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Abstract 14 

The neural basis of object recognition and semantic knowledge has been extensively studied 15 

but the high dimensionality of object space makes it challenging to develop overarching 16 

theories on how the brain organises object knowledge. To help understand how the brain 17 

allows us to recognise, categorise, and represent objects and object categories, there is a 18 

growing interest in using large-scale image databases for neuroimaging experiments. In the 19 

current paper, we present THINGS-EEG, a dataset containing human electroencephalography 20 

responses from 50 subjects to 1,854 object concepts and 22,248 images in the THINGS 21 

stimulus set, a manually curated and high-quality image database that was specifically 22 

designed for studying human vision. The THINGS-EEG dataset provides neuroimaging 23 

recordings to a systematic collection of objects and concepts and can therefore support a 24 

wide array of research to understand visual object processing in the human brain. 25 

Background & Summary 26 

Humans are able to visually recognise and meaningfully interact with a large number of 27 

different objects, despite drastic changes in retinal projection, lighting or viewing angle, and 28 

the objects being positioned in cluttered visual environments. Object recognition and 29 

semantic knowledge, our ability to make sense of the objects around us, have been the 30 

subject of a large amount of cognitive neuroscience research1–3. However, previous 31 

neuroimaging research in this field has often relied on a manual selection of a small set of 32 

images1,4,5. In contrast, recent developments in computer vision have produced very large 33 

image sets for training artificial intelligence, but the individual images in these sets are 34 

minimally curated and therefore make them often unsuitable for research in psychology and 35 

neuroscience. To overcome these issues, recent work has created large, curated image sets 36 

that are designed for studying the cognitive and neural basis of human vision4,6. One of these 37 

is THINGS
4
, which is an image set containing 1,854 object concepts representing a 38 

comprehensive set of nameable concepts used in the English language, accompanied by 39 

26,107 associated manually-curated high-quality image exemplars and human behavioural 40 

annotations. This rich collection of stimuli and behavioural data has already been used to 41 

study the core representational dimensions underlying human similarity judgements
7
. The 42 

next phase is to collate corresponding neural responses to stimuli in THINGS. This would 43 

contribute to an emerging landscape of large datasets of neural responses to curated image 44 

sets that accelerate research in visual, computational, and cognitive neuroscience8. 45 

 46 

Collecting neurophysiological data for the THINGS dataset, with over 26,000 images, is 47 

unachievable in a traditional neuroimaging experiment: Typically, classic object vision 48 
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experiments present around one image per second 
e.g., 9–11

. Collecting one trial for each 49 

image in THINGS would take more than seven hours, which is infeasible to achieve with a 50 

single session and would require a complex design involving multiple scanning sessions. 51 

However, we have recently shown that it is possible to uncover detailed information about 52 

visual stimuli presented in rapid serial visual presentation (RSVP) streams using 53 

electroencephalography (EEG)12–15. In one of these studies12, participants viewed over 16,000 54 

visual object presentations at 5 and 20 images per second, in a single 40-minute EEG session. 55 

Results from multivariate pattern classification and representational similarity analysis 56 

revealed detailed temporal dynamics of object processing that were similar to work that 57 

used slower presentation speeds (around one image per second). Therefore, fast 58 

presentation paradigms are highly suitable for collecting neural responses to the large 59 

number of visual object stimuli in the THINGS database. 60 

 61 

Here, we present THINGS-EEG, a dataset of human (n=50) electro-encephalography 62 

responses to 22248 images from all 1,854 concepts in the THINGS object database. In the 63 

main session, each image was repeated once, and in the second part, 200 validation images 64 

were repeated 12 times each to be able to assess data quality and compare the data to 65 

future datasets acquired with other modalities. In total, 26,248 visual images were presented 66 

in a 1-hour EEG session. This was achieved using a rapid serial visual presentation paradigm. 67 

