 9) 5.90 8424 
-36 29 -2 left inferior frontal gyrus (BA 47) 6.00 2943 
1 -53 -39 right cerebellar tonsil 5.64 1836 
21 -15 -12 right parahippocampal gyrus (BA 28) 5.60 3321 
-20 -16 -11 left parahippocampal gyrus (BA 28) 5.38 1620 
-39 11 -12 left sub-lobar, extra-nuclear (BA 13) 5.35 2403 
-26 -2 -15 left parahippocampal gyrus, amygdala 5.38 1728 
-44 -85 -2 left inferior occipital gyrus (BA 18) 5.81 4104 
38 32 -1 right inferior frontal gyrus (BA 47) 5.10 2565 
52 -65 4 right middle temporal gyrus (BA 37) 5.86 6345 
49 30 16 right inferior frontal gyrus (BA 46) 5.04 4239 
13 -55 9 right posterior cingulate (BA 30) 5.01 5130 
-46 -76 18 left middle temporal gyrus (BA 19) 6.02 4860 
-48 27 9 left inferior frontal gyrus (BA 45) 4.77 3240 
3 19 23 right anterior cingulate (BA 24) 4.71 2160 
0 0 33 left cingulate gyrus (BA 24) 4.70 2457 
-4 -86 -3 left lingual gyrus (BA 18) 5.04 5292 
13 -86 -7 right lingual gyrus (BA 18) 5.56 6777 
3 43 -4 right anterior cingulate (BA 32) 4.54 1755 
-5 28 -7 left anterior cingulate (BA 32) 4.62 1161 
-3 39 12 left anterior cingulate (BA 32) 4.50 2538 
-36 -10 -7 left sub-lobar, claustrum 4.37 2106 
6 10 65 right superor frontal gyrus (BA 6) 4.39 1026 
15 -95 27 right cuneus (BA 19) 4.83 1188 
39 -4 -5 right insula (BA 13) 4.30 2214 
40 10 28 right inferior frontal gyrus (BA 9) 4.30 1269 
-15 45 46 left superior frontal gyrus (BA 8) 4.40 1944 
-4 -18 4 left thalamus, medial dorsal nucleus 4.72 1215 
-6 -45 34 left cingulate gyrus (BA 31) 4.62 1701 
-44 -70 -19 left declive 6.52 3537 
26 3 -16 right parahippocampal gyrus (BA 34) 3.85 1107 
37 17 -10 right inferior frontal gyrus (BA 47) 4.03 783 
-42 -49 -26 left culmen 5.69 2295 
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Table 2 | Region Coordinates - Task-similar > Negative Distraction 
X Y Z Hemisphere Landmark Max Z 

Value 
Cluster 
size (mm3) 

32 24 49 right superior frontal gyrus (BA 8) 6.53 7398 

42 
-
46 47 right inferior parietal lobule (BA 40) 6.13 10854 

-46 
-
54 45 left inferior parietal lobule (BA 40) 5.94 9558 

40 40 28 right superior frontal gyrus (BA 9) 5.95 5346 
28 52 12 right superior frontal gyrus (BA 10) 6.21 5697 
-41 23 32 left middle frontal gyrus (BA 9) 5.59 4563 

-49 
-
31 41 left inferior parietal lobule (BA 40) 5.58 5319 

-28 
-
13 59 left precentral gyrus (BA 6) 5.44 3888 

42 
-
66 43 right inferior parietal lobule (BA 7) 5.69 7398 

23 4 60 right middle frontal gyrus (BA 6) 5.36 3321 

-62 
-
36 5 left middle temporal gyrus (BA 22) 5.25 3321 

40 
-
62 

-
48 right cerebellum 5.14 3861 

3 
-
71 48 right precuneus (BA 7) 5.16 8802 

-8 
-
36 66 left paracentral lobule (BA 4) 4.86 2916 

58 
-
15 7 right 

transverse temporal gyrus (BA 
42) 5.01 6777 

22 12 45 right medial frontal gyrus (BA 32) 4.88 2700 
-33 48 9 left middle frontal gyrus (BA 10) 4.68 4239 
-36 38 25 left middle frontal gyrus (BA 10) 4.63 2511 

