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Abstract

Background Atlantic salmon (Salmo salar) is the most
valuable farmed fish globally and there is much interest in
optimizing its genetics and conditions for growth and feed
efficiency. Also, marine feed ingredients must be replaced to
meet global demand with challenges for fish health and sus-
tainability. Metabolic models can address this by connecting
genomes to metabolism, which is what converts nutrients in
the feed to energy and biomass, but they are currently not
available for major aquaculture species such as salmon.
Results We present SALARECON, a metabolic model that
links the Atlantic salmon genome to metabolic fluxes and
growth. It performs well in standardized tests and reflects
expected metabolic (in)capabilities. We show that it can
explain observed growth under hypoxia in terms of metabolic
fluxes and apply it to aquaculture by simulating growth with
commercial feed ingredients. Predicted feed efficiencies and
limiting amino acids agree with data, and the model suggests
that marine feed efficiency can be achieved by supplementing
a few amino acids to plant- and insect-based feeds.
Conclusion SALARECON is a high-quality model that
makes it possible to simulate Atlantic salmon metabolism
and growth from the genome. It can explain Atlantic salmon
physiology and address key challenges in aquaculture.

1. Background

Salmonid aquaculture has grown in volume and economic
importance over the past few decades, and Atlantic salmon
(Salmo salar) has become the world’s most valuable fish
commodity1. This is largely thanks to selective breeding,
which has increased both growth rate and feed efficiency2.

Growing demand for feed and insufficient marine resources
has led to a switch to plant ingredients, reducing production
costs and exploitation of fish stocks3. However, salmon are
not adapted to eating plants, and current plant-based feeds
have a negative impact on fish health and environment4,5.

Plant-based feeds are complex, the ingredient market is fluc-
tuating, and feeding trials are demanding. Thus, finding
feeds that minimize cost and environmental impact while
providing necessary nutrients to the fish is a key challenge6.

Metabolic networks convert available nutrients to the energy
and building blocks required for growth, and this conversion
happens through the enzymatic reactions encoded by the
genome. This provides a framework for connecting salmon
genomics to metabolism and addressing challenges such as
development of novel sustainable feeds7.

Large databases of metabolic reactions and models8–10 and
methods for metabolic network reconstruction from genome
sequences11,12 have made metabolic models available for
organisms ranging from microbes to humans13. However,
there are hardly any such models of fish available14–17 and
none of salmon or other important aquaculture species.

Here, we present SALARECON: a metabolic model built
from the Atlantic salmon genome18 that predicts metabolic
fluxes and growth through flux balance analysis (FBA)19.
The quality of the model has been evaluated by standard-
ized tests and captures expected metabolic (in)capabilities
such as amino acid essentiality. Using growth under oxygen
limitation as an example, we show that model predictions
can explain salmon physiology in terms of metabolic fluxes
that are tied to the genome, and we demonstrate applicaton
to aquaculture by predicting growth-limiting amino acids in
commercial feed ingredients in agreement with data.

2. Results

We built a metabolic model of Atlantic salmon (SALA-
RECON) from its genome18, metabolic reaction and model
databases, and literature (Fig. 1). It covers 1,104 genes
(2% of all genes and 48% of Atlantic salmon genes mapped
to reactions in KEGG10), 718 reactions, and 530 metabo-
lites (Fig. 2a and Fig. S1) divided between five compart-
ments that are connected by transport reactions (Fig. 2b).
A biomass reaction based on whole-body composition20 ties
growth rate to metabolic fluxes and the genome (Fig. 2c).

Comparing our Atlantic salmon model to models of other
multicellular eukaryotes bases on presence and absence of
reactions, we found that it was closer to zebrafish than to
two mammals and a diatom (Fig. 3a and Fig. S2). It also
performed well in standardized Memote tests21 (Fig. 3b)
and metabolic tasks22 (Fig. 3c and Fig. S3). Notably,
predicted growth in the absence of individual amino acids
agrees with observed amino acid essentiality20 (Fig. 3d).

We also used SALARECON to predict oxygen-limited growth
rates on a minimal feed, using random sampling to account
for uncertainty in feed nutrient ratios and flux capacities
(Fig. 4a and Fig. S4). Assuming that relative oxygen up-
take rate is a linear function of water oxygen saturation,
we fitted our predictions to data23,24 along with a logistic
and a Monod model (Fig. 4b). All the models fitted the
data well, the metabolic and logistic models gave similar es-
timates of minimal oxygen saturation required for growth,
and the metabolic model also allowed estimation of minimal
oxygen saturation required for maximal growth (Fig. 4c).
The metabolic and logistic fits agree well with the expected
relationship presented by Thorarensen et al.25.

