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Highlights 

• FusionAI, a 9-layer deep neural network, predicts fusion gene breakpoints from a 

DNA sequence 

• FusonAI reduce the cost and effort for validating fusion genes by decreasing 

specificity 

• High feature importance scored regions were apart 100nt on average from the exon 

junction breakpoints 

• High feature importance scored regions overlapped with 44 different human genomic 

features 

• Transcription factor fusion genes are targeted by the GC-rich motif TFs  

• FusionAI gives less scores to the non-disease derived breakpoints 

 

SUMMARY 

Identifying the molecular mechanisms related to genomic breakage is an important goal of 

cancer mechanism studies. Among the diverse location of the breakpoints of structural variants, 

the fusion genes, which have the breakpoints in the gene bodies and typically identified from 

RNA-seq data, can provide a highlighted structural variant resource for studying the genomic 

breakages with expression and potential pathogenic impacts. In this study, we developed 

FusionAI which utilizes deep learning to predict gene fusion breakpoints based on primary 

sequences and let us identify fusion breakage code and genomic context. FusionAI leverages 

the known fusion breakpoints to provide a prediction model of the fusion genes from the primary 

genomic sequences via deep learning, thereby helping researchers a more accurate selection 

of fusion genes and better understand genomic breakage.  

 

INTRODUCTION 

Identifying the molecular mechanisms related to the genomic breakage is an important goal of 

disease biology to understand the origin of new genes and aberrant functional features of the 

broken genomes. Among the diverse location of the breakpoints of structural variants, the 

breakpoints of fusion genes are located in the gene bodies. Fusion genes can be formed mainly 

by double-strand breakages. Due to the cost-effective sequencing (data creation) and analyzing 

(interpretation), and usage (diagnosis), there are a huge amount of RNA-seq data accumulated 
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to date. Fusion genes identified from RNA-seq data, the expressed ones, can provide a 

highlighted structural variant resource for studying the genomic breakages with expression and 

thereby potential pathogenic impacts. Indeed, the broken gene context of the identified fusion 

genes provided the aberrant functional clues to study disease genesis. However, an inherent 

limitation of RNA-seq data and analyses is restricted by sequencing depth, read length, read 

alignment tool and their options, filtering criteria, and etc., which create many false positives and 

cannot identify fusion genes with low expression. Therefore, developing the sequencing-free 

prediction of fusion genes would be helpful and may provide new insights into the genomic 

breakage phenomenon.  

Motivated by recent successes in the use of deep learning approaches to predict the 

genomic regulatory elements and splice events from the genomic context (Jaganathan et al., 

2019; Zhou and Troyanskaya, 2015), we hypothesized that the exon junctional breakpoints of 

known fusion genes from the RNA-seq data can be used to construct a deep-learning model of 

predicting the breakage tendency. To test this hypothesis, we developed FusionAI, a deep 

residual neural network that predicts whether an exon junction position pair of a potential fusion 

gene is a fusion gene breakpoint or not, using as input only the primary sequence. FusionAI 

consists of a deep neural network (DNN) model that classifies between fusion-positive and -

negative breakpoints on the basis of DNA primary sequences. We used the fusion genes that 

have exon junction-junction breakpoints in both fusion partner genes of The Cancer Genome 

Atlas (TCGA)(Cancer Genome Atlas Research et al., 2013) cohorts annotated from 

FusionGDB(Kim and Zhou, 2019). We also made fusion negative breakpoint sequences by 

stringent criteria and we trained and tested the FusionAI model by mixing these fusion-positive 

and -negative data. We evaluated the performance of FusionAI by applying multiple identified 

fusion gene resources such as validated 2200 fusion genes from 675 human cancer cell-

lines(Klijn et al., 2015), Sanger sequencing-based fusion genes in Entrez from ChiTaRs-

3.1(Gorohovski et al., 2017), fusion genes of a non-disease population of Genotype-Tissue 

Expression (GTEx)(Consortium et al., 2017; Singh et al., 2020), and fusion genes derived from 

the structural variants of The Genome Aggregation Database (genomAD)(Collins et al., 2020) 

annotated from FGviewer(Kim et al., 2020). The application of FusionAI increased the specificity 

of fusion prediction. We found the relationship between feature importance (FI) score and 

FusionAI prediction scores for classifying fusion-positives and -negatives. From the top 10% 

(high) FI score regions across 20 kb long DNA input sequence, we investigated the human 

genomic sequence features. We identified significant overlap between 44 different human 

genomic sequence features and the regions near to the fusion gene breakpoints in diverse 
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categories of features such as virus integration sites, multiple types of repeats, structural variant 

regions, specific chromatin stated regions, and expression regulating regions. In these top 10% 

FI scored regions of the 5’-gene breakpoint area of the transcription factor fusion genes, we 

identified a GC high DNA sequence motif, which might be targeted by SP1. The low percentage 

of FusionAI prediction scores in the healthy population derived fusion genes might reflect a 

validity or tumorigenicity of individual fusion gene breakpoint. In summary, FusionAI is an 

example of interpretable scientific deep learning in studying the human genomic breakages with 

diverse potential genomic regions related to different cellular mechanisms. 