-51 
-
40 -8 left middle temporal gyrus (BA 20) 4.77 3348 

-58 
-
13 11 left 

transverse temporal gyrus (BA 
42) 4.77 4374 

-46 
-
35 15 left superior temporal gyrus (BA 41) 4.51 4266 

-21 12 21 left caudate (caudate body) 4.61 756 
-27 2 58 left middle frontal gyrus (BA 6) 4.54 2403 
-12 14 7 left caudate (caudate body) 4.62 1296 

-39 
-
68 44 left inferior parietal lobule (BA 7) 5.11 3483 

4 29 41 right medial frontal gyrus (BA 8) 4.39 1269 

13 
-
45 67 right postcentral gyrus (BA 5) 4.43 945 

19 3 27 right basal ganglia 4.42 1674 

61 
-
31 

-
16 right inferior temporal gyrus (BA 20) 4.48 3159 

-19 - 15 left posterior cingulate 4.32 1620 
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46 

31 
-
58 13 right temporal gyrus/lobe 4.73 1647 

43 
-
31 17 right superior temporal gyrus (BA 41) 4.60 3105 

-8 
-
15 62 left superior frontal gyrus (BA 6) 4.09 3942 

5 
-
25 69 right medial frontal gyrus (BA 6) 4.54 2970 

-39 
-
27 56 left postcentral gyrus (BA 3) 4.17 4239 

13 17 7 right caudate (caudate body) 4.25 1485 
-9 4 52 left medial frontal gyrus (BA 6) 4.10 2376 

-23 
-
51 60 left superior parietal lobule (BA 7) 4.39 2268 

29 
-
83 

-
45 right inferior semi-lunar lobule 4.48 783 

-21 -6 31 left 
inferior precentral gyrus / white 
matter 3.95 1026 

9 -5 56 right medial frontal gyrus (BA 6) 4.08 1161 

-23 
-
30 63 left postcentral gyrus (BA 3) 4.01 1728 

0 
-
29 29 left cingulate gyrus (BA 23) 3.79 648 

39 
-
47 1 right parahippocampal gyrus (BA 19) 4.20 513 

26 
-
13 54 right precentral gyrus (BA 6) 3.75 810 

-37 
-
60 

-
55 left cerebellum 3.73 675 

-40 
-
75 

-
46 left inferior semi-lunar lobule 3.67 675 

-21 28 23 left medial frontal gyrus (BA 9) 3.84 864 
1 17 50 right superior frontal gyrus (BA 8) 3.61 702 
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Table 3 | Region Coordinates - Specificity Conjunction Analysis 
X Y Z Hemisphere Landmark Cluster 

size (mm3) 
Negative > Neutral > Task-similar Distraction (Blue Areas in Figure 3) 
40 -67 -4 right lingual gyrus (BA 19) 7101 
-
37 -54 

-
16 left fusiform gyrus (BA 37) 1188 

-
27 -3 

-
15 left amygdala 135 

18 -28 
-
11 right 

parahippocampal gyrus (BA 
30/35) 216 

-
17 -36 

-
10 left 

parahippocampal gyrus (BA 
30/35) 621 

-
39 -86 -1 left 

middle occipital gyrus (BA 
18) 2916 

21 -12 
-
11 right amygdala 270 

13 -37 -4 right 
parahippocampal gyrus (BA 
30) 594 

0 40 -4 left 
anterior cingulate gyrus (BA 
32) 243 

26 -31 -4 right 
parahippocampal gyrus (BA 
27) 135 

-
42 24 5 left inferior frontal gyrus (BA 45) 216 
48 34 10 right inferior frontal gyrus (BA 46) 567 
-
47 26 10 left inferior frontal gyrus (BA 45) 216 

15 
-
100 8 right 

middle occipital gyrus (BA 
18) 540 

-7 -58 17 left posterior cingulate (BA 23) 324 

33 -91 19 right 
middle occipital gyrus (BA 
19) 378 

-2 49 29 left medial frontal gyrus (BA 9) 1215 
Task-similar > Neutral > Negative Distraction (Yellow Areas in Figure 3) 

40 39 29 right 
middle frontal gyrus (BA 
9/46) 756 

-
43 23 32 left 

middle frontal gyrus (BA 
9/46) 378 

43 -54 43 right inferior parietal lobe (BA 40) 5535 
1 -70 41 right precuneus (BA 7) 1809 
40 22 43 right middle frontal gyrus (BA 8) 1053 
-
42 -50 43 left inferior parietal lobe (BA 40) 2349 

          Note: Table 3 areas refer to the specificity analyses in Figure 3. 
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