In contrast to the simple growth models, the metabolic
model is mechanistic and allows predictions to be explained
in terms of metabolic fluxes (Fig. 4d). Across randomly
sampled conditions and levels of oxygen limitation, we iden-
tified five clusters of reactions with distinct contributions
to oxygen-limited growth (Fig. 4e). These clusters could
also be connected to the genome because SALARECON in-
cludes mappings between reactions and genes, allowing us
to identify enriched pathways in each cluster (Fig. 4f).

We compared limiting amino acids in a fish meal feed to feeds
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based on soybean and insect meal (Table S1). Lysine and
threonine were more limiting in both soybean and insect
meal, methionine was more limiting in soybean meal, and
arginine was more limiting in insect meal (Fig. 5a, Fig. 5b,
and Fig. S5). According to SALARECON, the baseline feed
efficiency of fish meal can be achieved by supplementing
one and three amino acids for soybean and insect meal,
respectively (Fig. 5c). For soybean meal, major increases
in feed efficiency were predicted for lysine, threonine, and
methionine supplementation, while lysine had the largest
impact on insect meal (Fig. S5). Model predictions agree
well with expected baseline feed efficiencies26,27 as well as
reports that lysine, methionine, threonine, and arginine are
more limiting in plant-based than in marine feeds28,29.

3. Discussion

SALARECON is the first metabolic model of a production
animal, bridging the gap between production and systems
biology and initiating a framework for adapting Atlantic
salmon breeding and nutrition strategies to modern feeds.
By explicitly representing connections between metabolites,
reactions, and genes, it connects the genome to metabolism
and growth in a way that can be tuned to specific ge-
netic and environmental contexts by integration of domain
knowledge and experimental data7. Thus, SALARECON
forms a meeting place for diverse disciplines and data sets
involved in Atlantic salmon research and aquaculture.

Tools developed for constraint-based modeling of microbes
and well-studied plants and animals can now be applied in
production biology. A metabolic model provides a sharper
lens through which to interpret omics data by requiring
consistency with flux balances and other known constraints,
e.g. from thermodynamics or enzyme usage. This enables
clearer analysis than classical multivariate statistics, which
does not incorporate such mechanistic knowledge.

Although laborious and time-consuming, our bottom-up
manual reconstruction of the Atlantic salmon metabolic
network was necessary to make SALARECON a high-quality
predictive model. Automatically built models work well for
microbes but are still outperformed by models that are built
by manual iteration, and reconstruction of eukaryotes is
more challenging due to larger genomes, less knowledge,
and compartmentalization11,12. However, semi-automated
annotation and curation combined with automated Memote
tests21 and metabolic tasks22 allowed faster iteration, and
future reconstructions of related species30 can benefit from
our efforts by using SALARECON as a template.

Our work underscores the importance of integrating testing
in model development. Tests help catch mistakes that arise
when modifying a model and do triple duty by specifying
what it should be capable of, identifying broken functional-
ity, and forming a basis for comparison with other models,
e.g. new versions or models of different tissues or species.
They also make the model more accessible to non-modelers,
speaking the same language as nutritionists or physiologists.
Such experts can point out missing or ill-formulated tests,
which in turn contribute to improvement.

We have strived to make SALARECON an accurate model
of Atlantic salmon metabolism and growth, but it does not
aim to capture salmon physiology exhaustively or perfectly.

It covers 2% of the genes in the genome, which amounts
to 48% of salmon genes mapped to reactions in KEGG10,
and its focus is on core metabolism generating energy and
biomass. This covers pathways that connect feed to fillet,
which is a primary focus of research and aquaculture, but
obviously excludes many other interesting processes such
as synthesis of long-chain polyunsaturated fatty acids.

A key strength of the model is its extensive annotation of
genes, metabolites, and reactions, which facilitates use with
existing models, tools, and data. In particular, identifiers
from BiGG9 make it easy to compare and combine SALA-
RECON with state-of-the-art models31,32, e.g. to predict
interactions between Atlantic salmon and its gut micro-
biota. It also allows direct application of many implemented
methods such as evaluation of metabolic tasks22.

