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Abstract 

Skeletal muscles are involved in responses to acute hypoxia as the largest organ in the 

body. However, as a hypoxic-tolerant tissue, responses in skeletal muscles caused by 

acute sedentary hypoxia are much less studied. We measured metabolites in skeletal 

muscles from mice exposed to 8% O2 for 0 minute, 15 minutes and 2 hours and 

studied the potential relationship between metabolite levels and mRNA levels by 

reconstructing genome-based metabolic networks and meta-analyzing differentially 

expressed genes acquired in skeletal muscles after 2 hours of 8% O2 exposure. The 

metabolite measurement indicated a significant increase in glutamine metabolism but 

not lactate metabolism in mouse skeletal muscles after 2 hours of hypoxia, where the 

metabolic responses as a whole were moderate. The central-dogma based metabolic 

flux analysis suggested an involvement of glutamine metabolism, though, as a whole, 

metabolite changes and gene changes didn’t show a high correlation. Among 

metaoblites, glutamine metabolism indicated a significant response and a consistent 

change which could be interpreted by genome-based network analysis. In summary, 

though this study suggested a moderate metabolic response which has a weak 

correlation with gene expression change as a whole, glutamine metabolism indicated 
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rapid responses in skeletal muscles responding to acute sedentary hypoxia. 
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Background 

Hypoxia is widely studied as a common clinical symptom related to many diseases 

such as pulmonary obstruction which causes systemic acute hypoxia [1-4]. Skeletal 

muscles are involved in hypoxic responses as the largest organ in the body which 

make up to ~45% to 55% of body mass [2].  

 

During hypoxia induced by exercise, skeletal muscles as the major responsive tissue 

are studied widely. A number of changes such as increases in lactate, acetylcarnitine, 

TCA cycle and decreased glycogenolysis are revealed [5-8]. However, as to acute 

sedentary hypoxia, hypoxia-sensitive tissues such as brain and heart are studied more 

frequently, while studies in skeletal muscles, a hypoxia-tolerant tissue, are lagged [5, 

9-14].  

 

By a transcriptome-wide investigation, we revealed a number of gene expression 

changes in skeletal muscles from mice exposed to 8% O2 for 2 hours [11]. To further 

our understanding of changes in skeletal muscles during an acute sedentary hypoxia, 

in this study, we investigated metabolites in skeletal muscles from mice exposed to 8% 

O2 for 0 minute, 15 minutes and 2 hours. Furthermore, we evaluated the potential 

relationship between changes on gene expression and that of metabolites by 

predicting metabolic changes using a genome-based metabolic flux network analysis. 

The results suggest a moderate metabolic change generally, while glutamic acid 

indicated a significant increase after 2-hour of 8% O2 exposure in mouse skeletal 

muscles. The prediction of metabolic responses using genome-based metabolic 

network analysis which was reconstructed based on central dogma weren’t fully 

reflected by measured metabolites, suggesting central dogma might not fully cover the 

relationship among RNA, protein and metabolite for situations such as acute hypoxia. 

Among measured metabolites, glutamine metabolism indicated a significant increase 

which was predicted by the genome-based metabolic network analysis, suggesting a 

role of glutamine metabolism of skeletal muscles responding to acute sedentary 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 3, 2021. ; https://doi.org/10.1101/2021.06.03.446848doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.03.446848
http://creativecommons.org/licenses/by-nd/4.0/


3 
 

 

hypoxia. 

 

Methods 

Animals 

Male 3-month-old wild-type C57BL/6 mice weighing 25-30 g were housed with a 

standard diet and adapted to the environment for at least 24 hours before experiments.  

 

Hypoxic exposure and sample collection 

The exposure protocol was the same as described in Gan et al. [11]. Briefly, at the 

experimental day, mice started to fast at 9:00 a.m.. All mice were fasted for at least 4 

hours before sample collection. Mice were exposed to room air (control) or 

normobaric 8% O2 (8% O2, 92% N2) for 15 minutes (15mins) or 2 hours (2hrs) in 

individual tubes ventilated at 200 mL/min. At the end of exposure, mice were 

immediately euthanized by cervical dislocation to minimize metabolic disturbances in 

skeletal muscles. Hind limbs were cut and flash frozen in liquid nitrogen to minimize 

potential effects on metabolic state. Plantaris muscles, which are relatively balanced 

in fast glycolytic fibers and slow oxidative fibers [15], were then dissected from 

thawed frozen hind limbs on ice in 3-5 minutes [11, 16]. The dissected skeletal 

muscles were stored in liquid nitrogen or -80°C before further processing.  

