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Abstract 22 

Naturalistic stimuli, such as movies, are being increasingly used to map brain 23 

function because of their high ecological validity. The pioneering studyforrest and 24 

other naturalistic neuroimaging projects have provided free access to multiple movie-25 

watching functional magnetic resonance imaging (fMRI) datasets to prompt the 26 

community for naturalistic experimental paradigms. However, sluggish blood-27 

oxygenation-level-dependent fMRI signals are incapable of resolving neuronal 28 

activity with the temporal resolution at which it unfolds. Instead, 29 

magnetoencephalography (MEG) measures changes in the magnetic field produced by 30 

neuronal activity and is able to capture rich dynamics of the brain at the millisecond 31 

level while watching naturalistic movies. Herein, we present the first public prolonged 32 

MEG dataset collected from 11 participants while watching the 2 h long audio-visual 33 

movie “Forrest Gump”. Minimally preprocessed data was also provided to facilitate 34 

the use. As a studyforrest extension, we envision that this dataset, together with fMRI 35 

data from the studyforrest project, will serve as a foundation for exploring the neural 36 

dynamics of various cognitive functions in real-world contexts. 37 

  38 
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Background & Summary 39 

The mechanisms of human brain function in complex dynamic environments is 40 

the ultimate mystery that cognitive neuroscience aspires to quest. Most of the existing 41 

models on brain function have been obtained from tightly controlled experimental 42 

manipulations on carefully designed “artificial” stimuli. However, these simple 43 

stimuli are often irrelevant to ecological scenarios encountered in real-world 44 

environments, in terms of quantity, complexity, modality, and dynamics. To address 45 

this issue, naturalistic stimuli that encode a wealth of real-life content have become 46 

increasingly popular for understanding brain function in ecological contexts. 47 

Researchers have achieved significant advances in the areas of human memory, 48 

attention, language, emotions, and social cognition using naturalistic stimuli (for 49 

recent reviews, please refer to Sonkusare et al., 20191 and Jääskeläinen et al., 20212). 50 

Simultaneously, emerging deep learning technologies that could afford multiple levels 51 

of representations for naturalistic stimuli are continuously expanding the application 52 

of naturalistic stimuli for exploring human brain function3–6.  53 

Notably, owing to its dynamics and multimodal content, movies have been 54 

successfully utilized as naturalistic stimuli to examine the mechanism by which the 55 

brain processes diverse psychological constructs and dynamic interactions. Functional 56 

magnetic resonance imaging (fMRI) is commonly employed to measure brain activity 57 

while watching a movie. In particular, the pioneering studyforrest and other 58 

naturalistic neuroimaging projects have released multiple fMRI datasets collected 59 

from participants who watched movie clips7–11. However, fMRI measures the 60 

relatively sluggish blood-oxygenation-level-dependent signal, therefore falling short 61 

of characterizing the complex neural dynamics underlying the cognitive processing of 62 

dynamic movies. In contrast, magnetoencephalography (MEG) measures the magnetic 63 

fields generated by neuronal activity on a millisecond time scale. Thus, it has great 64 

potential to pry open neural dynamics in processing naturalistic stimuli. Several 65 

studies have leveraged MEG to investigate brain activity for naturalistic movie stimuli 66 

in a short period (≤20 min)12–16. So far, however, there is still a dearth of publicly 67 

accessible MEG recordings for naturalistic stimuli, especially prolonged MEG 68 

recordings for dynamic movies that are more likely to capture the 69 

temporal dynamics of regular functional brain states that occur in everyday life, and 70 

further contribute to unraveling human brain function in ecological contexts.  71 
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Herein, we present an MEG dataset obtained while watching the 2 h long 72 

audio-visual movie “Forrest Gump” (R. Zemeckis, Paramount Pictures, 1994). The 73 

recordings measure brain activation with a temporal resolution at the millisecond 74 

level, thus providing a timely and efficient extension to the studyforrest dataset. 75 

Specifically, MEG data were collected from 11 participants while they were watching 76 

the Chinese-dubbed movie “Forrest Gump” in eight consecutive runs, each lasting for 77 

roughly 15 min. High-resolution structural MRI was additionally acquired for all 78 

participants, thereby allowing the incorporation of the detailed anatomy of the brain 79 

and head in the source localization of MEG signals. Together with the raw data, 80 

preprocessed MEG and MRI data with standard pipelines were also provided to 81 

facilitate the use of the data. Considering MEG and fMRI are complementary to each 82 

other, synergy between our present MEG recordings and fMRI data from the 83 

studyforrest project will serve as a front to elaborate brain function in the wild. We 84 

believe the dataset is suitable for addressing many questions pertaining to the neural 85 

dynamics of various aspects, including perception, memory, language, and social 86 

cognition.  87 

Methods 88 

Participants 89 

A total of 11 participants (mean±SD age: 22±1.7 years, 6 female) from the 90 

Beijing Normal University, Beijing, China, volunteered for this study. They 91 

completed both the MEG and MRI sessions. All participants were right-handed native 92 