  

RESULTS 

Overview of FusionAI  

First, we investigated the distribution of the breakpoint location of fusion genes on the exon-

intron gene structure. The majority of the fusion genes derived from RNA-seq data were located 

at the exon junction-junction breakpoints (Figure 1A). This confirms the hypothesis that the 

breakpoints of fusion genes would be located in the intronic region since the exons cover the 

human genome only about 1%, but the introns cover more than 24% except the intergenic 

regions (Venter et al., 2001). This percentage will be bigger in the view of gene body. From this 

context, we mainly used the fusion gene breakpoint information located at the exon junction-

junction among TCGA fusion genes as the fusion-positive data sets (~26k fusion breakpoints in 

Table S1). We made a similar number of fusion-negative data with strict criteria (Figure 1B. See 

the methods section). Using the divided data from the mixture of fusion-positives and -negatives 

into 80% and 20%, we trained and test FusionAI. The input is a total 20 kb DNA sequence of 

combined ones of both fusion partner genes with 5kb +/- breakpoints. The transformed one-hot 

encoded input resultant into the probability of fusion breakpoints through passing the deep 

learning processes including filtering, activation, pooling, flattening, and fully connected 

functions (Figure 1C). To examine long-range and short-range specificity determinants, we 

compared the scores assigned to fusion-positives by the models trained on 200nt, 1k, 2k of the 

sequence context versus the full model that is trained on 5k of context (Figure 1D). Overall, 

there was no big difference in the accuracy across the different sequence range from the fusion 

breakpoints. The accuracies for training and test data sets were 97.4% (AUCROC=0.9962) and 

90.8% (AUCROC=0.9706) with 0.12 and 0.42 error rate, respectively. This performance is much 

better than the traditional machine learning method s, SVM and RF. To identify the hidden 
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genomic context features specific fusion gene breakpoints, we performed our studies based on 

the 5k based model with a convolutional neural network approach. 

Primary sequence based FusionAI improves identification of fusion genes 

To compare the performance of prediction of fusion genes of FusionAI, we chose STAR-fusion 

and Arriba based on the best performance results from the accuracy assessment study (Haas et 

al., 2019). Our training and test data sets are made of the genomic breakpoint information. 

Since the usual RNA-seq based tools require the input of RNA-seq data, we made the 

simulation RNA-seq data of the split reads at the exon junction breakpoints with different read 

length (50, 75, and 100 bp) and a different number of split reads (1, 3, 5 split reads, and 10 

random around breakpoints) based on the fusion-positive and -negative breakpoints in our 

training and test data sets (Figure 2A). We also made simulation RNA-seq data for the 

experimentally validated fusion gene breakpoints by Sanger sequencing and RT-PCR from 

ChiTaRS-3.1(Gorohovski et al., 2017) and cancer cell-line study(Klijn et al., 2015), respectively. 

To apply FusionAI to these data sets, we made the input sequence of 20kb long (Table S1). As 

shown in these comparisons in FigureS 2A and 2B, the typical RNA-seq’s limiting factors (i.e., 

read-length and the number of split reads) were not problems to FusionAI compared to the 

general RNA-seq based fusion prediction tools as shown in the red triangles in the plots 

(Figures 2A and 2B, Tables S2-4). We also checked the individual fusion genes validated from 

the most famous fusion gene-positive cell-lines such as K562, MCF7, and NCI-H660, which are 

the BCR-ABL1, BCAS4-BCAS3, and EML4-ALK-positive cells, respectively (Figure 2C). Figure 

2D shows that FusionAI has the biggest number of validated fusion genes among the three 

tools. Typically, the researchers use multiple fusion gene prediction tools to select the 

candidates before experimental validation. Compared to the result using only two tools of 

STAR-fusion and Arriba, additional use of FusionAI reduced the number of false positives 

effectively, but remain the true positives. This can reduce the cost and efforts for validation. 

FusionAI facilitates better understanding of genomic context of fusion gene breakpoints.  

We investigated the FI scores using 20bp window size every 20bp along the 20k bp input 

sequence of our training and test fusion genes. These FI scores are the values showing how big 

impact of individual 20bp length sequences along 20k have to distinguish fusion-positive and -

negative breakpoints. As shown in the six most famous fusion genes (BCR-ABL1, EML4-ALK, 

TMPRSS2-ERG, PML-RARA, RUNX1-RUNX1T1, and FGFR3-TACC3), the FI scores were 

most high at the breakpoint area overall (Figure 3). For the intuitive vaalidation, we checked the 
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performance of FusionAI how much the output scores classify the fusion-positives and -

negatives using the logistic regression method. As shown in Figure 3B, FusionAI classifies the 

fusion-positive and -negative breakpoints very significantly (p-value <2e-18). We also wondered 

about relationship between the FI scores and the FusionAI output scores. Because some fusion 

genes had very small values of FI scores (i.e., BCR-ABL1 in Figure 3A). We transformed the 

original values of FusionAI and FI scores to the quantile normalized values. Then, we identified 

existence of grouping tendency between fusion-positives and -negatives among the FusionAI 

output scores, and second and third principal components from the principal component 

analysis as shown in Figure 3C.  