Technical validation results indicated the dataset contains detailed neural responses to 68 

images, which shows that the dataset is a high-quality resource for future investigations into 69 

the neurobiology of visual object recognition. 70 

 71 

In this study, we presented over 25,000 trials in a 1-hour EEG experiment. While this is an 72 

exceptionally large number in a visual object perception study, the paradigm has several 73 

limitations. Firstly, by presenting the images in rapid succession at 10Hz, new information is 74 

being presented while previous trials are still being processed. While our previous work has 75 

shown that a great amount of detail about objects can be extracted from brain responses to 76 

RSVP streams12–15, the images are being forward and backward masked, and therefore the 77 

data does not capture the full brain response to each image13. For example, cognitive 78 

functions such as memories or emotions may not have enough time to be instantiated at 79 

such rapid presentation rates. Our design also involved one presentation per image, which 80 

makes image-specific analyses challenging, placing the focus of this work at the level of the 81 

1,854 object concepts. The benefit of this is that the data has a built-in control for image-82 

level confounds. For example, visual regularities that are specific to an image but vary across 83 

a concept will not generalise to the concept level. Visual statistics that reliably differ at the 84 

concept level of course may need to be accounted for, depending on the goals of the 85 

experimenter. For example, recent work has pointed out concept-level differences in mean 86 

luminance between images in the THINGS image set
16

, which can be controlled for in future 87 

analyses of the THINGS-EEG dataset. Another point to consider is that our recording setup 88 

did not include EOG or EMG channels, which means the dataset does not contain external 89 

recordings of eye or other muscle movements. These movement patterns are unlikely to 90 

contain informative stimulus-specific information, due to the fast presentation paradigm. 91 

However, they still cause noise artefacts in the EEG data. Future users could consider 92 

detecting and correcting for eye movements using the frontal EEG channels. 93 

 94 

The THINGS-EEG dataset has strong potential for investigating the neurobiology of visual 95 

object recognition and semantic knowledge. The dataset presents a very large set of non-96 

invasive neural responses to visual stimuli in human participants. We foresee many possible 97 

uses of this dataset. For example, the dataset could be used to test models of visual object 98 

representation, such as different semantic models, or deep neural networks. It could be used 99 

to test the generalisability of previous studies that were limited by small stimulus sets
5
. The 100 
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rapid presentation paradigm allows to examine sequential effects in the data, such as how a 101 

specific object concept influences the encoding of the subsequent presentations. The 102 

consistent presentation frequency also lends itself to separate the data into oscillatory 103 

components. Instead of the RSA and classification analyses presented here, it is also possible 104 

to analyse the data in an encoding framework, for example by creating an encoding model 105 

from the semantic information in the THINGS-dataset. In sum, as THINGS is a high-quality 106 

stimulus set of record size, THINGS-EEG accompanies this resource with a comprehensive set 107 

of human neuroimaging recordings. 108 

 109 

Methods 110 

50 individuals volunteered to take part in the experiment in return for course credit. 111 

Participants were recruited from the undergraduate student population at the University of 112 

Sydney. They were 36 females and 14 males, mean age 20.44 (sd 2.72), age range 17 – 30. 113 

Participants had different language profiles, with 26 native English speakers, 24 non-native 114 

speakers, 24 monolinguals, and 25 bilinguals. Handedness was not recorded. All participants 115 

reported normal or corrected-to-normal vision and reported no neurological or psychiatric 116 

disorders. There are 4 participants marked for potential exclusion due to notably poor signal 117 

quality or equipment failure (marked in the participants.tsv file). These participants are 118 

included in the release for completeness. The study was approved by the University of 119 

Sydney ethics committee. Informed consent was obtained from all participants at the start of 120 

the experiment. 121 

 122 

Stimuli were obtained from the THINGS database4 (Figure 1A). For detailed information on 123 

the contents and organisation of this stimulus database, readers are referred to the 124 

accompanying publication4. THINGS contains 1,854 objects concepts, with 12 or more images 125 

per concept. The first 12 images for each concept were used for this experiment, resulting in 126 

22,248 different visual images, which we divided into 72 sequences of 309 stimuli. Individual 127 

concepts were never repeated within one sequence. To be able to assess within- and 128 

between-subject variance on the same images, we presented another 200 validation images 129 

from the THINGS database 12 times to every subject after the main part of the experiment. 130 