Chinese speakers, with normal hearing and normal or corrected-to-normal vision. 93 

None of them had ever watched the film “Forrest Gump” before, except one who had 94 

watched some clips, however not the entire movie. Of the 10 participants, four had 95 

heard about the movie plot, while others did not. The study was approved by the 96 

Institutional Review Board of the Faculty of Psychology, Beijing Normal University. 97 

Written informed consent was obtained from all participants, prior to their 98 

participation. All participants provided additional consent for sharing their 99 

anonymized data for research purposes. 100 

Procedures 101 

Fig. 1 depicts the overall flow of data collection and preprocessing. Prior to 102 

data acquisition, all participants completed a questionnaire on their demographic 103 
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information and familiarity with the movie “Forrest Gump”. The data acquisition 104 

consisted of two sessions for each participant, namely one MEG session to record 105 

their neural activities during movie watching and an MRI session with a T1-weighted 106 

(T1w) scan to measure the brain structure for the spatial localization of the MEG 107 

signal. The MRI scan immediately followed the MEG session for all participants, 108 

except for sub-07 and sub-11, who finished their MRI session a week later. 109 

 110 

 111 

Fig. 1. Schematic of the data collection and preprocessing procedure. Data 112 
collection comprised one MEG session, followed by one MRI session. The 113 
neuromagnetic signals were recorded with a whole-scalp-covering MEG while the 114 
participants watched the audio-visual movie “Forrest Gump”. An anatomical T1w 115 
imaging was acquired in the MRI session. The raw MEG data and MRI data were 116 
preprocessed with MNE and fMRIPrep toolbox, respectively. The MEG-MRI 117 
coregistration was performed on the preprocessed data.  118 

Stimulus material and presentation 119 

The audio-visual stimuli were generated from the Chinese-dubbed “Forrest 120 

Gump” DVD, released in 2013 (ISBN: 978-7-7991-3934-0). The movie was split into 121 

eight segments, each of which lasted for approximately 15 min. The stimuli were 122 

initially obtained by concatenating all original VOB files from the DVD release into 123 

one MPEG-4 file, using FFmpeg (https://ffmpeg.org). The concatenated MPEG-4 file 124 

contained a video stream and a Chinese-dubbed audio stream, which was down-mixed 125 

from multi-channel to 2Channel stereo. The stimuli were then divided into eight 126 
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segments using Adobe Premier software (Adobe Premiere Pro CC 2017, Adobe, Inc., 127 

San Jose, CA, USA). Each segment conformed to the following specifications: video 128 

codec=avc1, display aspect ratio=4:3, resolution=1024×768 pixels, frame rate=25 129 

FPS, color space=YUV, video bit depth=8 bits, audio codec=mp4a-40-2, audio 130 

sampling rate=48.0 kHz, and audio channels=2. Each successive segment began with 131 

a 4 s repetition of the end of the previous segment. It should be noted that the Chinese-132 

dubbed “Forrest Gump” was slightly abridged than the German version. To align with 133 

the stimuli of the studyforrest dataset as much as possible, a short clip from the 134 

German-dubbed DVD released in 2011 (EAN: 4010884250916) was added to our 135 

stimuli. Table 1 summarizes the alignment of the stimuli sources from both the 136 

Chinese and German versions.  137 

 138 
Segment Frames Duration Start (cn) End (cn) Start (de) End (de) 

1 22499 15:00.07 63 22562 35 22534 
2 22599 15:04.08 22463 32374 22438 32349 

36410 49098 36385 49073 
3 22599 15:04.08 

48999 57860 48974 57835 
58531 63717 58506 63692 

- - 63692 64621 
63718 71341 64621 72244 

4 22599 15:04.08 
71242 85132 72146 86036 
88427 97136 89332 93902 

94464 98603 
5 22599 15:04.08 

97037 111719 98504 105793 
109959 117352 

115101 118317 120733 123949 
118797 123498 125347 130048 

6 22599 15:04.08 123398 145602 129948 152152 
147736 148131 154286 154681 

7 22599 15:04.08 148032 170631 154582 177181 
8 17661 11:46.56 170532 188193 177082 194743 

 139 
Table 1. Timing alignment for stimuli from the Chinese (cn) and German (de) 140 
version of “Forrest Gump”. The start time and end time are different for the same 141 
movie clip in the two versions. Moreover, a clip with only background sound stream 142 
from the German version (frames from 63692 to 64621) was added into the third 143 
segment. 144 
 145 

The visual stimuli were projected onto a screen in full-screen mode from a 146 

DLP projector with 1024×768-pixel resolution, using Psychophysics Toolbox Version 147 