High feature importance scored regions provide a landscape of the genomic feature 

aspect of fusion gene breakpoints 

To date, there were many trials to understand the gnomic features of breakage to study multiple 

effects of the genomic breakage(Ballinger et al., 2019; Chakraborty et al., 2020; Fungtammasan 

et al., 2012; Peng et al., 2006). In this study, we sought to identify fusion-positive breakpoint-

specific genomic features across human genome sequence by integrating 44 different human 

genomic features of five categories such as integration sites of 6 viruses, 13 types of repeats, 5 

types of structural variants, 15 different chromatin stated regions, and 5 gene expression 

regulatory regions. For individual feature categories, we counted the unique number of the 

overlapped loci of the feature with the top 10% FI scored regions in every nucleotide across 20k 

sequence in both fusion-positive and -negative groups. As shown in the first six plots of Figure 

3D, the overall distribution of overlapping was enriched in the fusion gene breakpoint area. 

Moreover, these distributions were significantly different between fusion-positive and -negative 

breakpoint groups (Table S5). The overall distance between the high FI scores and breakpoints 

was 70 nucleotides median, 99.54 nucleotides mean with 211.28 standard deviations as shown 

in Figure 4A. This would explain the outperform of the FusionAI-200nt model among others. 

More interpretations on the individual features are described below. 

 Virus integration sites  

 Specifically, fusion-positive breakpoints were enriched in the virus integration sites of 

hepatitis B virus (HBV) and human immunodeficiency virus (HIV). Gene ontology enrichment 

test identified that the high FI scored region genes overlapped with the HIV integration sites 

were enriched in ‘peptidyl-lysine modification’ and ‘regulation of chromosome organization’. 

(Figure 4B). Multiple post-translational modifications (PTMs) of viral and cellular proteins gain 
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increasing attention as modifying enzymes regulate virtually every step of the viral replication 

cycle (Chen et al., 2018).  For HBV, ‘cell cycle G1/S phase transition’ and ‘response to unfolded 

protein’ were the enriched biological pathways. A hallmark of chronic hepatitis B virus (HBV) 

infection is known as containing excessive hepatitis surface antigen (HBsAg) in the endoplasmic 

reticulum (ER), which is linked to unfolded protein response (UPR) (Li et al., 2019). A previous 

study showed that HBV-infected primary human hepatocytes are enriched in the G2/M phase 

compared to the predominantly G0/G1 phase of cultured primary human hepatocytes (Xia et al., 

2018).  

 Repeats  

 Next, fusion-positive breakpoints were enriched in multiple types of repeats as shown in 

green background plots of Figure 3D. Among 13 types of repeats, Alu repeats, direct repeats, 

and L1 repeats showed very significantly different distribution between fusion-positive and -

negative groups. Alu elements are the most abundant transposable elements, containing over 

1.2 million copies, which comprise 11% of the human genome (Deininger, 2011). It is reported 

as enriched in the common fragile sites (Fungtammasan et al., 2012). Direct repeats are known 

as eliciting genetic instability by both exploiting and eluding DNA double-strand break repair 

systems in mycobacteria (Wojcik et al., 2012). The human LINE-1 retrotransposon is known to 

create DNA double-strand breaks (Gasior et al., 2006). There was no specific difference in the 

structural variants compared to other features. This might be explained by that our training data 

set is made up with the RNA-seq based exon junction breakpoints, which is different from 

whole-genome sequencing-based structural variants. 

 Chromatin states  

 The purple background plots are the overlapping result with the chromatin state calls, 

using a 15-state model from Roadmap Epigenomics Mapping Consortium (Roadmap 

Epigenomics et al., 2015). As shown in the first four plots of the purple background ones in the 

right panel of Figure 3D, the top 10% FI scored fusion-positive breakpoint area of 5’-genes 

enriched in the active chromatin states, which were associated with the expressed genes such 

as active transcription start site (Tss) proximal promoter states (TssA, TssAFlnk), a transcribed 

state at the 5′ and 3′ end of genes showing both promoter and enhancer signatures (TxFlnk), 

actively transcribed states (Tx). However, the fusion-negatives were relatively more enriched 

with the high FI scored regions related to the repressed chromatin states. In other words, the 

breakpoints of fusion-positive breakpoints are located at the transcriptionally active chromatin 
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states’ peak regions, but the ones of fusion-negatives are located at the transcriptionally 

repressed chromatin states’ peak regions. This pattern might be related to the typical roles of 

the driver fusion genes as the transcriptional activation itself or downstream target genes (Kim 

et al., 2017; Kim et al., 2018; Kim et al., 2020). This makes sense since the 5’-gene partner’s 

promoters will be used as the promoter of the fusion genes.  

 Gene expression regulatory  

 The first plot in the last category of gene expression regulatory with gray color 

background shows the more breakpoints of 5’-genes (3,684) are located in the CpG island area 

than 3’-genes (678). This might provide additional evidence for the previous finding that initial 

chromosomal breakage occurs directly at or near CpGs (Tsai et al., 2008). 4,165 genes in these 

regions were enriched in the ‘Ras protein signal transduction’ pathway. Imbalance of the Ras 

signaling pathway is a major hallmark of human cancer (Irimia et al., 2004). Furthermore, 3,849 

out of 4,165 genes were mainly targeted by MAX interactor 1, dimerization protein (MXI1), and 

enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2). MXI1 is the MYC 

antagonist, also regarded as a tumor suppressor. EZH2 is the enzymatic subunit of Polycomb 

repressive complex 2 (PRC2), a complex that methylates lysine 27 of histone H3 (H3K27) to 

promote transcriptional silencing (Kim and Roberts, 2016). EZH2 is known to regulate MXI1 by 

targeting from the harmonizome, a collection of processed datasets gathered to serve and mine 

knowledge about genes and proteins (Rouillard et al., 2016). Through the DNA breakage of 

fusion genes, these CpGs located genes might be expected to have aberrant regulation 

governed by EXH2. The last feature, replication timing has been notified as being associated 

with the nature of chromosomal rearrangements in cancer (Du et al., 2019). Similar to 