 

Metabolite measurement 

Plantaris muscles (25~30 mg) were cut into halves for RNA extraction and metabolite 

measurement respectively. The small half plantaris muscles (5~10 mg) were 

homogenized in 1 mL ice-cold 80% methanol containing stable-isotope labelled 

internal standards. The vortex-mixed homogenate was incubated for 30 minutes at -

20°C, centrifuged at 17000 ×g for 15 minutes at 4°C. The protein pellet was re-

dissolved in 1 mL of 0.1 M NaOH solution. The protein concentration of protein 

solution was measured using the Lowry method and used for the normalization of 

metabolite concentration among samples. The supernatant was moved to a clean tube 

and dried in a centrifugal evaporator (SPD121P Speed Vac concentrator, Thermo 

Fisher) at 36°C and reconstituted in 100 µL solution containing 10% methanol and 

0.1% formic acid by vortexing, orbital shaking and sonication. The solution was then 

analyzed by a liquid chromatography-electrospray tandem mass spectrometry (Sciex 

API4000) [17]. Briefly, authentic standards were infused and monitored by 
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scheduling them at the corresponding retention times. 5µL sample solution was 

injected in the analytical system (CTC Analytics HTC PAL autosampler) and 

separated by a reversed-phase HPLC column (Mac-mod analytical) with a 0.3 

mL/min flow rate at 25°C, by means of a simple binary acetonitrile (B) partioning in 

water gradient, both containing 0.1% formic acid. Positive ionization gradient was 

5%B for the first 3 minutes, followed by 40%B for 16 minutes, 100%B for 26 

minutes and 0%B for 2 minutes. MultiQuant software (AB Sciex) was used for peak 

integration and quantification. Metabolite concentrations were calculated using the 

authentic standard in six to eight non-zero levels calibration curves within 85-115% 

back-calculated accuracies from nominal spanning physiological range concentrations, 

with 1/x of concentration weight, to compensate for different variance at low 

concentration, and coefficients of correlation, 0.99, or higher. Since the quantity of 

plantaris samples for metabolite measurement (5~10 mg) was small, we didn’t match 

the mass for each sample for further normalization of metabolite concentration, 

instead, metabolite concentrations were normalized using its protein concentration. 

The sample size was relatively small (n=3 for each group) for metabolite analysis 

since we matched samples for both metabolite measurement and RNA measurements. 

Thus, metabolites whose standard derivation was greater than 50% of the group 

average in all three groups or whose normalized concentration was less than 0.05 

were excluded from further analysis. Compared with the control, metabolites with p 

<0.05 were considered as significantly changed. Lactate levels in plantaris were 

measured as previously described [16]. Standards and other chemical reagents were 

purchased from Sigma.  

 

RNA sequencing and RT-PCR 

RNAs of plantaris from mice exposed to 8% O2 for 2 hours were extracted and 

sequenced as described [11]. Briefly, RNA was extracted using Qiagen RNeasy 

fibrous tissue mini kit (#74704, Qiagen). Libraries of extracted RNAs whose 

A260/A280 >1.8 and RIN >8 were built using the Illumina TruSeq
TM

 RNA sample 

preparation kit (RS-122-2001, Illumina) and sequenced by an illumina HiSeq 2000 

system with paired-end 100-bp reads. The RNA-seq raw data were available in NIH 

National Center for Biotechnology Information GEO database as GSE81286. To 

check RNA levels using RT-PCR, cDNAs were synthesized using HiScript II Q RT 

SuperMix (#R223-01, Vazyme). RT-PCR measurements were conducted using a 
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StepOnePlus Real-Time PCR System (Thermo Scientific) with ChamQ
TM 

Universal 

SYBR qPCR Master Mix (#Q711-02/03, Vazyme) following manufacturer’s 

guidelines. Primers for mRNAs (Sangon) are listed in Table S1. 

