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Abstract 14 
The neural basis of object recognition and semantic knowledge have been the focus of a large 15 
body of research but given the high dimensionality of object space, it is challenging to develop 16 
an overarching theory on how brain organises object knowledge. To help understand how the 17 
brain allows us to recognise, categorise, and represent objects and object categories, there is 18 
a growing interest in using large-scale image databases for neuroimaging experiments. 19 
Traditional image databases are based on manually selected object concepts and often single 20 
images per concept. In contrast, ‘big data’ stimulus sets typically consist of images that can 21 
vary significantly in quality and may be biased in content. To address this issue, recent work 22 
developed THINGS: a large stimulus set of 1,854 object concepts and 26,107 associated 23 
images. In the current paper, we present THINGS-EEG, a dataset containing human 24 
electroencephalography responses from 50 subjects to all concepts and 22,248 images in the 25 
THINGS stimulus set. The THINGS-EEG dataset provides neuroimaging recordings to a 26 
systematic collection of objects and concepts and can therefore support a wide array of 27 
research to understand visual object processing in the human brain. 28 

Background & Summary 29 
Humans are able to visually recognise and meaningfully interact with a large number of 30 
different objects, despite drastic changes in retinal projection, lighting or viewing angle, and 31 
the objects being positioned in cluttered visual environments. Object recognition and 32 
semantic knowledge, our ability to make sense of the objects around us, have been the subject 33 
of a large amount of cognitive neuroscience research1–3. However, previous neuroimaging 34 
research in this field has often relied on a manual selection of a small set of images1,4,5. In 35 
contrast, recent developments in computer vision have produced very large image sets for 36 
training artificial intelligence, but the individual images in these sets are minimally curated and 37 
therefore make them often unsuitable for research in psychology and neuroscience. To 38 
overcome these issues, recent work has created large, curated image sets that are designed 39 
for studying the cognitive and neural basis of human vision5,6. One of these is THINGS5, which 40 
is an image set containing 1,854 object concepts representing the most frequent concepts 41 
used in the English language, accompanied by 26,107 associated manually-curated high-42 
quality image exemplars and human behavioural annotations. This rich collection of stimuli 43 
and behavioural data has already been used to study the core representational dimensions 44 
underlying human similarity judgements7. The next phase is to collate corresponding neural 45 
responses to stimuli in THINGS. This would contribute to an emerging landscape of large 46 
datasets of neural responses to curated image sets that accelerate research in visual, 47 
computational, and cognitive neuroscience8. 48 
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 49 
Collecting neurophysiological data for the THINGS dataset, with over 26,000 images, is 50 
unachievable in a traditional neuroimaging experiment: Typically, classic object vision 51 
experiments present around one image per second e.g., 9–11. Collecting one trial for each image 52 
in THINGS would take more than seven hours, which is infeasible to achieve with a single 53 
session and would require a complex design involving multiple scanning sessions. However, 54 
we have recently shown that it is possible to uncover detailed information about visual stimuli 55 
presented in rapid serial visual presentation (RSVP) streams using electroencephalography 56 
(EEG)12–15. In one of these studies12, participants viewed over 16,000 visual object 57 
presentations at 5 and 20 images per second, in a single 40-minute EEG session. Results from 58 
multivariate pattern classification and representational similarity analysis revealed detailed 59 
temporal dynamics of object processing that were similar to work that used slower 60 
presentation speeds (around one image per second). Therefore, fast presentation paradigms 61 
are highly suitable for collecting neural responses to the large number of visual object stimuli 62 
in the THINGS database. 63 
 64 
Here, we recorded human brain responses of 50 participants to all 1,854 object concepts in 65 
THINGS using 22,248 of the THINGS stimuli (12 images per concept). Participants were also 66 
presented with a separate validation set of 200 images that were repeated 20 times. Here, we 67 
describe the THINGS-EEG dataset and recording procedure, and present initial technical 68 
validation analyses. The THINGS-EEG dataset presents a rich resource of time-varying neural 69 
recordings that we hope will be of great value for studying the temporal dynamics of human 70 
object processing. 71 

Methods 72 
50 individuals volunteered to take part in the experiment in return for course credit. This 73 
comprised 36 females and 14 males, mean age 20.44 (sd 2.72), age range 17 – 30. Participants 74 
had different language profiles, with 26 native English speakers, 24 non-native speakers, 24 75 
monolinguals, and 25 bilinguals. All participants reported normal or corrected-to-normal 76 
vision. There are 4 participants marked for potential exclusion due to notably poor signal 77 
quality or equipment failure (marked in the participants.tsv file). These participants are 78 
included in the release for completeness. The study was approved by the University of Sydney 79 
ethics committee. Informed consent was obtained from all participants at the start of the 80 
experiment. 81 
 82 
Stimuli were obtained from the THINGS database5 (Figure 1A). THINGS contains 1,854 objects 83 