CpGisland, there was 1,101 genes enriched in the ‘regulation of ras protein signal transduction’ 

pathway. In the methylation and TAD_boundary features, 203 and 68 genes were enriched in 

the ‘positive regulation of catabolic process’ and ‘regulation of protein catabolic process’. Overall, 

this analysis identified enriched biological pathways of ras signal transduction and cellular 

regulation of catabolic processes in the gene expression regulatory that share the genomic 

breakages. From this, we can infer the involvement of genomic breakage in the cancer cell 

proliferation or maturation, and metabolic reprogramming.  

The GC-rich motif is enriched in the 5’-genes’ breakpoint area of transcription factor 

fusion genes 
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We wondered what DNA motif sequences would work in high FI scored regions, which are 

located about 100nt +/-200 SD apart from the exon junction breakpoint. We checked the high FI 

score regions of all fusion-positive breakpoints of training data. Then, we identified the top two 

most frequent motifs – TTMWTTTTTTTTTTTTTTYYT and CGGCGGCGGCGGCGGCGGCGG 

using MEME Suite (Bailey et al., 2015) (Figure 5A). The genes that have the former motif in 

their promoter regions were enriched in these biological processes, 'Regulation of organ growth', 

'Negative regulation of alpha-beta T cell differentiation', and 'mRNA metabolic process'. 

Because 2 out of 3 known fusion genes are the intra-chromosomal rearrangement events, we 

searched DNA motif sequences focusing on these events. Then, there were the top two T-rich 

motifs, which were enriched in these biological processes - 'transcription initiation from RNA 

polymerase II promoter', 'G-protein coupled receptor protein signaling pathway', 'negative 

regulation of leukocyte activation', 'response to stimulus'. To date, there are two types of the 

most popular driver fusion genes like kinase fusion genes and transcription factor fusion genes 

as helping cancer cells’ proliferation and progression (Kim et al., 2017; Kim et al., 2018). We 

identified ‘HTTTTBTTTTT’ motif around high FI score regions in the fusion genes composed 

with dimerization and kinase domain in the individual partner genes. The genes with this motif in 

the promoter region were involved in the ‘cellular macromolecule biosynthetic process’. From 

the transcription factor fusion genes, we found a relatively long (28 nt) GC-rich motif, 

‘GCBGGSSGSGGSSGSSSGGGGSGSBGGG (Supplementary Table S2). The genes with this 

motif in their promoter region mainly involved in ‘Negative regulation of signal transduction’. For 

example, Figure 5B shows the distribution of this GC-rich motif sequence across 20kb 

sequence of TMPRSS2-ERG fusion gene. Interestingly, this GC-rich motif sequence was 

located around the breakpoint of the 5’-gene. TMPRSS2-ERG is known as dependent on the 

expression of Sp1 (Meisel Sharon et al., 2016). Sp1, a transcription factor, binds to GC-rich 

motifs (Koutsodontis et al., 2002).  Figure 5C shows the recurrent (expressed in more than 3 

samples) transcription factor fusion genes. Specifically, 17 fusion genes out of these 22 were 

bound by Sp1 as shown in the searching result from ENCODE transcription factor target 

database and TRRUST (Consortium, 2011; Han et al., 2018). Total 220 genes in the 

transcription factor fusion genes have this GC-rich motif. Out of these, 51 genes were 

transcription factors and 38 genes were epigenetic factors. Unique 80 genes of 51 plus 38 were 

annotated as mainly involved in the diverse epigenetic mechanisms as shown in Figure 5D such 

as ‘DNA methylation and alkylation’, ‘histone modification’, ‘transcription regulation’, ‘cellular 

response to ROS’, and etc. In this study, we may have evidence of that the transcription factor 

fusion genes might regulate their downstream targets by using the epigenetic mechanisms. 
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Chimeric transcripts from the non-disease tissues have low FusionAI score  

Fusion genes formed by the chromosomal rearrangements are the hallmark of cancers from 

genomic instability. However, chimeric transcripts are also existing in non-cancerous cells and 

tissues (Babiceanu et al., 2016; Finta and Zaphiropoulos, 2002; Li et al., 2009; Yuan et al., 

2013). We wondered how FusionAI output scores would reflect this difference of the sample 

sources of fusion genes. To compare the prediction of FusionAI from diverse cohorts, we 

integrated the fusion genes whose breakpoints are located at the exon junction-junction loci 

from TCGA, cancer cell-lines, and Sanger transcripts from Entrez, GTEx, genomAD (Table 1 

and Table S2). We compared the ratio of the fusion genes whose FusionAI score is greater than 

or equal to 0.5. Here GTEx representing the healthy population was used to see how FusionAI 

prediction is different between cancerous and non-cancerous samples. Overall, fusion genes of 

the cancer cohorts, the top four groups in Table 1, had FusionAI output scores bigger than 0.5 

in 93% of fusion gene breakpoints. However, if the fusion gene was common or exists in a 

healthy population only, then the ratio of the fusion genes with exon junctional breakpoints as 

predicted fusion-positive by FusionAI was decreased to 83% and 64%, respectively. Currently, 

we do not fully understand the meaning of this different ratio, but we guess this difference might 

be reflecting a validity or tumorigenicity of individual fusion gene breakpoint. genomAD, the 

whole genome-based structural variant data from diverse clinical cohorts, was used to see how 

FusionAI prediction is different between RNA-seq or WGS based fusion genes. From the 

previous study for visualizing the functional features of fusion genes at four different levels, 

FGviewer, we found 1,037 potential fusion genes whose breakpoints of the structural variants 

detected from genomAD v2.1 of 15K population WGS data were located on the gene bodies. 