The biomass reaction makes SALARECON a more realistic
representation of salmon metabolism than a simple network
reconstruction11. It enables prediction of growth and re-
lated fluxes and is based on organism-specific data20 rather
than copied from a human model as has been done for
other eukaryotes such as mouse33 or even zebrafish15,16.
As demonstrated for Atlantic cod17, even getting to this
stage is challenging for non-model animals. Notably, SALA-
RECON predicts growth in a minimal environment with only
essential amino acids and choline as a precursor for lipids.

By integrating model construction with quality evaluation,
we were able to reach a final model that performs very well
according to all of our metrics. SALARECON is more simi-
lar to the latest zebrafish model16 than models of other mul-
ticellular eukaryotes34–36, achieves a Memote score of 95%,
which is better than all manually curated models in BiGG9,
and performs all metabolic tasks within the scope of the
model (amino acid, nucleotide, and energy metabolism).
It also correctly classifies amino acids as essential20. The
Memote score for gene annotation is low compared to reac-
tions and metabolites because salmon genes can be mapped
to fewer databases than generic biochemical components.

Our analysis of growth under oxygen limitation shows that
phenotypes predicted by SALARECON can be fitted to
data, and it produced mechanistic explanations of hypoxic
metabolism and growth with implications for fish welfare
and productivity in aquaculture. Growth predictions de-
pend on environmental conditions and flux capacities, but
SALARECON can be used to account for such uncertainty
through random sampling. Average growth predictions fit
the available data as well as simple growth models and
allowed accurate estimation of critical water oxygen satu-
rations. The predicted metabolic flux distributions could
be divided into clusters of reactions with distinct metabolic
pathway enrichments and contributions to hypoxic growth.

Predictions contrasting growth-limiting amino acids in three
commercial feed ingredients agree well with observa-
tions28,29 and show that SALARECON can be used to eval-
uate efficiency of sustainable feeds, a key challenge for mod-
ern aquaculture. The model predicts baseline feed efficien-
cies that lie within reported ranges26,27 and suggests that
the baseline feed efficiency of fish meal can be achieved by
supplementing one amino acid for insect meal and three for
soybean meal. This shows that SALARECON can be used
to evaluate both current and potential new feeds, reducing
the need for expensive fish experiments in vitro or in vivo.
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In future work, we will expand SALARECON to cover more
processes such as lipid and carbohydrate metabolism in full
detail, and we will tailor it to gut, liver, muscle, and other
tissues using omics data and metabolic tasks22. By coupling
tissue-specific models to each other and to gut microbiota
models, we can make detailed and partially dynamic whole-
body models37. This would be a major leap from available
dynamic models38 and provide a mechanistic alternative
to state-of-the-art bioenergetics models39, opening up new
possibilities for understanding fish physiology and rational
engineering of feeds, conditions, and genetics.

4. Conclusions

SALARECON covers half of the annotated metabolic genes
in the Atlantic salmon genome and can predict metabolic
fluxes and growth with a salmon-specific biomass reaction.
It has been extensively annotated, curated, and evaluated,
and it can be used to tackle research questions from fish
physiology to aquaculture. Future work will expand SALA-
RECON and integrate it with omics data to make tissue-
specific and partially dynamic whole-body models. SALA-
RECON will facilitate systems biology studies of Atlantic
salmon and other salmonids, and we hope that it will be
widely used by modelers as well as biologists.

5. Methods

Building the metabolic model

First, we manually built a draft model of Atlantic salmon
core metabolism using the genome18 with KEGG10 annota-
tions and the software Insilico Discovery (Insilico Biotech-
nology, Stuttgart, Germany). We used WoLF PSORT40

and SAPP41 to assign metabolites and reactions to six dif-
ferent compartments (cytosol, extracellular, mitochondrion,
inner mitochondrial membrane, peroxisome, and nucleus).
Exchange reactions were added to allow metabolite import
(negative flux) and export (positive flux).

Second, we used COBRApy42 to annotate and curate the
draft model. We semi-automatically converted the model
to the BiGG9 namespace and added annotations from
MetaNetX8, BiGG9, KEGG10, and UniProt43. We also
added and removed metabolites, reactions, and genes,
mapped genes to reactions using AutoKEGGRec44, and
added a salmon-specific biomass reaction. We assumed
that all genes mapped to the same reaction encode
isozymes, thus ignoring protein complexes due to lack of
knowledge. To build the biomass reaction, we estimated
the fractional composition of macromolecules in 1 g dry
weight biomass (gDW) from Atlantic salmon whole-body
composition20. We mapped macromolecules to metabolites
and estimated the fractional composition of amino acids in
proteins and nucleoside triphosphates in nucleic acids from
proteome and genome sequences, respectively.

