
  

  

Abstract— Recent advances in implanted device development 
have enabled chronic streaming of neural data to external 
devices allowing for long timescale, naturalistic recordings. 
However, characteristic data losses occur during wireless 
transmission. Estimates for the duration of these losses are 
typically uncertain reducing signal quality and impeding 
analyses. To characterize the effect of these losses on recovery 
of averaged neural signals, we simulated neural time series data 
for a typical event-related potential (ERP) experiment. We 
investigated how the signal duration and the degree of timing 
uncertainty affected the offset of the ERP, its duration in time, 
its amplitude, and the ability to resolve small differences 
corresponding to different task conditions. Simulations showed 
that long timescale signals were generally robust to the effects 
of packet losses apart from timing offsets while short timescale 
signals were significantly delocalized and attenuated. These 
results provide clarity on the types of signals that can be 
resolved using these datasets and provide clarity on the 
restrictions imposed by data losses on typical analyses. 

I. INTRODUCTION 

In order to aid in the development of closed-loop 
therapies, many implanted device manufacturers have 
designed “bidirectional” implants capable of concurrently 
stimulating and sensing [1]–[4]. Early bidirectional devices 
stored data locally on the implant or required restrictive 
interfaces for wireless transmission of data limiting 
recordings to short time periods and unnatural environments. 
Furthermore, extensive sensing ran the risk of premature 
battery failure shortening device lifetime [5]. Recent devices 
such as the Medtronic Summit RC+S solve both limitations 
via rechargeable capabilities and improvements enabling 
chronic streaming of neural data to external devices up to 12 
meters away. These advances allow access to long timescale 
neural recordings in natural environments facilitating the 
identification and development of personalized biomarkers 
and therapies [6]–[8]. 

During wireless transmission, samples of neural data are 
grouped into formatted units called “packets” [9]. Packets 
contain a series of subsequent samples of a particular length 
as well as timing information and other relevant metadata. 
When transmitted, it is possible for packets to fail to reach 
the receiver leading to missing samples. These missing 
samples need to be properly accounted for when the time 
series is reconstructed. The timing information contained in 
each packet aids in this process but is frequently inexact 
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resulting in uncertainty in the number and location of the 
samples missing from a recording. This process, known as 
packet loss, is illustrated in Fig. 1. 

Uncertainty in packet timing has implications for 
recovering biological signals since the estimated time for 
each sample may be somewhat offset from the true time 
when the sample was recorded. We hypothesized that these 
effects would likely compound when trials were averaged 
leading to timing offsets, delocalization, reduction in 
amplitude, and difficulty resolving small differences between 
signals. Such changes would impact any analyses based upon 
evoked response potentials, peristimulus time histograms, or 
event related potentials. In this work, we sought to determine 
how the degree of timing uncertainty following a loss could 
influence the ability to accurately identify features of a 
typical averaged signal for which we simulated event-related 
potentials (ERPs) of variable duration.  

II. METHODS 

A.  ERP Simulation 

In order to empirically determine the effects of packet 
losses on neural data, we simulated a positive-going ERP 
peak to provide a ground truth signal of interest. Each ERP 
trial ranged from -500 to 1500 ms and was modeled using a 
Gaussian adjusted to have an amplitude of 1 µV and a latency 
of 750 ms. We considered a range of standard deviations 
from 10-200 ms in order to approximate ERPs of variable 
duration [10]. All the simulated ERPs are shown in Fig. 2A.  
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Fig. 1.  Illustration of packet loss. Subsequent samples from a neural 
data time series acquired on an implanted device are grouped into 
packets. Packets are then wirelessly transmitted to a receiver. During 
the transmission process it is possible for some packets to be lost. As a 
result, the relative timing of the samples contained in received packets 
is uncertain. 
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Fig. 3.  Illustration of ERP comparison metrics. (A) Offset describes the difference in mean between the recovered and ground-truth signals. (B) 
Delocalization describes the change in standard deviation between the recovered and ground truth signals. (C) Amplitude ratio is the ratio of the 
recovered signal amplitude to the ground-truth amplitude. 

  

 
Fig. 2.  Illustration of ERP and noise simulations. (A) Ground-truth simulated Gaussian ERP trials for five different durations of interest. (B) 
Visualization of sinusoidal noise components. (C) Example ERP trials with noise and losses. Averaged signal is shown along with the ground-truth ERP 
in dark blue. 
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Each ERP trial was combined with simulated pink noise 
that was generated by summing together 50 sinusoids with 
randomly varying frequency and phase (with different 
random values for each simulated trial) [11]. Frequencies 
spanned the range from 0.1-125 Hz and the phase randomly 
varied between 0 and 2π. The maximum amplitude of any 
single frequency component of the noise was set to be 1 µV 
with the relative amplitude of each component scaled to 
match the power spectrum of typical electroencephalography 
data. The noise time series was divided by its standard 
deviation prior to being added to the ERP in order to ensure a 
signal to noise ratio of 20dB. Example sinusoids and a noise 
timeseries are shown in Fig. 2B. A total of 300 trials with a 
sampling rate of 1000 Hz were simulated for each experiment 
and concatenated into a single timeseries. This timeseries was 
then divided into 100 ms packets of which 30 were randomly 
removed, corresponding to 0.5% data loss. The estimated size 
of each loss was then randomly varied according to a normal 
distribution with a mean of 100 ms and a standard deviation 
ranging from 0 to 50 ms in order to consider a range of 
potential timing uncertainties. Packets were then recombined 
into a continuous time series with missing samples 
represented using NaNs. Lastly, the timeseries was divided 
into 300 trials and averaged to estimate the ERP. A typical 
example of this process is shown in Fig. 2C.  