317 in MATLAB 2016 (The MathWorks, Inc., Natick, Massachusetts, USA). The 148 

participants watched the visual stimuli on a rear projection screen through mirror 149 

reflection (visual field angles=31.17°×23.69°; viewing distance=751 mm). The audio 150 
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stimuli were delivered to the participants using foam ear-tips connected to a 151 

loudspeaker via an air-conducting tube. The average delay of the peripheral devices 152 

was 33 ms and 15 ms for the visual and audio displays, respectively. The participants 153 

were instructed to watch the movie, without other tasks and keep still as best as 154 

possible.  155 

MEG data acquisition 156 

MEG data were recorded using a 275-channel whole-head axial gradiometer 157 

DSQ-3500 MEG system (CTF MEG, Canada) at the Institute of Biophysics, Chinese 158 

Academy of Sciences, Beijing, China. Three channels (i.e., MLF55, MRT23 and 159 

MRT16) were out of service due to failure of sensors. The neuromagnetic signals were 160 

recorded in continuous mode at a sampling rate of 600 Hz, without online digital band 161 

filters. A third-order synthetic gradiometer was employed to remove far-field noise. 162 

The precise timing of each frame was recorded. Upon presenting each frame to the 163 

participants, we recorded a trigger pulse lasting for five samples in the stimuli channel 164 

UPPT001, along with the MEG signals. The beginning of the movie was indicated 165 

with a value of 255. Owing to the limited bit-width of the stimuli channel, the frame 166 

number was unable to be marked with an accurate value > 20,000. The frame numbers 167 

were therefore marked as the ceiling of the timestamp of that frame divided by 10, 168 

resulting in step-like increasing marker values with a step width of 10 s.  169 

At the beginning of each session, three HPI coils were attached to the 170 

participants’ nasion (NAS), left preauricular (LPA), and right preauricular (RPA) 171 

points to continuously measure their head position during the MEG dewar. A 172 

customized wooden chin-rest supporter was introduced to prevent possible head 173 

movements. The MEG session consisted of eight runs, with each run playing one 174 

movie segment. Eight segments were played chronologically. The participants took a 175 

self-paced break between runs. Following the completion of the MEG scan, the 176 

participants underwent an anatomical T1w scan. The HPI coils were replaced with 177 

three customized MRI-compatible vitamin E caplets in the MRI scan to provide 178 

spatial reference for the spatial alignment between the MEG and MRI data. 179 

 180 
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MEG data preprocessing 181 

MEG data processing was performed offline using the MNE-Python 182 

package18. The MEG preprocessing pipeline was conducted at the run level (Fig. 1). 183 

First, the bad channels were detected and marked. As a result, no bad channels were 184 

identified in all acquisitions except two in run-05 of sub-05. Second, a high-pass filter 185 

of 1 Hz was applied to remove possible slow drifts from the continuous MEG data 186 

(Fig. 2a). Finally, artifact removal was performed using an independent component 187 

analysis (ICA). The number of independent components (IC) was set to 20. Two raters 188 

(i.e., X.L. and Y.D.) manually identified the head movement, eye movement, eye 189 

blinks, and cardiac artifacts (Fig. 2b). On average, 3.21 ICs (SD: 0.85) were classified 190 

as artifacts. The denoised MEG data were eventually reconstructed from all the non-191 

artifact components and residual components (Fig. 2c). Both the raw and preprocessed 192 

data were provided in the released dataset. 193 

 194 

 195 
Fig. 2. Typical artifact-ICs and MEG signals from the pre- and post-196 
preprocessing data. (a) MEG signals of example channels from the raw (i.e. pre-197 
preprocessing) data. (b) Timeseries and scalp field distribution of three typical 198 
artifact-ICs (A-ICs), namely A-IC 1 for eye blink, A-IC 2 for horizontal eye 199 
movement, and A-IC 3 for heartbeat. (c) MEG signals of example channels from the 200 
preprocessed data. Data from the run-04 of sub-04 was used for this illustration.  201 
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MRI data acquisition and preprocessing 202 

High-resolution anatomical MRI was collected for each participant using a 3T 203 

SIEMENS Prismafit scanner (Siemens Healthcare GmbH, Erlangen, Germany), with a 204 

20-channel headneck coil. All participants underwent a T1w scan with a 3-D 205 

magnetization-prepared rapid gradient-echo pulse sequence with identical parameters 206 

(TR=2530 ms, TE=1.26 ms, TI=1100 ms, flip-angle=7˚, 176 sagittal slices, slice 207 

thickness=1 mm, matrix size=256×256, and voxel size=1.0 ×1.0 mm), except that 208 

sub-01 was scanned with slightly different parameters (TR=2200 ms, TE=3.37 ms, 209 