Out of 1,037 fusion genes, 823 were the cases that have the exon junction-junction breakpoints. 

Among these, only 46 cases have been predicted as fusion-positive candidates by FusionAI 

(5%). Here, we used fusion genes anticipated as having exon junction-junction breakpoints from 

structural variants for genomAD. The small ratio might be from the different sequencing types of 

data and not expressed as the fusion transcript.  

 

DISCUSSIONS  

Our study suggests that by combining deep-learning predictions with empirical evidence in user-

specific RNA-seq data, FusionAI predicts fusion gene breakage with high specificity and 

expands the findings beyond a conventional RNA-seq fusion gene analysis. From the study of 
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high FI scored regions, we found that the overall distance between the high FI scores and 

breakpoints was 70 nucleotides median, 99.54 nucleotides mean with 211.28 standard 

deviations. This might explain one of the reasons why the FusionAI-200nt model outperformed 

other models using different flanking sequence length.  

 Before finalizing FusionAI model using the exon junction-junction breakpoints of both 

fusion-positive and -negative groups, we tried to build the initial version model by comparing the 

exon junction-junction breakpoints of 20K fusion-positives versus any breakpoint positions in the 

gene body of 20K fusion-negatives with +/- 5kb flanking sequences of each fusion partner gene. 

This initial model showed better performance than the current finalized model like the accuracy 

of 99.7% and 98.2% for training and test data, respectively. However, we recognized a potential 

issue regarding on the design of the comparison since this model can highlight and give more 

weights on the exon junction regions (exon-intron boundary) compared to the intronic 

breakpoints. The learned features from initial version model might mostly be the ones that are 

significantly related to the exon junctions like splicing signals. To avoid this wrong conclusion, 

we redesigned our modeling using only exon junction-junction breakpoints for both fusion-

positive and -negative data and finalized FusionAI. Even though we are comparing the same 

conditions of exon junction-junction data, FusionAI found fusion-positive breakpoints well. In the 

future, enough validated data of the chimeric transcripts with specific breakpoints formed by the 

trans-splicing mechanism in the RNA-level would better explain the detailed exon junctional 

features that we found in this study.  

 Our trial for comparing the fusion gene breakpoints of different disease status or 

sequencing data found that FusionAI prediction gives higher scores for the cancerous and RNA-

seq bases exon junction breakpoints. From this context, if we would have more fusion gene list 

from the diverse disease cohorts not only cancers, we may expect FusionAI to identify certain 

disease specific genomic breakage features by comparisons. Moreover, if there are plentiful 

number of fusion gene breakpoints at the DNA level that will be accumulated in the future, we 

will be able to build the genomic level breakpoint-based model and can bring deeper insight into 

the breakage mechanisms. Having enough amount of the real genomic breakpoints of the 

massive fusion genes to perform artificial intelligence approaches will need long time and many 

efforts. We hope we can make more precise new models based on the genomic breakpoint-

based training data not by exon junctional breakpoints in the future. We believe it would be 

possible soon since the cost of WGS is decreasing down as time goes by with the maturation of 

the development of overall next generation sequencing technology and analysis methods.  
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 Our study used the deep learning method to better understand the genomic breakage 

context focused on the fusion genes, which are the highlighted ones as expressed structural 

variants. Much work remains to be done to understand the human genome breakage in diverse 

disease, greater understanding of the genomic breakage mechanisms could pave the way for 

novel candidates for therapeutic intervention. Our findings using FusionAI model would enhance 

our understanding of fusion gene context. We hope FusionAI could serve as the initial platform 

of the efficient investigation of genomic breakage events. 
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Detailed methods are provided in the online version of this paper and include the following: 
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KEY RESOURCES TABLE 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Deposited Data   

Open reading frame annotation of 

known fusion genes 

Kim et al. 2019 https://ccsm.uth.edu/FusionGDB/ 

Fusion gene breakpoint 

information of TCGA fusion genes 

Kim et al. 2019 https://ccsm.uth.edu/FusionGDB/ 

Fusion gene breakpoint 

information of cancer cell-lines  

Klijn et al. 2015 N/A 

Fusion gene breakpoint 

information of Sanger sequencing 

Gorohovski et al. 

2017 

http://biodb.md.biu.ac.il/chitars.prv 

Fusion gene breakpoint 

information of GTEx cohorts 

Singh et al. 

2020 

N/A 

Fusion gene breakpoint 

information of genomAD cohorts 

Kim et al. 2020 https://ccsmweb.uth.edu/FGviewer   

Simulation RNA-seq data of all 

validation sets 

This study https://ccsm.uth.edu/FusionGDB/FusionAI/ 

Fastq files for RNA-seq of K562  Sequence Read Archive accession: SRR521460 

Fastq files for RNA-seq of MCF7  Sequence Read Archive accession: SRR064286 

Fastq files for RNA-seq of H2228  Sequence Read Archive accession: DRR016705.1s 

Virus integration site information Tang et al. 2020 https://bioinfo.uth.edu/VISDB 

Repeatmasker Bao et al. 2015 http://www.repeatmasker.org 

MicroSatellite DataBase (MSDB) Avvaru et al. 