 

RNA-seq alignment, assembly and differentially expressed gene identification 

To acquire a robust and conserved set of differentially expressed genes (DEGs), we 

aligned and assembled RNA-seq raw data to UCSC.mm10 or mm9 using 

TopHat2/Bowtie2 or Hisat2/Stringtie respectively. Several tools including AltAnalyze 

(limma-based), Cuffdiff or DESeq2 which developed different algorithms to identify 

DEGs were applied to identify DEGs respectively [18-21]. The threshold of 

differentially expressed genes was set at p<0.01 for AltAnalyze, adj.p<0.01 for 

DESeq2 and q value<0.01 for Cuffdiff, respectively. The overlapped genes among 

three DEG sets were defined as conserved differentially expressed genes (cDEGs). 

The cDEGs were further analyzed using ToppFun for functional annotation clustering 

or RAPHGA for pathway analysis [11, 22]. The analyzed results were visualized by R 

package ‘GOplot’ [23]. GO clusters with a Bonferroni q<0.05 and mapped genes>3 

were kept for further visualization. The GO clusters or pathways with an overlap 

rate>0.7 were removed before its visualization.  

 

Metabolic modeling by genome-based metabolic network reconstruction 

To study the potential effect of gene expression changes on metabolism, differentially 

expressed genes were first mapped to iMM1415 model, a model describing a 

metabolic flux network which contains 1415 mouse metabolic related genes and 3727 

metabolic reactions, to identify metabolic related genes [24, 25]. The distribution of 

mapped genes in the metabolic network was visualized by Escher [24]. Then, we 

evaluated the effects of mapped genes’ changes on metabolic network using MetPath, 

a method we developed for genome-based metabolic analysis [25, 26]. Briefly, based 

on the global metabolic reconstruction of mouse metabolism [25], a skeletal muscle-

specific metabolic network was generated using published gene expression datasets 

for skeletal muscles and an established model construction algorithm called 

mCADRE [27, 28]. The differentially expressed genes along with their folds were 

then mapped to the established skeletal muscle-specific metabolic network. The 

metabolic reactions involving the mapped genes were analyzed and the potential 

effects were evaluated quantitatively [26]. This analysis was conducted in MATLAB. 
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Statistical analysis 

All data presented were means±s.d.. Metabolite data were analyzed by unpaired two-

tailed Student’s t-test and considered significant if p<0.05. These statistical tests were 

performed by Excel or R. The sample sizes of each group were described in the 

Results section. 

 

Results 

Metabolic responses in skeletal muscles from mice exposed to normoxia or acute 

hypoxia 

Though blood lactate increased quickly in 15 minutes after mice were exposed to 8% 

O2, the change of lactate in skeletal muscles was not significant with lactate levels at 

0.93±0.13, 1.15±0.21 and 0.71±0.22 mM for normoxia, 15 minutes and 2 hours of 

hypoxia respectively (Fig. 1). 

 

Fig. 1. The level of lactate in plantaris or blood. Plantaris muscles were collected from mice 

exposed to 8% O2 for 0 minute (control, n=6), 15 minutes (15mins, n=3) or 2 hours (2hrs, n=6). 

Blood lactate was previously measured in mice exposed to 8% O2 for 0 minute (control, n=5), 15 

minutes (15mins, n=5) or 2 hours (2hrs, n=6). All values are mean±s.d.. *: different from that of 

control samples, p<0.05 

 

Using a LC-MS/MS system, we scanned 132 metabolites totally. Metabolites with big 

variances (s.d.>50%) or very low levels (normalized concentration<0.05) were 

excluded for further analysis. The 38 metabolites for further analysis were listed in 

Table 1. Most of these metabolites in plantaris didn’t change in 15 minutes of hypoxia. 

In 2 hours of hypoxia, a significant increase in glutamic acid was observed, where 

glutamic acid was increased by 96%, from 22.05±4.04 to 43.27±6.35 (Fig. 2). Both 

cytidine and uridine were decreased in skeletal muscles after 2 hours of hypoxic 

exposure with levels from 0.35±0.06 to 0.18±0.04 and 0.23±0.09 to 0.06±0.05 
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respectively.  