TI=1100 ms, flip-angle=7˚, 192 sagittal slices, slice thickness=1 mm, matrix 210 

size=224×256, and voxel size=1.0 ×1.0 mm). Earplugs were used to attenuate the 211 

scanner noise. A foam pillow and extendable padded head clamps were applied to 212 

restrain the head motion.  213 

 The raw DICOM files of T1w images to NIFTI files using dcm2niix 214 

(https://github.com/rordenlab/dcm2niix). The T1w images were then minimally 215 

preprocessed using the anatomical preprocessing pipeline from fMRIPrep 20.2.1, with 216 

default settings19. In brief, the T1w data were skull-stripped and corrected for intensity 217 

nonuniformity with ANTs and N4ITK20. Brain surfaces were reconstructed using 218 

FreeSurfer21. Spatial normalization to both MNI152NLin6Asym and 219 

MNI152NLin2009cAsym was performed through nonlinear registration with ANTs, 220 

using the brain-extracted versions of both T1w volume and template. 221 

MEG-MRI coregistration procedure 222 

To reconstruct the source of MEG sensor signals, MEG data were co-223 

registered with the high-resolution anatomical T1w MRI data for each participant. The 224 

NAS, LPA, and RPA points marked in both MEG and MRI sessions were used as 225 

fiducial points for the alignment of the MEG and MRI data. Specifically, following 226 

the generation of a high-resolution head surface using MNE make_scalp_surfaces 227 

based on FreeSurfer reconstruction, we performed MEG-MRI coregistration for each 228 

participant in the MNE COREG GUI18.  First, the three fiducial points were manually 229 

pinned on the MRI-reconstructed head surface. an iterative algorithm (nearest-230 

neighbor calculations) was then ran to align the MEG and MRI coordinates. The co-231 

registration was refined by manual adjustment. The results showed that the averaged 232 

distances between the three fiducials in the coregistered MEG and MRI coordinate 233 

systems were 0.96 mm, 4.22 mm, and 4.90 mm for NAS, LPA, and RPA respectively. 234 
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Both the MRI-fiducials files and MEG-MRI coordinate transformation files were 235 

included in the released data. 236 

Data Records 237 

The dataset can be accessed at OpenNeuro (dataset accession number: 238 

ds003633, version 1.0.1, https://openneuro.org/datasets/ds003633/versions/1.0.1)22. 239 

The facial information was removed from the published dataset using pydeface 240 

(https://github.com/poldracklab/pydeface) to ensure anonymity. The data was 241 

organized according to the MEG-Brain Imaging Data Structure (MEG-BIDS)23 using 242 

the MNE-BIDS toolbox24 (Fig. 3). Besides dataset and participant description files, 243 

the data were sorted into different directories, including “sub-<participant_id>,” 244 

“derivatives,” and “code” directory for raw data from each participant, preprocessed 245 

data, and the code used for stimuli preparation and presentation, data preprocessing, 246 

respectively (Fig. 3a). 247 

 248 

 249 

Fig. 3. The file structure of the dataset. (a) File structure of the project directory. (b) 250 
File structure of the raw data for each individual participant. (c) File organization of 251 
the derived (preprocessed) data. 252 
 253 
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Raw data 254 

The raw data of each participant were stored separately in the “sub-255 

<participant_id>” folders (Fig. 3b), consisting of two subfolders, namely “anat” and 256 

“meg”. The T1w MRI data (“*T1w.nii.gz”) and associated sidecar json files were 257 

located in the “anat” folders. The raw MEG data were provided as CTF ds files 258 

(“*_meg.ds”) for each run, and located in the “meg” folder along with sidecar json 259 

files. In addition, “*_channel.tsv” files with MEG channel information, “*_events.tsv” 260 

files with the presentation timing of stimuli frames and “*coordsystem.json” files with 261 

coordinate system information of the MEG sensors were included in the “meg” folder. 262 

In parallel with the “sub-<participant_id>” directories, a “sub-emptyroom” 263 

directory hosted empty-room MEG measurements, which recorded the environmental 264 

noise of the MEG system. The empty-room measurements lasted for 34 s and were 265 

acquired on each data acquisition day, except for the day 20190603.  266 

Preprocessed data 267 

All preprocessed data were deposited in the “preproc_meg-mne_mri-fmriprep” 268 

subdirectory under the “derivatives” (Fig. 3c). The preprocessed data of each 269 

participant were separately saved in the “sub-<participant_id>/ses-movie” directory, 270 

which contains two subfolders, namely “anat” and “meg”. The “anat” folder 271 

comprised the preprocessed MRI volume, reconstructed surface, and other 272 

associations, including transformation files. The “meg” folder included preprocessed 273 

MEG recordings, including “*_meg.fif.gz”, “*_ica.fif.gz” and “*_decomposition.tsv”, 274 

and “*_trans.fif” for the preprocessed data, ICA decomposition, and MEG-MRI 275 

coordinate transformation, respectively. In addition, the FreeSurfer surface data, the 276 

high-resolution head surface (“freesurfer/sub-<participant_id>/bem/*”), and the MRI-277 

fiducials (“freesurfer/sub-<participant_id>/bem/*fiducials.fif”) were provided in 278 