Finally, we evaluated the quality of the model as described
below and then alternated semi-automated annotation and
curation with quality evaluation until we saw no further
opportunities to improve it without expanding its scope.
The final model was exported to Systems Biology Markup
Language (SBML) format45.

Evaluating the quality of the metabolic model

First, we compared the presence and absence of reactions
in the model to other models of multicellular eukaryotes
available in the BiGG9 namespace (Danio rerio16, Homo
sapiens34, Cricetulus griseus35, and Phaeodactylum tricor-
nutum36). We computed the Hamming distance between
each pair of models by counting reactions found in only one
model and dividing by the total number of reactions.

Second, we tested the model’s consistency and annotation
using the community standard Memote21 and its metabolic
(in)capabilities using tasks defined for mammalian cells22.
We adapted tasks to Atlantic salmon by moving metabo-
lites from compartments not found in the model to the
cytoplasm and modifying the expected outcomes of amino
acid synthesis tests to match known essentiality20.

Finally, we used the model to predict growth in the absence
of individual amino acids. We allowed both uptake and
secretion of all extracellular metabolites, disabled uptake
of each amino acid separately, and maximized growth rate
using FBA. Amino acids were classified as essential if they
were required for growth and non-essential otherwise. The
predicted essentiality was compared to experimental data20.

Analyzing oxygen-limited growth

We used parsimonious FBA (pFBA)46 to find maximal
growth rates and minimal flux distributions for 100 ran-
domized conditions and 100 linearly spaced oxygen uptake
rates in the range r ∈ (0, rmax) where r is uptake rate and
rmax is the minimal oxygen uptake rate at maximal growth.
For each condition, we uniformly sampled random ratios
(1–100) of nutrients in a minimal feed (essential amino
acids and choline) that were normalized to 1 g gDW−1 h−1

and used as coefficients in a boundary reaction represent-
ing feed uptake. We allowed unlimited uptake of phosphate
and disabled all other uptakes as well as secretion of feed
nutrients. To account for uncertainty in relative flux capac-
ities, we uniformly sampled random bounds for all reactions
(1–100 mmol gDW−1 h−1) for each condition but kept the
original reaction reversibilities.

For each oxygen uptake rate, we computed mean growth rate
with 95% confidence band from bootstrapping with 1,000
samples. We fitted the means to experimental data23,24 by
assuming a simple piecewise linear relationship between wa-
ter oxygen saturation (x) and relative oxygen uptake rate:

r

rmax
=


0 x ≤ x0
x−x0

x1−x0
x ∈ (x0, x1)

1 x ≥ x1
(1)

where x0 and x1 are the oxygen saturations at which the
relative growth rate is 0 and 1, respectively. We estimated
x0 and x1 by least-squares fitting of

µ

µmax
= f

(
r

rmax

)
(2)

where µ is growth rate, µmax is maximal growth rate when
oxygen is not limiting, and f is a function that linearly
interpolates the metabolic model predictions.
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We also fitted a logistic model with asymptotes -1 and 1,

µ

µmax
=

2

1 + ek(x0−x)
− 1 (3)

where k is the logistic growth rate, and a Monod model,

µ

µmax
=

x− x0
Ks + x− x0

(4)

where Ks + x0 is the saturation at which µ = 1
2µmax.

To identify contributions of reactions to oxygen-limited
growth, we took the absolute value of the pFBA fluxes,
normalized each flux by its maximum value within each
condition, and used Ward’s minimum variance method to
cluster reactions by the resulting absolute relative fluxes.
We mapped reactions from the top five clusters to genes
and used g:Profiler47 to identify enriched pathways from
KEGG10. We used the genes in the model as background,
required adjusted p ≤ 0.05, and discarded pathways outside
the model’s scope (antibiotics, xenobiotics, and signaling).