 

Table 1.  Metabolite levels in mouse plantaris. Plantaris samples were collected from mice 

exposed to normoxia (control, n=3), 8% O2 for 15 minutes (15mins, n=3) and 2 hours (2hrs, n=3). 

 
control       15mins 

 
      2hrs 

 

 
mean SD mean s.d. p mean s.d. p 

[allo]+isoleucine 0.25 0.05 0.23 0.08 0.78 0.33 0.09 0.21 

1-methylhistidine 0.75 0.02 0.74 0.10 0.80 0.86 0.10 0.16 

5-aminolevulinic 0.09 0.02 0.10 0.03 0.66 0.11 0.04 0.57 

5-methylhistidine 3.08 0.42 3.03 0.70 0.91 2.67 0.76 0.46 

acetylcarnitine 3.47 0.80 2.23 0.30 0.06 2.32 0.33 0.08 

alanine+sarcosine 35.13 9.79 26.68 9.87 0.35 28.39 8.24 0.41 

allo+delta-hydroxylysine 0.88 0.03 0.86 0.11 0.77 0.96 0.06 0.14 

alpha-aminoadipic_acid 0.28 0.04 0.27 0.05 0.80 0.37 0.05 0.08 

arginine 3.21 1.36 1.78 0.33 0.15 2.94 1.93 0.85 

argininosuccinic 0.10 0.01 0.10 0.01 0.83 0.11 0.01 0.14 

beta-alanine 0.75 0.24 0.73 0.21 0.91 0.68 0.32 0.76 

carnitine 9.99 1.43 10.84 3.13 0.69 12.58 2.55 0.20 

carnosine 8.67 0.53 8.07 0.93 0.39 6.39 1.86 0.11 

citrulline 2.28 0.62 2.50 0.47 0.65 2.95 1.05 0.40 

creatine 483.38 55.58 439.96 95.50 0.53 502.51 56.43 0.70 

creatinine 29.05 10.99 37.23 28.90 0.67 41.34 24.02 0.47 

cysteine 207.33 6.07 215.38 35.20 0.72 211.54 50.49 0.89 

cytidine 0.35 0.06 0.24 0.15 0.33 0.18 0.04 0.02 

glutamic_acid 22.05 4.04 21.99 5.08 0.99 43.27 6.35 0.01 

glutamine 21.18 2.06 18.82 2.71 0.30 22.82 3.12 0.49 

glycine 58.40 10.23 59.38 28.27 0.96 60.01 29.10 0.93 

histidine 3.22 0.79 3.19 0.70 0.97 3.36 0.73 0.83 

leucine 1.78 0.14 1.35 0.24 0.06 2.16 0.39 0.19 

lysine 12.59 2.10 11.98 2.23 0.75 14.61 1.23 0.22 

methionine 0.84 0.20 0.75 0.36 0.72 0.75 0.28 0.68 

ornithine 0.67 0.22 0.46 0.14 0.25 0.50 0.02 0.24 

phenylalanine 0.30 0.05 0.34 0.07 0.48 0.42 0.15 0.29 

pipecolic 0.21 0.07 0.45 0.43 0.39 0.62 0.39 0.15 

proline 2.63 0.28 2.66 0.69 0.95 3.75 1.61 0.30 

serine 4.41 1.35 8.66 5.52 0.27 4.67 2.18 0.87 
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serotonin 0.16 0.02 0.17 0.07 0.80 0.17 0.01 0.39 

taurine 277.07 13.71 229.38 126.26 0.55 305.17 37.14 0.29 

threonine 3.83 0.36 3.40 0.73 0.42 4.14 1.34 0.72 

trimethylamine-N-oxide 0.41 0.08 0.48 0.09 0.42 0.40 0.13 0.91 

tryptophan 0.63 0.07 0.58 0.04 0.36 0.50 0.04 0.06 

tyrosine 0.59 0.16 0.51 0.33 0.74 0.59 0.30 0.99 

uridine 0.23 0.09 0.09 0.01 0.06 0.06 0.05 0.05 

valine 0.63 0.08 0.87 0.36 0.31 0.68 0.10 0.54 

protein(mg/mL) 3.54 0.15 3.62 0.59 0.83 3.25 0.27 0.17 

 

 

 

Fig. 2. The level of metabolites in plantaris. Plantaris samples were collected from mice exposed 

to 8% O2 for 0 minute (n=3), 15 minutes (n=3) or 2 hours (n=3), respectively. All values are 

mean±s.d.. *: different from that of control, p<0.05 

 

Gene expression of skeletal muscles from mice exposed to normoxia or 2 hours of 

hypoxia  

Using DESeq2, AltAnalyze and Cuffdiff, we identified 825, 767 and 1057 DEGs 

respectively in plantaris from mice exposed to 8% O2 for 2 hours. The venn-diagram 

of DEGs identified different tools was shown in Fig. 3. This result suggests that 

analysis method could significantly affect the identification of DEGs. About 350 

DEGs were conserved among three sets as shown in Table S2. The fold changes 

calculated by different tools were comparable. Though differences existed in 

identified DEGs, pathway analysis results indicated a high similarity among three sets 
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as shown in Table S2, suggesting that the key DEGs were conserved among these 

three DEG sets. Thus, we used the conserved DEGs (cDEGs) for further enrichment 

analyses. 