“freesurfer/sourcedata” directory for MEG-MRI coregistration. 279 

Technical Validation 280 

We assessed the data quality of both the raw and preprocessed data using four 281 

measures as follows: head motion magnitude, stimuli-induced time-frequency 282 

characteristics, homotopic functional connectivity (FC), and inter-subject correlation 283 

(ISC).  284 
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Motion magnitude distribution 285 

Head movements during MEG scans are one of the significant factors that 286 

degrade both sensor- and source-level analyses. Herein, we calculated the motion 287 

magnitude for each sample as the Euclidian distance between the current and the 288 

initial head position while the movie segment began playing. The head motion across 289 

all runs and all participants were summarized for each of the three fiducials (NAS, 290 

LPA, and RPA) to provide an overview of the head movement of the dataset. As show 291 

in Fig. 4, motion magnitude of 95% of the samples had head motions lower than 3.43 292 

mm, 4.11 mm, and 3.87 mm for NAS, LPA, and RPA, respectively. Furthermore, 50% 293 

of the samples had head motions smaller than 0.99 mm, 1.10 mm, and 1.46 mm for 294 

NAS, LPA, and RPA, respectively. These findings indicated low head motion 295 

magnitude on average. The head motion magnitude of each participant could be found 296 

in Supplementary Fig. 1. 297 

 298 

 299 

Fig. 4. The ensemble distribution of head motion magnitude across all runs and 300 
all participants. The density and accumulative histogram of motion magnitude of all 301 
samples from all acquisitions for three fiducials (NAS, LPA, and RPA) have been 302 
plotted. The dashed lines indicate the 50% and 95% of the cumulative density. Left Y-303 
axis: normalized histogram; Right Y-axis: cumulative histogram.  304 
 305 

Time-frequency characterization of brain activity  306 

Herein, we validated whether MEG recordings could successfully detect the 307 

change in stimuli-induced brain activity. Because the movie stimuli do not have 308 

explicit condition structures as in conventional design, we selected two exemplar 309 

movie clips, within which the audio or visual features showed pronounced changes to 310 

examine if the expected change in MEG signals could be detected at the related 311 

sensors. In one clip (Seg 3: frame 15864±125), the audio features changed 312 
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significantly (a vocal voice developed from background music) whereas the visual 313 

features were stable. In contrast, the other clip (Seg 1: frame 21768±125) comprised 314 

stable audio features, whereas the visual features changed from landscape to human 315 

figures. Validation was performed according to the following procedure25–27: First, 316 

time-frequency analysis with Morlet wavelets was conducted for each sensor in the 317 

occipital and temporal lobes. The baseline was set to 1000 ms before the change 318 

points of the audio or visual features, and the baseline mean was subtracted for each 319 

channel. Second, the time-frequency representations were averaged across the 320 

participants. Finally, the time-frequency representations were averaged across the 321 

sensors from the occipital and temporal lobes, respectively. As shown in Fig. 5, the 322 

time-frequency representations from the occipital sensors, and not the temporal 323 

sensors, were locked with changes in visual features. The opposite pattern was 324 

observed for the audio feature changes in the stimuli. The results demonstrated that 325 

current MEG data could accurately detect stimulus-induced brain activity.  326 

 327 

 328 

Fig. 5. Time-frequency characterization of the brain activity for stimuli. MEG 329 
signals from two movie clips with pronounced changes in either audio or visual 330 
features of the stimuli have been examined. The occipital sensors (top) display 331 
significant signal changes with a change in the visual features of the stimuli. The 332 
temporal sensors (bottom) display significant changes with a change in the audio 333 
features. 334 
 335 
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Homotopic functional connectivity 336 

A basic principle of the brain’s functional architecture is that FC between 337 

inter-hemispheric homologs (i.e., homotopic regions) is particularly stronger than 338 

other interhemispheric (i.e., heterotopic) FC28,29. Herein, we tested if MEG data for 339 

dynamic movies at the sensor level could reveal strong homotopic FC. First, we 340 

calculated the absolute envelope amplitude of the MEG signal from each sensor via 341 

the Hilbert transform and down-sampled to 1 Hz. Second, the sensor-level homotopic 342 

FC was calculated using Pearson’s correlation between the envelope amplitude of 343 

each homotopic sensor pair. For comparison, the heterotopic FC was also calculated 344 

for each sensor as the average correlation between all heterotopic sensor pairs. Finally, 345 

the homotopic and heterotopic FC values were averaged across all runs and all 346 

participants. The homotopic sensors expectedly revealed stronger FC than the 347 

heterotopic sensor pairs (Fig. 6a). Moreover, the high homotopic FC primarily 348 

appeared at the sensors located in the occipital and temporal cortices, thereby 349 

indicating strong couplings driven by the movie stimuli (Fig. 6b). 350 

 351 

 352 

Fig. 6. The sensor-level homotopic functional connectivity (FC) is stronger than 353 
the heterotopic FC. (a) The histogram of the sensor-level homotopic FC and 354 
heterotopic FC pooled across all runs and participants. (b) The topographic map of the 355 
sensor-level homotopic FCs averaged across all acquisitions. Identical homotopic FC 356 
values are displayed for the corresponding homotopic sensors from the two 357 
hemispheres. Sensors in the central axis with no corresponding homotopic sensors 358 
were not included in the analysis.  359 
 360 