For every subject we used the same 200 validation images (listed in the test_images.csv file). 131 

We repeated these images in 12 sequences of 200, where we presented them in random 132 

order. The experiment thus contained 84 sequences in total. The subjects were not explicitly 133 

made aware of the two different parts. 134 

 135 

The experiment was programmed in Python (v3.7), using the Psychopy
17

 library (version 136 

3.0.5). The sequences were presented at 10Hz, with a 50% duty cycle (Figure 1C). That is, 137 

each image was presented for 50ms, followed by a 50ms blank screen. Participants were 138 

seated about 57cm from the screen, and the stimuli subtended approximately 10 degrees 139 

visual angle. Overlaid at the centre of each image was a bullseye (0.5 degrees visual angle) to 140 

help participants maintain fixation. To increase attention and engagement, each sequence 141 

contained 2 to 5 random target events, where the bullseye turned red for 100ms, and the 142 

participants were instructed to press a button on a button box using their right hand. These 143 

target events are marked in the dataset, as researchers may want to consider excluding 144 

these target events, depending on the aim of their analysis. At the end of each sequence, the 145 

display showed the progress through the experiment, and participants were able to start the 146 

next sequence with a button press. Participants were asked to sit still and minimise eye 147 

movements during the sequences and to use the time between sequences as breaks and 148 

relax, and start the next sequence using a button press when they were ready. The 149 

experiment lasted around one hour. 150 

 151 
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We used a BrainVision ActiChamp system to record continuous data while participants 152 

viewed the sequences (Figure 1B). Conductive gel was used to reduce impedance at each 153 

electrode site below 10 kOhm where possible. The median electrode impedance was under 154 

18 kOhm in 40/50 participants and under 60 kOhm in all participants. We used 64 electrodes, 155 

arranged according to the international standard 10–10 system for electrode placement18,19. 156 

The signal was digitised at a 1000-Hz sample rate with a resolution of 0.0488281µV. 157 

Electrodes were referenced online to Cz. An event trigger was sent over the parallel port at 158 

the start of each sequence (trigger code E3), and at every stimulus onset event (trigger code 159 

E1) and stimulus offset event (trigger code E2). 160 

 161 

To perform basic quality checks and technical validation, for each subject, we ran a standard 162 

decoding analysis. We decoded pairwise images for the 200 validation images, and we 163 

created the full time-varying 1,854×1,854 Representational Dissimilarity Matrix20,21 reflecting 164 

the pairwise decoding accuracies between all 1,854 object concepts. We used a minimal 165 

preprocessing pipeline derived from our previous RSVP-MVPA studies12–15. Using Matlab 166 

(R2020b) and the EEGlab (v14.0.0b) toolbox
22

, data were filtered using a Hamming 167 

windowed FIR filter with 0.1Hz highpass and 100Hz lowpass filters, re-referenced to the 168 

average reference, and downsampled to 250Hz. Epochs were created for each individual 169 

stimulus presentation ranging from [-100 to 1000ms] relative to stimulus onset. No further 170 

preprocessing steps were applied for the technical validation analysis presented here (as in 171 

our previous work using similar presentation paradigms12–15). Researchers may want to 172 

consider popular preprocessing steps such as baseline correction or eye movement 173 

correction. The channel voltages at each time point served as input to the decoding analysis. 174 

 175 
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 176 

Figure 1: Example stimuli, design, and EEG setup image. A) Example images similar to the 177 

stimuli used in the experiment. B) EEG experimental setup (photo credit AKR). C) Rapid serial 178 

visual presentation design. For illustration purposes, only part of the sequence is shown. For 179 

this figure, all images were replaced by public domain images with similar appearance 180 

(obtained from PublicDomainPictures.net: Brunhilde Reinig). 181 

 182 

Decoding analyses were performed in Matlab using the CoSMoMVPA toolbox23. We first 183 

decoded between the 200 validation images. For a given pairs of images, we used a leave-184 

one-sequence out (total: 12 sequences) cross-validation procedure and trained a regularised 185 