2020 

https://data.ccmb.res.in/msdb 

Structural variant breakpoint 

information of genomAD 

Lappalainen et 

al. 2013 

https://www.ncbi.nlm.nih.gov/dbvar 
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Chromatin state calls using a 15-

state model 

Roadmap 

Epigenomics 

Consortium et 

al. 2015 

N/A  

Location of CpGisland, 

Methylation, Promoters 

Lizio et al., 2019 https://fantom.gsc.riken.jp/5 

Replication timing-specific peak 

regions 

Davis et al., 

2018 

https://www.encodeproject.org 

Common TAD boundaries of five 

human cell-lines 

Akdemir et al. 

2020 

N/A 

TRRUST2.0 Han et al. 2018 http://www.grnpedia.org/trrust 

ENCODE Transcription Factor 

Targets 

ENCODE 

Project 

Consortium, 

2011 

https://maayanlab.cloud/Harmonizome/dataset/ENCODE+Transcription+Factor+Targets 

Software and Algorithms   

FusionAI software This study https://ccsm.uth.edu/FusionGDB/FusionAI/ 

FusionAI model training This study https://ccsm.uth.edu/FusionGDB/FusionAI/ 

STAR-fusion Haas et al. 2017 https://github.com/STAR-Fusion/STAR-Fusion 

Arriba Uhrig et al. 2021 https://arriba.readthedocs.io/ 
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CONTACT FOR REAGENT AND RESOURCE SHARING 

Further information and requests for materials should be directed to and will be fulfilled 

by the co-corresponding authors, Drs. Xiaobo Zhou (Xiaobo.zhou@uth.tmc.edu) and 

Pora Kim (Pora.kim@uth.tmc.edu). 

 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

None. 

 

METHOD DETAILS 

FusionAI architecture and training using deep learning (including creation of fusion-

negative data) 

To train the FusionAI DNN, we used the fusion gene breakpoint information of 48K of fusion 

genes from FusionGDB. Since most of the fusion genes are predicted from the mRNA level 

sequencing data and the real genomic breakpoints would be located in intronic regions, we 

input the exon junctional breakpoints of the known fusion gene breakpoints to train the FusionAI 

model. Out of ~ 48K known fusion events, about 26K of events had the breakpoints located at 

the exon junction-junction position (j-j BP combination). To make fusion negative breakpoints 

data, we excluded 17,110 genes, which is involved in 48K known human fusion genes, among 

43K GENCODE genes. From the rest of those genes (27,116), which are not known as involved 

in any fusion genes, we randomly chose two genes. Then, we filtered out false-positive cases 

from the unnecessary multiply mapped cases and breakpoints belong to the repeat region, 

paralogs, or pseudogenes using RepeatMasker, Duplicated Genes Database, and HUGO 

database’s pseudogenes. This is the typical pre-process by the fusion prediction tools to filter 

out false positives. We also excluded the gene pairs with neighboring gene relationships to 

exclude the potential read-through cases. In the case of the intra-chromosomal fusion genes, 

we set the minimum distance as 100Kbp between randomly chosen two breakpoints across 

gene bodies. A 20Kbp long DNA sequence was constructed by conjugating +/- 5Kbp sequence 

from each BP of two partner genes. Through this procedure, we created ~ 26K fusion-negative 

breakpoints data. Based on the primary sequences, we trained a multiple-layer deep neural 

network to predict the likelihood of being a fusion gene for a designated gene pair and to identify 
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sequence patterns around the human fusion gene breakpoint area. We designed the input 

sequence to be +/- 5kb flanking the fusion gene breakpoints of each fusion gene partner gene 

and output the probability of being fusion and non-fusion. The input of the model is a sequence 

of 20 kb one-hot encoded nucleotides. The output is two probabilities corresponding to fusion-

positive and -negative breakpoint that sum to one. Our deep neural network consists of two 

convolutional layers with filter size (20,4) and (200,1), one max pooling, one flatten, and two 

dense layers preceding the output layer. The model involves 1,672,290 parameters including 

both weight matrix and bias at related layers (Figure S1). 36.4K BPs from a combined total of 

52K BPs (26K j-j combination BPs and 26K non-FGBPs) were used as training and validation 

sets (80% for training and 20% for validation), and the rest 15.6K BPs was used for an 

independent test. The performance (accuracy and loss) during the training process is illustrated 

in Figure S2. We then tested the trained model on both the 26K original training samples and 

the 15.6K test samples. The accuracies for training and test data sets were 97.4% 

(AUCROC=0.9962) and 90.8% (AUCROC=0.9706) with 0.12 and 0.42 error rate, respectively. 

This performance is much better than the traditional machine learning method, SVM, that 

yielded the accuracy of 79% and 72% for training and test data, respectively (Figure 1D).  