Inter-subject correlation 361 

ISC analysis uses the brain responses of a subject to naturalistic stimuli as a 362 

model to predict the brain responses of other subjects30. Numerous studies have 363 
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demonstrated that visual and auditory cortices display significant ISC while watching 364 

audio-visual movies. We validated if a high ISC could be detected in our MEG data. 365 

For simplicity, the ISC analysis was conducted at the sensor-level. The MEG 366 

recordings captured neural oscillations at different frequency bands31. Therefore, the 367 

ISC was calculated in five bands (delta: 1-4 Hz, theta:  4-8 Hz, alpha: 8-13 Hz, beta: 368 

13-30 Hz, and gamma: 30-100 Hz). First, the MEG signal was filtered for each band. 369 

Second, the absolute envelope amplitude of each band was calculated via the Hilbert 370 

transform and down-sampled to 1 Hz. Third, for each frequency band, a leave-one-371 

participant-out ISC was calculated for the left participant as the temporal correlation 372 

between the envelope amplitude from the participant and the average of other 373 

participants. Finally, the mean ISC was calculated by averaging the ISC across all 374 

participants. As shown in Fig. 7, sensors with higher ISC were located near the visual 375 

and audio cortices, which reportedly displayed high ISC during movie watching in 376 

previous studies14,32–34. In particular, the high ISC predominantly occurred in the delta, 377 

theta, and alpha bands, consistent with previous studies14,33,34. Together, the dataset 378 

demonstrated good validity in detecting ISC. In addition, a high ISC was observed in 379 

the orbital frontal area in the raw data, likely caused by eye blink or movement 380 

considering that high ISC was not observed in the preprocessed data, in which the 381 

artifacts have been removed.   382 

 383 

 384 

 385 

Fig. 7. Topographic maps of ISC in different frequency bands derived from both 386 
the raw and preprocessed MEG data. A high ISC occurs near the visual and audio 387 
cortices in the delta, theta and alpha bands for both the raw (top) and preprocessed 388 
(bottom) MEG data. A high orbital frontal ISC is only observed in the raw data, likely 389 
caused by artifacts.  390 
 391 
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Usage Notes 392 

We presented the first public MEG dataset for a full-length movie. The MEG 393 

signals were recorded while the participants watched the 2 h long Chinese-dubbed 394 

audio-visual movie “Forrest Gump”. The dataset provided a versatile resource for 395 

studying information processing in real-life contexts. First, MEG data could be 396 

independently used to study the neural dynamics of sensory processing and higher-397 

level cognitive functions under real-life conditions. Second, as a studyforrest 398 

extension, the dataset could be integrated with publicly available fMRI data from the 399 

studyforrest project. The fusion of fMRI and MEG may shed new light on the 400 

relationship between spatially localized networks observed in fMRI and the MEG-401 

derived temporal dynamics. Moreover, our massive MEG recordings enable the direct 402 

training of DNNs with neural activity patterns. In contrast to the DNNs that were 403 

usually trained with stimuli without referring to any neural representation, this kind of 404 

brain-constrained DNNs would act more like the human brain and generalize well 405 

across many tasks35,36. 406 

 Despite the importance of the aforementioned dataset as an extension of the 407 

studyforrest dataset in studying the spatiotemporal dynamics underlying cognitive 408 

processing in real-life contexts, the limitations should be acknowledged. First, the 409 

participants in our MEG data did not overlap with that in the studyforrest project. 410 

Therefore, the fMRI-MEG fusion can be only performed at the group level (i.e., 411 

across participants) instead of the individual level (i.e., within participants). This may 412 

make it unable to study the individual differences in the coupling between spatially 413 

localized networks and temporal dynamics. Second, the dubbed languages used in our 414 

dataset and the studyforrest project were radically different, thus limiting the 415 

application of the data in examining spatiotemporal dynamics of brain activity 416 

underlying auditory and language. In addition, caution should be taken with timing 417 

differences between the stimuli in the MEG and fMRI data. Considering the lower 418 

sensitivity of fMRI signals to the exact timing than MEG signals, we recommend the 419 

use of MEG stimuli in fusing fMRI and MEG data. 420 

 421 

Code Availability 422 

All custom codes for data preprocessing and technical validation are available 423 

at https://github.com/BNUCNL/MEG_Gump. Preprocessing was performed using 424 
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MNE-BIDS (https://mne.tools/stable/index.html), MNE 425 