 

 

Fig. 3. Venn diagram of differentially expressed genes identified by DESeq2，AltAnalyze or 

Cuffdiff from RNA-seq data of skeletal muscles from mice exposed to normoxia (n=3) or 2 hours 

of 8% O2 (n=3). The radius of each circle is proportional to its total number of DEGs 

 

Pathway analysis identified 47 cDEG-enriched pathways where mmu04512 ‘ECM-

receptor interaction’ and mmu04510 ‘focal adhesion’ were the most significant as 

shown in Table S3. GOplot removed 16 pathways whose overlap rate was greater than 

0.7, the remaining pathways were shown in Fig. 4A. Most pathways showed a down-

regulation at the gene expression level, though it might not mean a down-regulation at 

the protein or function level. Signaling pathways such as PI3K-Akt signaling pathway, 

FoxO signaling pathway were highlighted in the pathway analysis results. It is 

interesting that though down-regulated genes took only two-thirds of mapped genes, 

they explained most of cDEG-enriched pathways. The only up-regulated cDEG 

enriched pathway was cytochrome P450 metabolism which contained cDEGs 

encoding glutathione s-transferase, sulfotransferase and aldehyde dehydrogenase. The 

functional annotation clustering analysis results as shown in Table S4 also indicated a 

strong and consistent down-regulation in collagen genes as shown in Fig. 4B, which 

was confirmed by a RT-PCR measurement (Fig. 5). A number of binding-relevant 

terms such as enzyme-binding, growth factor-binding were highlighted in the 

functional clustering results as shown in Fig. 4C.  
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Fig. 4. The representation of enrichment analysis results of common DEGs using GOplot. (A): 

The identified pathways (colors stand for corresponding z-score). (B): The identified functional 

annotation clusters (colors stand for corresponding z-score. (C): The circle picture of 10 most 

significant clusters where blue dots stand for down-regulated genes and red dots stand for up-

regulated genes 

 

 

Fig. 5. The fold changes of selected genes in skeletal muscles from mice exposed to normoxia 

(n=6) or 8% O2 for 2 hours (n=7) 

 

The potential relationship between metabolic changes and transcriptional 

changes evaluated by genome-based metabolic network reconstruction 

According to the central dogma, the level of enzymes can be regulated by the level of 

its mRNA through translation. However, during the acute hypoxia duration, the level 

of mRNA is continuously changing. So, it is interesting whether such a change on 

mRNA can be translated into its enzyme and hence affects relevant metabolites during 

acute hypoxia. According to mouse metabolic flux network model iMM1415, we 
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identified 49 differentially expressed metabolic genes and 176 metabolic reactions as 

listed in Table S5. Among these genes, genes encoding enzymes for amino acid 

metabolism were relatively enriched, which included Gcat, Glul, Gpt2, Dot1l, Bckdhb, 

Aldh2, Dpysl3, P4ha1, Aldh9a1, Gnmt and Gatm. Based on the assumption that the 

gene changes were proportionally translated into protein levels, we predicted the 

effects of metabolic cDEGs on metabolism which were visualized in Fig. S1. The 

predicted changes were sparsely distributed in metabolic subsystems, such as 

glutamine, tryptophan, cysteine and cytochrome p450 metabolism. The predicted 

change on glutamine metabolism was consistent with the increase in glutamic acid 

measured by LC-MS/MS, with increases in glutamine synthetase gene Glu1 and 

glutamic pyruvate transaminase gene Gpt2. However, a bit of predictions based on 

metabolic cDEGs such as Dpysl3, Gatm were not reflected by the metabolic 

measurement results. Compared with the hundreds of changes on gene expression, the 

changes on metabolites were quite moderate. Thus, the correlation between changes 

on mRNA levels and changes on relevant metabolites was not high. Thus, for hours of 

hypoxia, some changes on mRNA levels might not be reflected by protein levels 

timely as assumed. This means that we may need more mechanisms besides central 

dogma to interpret the results we observed in acute hypoxic exposure. 