Creating simulation RNA-seq data of training and test data to run STAR-fusion and Arriba 

We made the simulation RNA-seq data of the split reads at the exon junction breakpoints with 

different read length (50, 75, and 100 bp) and a different number of split reads (1, 3, 5 split 

reads, and 10 random around breakpoints) based on the fusion-positive and -negative 

breakpoints in training and test data sets. Using random module of python, we chose random 

number once, three, and five times based on the seed length of 25bp as the transcript’s broken 

position with 0 to 5 varied distance between the 5’-genes’ exon sequence to the breakpoint and 

the 3’-genes’ exon sequence from the breakpoint to make the split reads at the exon junction 

site with different read length. We also made 10 random split read sequences with a 10bp 

distance gap among the read alignments.  

Model evaluation on ChiTaRS-3.1 

We downloaded the fusion gene information from ChiTaRS-3.1 (Gorohovski et al., 2017). 

Among these, we only used the validated fusion genes by the Sanger sequencing approaches, 

which are stored from the Entrez transcript database by the National Center for Biotechnology 

Information (NCBI). Among these, 862 fusion genes had the breakpoints at the exon junction-

junction positions. For these cases, we made a 20kb long DNA sequence as the input of 
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FusionAI and ran it. Furthermore, to be run these fusion gene data with STAR-fusion and Arriba 

with default option using GENCODE v19 human genome, we made the simulation RNA-seq 

data of the split reads at the exon junction breakpoints with different read lengths and the 

different numbers of split reads.  

Model evaluation on 2,200 fusion genes from 520 cancer cell-lines 

We downloaded the fusion gene information of the 2,269 validated in-frame fusion genes from 

529 cancer cell-lines by Klijn, C. et al. (Klijn et al., 2015). Out of these, 2,162 fusion genes had 

the breakpoints at the exon junction-junction. For these cases, we made a 20kb long DNA 

sequence as the input of FusionAI and ran it. To test STAR-fusion and Arriba, we also made the 

simulation RNA-seq data with the same way we did for evaluation on ChiTaRS-3.1 data as the 

input data.  

Comparison with existing fusion gene prediction tools for three cell-lines 

K562 is a myelogenous leukemia cell-line with the most famous fusion gene, BCR-ABL1. MCF7 

is the most studied breast cancer cell-line with multiple identified fusion genes. H2228 is the 

non-small cell lung cancer cell-line with the EML4-ALK fusion gene. We ran STAR-fusion and 

Arriba for these cell-lines’ RNA-seq data which were downloaded from the Sequence Read 

Archive (SRA) of NCBI(Leinonen et al., 2011) with SRA accession of SRR521460, SRR064286, 

and DRR016705.1 for K562, MCF7, and H2228, respectively. To run FusionAI, we made 20kb 

long DNA sequences based on the breakpoints that were predicted by STAR-fusion and Arriba. 

For validation, we also made FusionAI input data for the experimentally validated fusion genes 

among these three cells from the work by Klijn, C. et al.  

Identification of DNA sequence motif 

First, we assembled the sequence of the top 10% FI scored regions into the merged sequence 

contigs as the fasta format when there was a continuous selection of the genomic location as 

the high FI scored regions. For these unique sequences, we used MEME Suite (Bailey et al., 

2009) with the  ‘any number of repetitions’ option to identify the enriched DNA sequence motifs 

around the broken regions by fusion genes per our interests such as all fusion-positives, intra-

chromosomal fusion-positives, kinase fusion genes, and transcription factor fusion genes.  

Making FusionAI input data 

FusionAI runs based on the primary sequence composed of two genes involved in a fusion 

gene with +/- 5kb sequence from each breakpoint. For the user input data of two breakpoints of 
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potential fusion genes, the FusionAI package makes the input sequence data using the nibFrag 

based on the human genome sequence of the hg19 version, which can be downloaded from the 

UCSC Genome Browser. The tab-delimited data format with fusion gene pairs, chromosome, 

breakpoint, strand, and input sequence is read by FusionAI model and FusionAI gives the 

prediction score. In the FusionAI package, the user can make the input data using 

Run_FusionAI.py based on the interested breakpoint information. 

Human genomic features information 

We integrated a total of 44 different types of human genomic feature loci information across five 

big categories including virus integration sites, repeats, structural variants, chromatin states, 

and gene expression regulation. First, we downloaded the virus integration site information from 

the VISDB(Tang et al., 2020) and we lifted it over to the hg19 version using the liftover tool from 

the UCSC Genome Browser since FusionAI’s training was done based on the sequence of hg19 

version (Navarro Gonzalez et al., 2021). We integrated 13 types of repeats (Alu repeats, A-

Phased repeats, Directed repeats, DNA transposons, "G-Quadruplex, forming repeats", Inverted 

repeats, L1 repeats, L2 repeats, "Low_complexity, A/T rich regions", Microsatellites, MIR 

repeats, Mirror repeats, and Z-DNA motifs) from RepeatMasker (Bao et al., 2015) and 

MicroSatellite DataBase (MSDB) (Avvaru et al., 2020). For the diverse types of structural 

variants including the copy number variants, we downloaded the arranged breakpoint 

information of the structural variants from dbVar (Lappalainen et al., 2013). The chromatin 

states category include the loci of 15 different types of chromatin states such as 1_TssA, 

2_TssAFlnk, 3_TxFlnk, 4_Tx, 5_TxWk, 6_EnhG, 7_Enh, 8_ZNF_Rpts, 9_Het, 10_TssBiv, 

11_BivFlnk, 12_EnhBiv, 13_ReprPC, 14_ReprPCWk, and 15_Quies, from the previous study on 

the chromatin state calls using a 15-state model for 12 cell lines, were obtained from the 