(https://mne.tools/stable/install/mne_python.html), fMRIPrep 426 

(https://fmriprep.org/en/stable/), pydeface (https://github.com/poldracklab/pydeface), 427 

and dcm2niix (https://github.com/rordenlab/dcm2niix). 428 

 429 

Author contributions 430 

X.L. conceived, performed the study, and wrote the manuscript. Y.D. performed 431 

the study. H.X. contributed to the data collection. Z.Z. conceived, supervised the study 432 

and wrote the manuscript. 433 

 434 

References 435 

1. Sonkusare, S., Breakspear, M. & Guo, C. Naturalistic Stimuli in Neuroscience: 436 

Critically Acclaimed. Trends in Cognitive Sciences 23, 699–714 (2019). 437 

2. Jääskeläinen, I. P., Sams, M., Glerean, E. & Ahveninen, J. Movies and narratives as 438 

naturalistic stimuli in neuroimaging. NeuroImage 224, 117445 (2021). 439 

3. Wen, H. et al. Neural Encoding and Decoding with Deep Learning for Dynamic 440 

Natural Vision. Cerebral Cortex 28, 4136–4160 (2018). 441 

4. Shen, G., Horikawa, T., Majima, K. & Kamitani, Y. Deep image reconstruction from 442 

human brain activity. PLOS Computational Biology 15, e1006633 (2019). 443 

5. Güçlü, U. & van Gerven, M. A. J. Increasingly complex representations of natural 444 

movies across the dorsal stream are shared between subjects. NeuroImage 145, 329–445 

336 (2017). 446 

6. Cichy, R. M. et al. The Algonauts Project 2021 Challenge: How the Human Brain 447 

Makes Sense of a World in Motion. arXiv:2104.13714 [cs, q-bio] (2021). 448 

7. Hanke, M. et al. A high-resolution 7-Tesla fMRI dataset from complex natural 449 

stimulation with an audio movie. Scientific Data 1, sdata20143 (2014). 450 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 4, 2021. ; https://doi.org/10.1101/2021.06.04.446837doi: bioRxiv preprint 

https://mne.tools/stable/index.html
https://fmriprep.org/en/stable/
https://doi.org/10.1101/2021.06.04.446837
http://creativecommons.org/licenses/by/4.0/


18 
 

8. Hanke, M. et al. A studyforrest extension, simultaneous fMRI and eye gaze 451 

recordings during prolonged natural stimulation. Scientific Data 3, 160092 (2016). 452 

9. Liu, X., Zhen, Z., Yang, A., Bai, H. & Liu, J. A manually denoised audio-visual 453 

movie watching fMRI dataset for the studyforrest project. Sci Data 6, 295 (2019). 454 

10. Aliko, S., Huang, J., Gheorghiu, F., Meliss, S. & Skipper, J. I. A naturalistic 455 

neuroimaging database for understanding the brain using ecological stimuli. 456 

Scientific Data 7, 347 (2020). 457 

11. Visconti di Oleggio Castello, M., Chauhan, V., Jiahui, G. & Gobbini, M. I. An 458 

fMRI dataset in response to “The Grand Budapest Hotel”, a socially-rich, naturalistic 459 

movie. Scientific Data 7, 383 (2020). 460 

12. Chang, W.-T. et al. Combined MEG and EEG show reliable patterns of 461 

electromagnetic brain activity during natural viewing. Neuroimage 114, 49–56 462 

(2015). 463 

13. Betti, V. et al. Natural Scenes Viewing Alters the Dynamics of Functional 464 

Connectivity in the Human Brain. Neuron 79, 782–797 (2013). 465 

14. Lankinen, K., Saari, J., Hari, R. & Koskinen, M. Intersubject consistency of 466 

cortical MEG signals during movie viewing. NeuroImage 92, 217–224 (2014). 467 

15. Lankinen, K. et al. Consistency and similarity of MEG- and fMRI-signal time 468 

courses during movie viewing. NeuroImage 173, 361–369 (2018). 469 

16. Nunes, A. S. et al. Neuromagnetic activation and oscillatory dynamics of 470 

stimulus-locked processing during naturalistic viewing. NeuroImage 216, 116414 471 

(2020). 472 

17. Kleiner, M. et al. What’s New in Psychtoolbox-3? Perception 36, 1–16 (2007). 473 

18. Gramfort, A. MEG and EEG data analysis with MNE-Python. Front. Neurosci. 474 

7, (2013). 475 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 4, 2021. ; https://doi.org/10.1101/2021.06.04.446837doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.04.446837
http://creativecommons.org/licenses/by/4.0/