 

Discussion 

Glutamine metabolism and lactate metabolism in skeletal muscles responding to 

hypoxic stress 

Lactate metabolism was widely known as the most significant response to heavy 

exercises in skeletal muscles. A ~330% increase in blood lactate, which was 

recovered to the normal level in 2 hours, was observed after a 15-minute sedentary 

hypoxia along with significant decreases in blood PaO2, PaCO2 [11]. In contrast to 

rapid metabolic responses in blood, the lactate in plantaris muscles didn’t show a 

significant change either in 15 minutes or 2 hours of hypoxic exposure. It was known 

that skeletal muscles were the major source of increased blood lactate during high 

intensity exercise due to lactate accumulation in skeletal muscles [29]. However, the 

result of lactate in this study suggested that skeletal muscles wouldn’t be a major 

contributor of the increased blood lactate in a sedentary hypoxic exposure. This 

difference in skeletal muscles for lactate metabolism under the hypoxic stress induced 

by a bout exercise or a sedentary hypoxia was interesting. A sedentary hypoxia 
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induced a ‘passive’ hypoxia in skeletal muscles which was delivered from the around 

tissue, e.g. from blood to skeletal muscles, while an exercise bout induced an ‘active’ 

hypoxia in skeletal muscles which was delivered to nearby tissues. Duarte et al. 

suggested brain as a potential source of increased blood lactate under hypoxia since a 

stable increase in the lactate release was observed in hippocampal slices in a hypoxic 

duration [30]. But this might not be the case in this study, since the level of blood 

lactate was recovered to the normal level when hypoxia was still last. Red blood cells 

were reported as one of the main lactate sources, which were sensitive to changes on 

blood oxygen level [31]. During the sedentary hypoxia, red blood cells sense the 

decrease of oxygen level much earlier than skeletal muscles, and hence might be the 

major source of blood lactate during a sedentary hypoxic exposure.  

 

In this study, the increase in glutamic acid was the most significant metabolic change 

(22.05±4.04 v.s. 43.27±6.35) in skeletal muscles after 2 hours of hypoxia. Previous 

studies had identified a role of glutamine metabolism in hypoxia. Huang et al. found 

that glutamine played an important role in the growth of cancer cells which usually 

grew under hypoxic conditions [32]. The glutamine metabolic pathway was identified 

as the required pathway for tumor growth which rendered glutamine mainly to acetyl 

coenzyme A for lipogenesis [33]. Fuhrmann et al. reported that extended hypoxia in 

myocytes increased fatty acid oxidation via the glutamine-citrate-fatty acid axis [34]. 

Starnes et al. reported that glutamic acid and glutamine changed in heart during 

exercise inducing a temporary hypoxic condition [7]. In this study, we observed a 

rapid increase in glutamic acid in mouse skeletal muscles in a 2-hour hypoxic 

exposure. Thus, based on above studies, different from lactate metabolism, glutamine 

metabolism is widely involved in kinds of hypoxia-relevant events, such as sedentary 

hypoxia, hypoxia induced by a heavy exercise and hypoxia caused by the excessive 

growth in cancer. This fact suggests that glutamine metabolism might be a general 

responsive mechanism to hypoxic stress. 

 

Metabolites and gene expression levels in responses to acute sedantary hypoxia 

Several studies had carried out to study the potential relationship between 

metabolomics and transcriptomics. Kelly et al. studied asthma by integrating 

metabolites, gene transcripts and found a role of dysregulation of lipid metabolism in 

asthma [35]. Feidantsis’s study indicated a close correlation between the expression of 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 3, 2021. ; https://doi.org/10.1101/2021.06.03.446848doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.03.446848
http://creativecommons.org/licenses/by-nd/4.0/