(λ=0.01) linear discriminant classifier to distinguish between the images. The mean 186 

classification accuracy on the image pair in the left-out sequences were stored in a 187 

200×200×275×50 (image×image×time point×subject) RDM, which is symmetrical across its 188 

first diagonal. A similar procedure was performed for the main experiment, using the 1,854 189 

different image concepts. This resulted in an 1,854×1,854×275×50 (concept×concept×time 190 

point×subject) RDM. For the 200 validation images, we also computed noise ceilings by 191 

comparing between subject RDMs, as described in previous work24. The noise ceilings 192 

estimate the lower and upper bound of the highest achievable performance of a model that 193 

attempts to explain variance in the data. 194 

Data Records 195 

All data and code are publicly available. The raw EEG recordings are hosted in BIDS
25,26

 196 

format on OpenNeuro (https://doi.org/10.18112/openneuro.ds003825.v1.1.0)27. The 197 
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preprocessed (Matlab/EEGLAB
22

 format) data, and group-average RDMs are included for 198 

convenience (in the data/derivatives directory). The RDMs for individual subjects are hosted 199 

in Matlab format in a separate repository on Figshare 200 

(https://doi.org/10.6084/m9.figshare.14721282)28. All custom code is available from the 201 

Open Science Framework (https://doi.org/10.17605/OSF.IO/HD6ZK)29, which also contains 202 

links to the above repositories. 203 

 204 

 205 

Figure 2: Results for the 200 validation images that were repeated 12 times at the end of the 206 

session. A) mean pairwise classification accuracy over time. B) Mean pairwise decoding over 207 

time, per subject, sorted by peak classification accuracy. Subjects 1 and 6 are not shown as 208 

they did not have data on the validation images. C) Noise ceiling over time shows the 209 

expected correlation of the ‘true’ model with the RDMs of the validation images and reflects 210 

the between-subject variance in the RDMs. 211 

Technical Validation 212 

We computed representational dissimilarity matrices for the 200 validation images, by 213 

calculating time-varying decoding accuracy between all pairs of images. Mean, subject-wise 214 

decoding accuracy (Figure 2A) showed an initial peak around 100ms, and a second, lower 215 

peak around 200ms after stimulus onset. The shape of the time-varying decoding was similar 216 

to previous object decoding studies
e.g., 9,10

, and was also similar to previous results on images 217 

presented in fast succession12–14, indicating data quality was similar to these studies. For 218 

most subjects, this shape was apparent from their individual data (Figure 2B). The noise 219 

ceiling (Figure 2C) indicates an average similarity (correlation) of up to 0.2 between the 220 

subject-specific dissimilarity matrices. 221 

 222 

Next, we computed the full RDM for all 1,854 images concepts (1,717,731 pairs). The average 223 

accuracy within this RDM (Figure 3A) was lower than for the validation images, which is likely 224 

due to the fact that accuracy reflects generalised concept-similarity across images. Figure 3B 225 

shows the full RDM at one time point (200ms). To test if the values in the RDM contain 226 

meaningful information, we computed the correlation between the full RDM and four 227 

example categorical models (Figure 3C). The models coded for the presence of a certain 228 

category (e.g., animal). Figure 3C shows each model reaches an above-zero correlation, with 229 

the ‘natural’ model reaching the highest correlation, around 200ms. 230 
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 231 

Figure 3: Results for the 1,854 image concepts that were repeated 12 times (using a different 232 

image each time). A) Full 1,854×1,854 RDM at 200ms, arranged by high-level category. B) 233 

Zoomed in section of the full RDM. C) Mean pairwise classification accuracy between 234 

concepts over time. D) Correlation over time between the neural RDM and four high-level 235 

categorical models. 236 

Code Availability 237 

Code and detailed instructions to reproduce the technical validation analyses and figures 238 

presented in this manuscript are available from the Open Science Framework 239 

(https://doi.org/10.17605/OSF.IO/HD6ZK)
29

, which also contains links to the data 240 

repositories. 241 
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