Predicting growth-limiting amino acids in feeds

We obtained ratios of amino acids in three commercial feed
ingredients: fish, soybean, and black soldier fly larvae
meal48 (Table S1). These ratios were used as coefficients
for amino acids in boundary reactions representing feed con-
sumption. Mass was divided equally between amino acids
that were combined in the feed formulation (Asn/Asp and
Gln/Glu). For each feed ingredient, we deactivated im-
port of amino acids via other boundary reactions, fixed the
growth rate to 1 h−1 (arbitrary, as we were interested in
generated biomass relative to consumed feed), and mini-
mized feed uptake flux (normalized to 1 mg gDW−1 h−1).
To simulate growth limitations from protein synthesis rather
than energy generation, we also allowed unlimited uptake of
glucose. We multiplied molecular mass with reduced cost
in the optimal solution for each amino acid exchange reac-
tion and identified the one with largest negative value as
limiting49. To supplement the feed with the limiting amino
acid, we set the bounds of its exchange reaction to only
allow import and penalized supplementation by adding the
exchange reaction to the objective with coefficient equal
to molecular mass. We repeated the steps above until all
limiting amino acids had been found for each feed.

6. Model and software availability

The model and scripts that reproduce our results can be
found at arken.nmbu.no/~jonvi/salarecon.
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Figure 1: Model construction. SALARECON was built from the annotated Atlantic salmon genome, metabolic reaction and
model databases, and literature. The procedure involved (1) manual metabolic network reconstruction using Insilico Discovery
(Insilico Biotechnology, Stuttgart, Germany), (2) semi-automated annotation and curation using COBRApy42, and (3) quality
evaluation using the standardized metabolic model testing tool Memote21 and metabolic tasks22. Steps 2 and 3 were iterated
until quality criteria were satisfied. Illustration of metabolic tasks from Richelle et al.22.

a
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Figure 2: Model contents. (a) SALARECON contains 1,104 genes (2% of all genes and 48% of Atlantic salmon genes mapped
to reactions in KEGG10) encoding enzymes that catalyze 718 reactions (175 transporting metabolites between compartments and
86 exchanging metabolites with the extracellular environment) and transform 530 metabolites (357 when metabolites occuring
in multiple compartments are only counted once). (b) Metabolites and reactions are divided between five compartments
(mitochondrion includes the inner mitochondrial membrane). Transport reactions are counted multiple times (once for each
compartment of exhanged metabolites). Boundary reactions in cytosol are sink or demand reactions11. The inset shows how
many unique metabolites can be transported between the cytosol and the other compartments (indicated by their initials). (c)
Biomass composition of Atlantic salmon estimated from measured whole-body composition20. The inset summarizes each class
of macromolecules. Carbohydrates and lipids are represented by glycogen and phosphatidylcholine (PC), respectively. ATP
serves both as energy for protein synthesis and as a building block in RNA synthesis.
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Non-essential
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Figure 3: Model quality evaluation. (a) Comparison of metabolic models of multicellular eukaryotes based on presence and
absence of reactions. Atlantic salmon (Salmo salar) is closer to zebrafish16 (Danio rerio) than human34 (Homo sapiens), chinese
hamster ovary35 (CHO, Cricetulus griseus), and the diatom Phaeodactylum tricornutum36. (b) Model score and subscores from
Memote21. Subscores evaluate Systems Biology Ontology (SBO) annotation, model consistency, and database mappings for
metabolites, reactions, and genes. (c) Ability of SALARECON to perform metabolic tasks22. Tasks are grouped by metabolic
system and classified as successful if model predictions reflected expected metabolic (in)capabilities. (d) Essential amino acids
predicted by SALARECON match data20.
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Figure 4: Oxygen-limited growth analysis. (a) Metabolic model predictions of relative growth rate under oxygen limitation as
a function of relative oxygen uptake rate. Feed composition and flux capacities were randomized 100 times (light blue) and the
mean across conditions is shown with 95% confidence band from bootstrapping with 1,000 samples (dark blue). (b) Metabolic,
logistic, and Monod models fitted to experimental data from Berg et al.23 and Bergheim et al.24. The metabolic model
predictions were fitted by assuming a linear relationship between relative oxygen uptake rate and water oxygen saturation. (c)
Coefficient of determination (R2), minimal oxygen saturation required for growth (x0), and minimal oxygen saturation required
for maximal growth (x1) from fitted models with same colors as in b. Error bars indicate two standard errors of the estimates.
(d) Minimal flux distributions for metabolic model predictions shown in a from parsimonious flux balance analysis (pFBA)46.
Rows are reactions, columns are flux distributions sorted by relative oxygen uptake rate, and each cell shows absolute flux
normalized by maximum value for each condition. Rows are clustered by Ward’s minimum variance method and divided into
five clusters indicated by colors. (e) Mean absolute relative flux with 95% confidence bands from bootstrapping with 1,000
samples for the top five clusters with same colors as in d. (f) Enrichment of metabolic pathways from KEGG10 for the top five
clusters with same colors as in d and e.
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Figure 5: Growth-limiting amino acids in commercial feed ingredients. (a) Order of amino acid limitations in feed
ingredients based on soybean and fish meal. Amino acids that are closer to the top left and bottom right corners are more
limiting in soybean meal and fish meal, respectively, as indicated by size and color. (b) Order of amino acid limitations in feed
ingredients based on insect and fish meal. Amino acids that are closer to the top left and bottom right corners are more limiting
in insect meal and fish meal, respectively, as indicated by size and color. (c) Feed efficiency after successive supplementation
of the most limiting amino acid for fish, soybean, and insect meal. The baseline feed efficiency of fish meal is indicated by a
dashed blue line, and ranges observed by Kolstad et al.26 and Dvergedal et al.27 are highlighted in gray.
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Figure S1: Model degree distributions. (a) Distribution of number of metabolites converted by reactions. Boundary
reactions exchange one metabolite with the extracellular environment and transport reactions usually exchange an even number
of metabolites between compartments. (b) Distribution of number of genes associated with reactions. Transport and boundary
reactions lack annotation and are not associated with any genes. Most metabolic reactions (95%) are associated with one or
more genes. (c) Cumulative distribution of number of reactions associated with genes and metabolites (number of genes or
metabolites associated with k or more reactions for all k). Most genes and metabolites are associated with a few reactions but
some metabolites are highly connected hubs. Exponential and power law fits are shown for genes and metabolites, respectively.