13 
 

 

heat shock protein and the level of lipid peroxidation induced by a long-term thermal 

stress in mussels [36].  In this study, the genome-based metabolic network analysis 

predicted some measured metabolic changes such as glutamic acid, but also changes 

which couldn’t be reflected by measured metabolites. As an acute hypoxia, the 

expression levels of genes or proteins were perhaps changing continuously during the 

period. The rates of changes for genes or proteins could have different time scale and 

the translation of changes on genes into that of proteins would need time, thus it might 

not be practical to predict metabolites for the unstable state before we knew all 

dynamic and kinetic properties of genes, proteins and metabolites. Another possible 

reason could be that the traditional RNA-enzymatic protein-metabolism dogma, 

which was the assumption of the analysis method, may not be sufficient to interpret 

gene regulation mechanism under acute hypoxia. Other mechanisms such as 

epitranscriptome including methylation could be involved in gene expression 

regulation under acute hypoxic state. In this study, metabolite result indicated that 2 

hours of hypoxia induced decreases in uridine and cytidine. Uridine was reported as a 

protective treatment for brain damage caused by hypoxic-ischemia [37]. A previous 

study showed that hypoxia could cause hundreds of RNA changes responding to 

hypoxia through APOBEC3A, a cytidine deaminase [38]. These studies suggested a 

potential role of uridine and cytidine in responses to hypoxia. The decreases in uridine 

and cytidine found in this study also suggested an involvement of uridine and cytidine 

in acute hypoxic responses, though the low levels of uridine and cytidine that we 

detected in skeletal muscles might affect the reliability of this point. 

 

Effects of tools on data alignment and differentially expressed gene identification 

In this study, we tried different tools to analyze RNA-seq data with mouse reference 

genome mm9 or mm10. The selection of different reference genome indicated very 

slight effects on the results. The alignment to mm10 reported ~28 genes more than 

mm9. The gene counts and folds using either mm9 or mm10 were quite close, with an 

average ratio around 1.00±0.05. Thus, the selection of different versions of reference 

genome wouldn’t cause an essential difference on results.  

 

We used TopHat2/Bowtie2 or Hisat2/StringTie to align and assemble the sequencing 

data. Hisat2 indicated a much faster alignment speed where the running time was 

decreased significantly. For an example, TopHat2 took about 220 minutes with 12 
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threads to align 30 Gb data to mm10, while it took only 15 minutes for Hisat2 with 12 

threads to align the same input data to mm10. The alignment rate of Hisat2 was also 

slightly higher. The average of alignment rate by Hisat2 of our data was around 95%, 

while TopHat2 gave an alignment rate around 87%. Thus, Hisat2/StringTie had a 

better performance for the alignment. This conclusion was consistent with that of 

Sahraeian et al., who pointed out that Hisat2/StringTie were the fastest and most 

effective tools to align short reads [39].  

 

To identify the effects of tool on the identification of DEGs, we tried Cufflinks, 

Deseq2 and AltAnalyze (limma-based). Cufflinks, Deseq2 and AltAnalyze identified 

1057, 825 and 767 DEGs respectively. However, only 350 genes were common 

among them. The venn diagram in Fig. 4 showed the relationship of DEGs selected by 

different tools, suggesting that the selection of tools could have a big effect on the 

identification of DEGs. Fortunately, the folds of cDEGs calculated by different tools 

were quite comparable (Table S2). To coarsely evaluate these 3 sets of DEGs, we 

compared top 100 genes with most significant p or q values from 3 sets and top 100 

genes with biggest fold changes from 3 sets.  The results showed that DEGs identified 

by Cuffdiff had the least overlap with cDEGs as listed in Table 2. Another point that 

we noticed was that none of 10 DEGs with the biggest folds identified by Cuffdiff 

were recognized by DESeq2 or AltAnalyze, which might suggest a false discovery. 

This result also agreed with the conclusion of Sahraeian et al. who pointed out that 

outputs of pipelines involving Cufflinks/Cuffdiff had a less similarity to other pipeline 

combinations [39]. Selected by p value, DESeq2 seemed the most effective with 89 

genes overlapped with cDEGs. AltAnalyze had a good performance at both the 

selection by p/q value and the selection by fold as shown in Table 2. Based above 

results, AltAnalyze or DESeq2 was better to identify differentially expressed genes 

rather than Cuffdiff. Though DEGs identified by different tools were different, we 

found their results of enrichment analyses such as pathway analysis were similar, 

suggesting that key differentially expressed genes were conserved among 3 sets. Thus, 

we used cDEGs for further analyses, to simplify the complexity of analyses and to 

focus on key information. 

 

Table 2. The overlap among gene sets selected by different tools. Column 2 indicated the 

conservation rate of top 100 genes selected by p (AltAnalyze, DESeq2) or q values (Cuffdiff) 
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compared to cDEGs. Column3 showed the conservation rate of top 100 genes selected by the 

absolute fold changes compared to cDEGs 
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