concepts, with 12 or more images per concept. The first 12 images for each concept were used 84 
for this experiment, resulting in 22,248 different visual images, which we divided into 72 85 
sequences of 309 stimuli. Individual concepts were never repeated within one sequence. To 86 
be able to assess within- and between-subject variance on the same images, we presented 87 
another 200 validation images from the THINGS database 12 times to every subject after the 88 
main part of the experiment. For every subject we used the same 200 validation images (listed 89 
in the test_images.csv file). We repeated these images in 12 sequences of 200, where we 90 
presented them in random order. The experiment thus contained 84 sequences in total. The 91 
subjects were not explicitly made aware of the two different parts. 92 
 93 
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 94 
Figure 1: Example stimuli, design, and EEG setup image. A) Example images similar to the 95 
stimuli used in the experiment. B) EEG experimental setup (photo credit AKR). C) Rapid serial 96 
visual presentation design. For illustration purposes, only part of the sequence is shown. For 97 
this figure, all images were replaced by public domain images with similar appearance 98 
(obtained from PublicDomainPictures.net: Brunhilde Reinig). 99 
 100 
The experiment was programmed in Python, using the Psychopy16 library. The sequences were 101 
presented at 10Hz, with a 50% duty cycle (Figure 1C). That is, each image was presented for 102 
50ms, followed by a 50ms blank screen. Participants were seated about 57cm from the screen, 103 
and the stimuli subtended approximately 10 degrees visual angle. Overlaid at the centre of 104 
each image was a bullseye (0.5 degrees visual angle) to help participants maintain fixation. To 105 
increase attention and engagement, each sequence contained 2 to 5 random target events, 106 
where the bullseye turned red for 100ms, and the participants were instructed to press a 107 
button on a button box. At the end of each sequence, the display showed the progress through 108 
the experiment, and participants were able to start the next sequence with a button press. 109 
Participants were asked to sit still and minimise eye movements during the sequences and to 110 
use the time between sequences as breaks and relax, and start the next sequence using a 111 
button press when they were ready. The experiment lasted around one hour. 112 
 113 
We used a BrainVision ActiChamp system to record continuous data while participants viewed 114 
the sequences (Figure 1B). Conductive gel was used to reduce impedance at each electrode 115 
site below 10 kOhm where possible. The median electrode impedance was under 18 kOhm in 116 
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40/50 participants and under 60 kOhm in all participants. We used 64 electrodes, arranged 117 
according to the international standard 10–10 system for electrode placement17,18. The signal 118 
was digitised at a 1000-Hz sample rate with a resolution of 0.0488281µV. Electrodes were 119 
referenced online to Cz. An event trigger was sent over the parallel port at the start of each 120 
sequence, and at every stimulus onset and offset event. 121 
 122 
To perform basic quality checks and technical validation, for each subject, we ran a standard 123 
decoding analysis. We decoded pairwise images for the 200 validation images, and we created 124 
the full time-varying 1,854×1,854 Representational Dissimilarity Matrix19,20 reflecting the 125 
pairwise decoding accuracies between all 1,854 object concepts. We used a minimal 126 
preprocessing pipeline derived from our previous RSVP-MVPA studies12–15. Using Matlab and 127 
the EEGlab toolbox21, data were filtered using a Hamming windowed FIR filter with 0.1Hz 128 
highpass and 100Hz lowpass filters, re-referenced to the average reference, and downsampled 129 
to 250Hz. Epochs were created for each individual stimulus presentation ranging from [-100 130 
to 1000ms] relative to stimulus onset. No further preprocessing steps were applied (e.g., 131 
baseline correction or epoch rejection), as in our previous work using similar presentation 132 
paradigms12–15. The channel voltages at each time point served as input to the decoding 133 
analysis. 134 
 135 
Decoding analyses were performed in Matlab using the CoSMoMVPA toolbox22. We first 136 
decoded between the 200 validation images. For a given pairs of images, we used a leave-one-137 
sequence out (total: 12 sequences) cross-validation procedure and trained a regularised 138 
(λ=0.01) linear discriminant classifier to distinguish between the images. The mean 139 
classification accuracy on the image pair in the left-out sequences were stored in a 140 
200×200×275×50 (image×image×time point×subject) RDM, which is symmetrical across its 141 
first diagonal. A similar procedure was performed for the main experiment, using the 1,854 142 
different image concepts. This resulted in an 1,854×1,854×275×50 (concept×concept×time 143 
point×subject) RDM. For the 200 validation images, we also computed noise ceilings by 144 
comparing between subject RDMs, as described in previous work23. The noise ceilings estimate 145 
the lower and upper bound of the highest achievable performance of a model that attempts 146 
to explain variance in the data. 147 

Data & Code Availability 148 
All data and code are publicly available from the Open Science Framework 149 
(https://osf.io/hd6zk/). The raw EEG recordings are hosted on Figshare in BIDS24,25 format 150 
(https://doi.org/10.6084/m9.figshare.14721282). The preprocessed (Matlab/EEGLAB21 151 
format), and epoched (Matlab/CoSMoMVPA22 format) data are included for convenience. The 152 
code to reproduce the technical validation analyses and figures presented in this manuscript, 153 