Reactions in models (18179)

H. sapiens (10600)

C. griseus (6663)

P. tricornutum (4456)

S. salar (718)

D. rerio (3023)

Figure S2: Reaction contents of models of multicellular eukaryotes. Clustered heatmap of reaction contents of metabolic
models of multicellular eukaryotes. Each row is an organism, each column is a reaction, and a dark cell indicates a reaction that
is found in the model of that organism. Rows are clustered by Hamming distance with number of reactions given in parentheses.
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Figure S3: Metabolic task results by subsystem. Ability of SALARECON to perform metabolic tasks22. Tasks are grouped
by metabolic subsystem and classified as successful if model predictions reflected expected metabolic (in)capabilities.
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Figure S4: Oxygen-limited growth analysis. (a) Randomly sampled coefficients of amino acids and choline in minimal feeds
used to predict oxygen-limited growth (100 samples). (b) Pairwise Pearson correlations of coefficents shown in a. (c) Predicted
absolute growth rates as a function of absolute oxygen uptake rates for the 100 randomly sampled conditions.
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Figure S5: Growth-limiting amino acids in commercial feed ingredients. Feed efficiency as a function of number of
supplemented amino acids, measured in mg feed ingredient and supplemented amino acids consumed / gDW biomass produced
for (a) fish meal, (b) soybean meal, and (c) black soldier fly larvae meal. Amino acids are indicated by color and ordered from
most limiting (left) to least limiting (right). Each bar represents the fed amount of amino acid sources, with one amino acid
supplemented per step towards the right. Limiting amino acids were supplemented until all feed protein had been replaced.
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Table S1: Amino acid compositions of feed ingredients. Mass percentage of each amino acid relative to total mass of
amino acids in feed ingredients used in simulations48.

Amino acid Fish meal Soybean meal Black soldier fly larvae meal

Ala 6.82 4.43 7.05
Arg 7.19 7.54 5.34
Asn/Asp 10.02 11.87 10.07
Cys 0.93 1.74 0.62
Gln/Glu 13.98 18.74 11.12
Gly 6.88 4.19 6.67
His 2.62 2.69 3.32
Ile 4.64 4.61 4.86
Leu 7.91 8.02 7.76
Lys 8.31 6.44 6.19
Met 3.07 1.45 2.06
Phe 4.29 5.22 4.31
Pro 4.45 5.08 6.39
Ser 4.29 4.13 4.71
Thr 4.57 3.67 4.29
Trp 1.13 1.58 1.61
Tyr 3.40 3.60 6.85
Val 5.48 5.00 6.79
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