Roadmap Epigenomics Mapping Consortium (Ernst and Kellis, 2017; Roadmap Epigenomics et 

al., 2015). The gene expression regulatory category includes five types of features as 

CPGisland, Methylation, Promoters, ReplicationTiming, and TAD boundaries. The information of 

the first three feature categories was downloaded from the FANTOM5 collection(Lizio et al., 

2019). We downloaded the replication timing-specific peak regions from the ENCODE portal site 

by selecting the assay type of the replication timing (Davis et al., 2018). We used 2,477 loci of 

common TAD boundaries from a previous study that made high-resolution chromosome 

conformation (Hi-C) datasets from five human cell lines based on the (Akdemir et al., 2020). The 

detailed statistics for individual feature categories with their significance results by Fisher’s 

exact test are in Table S5. 
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Gene ontology enrichment analysis 

To identify the enriched biological processes in the overlapped genes between the top 10% FI 

scored regions and individual human genomic features of 44 categories, we used ToppFun of 

the ToppGene Suite(Chen et al., 2009). We limited the results by the Benjamini and Hochberg 

false discovery rate < 0.05 and the number of genes in the gene group < 500. We showed the 

top enriched GO biological process of each feature category in Figure 4B. 

 

DATA AND SOFTWARE AVAILABILITY 

The training and test data and FusionAI model codes, and simulation RNA-seq data are 

available on https://ccsm.uth.edu/FusionGDB/FusionAI/. 
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FIGURE LEGENDS 

Figure 1. Overview of FusionAI. (a) The investigation of fusion gene breakpoints of 48K FGs 

from FusionGDB identified the BP location across the human genome. (b) Making training and 

test dataset of fusion-positive and -negative breakpoints. (c) Diagram of fusion gene breakpoints 

classification by FusionAI. (d) Effect of the size of the input sequence context on the accuracy.  

Figure 2. Performance of FusionAI. (a) Comparison of FusionAI to other methods for fusion 

gene prediction including 38,000 TCGA fusion genes from training and test data sets. The plots 

show the number of true positives and sensitivity from left. (b) Comparison of the number of the 

true positive fusions in ~ 2200 validated fusion genes in ~530 cancer cell-lines, and 862 Sanger 

sequence based fusion genes that have fusion breakpoints at the exon junction position from 

ChiRTaRS3.1. (c) Comparison of predicting fusion genes in three cancer cell-lines (H2228, 

K562, and MCF7). (d) Identification of validated fusion genes in three cell-lines. 

Figure 3. Feature importance score for understanding genomic breakage. (a) Distribution 

of FI scores across 20kb long of six representative fusion gene breakpoints. (b) Logistic 

regression result of FusionAI prediction. (c) Classification between fusion-positive and -negative 

from FusionAI and FI scores. (d) Distribution of overlapping between top 10% FI scored regions 

and 44 different types of human genomic features in 5 different categories. 

Figure 4. High feature importance scored regions. (a) Distribution of the distance between 

the high FI scored regions and the exon junctional breakpoints. (b) Enriched biological 

processes in the genes that have overlap with high FI scored regions per individual genomic 

feature categories. 

Figure 5. Consensus motif sequences in the high FI scored FG-positive regions and 

enriched biological processes. (a) Identified DNA sequence motifs in fusion-positive 

breakpoint area of multiple groups such as all fusion-positives, intra-chromosomal events of 

fusion-positives, kinase fusion genes with dimerization and kinase domain, transcription factor 

fusion genes. (b) Distribution of the GC-rich motif across 20kb length sequence in the isoforms 

of TMPRSS2-ERG fusion gene. (c) Transcription factor fusion genes that have GC-rich motifs. 

(d) Enriched biological processes of those genes that have GC-rich motifs.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 3, 2021. ; https://doi.org/10.1101/2021.06.03.446904doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.03.446904
http://creativecommons.org/licenses/by-nc-nd/4.0/


    

22 

 

Figure S1. Detailed description of the FusionAI architectures. FusionAI architecture use 

flanking nucleotide sequence of length 5,000 on each exon junction breakpoint of interest as 

input and output the probability of the position being a fusion gene breakpoint or not.  

Figure S2. Training and validation performance for the first 12 epochs. Shown are the 

categorical cross entropy loss and overall accuracy, which is the percentage of gene pairs that 

were correctly classified for both training and test data sets.  
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TABLES 

 Table 1. Comparison of FusionAI scores among the fusion genes in pan-cancer and healthy tissues. 

Data set Desc. Sequencing type # jj fusion genes # jj fusion genes 
(FusionAI score >0.5) Percentage (%) 

TCGA Fusion genes in training data RNA-seq 18,210 18,207 99.98 

TCGA Fusion genes in test data RNA-seq 7,759 7,383 95.15 

Klijin et al. Fusion genes from cancer cell-lines RNA-seq 2,162 2,066 95.56 

ChiTaRS 3 Fusion transcripts Sanger sequencing 862 807 93.62 

GTEx Fusion genes common in cancer RNA-seq 646 537 83.13 

GTEx Fusion genes not in cancer RNA-seq 925 634 68.54 

genomAD WGS based predicted fusions Whole genome 
sequencing 923 46 4.98 
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