B. ERP Measures 

In order to compare the ERPs in the presence of packet 
losses to the ground truth signal, we looked at five different 
metrics: timing offset, delocalization, amplitude ratio, 
statistical significance, and effect size. To compute the first 
three metrics, we fit a Gaussian to the averaged signal by 
minimizing their mean squared error using the Matlab 
(Mathworks, Natick, MA, USA) function fminsearch. We 
defined timing offset as the difference in the mean between 
the fit and the ground truth signal (Fig. 3A), delocalization as 
the difference in the standard deviation between the fit and 
the ground truth signal (Fig. 3B), and the amplitude ratio as 
the amplitude of the fit signal divided by the amplitude of the 
ground truth signal (Fig. 3C). These metrics were chosen in 
order to determine how packet losses might shift, spread, and 
reduce estimates of biological signals. Additionally, we 
divided ERP trials into two conditions, where the second had 
¾ of the amplitude of the first to estimate the effect of packet 
losses on discerning small differences between experimental 
conditions. For each trial, we computed the average 
amplitude within half a standard deviation of 750 ms and 
combined these measures to develop two a distribution for 
each condition. These distributions were compared on the 
basis of a two-sample t-test and Cohen’s d effect size. 

 
Fig. 4.  Simulation results. Heatmaps display the comparisons between the recovered ERP and ground-truth ERP as a function of the signal duration 
and the timing error when estimating losses for (A) offset, (B), delocalization, (C) amplitude ratio, (D) the proportion of trials which were significant, and 
(E) effect size. 
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III. RESULTS 

ERP comparisons were simulated and represented using 
heatmaps for signal durations ranging from 10-200 ms and 
timing errors ranging from 0-50 ms. Offset generally 
increased for larger timing errors with the greatest effect for 
signal durations above 50 ms. Offsets reached 50 ms for 25 
ms timing error and 100 ms for 50 ms timing error (Fig. 4A). 
Delocalization had the opposite trend with respect to duration 
showing large increases for lower signal durations but a 
similar increase with respect to timing error. Delocalization 
reached 10 ms for longer signals and 100 ms for shorter 
signals (Fig. 4B). Amplitude ratio decreased for increasing 
timing error with greater and more rapid decreases for lower 
signal duration. Reduction in amplitude was minimal for 200 
ms signals, 80 ms signals were reduced by 50% for timing 
errors greater than 25 ms, and 10 ms signals were completely 
attenuated for timing errors greater than 20 ms (Fig. 4C). 
Significance probability (Fig. 4D) and effect size (Fig. 4E) 
showed similar trends to amplitude ratio with minimal effects 
for long signals, reduction in ability to resolve slight 
differences for 80 ms signals with 25 ms of timing error, and 
complete inability to resolve signal differences for short 
duration signals for increasing timing error. 

IV. DISCUSSION 

The aim of this work was to characterize the effect of 
packet losses on analyses of averaged signals for which we 
considered event related potentials depending on the signal 
duration and the degree of uncertainty in estimating the loss 
size. Our results indicate that packet losses have noticeable 
effects on averaged signals that lead to offsets in time, 
delocalization in time, reductions in amplitude, and increased 
difficulty resolving small differences between signals. These 
effects are generally greatest for shorter duration signals and 
for larger degrees of timing uncertainty with the exception of 
timing offsets. Offsets were largely identical across signal 
durations apart from particularly short signals which were 
effectively eliminated completely for higher timing 
uncertainties. Delocalizing effects were minimal for higher 
duration signals but severely impacted short signals for 
greater degrees of timing uncertainty. Amplitude ratio, 
statistical significance, and effect size were largely correlated 
with noticeable reductions occurring for signals with standard 
deviations below 80 ms. 

For the purposes of this simulation, we chose to use a 
constant loss size of 100 ms and 30 losses in total. These 
values were chosen to be consistent with our experience 
using the Medtronic Summit RC+S with recordings in the 
clinic. However, our observations are relevant to any 
application where packetized data transmission is a 
requirement including implanted devices like the Summit 
RC+S [1], Active PC+S [12], and Neuropace RNS [8], 
wireless EEG systems like the B-Alart, Enobio, Muse, and 
Mindwave [13], and wireless EMG systems like the Athos 
[14] and Delsys Trigno [15]. In each device, characterizing 
the effects of data loss on signal averages is fundamental to 
ensuring accurate and effective analyses. 

V. CONCLUSION 

Our results demonstrate that long timescale signals with 
standard deviations greater than 100 ms are robust to the 
effects of packet losses on averaged timeseries data. 
However, the exact timing of the signal onset will be 
uncertain to the level of twice the estimated timing 
uncertainty. Shorter timescale signals with standard 
deviations less than 80 ms are noticeably obscured by packet 
losses. Future studies interested in short timescale effects will 
need to be wary of potential spurious results due to packet 
losses or ensure sufficiently low timing uncertainty to avoid 
these effects all together. We hope that these results will help 
inform any future studies relying on signal averages in the 
presence of uncertain data losses. 
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