19 
 

19. Esteban, O. et al. fMRIPrep: a robust preprocessing pipeline for functional MRI. 476 

Nature Methods 16, 111–116 (2019). 477 

20. Tustison, N. J. et al. N4ITK: Improved N3 Bias Correction. IEEE Trans. Med. 478 

Imaging 29, 1310–1320 (2010). 479 

21. Dale, A. M., Fischl, B. & Sereno, M. I. Cortical Surface-Based Analysis. 480 

NeuroImage 16 (1999). 481 

22. Liu, X., Dai, Y., Xie, H. & Zhen, Z. ForrestGump-MEG. OpenNeuro (2021) 482 

doi:10.18112/openneuro.ds003633.v1.0.1. 483 

23. Niso, G. et al. MEG-BIDS, the brain imaging data structure extended to 484 

magnetoencephalography. Sci Data 5, 180110 (2018). 485 

24. Appelhoff, S. et al. MNE-BIDS: Organizing electrophysiological data into the 486 

BIDS format and facilitating their analysis. JOSS 4, 1896 (2019). 487 

25. Uno, T. et al. Dissociated Roles of the Inferior Frontal Gyrus and Superior 488 

Temporal Sulcus in Audiovisual Processing: Top-Down and Bottom-Up Mismatch 489 

Detection. PLoS ONE 10, e0122580 (2015). 490 

26. Chikara, R. K. & Ko, L.-W. Modulation of the Visual to Auditory Human 491 

Inhibitory Brain Network: An EEG Dipole Source Localization Study. Brain 492 

Sciences 9, 216 (2019). 493 

27. Ferraro, S. et al. Stereotactic electroencephalography in humans reveals 494 

multisensory signal in early visual and auditory cortices. Cortex 126, 253–264 (2020). 495 

28. Lowe, M. J., Mock, B. J. & Sorenson, J. A. Functional Connectivity in Single 496 

and Multislice Echoplanar Imaging Using Resting-State Fluctuations. NeuroImage 497 

7, 119–132 (1998). 498 

29. Mancuso, L. et al. The homotopic connectivity of the functional brain: a meta-499 

analytic approach. Sci Rep 9, 3346 (2019). 500 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 4, 2021. ; https://doi.org/10.1101/2021.06.04.446837doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.04.446837
http://creativecommons.org/licenses/by/4.0/


20 
 

30. Hasson, U., Nir, Y., Levy, I., Fuhrmann, G. & Malach, R. Intersubject 501 

synchronization of cortical activity during natural vision. science 303, 1634–1640 502 

(2004). 503 

31. Hari, R. & Salmelin, R. Magnetoencephalography: From SQUIDs to 504 

neuroscience. NeuroImage 61, 386–396 (2012). 505 

32. Hasson, U. et al. Neurocinematics: The neuroscience of film. Projections 2, 1–506 

26 (2008). 507 

33. Thiede, A., Glerean, E., Kujala, T. & Parkkonen, L. Atypical MEG inter-subject 508 

correlation during listening to continuous natural speech in dyslexia. NeuroImage 509 

216, 116799 (2020). 510 

34. Puschmann, S., Regev, M., Baillet, S. & Zatorre, R. J. MEG Intersubject Phase 511 

Locking of Stimulus-Driven Activity during Naturalistic Speech Listening 512 

Correlates with Musical Training. J. Neurosci. 41, 2713–2722 (2021). 513 

35. Fong, R. C., Scheirer, W. J. & Cox, D. D. Using human brain activity to guide 514 

machine learning. Sci Rep 8, 5397 (2018). 515 

36. Spampinato, C. et al. Deep Learning Human Mind for Automated Visual 516 

Classification. arXiv:1609.00344 [cs] (2019). 517 

  518 

  519 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 4, 2021. ; https://doi.org/10.1101/2021.06.04.446837doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.04.446837
http://creativecommons.org/licenses/by/4.0/


21 
 

Supplementary materials 520 

 521 

 522 

Supplementary Figure 1. Head motion magnitude from each individual participant. The 523 

density histogram of motion magnitude calculated for three fiducials (NAS, LPA, RPA) 524 

were plotted for all samples, across all runs for each participant. 525 

 526 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 4, 2021. ; https://doi.org/10.1101/2021.06.04.446837doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.04.446837
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 4, 2021. ; https://doi.org/10.1101/2021.06.04.446837doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.04.446837
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 4, 2021. ; https://doi.org/10.1101/2021.06.04.446837doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.04.446837
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 4, 2021. ; https://doi.org/10.1101/2021.06.04.446837doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.04.446837
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 4, 2021. ; https://doi.org/10.1101/2021.06.04.446837doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.04.446837
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 4, 2021. ; https://doi.org/10.1101/2021.06.04.446837doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.04.446837
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 4, 2021. ; https://doi.org/10.1101/2021.06.04.446837doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.04.446837
http://creativecommons.org/licenses/by/4.0/


.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 4, 2021. ; https://doi.org/10.1101/2021.06.04.446837doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.04.446837
http://creativecommons.org/licenses/by/4.0/