as well as the RDMs for the full set and the RDMs for the validation images (Matlab format) 154 
are also available from the Open Science Framework (https://osf.io/hd6zk/), which also 155 
contains links to the above repositories. 156 
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 157 
Figure 2: Results for the 200 validation images that were repeated 12 times at the end of the 158 
session. A) mean pairwise classification accuracy over time. B) Mean pairwise decoding over 159 
time, per subject, sorted by peak classification accuracy. Subjects 1 and 6 are not shown as 160 
they did not have data on the validation images. C) Noise ceiling over time shows the expected 161 
correlation of the ‘true’ model with the RDMs of the validation images and reflects the 162 
between-subject variance in the RDMs. 163 

Technical Validation Analyses 164 
We computed representational dissimilarity matrices for the 200 validation images, by 165 
calculating time-varying decoding accuracy between all pairs of images. Mean, subject-wise 166 
decoding accuracy (Figure 2A) showed an initial peak around 100ms, and a second, lower peak 167 
around 200ms after stimulus onset. The shape of the time-varying decoding was similar to 168 
previous object decoding studiese.g., 9,10, and was also similar to previous results on images 169 
presented in fast succession12–14, indicating data quality was similar to these studies. For most 170 
subjects, this shape was apparent from their individual data (Figure 2B). The noise ceiling 171 
(Figure 2C) indicates an average similarity (correlation) of up to 0.2 between the subject-172 
specific dissimilarity matrices. 173 
 174 
Next, we computed the full RDM for all 1,854 images concepts (1,717,731 pairs). The average 175 
accuracy within this RDM (Figure 3A) was lower than for the validation images, which is likely 176 
due to the fact that accuracy reflects generalised concept-similarity across images. Figure 3B 177 
shows the full RDM at one time point (200ms). To test if the values in the RDM contain 178 
meaningful information, we computed the correlation between the full RDM and four example 179 
categorical models (Figure 3C). The models coded for the presence of a certain category (e.g., 180 
animal). Figure 3C shows each model reaches an above-zero correlation, with the ‘natural’ 181 
model reaching the highest correlation, around 200ms. 182 
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 183 
Figure 3: Results for the 1,854 image concepts that were repeated 12 times (using a different 184 
image each time). A) Full 1,854×1,854 RDM at 200ms, arranged by high-level category. B) 185 
Zoomed in section of the full RDM. C) Mean pairwise classification accuracy between concepts 186 
over time. D) Correlation over time between the neural RDM and four high-level categorical 187 
models. 188 
  189 
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Discussion 190 
Here, we presented THINGS-EEG, a dataset of human electro-encephalography responses to 191 
22248 images from all 1,854 concepts in the THINGS object database. In the main session, 192 
each image was repeated once, and in the second part, 200 validation images were repeated 193 
12 times each to be able to assess data quality and compare the data to future datasets 194 
acquired with other modalities. In total, 26,248 visual images were presented in a 1-hour EEG 195 
session. This was achieved using a rapid serial visual processing paradigm. Technical validation 196 
results indicated the dataset contains detailed neural responses to images, which shows that 197 
the dataset is a high-quality resource for future investigations into the neurobiology of visual 198 
object recognition. 199 
 200 
In this study, we presented over 25,000 trials in a 1-hour EEG experiment. While this is an 201 
exceptionally large number in a visual object perception study, the paradigm has several 202 
limitations. Firstly, by presenting the images in rapid succession at 10Hz, new information is 203 
being presented while previous trials are still being processed. While our previous work has 204 
shown that a great amount of detail about objects can be extracted from brain responses to 205 
RSVP streams12–15, the images are being forward and backward masked, and therefore the 206 
data does not capture the full brain response to each image13. For example, cognitive functions 207 
such as memories or emotions may not have enough time to be instantiated at such rapid 208 
presentation rates. Our design also involved one presentation per image, which makes image-209 
specific analyses challenging, placing the focus of this work at the level of the 1,854 object 210 
concepts. The benefit of this is that the data has a built-in control for image-level confounds. 211 
For example, visual regularities that are specific to an image will not affect the analysis at the 212 
concept level. 213 
 214 
The THINGS-EEG dataset has a lot of potential for investigating the neurobiology of visual 215 
object recognition and semantic knowledge. The dataset presents a very large set of non-216 
invasive neural responses to visual stimuli in human participants. We foresee many possible 217 
uses of this dataset. For example, the dataset could be used to test models of visual object 218 
representation, such as different semantic models, or deep neural networks. The rapid 219 
presentation paradigm allows to examine sequential effects in the data, such as how a specific 220 
object concept influences the encoding of the subsequent presentations. Finally, the data 221 
could be used to test the generalisability of previous studies that were limited by small 222 
stimulus sets4. In sum, as THINGS is a high-quality stimulus set of record size, THINGS-EEG 223 
accompanies this resource with a comprehensive set of human neuroimaging recordings. 224 
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